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Abstract.

The volatility distribution of the organic compounds present in SOA at different conditions is a key quantity that has to be
captured in order to describe SOA dynamics accurately. The development of the filter inlet for gases and aerosols
(FIGAERO) and its coupling to chemical ionization mass spectrometer (CIMS) has enabled near simultaneous sampling of
gas and particle phases of secondary organic aerosol (SOA) through thermal desorption of the particles. The thermal
desorption data has recently been shown to be interpretable as a volatility distribution with the use of positive matrix
factorization (PMF) method. Similarly, volatility distribution can be inferred from isothermal particle evaporation
experiments, when the particle size change measurements are analyzed with process modelling techniques. In this study we
compare the volatility distributions that are retrieved from FIGAERO-CIMS and particle size change measurements during
isothermal particle evaporation with process modelling techniques. We compare the volatility distributions at two different
relative humidity (RH) and two oxidation condition. At high RH conditions, where particles are in a liquid state, we show
that the volatility distributions derived the two ways are similar within reasonable assumption of uncertainty in the effective
saturation mass concentrations that are derived from FIGAERO-CIMS data. At dry conditions we demonstrate the volatility
distributions are comparable in one oxidation condition and in the other oxidation condition the volatility distribution derived
from the PMF analysis shows considerably more high volatility matter than the volatility distribution inferred from particle
size change measurements. We also show that the Vogel-Tammann-Fulcher equation together with a recent glass transition
temperature parametrization for organic compounds and PMF derived volatility distribution estimate are consistent with the
observed isothermal evaporation under dry conditions within the reported uncertainties. We conclude that the FIGAERO-
CIMS measurements analyzed with the PMF method are a promising method for inferring the organic compounds’ volatility
distribution, but care has to be taken when the PMF factors are interpreted. Future process modelling studies about SOA

dynamics and properties could benefit from simultaneous FIGAERO-CIMS measurements.
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1 Introduction

Aerosol particles have varying effects on health, visibility and climate (Stocker et al., 2013). Organic compounds comprise a
substantial amount of atmospheric particulate matter (Jimenez et al., 2009; Zhang et al., 2007) of which a major fraction is of
secondary origin, i.e., low-volatility organic compounds formed from oxidation reactions between volatile organic
compounds (VOCs) and ozone, hydroxyl radicals and nitrate radicals (Hallquist et al., 2009). The aerosol particles
containing these kind of oxidation products are called secondary organic aerosols (SOA) as opposed to primary organic
aerosols i.e. organic particles emitted directly to the atmosphere. VOC oxidation reactions result in thousands of different
organic compounds (Goldstein and Galbally, 2007) A recent review by Glasius and Goldstein, (2016) pointed out that our
understanding of SOA is still lacking especially on formation and deposition, and their response to different physicochemical
properties of the organic compounds such as volatility. In addition, also the phase state of the organic compounds has been
shown to play a role in the SOA dynamics (Reid et al., 2018; Shiraiwa et al., 2017; Yli-Juuti et al., 2017; Renbaum-Wolff et
al., 2013; Virtanen et al., 2010)

The physicochemical properties of organic aerosols can be studied directly and indirectly. The Aerodyne Aerosol mass
spectrometer (AMS, Canagaratna et al., 2007; DeCarlo et al., 2006; Jayne et al., 2000) enabled direct and online composition
measurements of atmospheric particles for the first time. Combining AMS data with statistical dimension reduction
techniques such as factor analysis and positive matrix factorization (PMF; Zhang et al., 2011, 2007, 2005; Paatero and
Tapper, 1994) allowed researchers to draw conclusions on sources and types of atmospheric organic particulate matter from

the relatively complex mass spectra data.

The chemical ionization mass spectrometer (CIMS; Lee et al., 2014) coupled with the Filter Inlet for Gases and AEROsols
(FIGAERO-CIMS, Lopez-Hilfiker et al., 2014) is a prominent online measurement technique to study both the gas and
particle phases of SOA. During particle phase measurements, a key advantage over the AMS is the softer chemical
ionization that retains much more of the molecular information of the compound than the electron impact ionization used in
the AMS. Typically, the collection of the particulate mass is conducted at room temperature which minimizes the loss of
semi-volatile compounds during collection. In addition to the overall chemical composition, the gradual desorption of the
particulate mass from the FIGAERO filter yields the thermal desorption behavior of each detected ion, i.e., it is a direct
measure of each ion’s volatility. FIGAERO-CIMS measurements have been carried out in both laboratory and field
environments to study SOA composition from different VOC precursors and in both rural and polluted environments (Breton
et al., 2018; Huang et al., 2018; Lee et al., 2018; D’Ambro et al., 2017; Lopez-Hilfiker et al., 2015). However, the volatility

information in these data sets have barely been used.
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Besides direct mass spectrometer measurements, SOA properties have been inferred indirectly from growth (e.g. Pathak et
al., 2007 and references therein) and isothermal evaporation (Buchholz et al., 2019a; D’ Ambro et al., 2018; Yli-Juuti et al.,
2017; Wilson et al., 2015; Vaden et al., 2011) measurements. The complexity of organic compounds in these studies can be
alleviated with the use of a volatility basis set (Donahue et al., 2006), where organic compounds are grouped based on their
(effective) saturation concentration. However, the experimental setup also defines the range of C” values that can be
estimated from the data. Vaden et al., (2011) and Yli-Juuti et al., (2017) have both shown that the volatility basis sets derived
from SOA growth experiments result in too fast SOA evaporation compared to measured evaporation rates when the
volatility basis set is used as input for process models. Possible reasons for such discrepancies include the different C" ranges
to which the SOA growth and SOA evaporation experiments are sensitive and the role of vapor wall losses in SOA growth
experiments. This raises a need for alternative methods to derive organic aerosol volatility against which the volatilities

inferred from the direct particle size measurements can be compared to.

Recently, Buchholz et. al., (2019b) demonstrated that the FIGAERO-CIMS measurements during particle evaporation can be
mapped to a volatility distribution of organic compounds by conduction a PMF analysis. On the other hand, Tikkanen et al.,
(2019) showed that the volatility distribution can be inferred from isothermal particle evaporation measurements by
optimizing evaporation model input to match the measured evaporation rate at different humidity conditions. In this study,
we compare these two approaches for varying oxidation and particle water content conditions. Our main research questions
are 1) Are the volatility distributions derived from particle size change during isothermal evaporation and from the
FIGAERO-CIMS measurements similar? 2) How to interpret the PMF results of FIGAERO-CIMS data in terms of
volatility? 3) Can a recently published glass transition temperature parametrization (DeRieux et al., 2018) combined with the
PMF analysis be used to model particle phase mass transfer limitation observed in evaporation at dry conditions, i.e., in the

absence of particle phase water?

2 Methods

2.1 Experimental particle evaporation data

The experimental data we use is the same as reported in Buchholz et al., (2019a,b). We briefly summarize the measurement
setup below. We generated the particles with a Potential Aerosol Mass (PAM) reactor (Kang et al., 2007; Lambe et al., 2011)
from the reaction of o-pinene with O; and OH at three different oxidation levels (average oxygen-to-carbon O:C ratios of
0.53, 0.69, and 0.96). We focus on the lowest O:C (0.53) and medium O:C (0.69) experiments in this work. The closer
analysis of the high O:C experiments suggest particle phase reactions during the evaporation (Buchholz et al., 2019a,b). To
avoid the uncertainty that would arise from unknown particle phase reactions, we chose not to include the high O:C data in

our analysis.
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We chose a monodisperse particle population (mobility diameter d, = 80 nm) with two nano tandem type differential
mobility analyzers (nano-DMA; TSI inc., Model 3085) from the initial polydisperse particle population. The size selection
diluted the gas phase initiating particle evaporation. The monodisperse aerosol was left to evaporate in a 100 L stainless steel
residence time chamber (RTC). We measured the particle size distribution during the evaporation with a scanning mobility
particle sizer (SMPS; TSI inc., Model 3082+3775). The RTC filling took approximately 20 minutes and we performed the
first size distribution measurement in the middle of the filling interval. To obtain short residence time data (data before 10
minutes of evaporation) we added a bypass to the RTC which led the sample directly to the SMPS. By changing the length
of the bypass tubing, we were able to measure the particle size distribution between 2 s and 160 s of evaporation. We
measured the isothermal evaporation up to 4 — 10 hours depending on the measurement. We performed the measurements for
each oxidation level both at high relative humidity (RH = 80%) and at dry conditions (RH < 2 %). The change in particle
size with respect to time are called evapograms. In an evapogram, the horizontal axis presents evaporation time and vertical

axis shows the evaporation factor (EF), i.e., measured particle diameter divided by the initially selected particle diameter.

To classify the oxidation level of the particles, we derived the average O:C ratio from composition measurements with a
High-Resolution Time-Of-Flight Aerosol Mass Spectrometer (AMS, Aerodyne Research Inc.). Further, we conducted
detailed particle composition measurements with an Aerodyne Research Inc. FIGAERO, (Lopez-Hilfiker et al., 2014)
coupled with a chemical ionization mass spectrometer (CIMS) with iodide as the reagent ion (Aerodyne Research Inc., Lee
et al., 2014). Previous studies using FIGAERO-CIMS with iodide as the reagent ion found 50% or better mass closure
compared to more established methods of quantifying OA mass (albeit with high uncertainties; Isaacman-VanWertz et al.,
(2017); Lopez-Hilfiker et al., (2016)). Therefore, it appears that the bulk of reaction products expected from a-pinene

oxidation contains the functional groups required for detection by our FIGAERO-CIMS.

In the FIGAERO inlet, particles are first collected on a PTFE filter. Then the collected particulate mass desorbs slowly due
to gradually heated nitrogen flow which is then transported into the CIMS for detection. We derived the average chemical
composition of the particles by integrating the detected signal of each ion over the whole desorption interval. For each ion,
the change of detected signal with desorption temperature is called thermogram and generally, the temperature at the
maximum of the thermogram (Twmax) is correlated to the volatility of the detected ion. Similar to Bannan et al., (2019) and
Stark et al., (2017), we calibrated the T - volatility relationship using compounds with known vapour pressure. The

calibration procedure is described in the supplementary material.

We collected particles for FIGAERO-CIMS analysis at two different stages of the evaporation. We refer to these samples
as either “fresh” or “RTC” samples. The fresh samples were collected for 30 minutes directly after the selection of the

monodisperse population. The RTC samples were collected after 3 to 4 hours of evaporation in the RTC for 75 minutes. The
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collected particulate mass was 140-260 ng and 20-70 ng for fresh and RTC samples, respectively. More details about

sample collection, desorption parameters, and data analysis can be found in Buchholz et al., (2019a).

2.2 The volatility distribution

We represent the myriad of organic compound in the SOA particles with a one-dimensional volatility basis set (1D VBS,
below only VBS, Donahue et al., 2006). The VBS groups the organic compounds into ‘bins’ based on their effective (mass)
saturation concentration C’, defined as the product of the compounds activity coefficient and saturation concentration.
Generally, a bin in the VBS represents the amount of organic material in the particle and gas phases. In our study, the walls
of the RTC have been shown to work as an efficient sink for gaseous organic compounds (Yli-Juuti et al., 2017). Thus, we
can assume that the gas phase in our experimental setup does not contain organic compounds, i.e., the amount of organic
matter in a bin is the amount in the particle phase. To distinguish from a traditional VBS that groups the organic compounds
to bins where there is a decadal difference in C" between two adjacent bins, we call the VBS in our work a volatility
distribution (VD). We present the amount of material in each VD bin as dry mole fractions, i.e., mole fractions of the
organics, excluding water. In the analysis presented below, we assign properties to each VD bin (e.g. molar mass) treating
each bin as if it consisted of only a single organic compound with a single set of properties. We label these pseudo-
compounds as “VD compounds” to distinguish them from real organic compounds. The physicochemical properties of each

VD compound are listed in Table 1 as well as the ambient conditions of each evaporation experiment.

2.3 Deriving volatility distribution from an evapogram

We followed the similar approach as in Yli-Juuti et al., (2017) and Tikkanen et al., (2019) to derive a VD at the start of the
evaporation from an evapogram. To model the evaporation at high RH, we used a process model (liquid-like evaporation
model, hereafter LLEVAP) that assumes a liquid-like particle, i.e., a particle where there are no mass transfer limitations
inside the particle and where the rate of change of the mass of a VD compound in the particle phase can be calculated
directly from the gas phase concentrations of this VD compound near the particle surface and far away from the particle
(Vesala et al., 1997; Lehtinen and Kulmala, 2003; Yli-Juuti et al., 2017). In this case, the main properties defining the

evaporation rate are the saturation concentrations of each VD compound and their amount in the particle.

We used the LLEVAP model to characterize the volatility ranges interpretable from the evaporation measurements. We
calculated the limits by modelling evaporation of a hypothetical particle that consists of one organic compound at dry
conditions iterating the range of log, (C") values from -5 to 5. We determined the minimum C" value with “detectable
evaporation”, i.e., at least 1% change in particle diameter during the evaporation time (up to 6 h) and the maximum C" value
before “complete evaporation” occurred, i.e., 99% evaporation within 10 s. The minimum log:, (C") calculated with this
method was -3 and the maximum logs, (C") was 2. We then modelled the particle composition with six VD compounds with

C" values between these minimum and maximum values. Each VD compounds has a decadal difference in C" to adjacent VD
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compounds (the traditional VBS). We note that based on this analysis all the compounds with logi, (C") < -3 will not
evaporate during the experimental time scale. This means that any compounds with lower C” than this threshold will be
assigned to the logio (C")= -3 VD compound. Similarly, any compound with log;o (C") > 2 will be classified into the logso

(C"=2VD compound or not be detected at all due to evaporating almost entirely before the first measurement point.

We calculated the dry particle mole fraction of each VD compound at the start of the evaporation by fitting the evaporation
predicted with the process model to the measured evapograms. Our goal was to minimize the mean squared error in vertical
direction between the experimental data and the LLEVAP output. We used the Monte Carlo Genetic Algorithm (MCGA,
Berkemeier et al., 2017; Tikkanen et al., 2019) for the input optimization. In the optimization, we set the population size to
be 400 candidates, number of elite members to 20 (5% of the population), number of generations to 10, and number of
candidates drawn in the Monte Carlo (MC) part to 3420 which corresponds to half of the total process model evaluations
done during the optimization. We performed the optimization 50 times for each evapogram and selected the best fit VD

estimate for further analysis.

The VD derived from the evapograms are hereafter referred to as the VDevp. The initial composition of the SOA particles in
the dry and wet experiments were the same and can be described by the same fitted VD, as the particles were generated at

the same conditions in the PAM and only the evaporation conditions changed.

2.4 Deriving volatility distribution from FIGAERO-CIMS measurement

As shown by Bannan et al., (2019) and Stark et al., (2017), the peak desorption temperature, Tma, can be used together with
careful calibration to link desorption temperatures from the FIGAERO filter to C" values for the detected ions. In principle,
this would allow us to assign one C” value to each ion thermogram. But this assumes that one detected ion characterized by
its exact mass is indeed just one compound. In practice, this is not always the case and for some ion thermograms a bimodal
structure or distinct shoulders/broadening are visible. This can be caused by isomers of different volatility which cannot be

separated even by high resolution mass spectra.

Another complication arises due to the thermal desorption process delivering the collected aerosol mass into the CIMS.
Especially multi-functional, and hence low volatility compounds may thermally decompose before they desorb from the
filter, and thus be detected as smaller ions. The apparent desorption temperature is then determined by the thermal stability
of the compound and not its volatility. Typically, this decomposition processes start at a minimum temperature and will not
create a well-defined peak shape (Buchholz et al., 2019b, Schobesberger et al., 2018) presumably because an observed
decomposition product may have multiple sources, especially when including all isomers, and the ion signal for the
respective composition may overlap with the signal of isomers derived from true desorption. E.g., a true constituent of the

SOA particle may give rise to an observed main thermogram peak, but it may be broadening and/or tailing if a
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decomposition product has the same composition. By ignoring this and simply using the T .« values, the true volatility of the

SOA particle constituents will be overestimated, i.e., the derived VD will be biased towards higher C” bins.

One more potential source of bias is our implicit assumption of a constant sensitivity of the CIMS towards all compounds,
which follows from the lack of calibration measurements for our datasets (which indeed is a challenging endeavour; e.g.,
Isaacman-VanWertz et al., (2018)). It is plausible that less volatile compounds tend to be detected at higher sensitivity (Lee
et al., EST, 2014; Iyer et al., JPC, 2016), up to a kinetic limit sensitivity. Consequently, a volatility distribution derived from
FIGAERO-CIMS thermograms may be biased towards lower volatility (C* bins), at least for compositions not associated

with thermal decomposition.

To separate the multiple sources possibly contributing to each ion thermogram (isomers and thermal decomposition
products), we applied the Positive Matrix Factorisation (PMF, Paatero and Tapper, 1994) to the FIGAERO-CIMS data set.
PMF is a well-established mathematical technique in atmospheric science mostly used to identify the contribution of
different sources of aerosol particle constituents or trace gases in the atmosphere. PMF represents the measured matrix of
time-series of mass spectra, X, as a linear combination of a (unknown) number of constant source profiles, F, with varying
contributions over time, G:
X=G-F+E (1)

E is a matrix containing the residuals between the measured (X) and the fitted data (G-F). Values for G and F are found by

minimising this residual, Ej, scaled by the corresponding measurement error, Sy, for each ion i at each time j
m n
Q=22 155_ @
i=1 j=1\94,j
Each row in F contains a factor mass spectrum and each column in G holds the corresponding time series of contribution by
each factor. In the case of FIGAERO-CIMS data, the time series is equivalent to the desorption temperature ramp during the
thermogram and will be called “mass loading profile” below. The absolute values (temperature or time) are irrelevant for the
performance of PMF as the “x values” are only used to determine the order of the data points but have no influence on the
model output (Paatero and Tapper, 1994). This allowed us to combine multiple separate thermogram measurements into one

data set and conducting a PMF analysis. This simplified the comparison of factors between measurements. More details

about the PMF method in the specific case of FIGAERO-CIMS data can be found in Buchholz et al., (2019b).

Once the PMF algorithm was applied to the FIGAERO-CIMS data we calculated the VD from the mass loading matrix G.
We interpolated each factor’s mass loading profile with a resolution of 100 sample points between two temperature steps to
gain sufficient statistics for further analysis. Tmsx Was determined as the temperature of the maximum of the factor mass

loading series. We integrated the factor mass loading profile and defined the temperatures where the value of the integral
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reaches 25% and 75% of its maximum value. This temperature interval formed the factors desorption temperature range and

the corresponding C" values will be used in Sect. 3.3. We converted the Tnma values into C” values and the desorption

temperature range into a C” range with a parametrization derived from calibration measurements (see Supplementary

material for details) with organic compounds with known C" values.

exp (OH-[))Tfactor ) M
RT

Cc' =

org 10 9 (3)

ambient

where C”is the effective saturation concentration in units pgm™, Mo is the molar mass of the organic compound assumed to
be My = 0.2 kg mol™, R is the universal gas constant, Treor (in °C in Eq. 3) is the temperature of the mass loading profile
and Tamiben: (in Kelvin in Eq. 3) is the ambient temperature where the evaporation happens (see Table 1), a and f3 are the fitted
coefficients from the calibration data a=(-1.431+0.31) and B=(-0.207+0.006) °C". We applied the lower and higher bounds
of the fitting coefficients’ uncertainty when we calculated the C"range in Sect 3.3. Finally, the signal fraction of each factor
was calculated by dividing the integral of a factor’s signal over the whole temperature range with the sum of integrals of all
factors. We compare this signal fraction to the dry mole fraction in the VD .,. We refrained from converting the counts per
second signal into moles as no adequate transmission and sensitivity measurements were available for the used FIGAERO-
CIMS setup. We refer the volatility distribution calculated from the PMF data using the T w.x values of each factor as VDpume

later in this work.

With Eq. (3), we can calculate the minimum and maximum C~ values that can be resolved from a FIGAERO thermogram.
The desorption temperature was ramped between 27 °C and 200 °C, but defined peaks (and thus T m.x values can be detected
only between 30 and 180 °C. Thus, the resolvable log;, (C") values range from 1.6 to -11.9. It has to be kept in mind that

strictly this calibration only applies to the Tr.x values of a single ion thermogram.

2.5 Modelling particle viscosity at dry conditions

To model the mass transfer limitations observed in the evaporation measurements at dry conditions (Buchholz et al., 2019a)
we used the Kinetic multilayer model for gas particle interactions (KM-GAP; Shiraiwa et al., 2012) with modifications
described in Yli-Juuti et al., (2017) and Tikkanen et al., (2019). The main modification to the original model was that during
evaporation the topmost layer (the quasi static surface layer) merges with the first bulk layer if the thickness of the layer is

smaller than 0.3 nm. We calculated the viscosity at each layer of the particle as

N
10g10(77,-)22 Xmole,i,jloglo(bi)) 4)
i=1

where Xmor,ij is the mole fraction of the VD compound i in layer j and b; is a coefficient that describes the contribution of

each VD compound to the overall viscosity.
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Since we generated the particles in the same environment (PAM chamber) and only the evaporation happened at different
conditions, the VD at the start of the evaporation derived from high RH data represents also the composition at the start of
the evaporation at dry conditions. Then we can use the best fit VD, from the high RH data as input for KM-GAP and fit
the b; values in Eq. (4) to the dry data set. We set the minimum and maximum allowed values for b; to 10" and 10%,
respectively. To estimate the b; values when modelling the evaporation with VDpyr at dry conditions, we calculated these b;
terms using the mass spectra of each factor (F in Eq. 1) and the Vogel-Tammann-Fulcher (VTF) equation (DeRieux et al.,

2018; Angell, 2002, 1995)

T,,D

—_—, 5
T-T,, ©)

;= 1.exp

where n; is the viscosity of a VD compound / PMF factor i which can be seen as a proxy for b; in an ideal solution, n.is the
viscosity at infinite temperature, Ty, is the Vogel temperature of i, and D is a fragility parameter. Setting n..= 10®° Pa s and
n(Tg) = 10" Pa s (e.g. DeRieux et al., 2018; Gedeon, 2018), where T, is the glass transition temperature of a compound

yields

;. 3914T,,
0i73914+D"

We calculated T, for every compound in the PMF mass spectra with a parametrization for SOA matter developed by

©)

DeRieux et al., (2018). We then computed T, for each PMF factor as a mass fraction weighted sum of glass transition
temperatures of individual compounds (DeRieux et al., 2018; Dette et al., 2014). Based on the Tg; for each PMF factor we
calculated the viscosity of each PMF factor with Egs. (5) and (6) and used them as an approximation for b;. We used fragility

parameter value D = 10 according to DeRieux et al., (2018).

3 Results

In this section we first focus on the high RH experiments where evaporation is modelled with the LLEVAP model. We will
first compare VDeywp and VDpye when the C* of a PMF factor is determined from the factor’s Tm.. Then, we compare the
volatility distributions where the C” of a PMF factor is determined as a range from the 25" and 75" percentile desorption
temperatures. Lastly, we study the volatility distributions at dry conditions. We investigate the VD both on a qualitative and
quantitative level. On a qualitative level we compare the amount of matter of different C" intervals relevant for the
evaporation process. On a quantitative level we study what is the evaporation behavior of the particles based on the

determined VD and how they compare to the measured evaporation.
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3.1 PMF solution interpretation

Figure S2 shows mass loading profiles derived from FIGAERO-CIMS measurements of medium and low O:C particles at
high RH. The corresponding factor mass spectra can be found in Fig. S3 and Fig. S4. A key step in any PMF analysis is
determining the “right” number of factors as this can affect the interpretation of the results. A 7-factor solution was chosen
for the medium O:C cases and a 9-factor solution for the low O:C ones (see Buchholz 2019b for details). Two additional
factors in the low O:C case were needed to capture a contamination on the FIGAERO filter during the dry, fresh sample
(factors LC1 and LC2 in Fig. S2 and Fig. S4). As these two factors were clearly an artifact introduced by the FIGAERO
filter sampling, we omitted their contribution for the following analysis. From careful comparison of the factor profiles and
mass spectra with filter blank measurements, we determined that factor MB1 in medium O:C case and factor LB1 in low

O:C case describe the filter/instrument background and are thus also excluded from the VD comparison presented below.

Factors 1-5 in both O:C cases exhibit a monomodal peak shape and can thus be characterized by their T values, factor
MD1 in medium O:C case and factor LD1 in low O:C case needs to be investigated more closely, as its factor mass spectrum
and the sometimes bimodal mass loading profile suggest that this factor contains compounds stemming from both direct
desorption (desorption T<100 °C) and thermal decomposition (desorption T>100 °C, see Buchholz et al., 2019b for details).
To account for this, the factor is split into two with the first half containing the signal from desorption temperature below
100 °C (factor M/LD1a) and the second half containing that above 100 °C (factor M/LD1b). We treat these factors
separately. We note that now the latter half of the split factor is dominated by thermal decomposition products so that the
apparent desorption temperature is actually the temperature at which thermal decomposition leads to products which desorb
at this temperature. This apparent desorption temperature is thus a lower limit for the decomposing parent compound, i.e.,
the true volatility of these parent compounds is even lower. However, the desorption temperatures are so high that they lead
to log;o(C") < -3 and are thus below the comparable range for VDey,. Figure 1 (high RH data) and Fig. S10 (dry condition
data) show the mass loading profiles derived from FIGAERO-CIMS measurements of medium and low O:C particles after

we excluded the contamination and background factors and split the decomposition factors.

3.2 Volatility distribution comparison at high RH based on factor T .x

To compare VD.y., and VDpwr, we need to determine the time interval in the evapogram that the VDpyr represents. We
collected the fresh samples directly after the size selection. As the particles were collected on a filter for 30 minutes, the
collected sample represents particles that have evaporated from 0 up to 30 minutes in the organic vapour free air. We note
that this is different from the standard FIGAERO-CIMS sample collection where particles are collected in a quasi-
equilibrium with the surrounding gas phase and no significant evaporation occurs (Lopez-Hilfiker et al., 2014). For RTC

samples, we need to consider also that not all particles have evaporated for the same time due to the filling of the RTC for ca.
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20 minutes. We determined the minimum time the particles have evaporated in the RTC as the time when we started the
sample collection minus the RTC filling time. We determined the maximum evaporation time in the RTC to be the time
when we stopped the sample collection plus the filling time. These minimum and maximum comparison times are shown in
Table S1 and they are referred to as minimum and maximum (sample) evaporation time. The mean (sample) evaporation
time is defined to be at the middle of the sample collection interval. For simplicity we will show in the main text the results
from analysis where the FIGAERO-CIMS samples were assumed to represents the particles at the mean sample evaporation
time. We show the analysis where the samples were assumed to represent the particles at minimum and maximum

evaporation time in the supplementary material.

Figure 2 shows VD.wp and VDpwr for medium (Fig. 2a-b) and low O:C (Fig. 2c-d) particles at high RH. In the VDpuer
calculated from T value of each factor (black crosses), the factors fall into three different volatility classes within our
chosen particle size and experimental time scale: practically non-volatile (log:o(C") < -2), slightly volatile ( -2 < log(C") <
0,) and volatile (logis(C") > 0). We use these three volatility classes to compare the volatility distributions in Fig. 3 where
each VD compound are grouped to these three volatility classes. Figure 3 presents the VDpwr where C* of each factor is
calculated from the Tma.x value and compares this VDpymr to what VDeysp is at the mean time the FIGAERO samples had

evaporated. We show the same comparison for minimum and maximum evaporation time in Fig. S5 and Fig. S6.

After the volatility class grouping is applied, we see that there are differences between VD eyap and VDpyr. With VDpyir of the
fresh samples there are excess amount of matter in the lowest volatility class (volatility class 1) and less material in the
volatility class 2 compared to VDev.p. In both oxidation condition. In addition, the low O:C fresh sample shows more material

in the volatility class 3 in VDpmrcompared t0 VDeyap..

To investigate the observed discrepancies further, we used the VDpyr shown in Fig 2 as an input to the LLEVAP model and
calculated the corresponding isothermal evaporation behavior (i.e. the evapogram). We show these simulated evapograms in
Fig. 4a for the medium O:C case and in Fig 4b for low O:C condition together with the simulated evapogram calculated
using VDeyp as an input for the LLEVAP model. The simulated evapograms calculated with VD pyr of the fresh samples do
not match the measured evapograms predicting less evaporation, while the evapogram calculated with VD..,, agrees well
with the experimental evapogram (black lines in Fig. 4), as expected since this is the goal of the VD, determination. The
simulation calculated with VDpwr of the fresh sample (light blue lines in Fig. 4 for mean evaporation time and Fig. S7 for
other evaporation times) shows slower evaporation than the observations or the simulation calculated with VD .. This is

consistent with the results show in Fig. 3 where the VDpyr contained more low volatility material than the VDeyap.

Figure 4 shows also the simulated evapograms calculated with VDpwr of the RTC samples (light brown lines in Fig. 4 and

Fig. S7). in these cases, the particles size decreases little within the simulation time scale. With medium O:C particles, the
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simulated evaporation matches well to the measured evaporation. With low O:C particles, the evaporation calculated with

VDpyr is too fast. The shape of the evapogram does not match the measured one.

3.3 Applying desorption range to characterize the volatility of PMF factors

The Thax value is a practical choice for the characteristic temperature of the desorption process. However, as we saw on Sect.
3.2 the VDpwr calculated from the peak desorption temperatures did not produce the measured evapogram when used as an
input to the LLEVAP model. Working under the assumption that all material collected on the FIGAERO filter, including the
higher volatility material, is detected in the CIMS and then captured in the PMF analysis we will relax the assumption that
the volatility of the factor is characterized strictly by the T . value of the factor and investigate the VDpme further. We will
explore how the VDpyr changes when the desorption temperature and the resulting C” are interpreted to contain uncertainty
and if the VDpwe considering these uncertainty ranges is consistent with the observed isothermal evaporation. The
uncertainty in the desorption temperature raises from the facts that compounds volatilize from the FIGAERO filter
throughout the heating and, therefore, one value might not be adequate to characterize the C" of a factor and that each PMF

factor contains multiple compounds with distinct C”.

We calculated the 25" and 75" percentiles of the desorption temperatures of each factor and converted them to effective
saturation concentrations as described in section 2.4 (see diamond markers in Fig. 1). We show the resulting C"ranges in Fig.
2 as horizontal solid lines where the line colour matches the colour of the factors in Fig. 1. We then ran MCGA optimization
by setting a number of compounds equal to the number of PMF factors, molar fraction for each compound at the FIGAERO-
CIMS sampling time fixed to the molar fraction of the corresponding factor and set the C” as the optimized variables
restricted to the range corresponding to the 25" and 75" percentile desorption temperature. In the optimization the goodness-

of-fit statistics was calculated as a mean squared error similar to the determination of VDeyap.

As the fresh samples were collected between 0 and 30 minutes from the start of the evaporation, we sought for a fitting set of
C" values for evaporation starting at 0, 15 and 30 minutes. We show the results for the mean sample evaporation time (15
min) in the main text and the other evaporation times in the supplementary material. Due to scarcity of particle size
measurements at collection time of the RTC sample, we will apply this analysis only to the VD pyr of the RTC sample at its
minimum evaporation time. In each optimization we set the initial particle diameter to be the same as what is simulated with
VDewsp. We derived 50 C” estimates for both samples and each evaporation time. From these 50 estimates we chose the best
fit evapogram. We refer to these optimized volatility distributions as VDpumgep to separate them from the VDpwr where we

used T to characterize C of a PMF factor.

We show the optimized C" values forming VDpmrey in Table 2 (see Table S2 for minimum and maximum sample

evaporation times). Figure 5 shows the best fit evaporation simulations calculated with VDpmeoy. The other sample
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evaporation times are displayed in the supplementary material Fig. S8. For both oxidation condition, the simulations were
the fresh sample is set to represent the evaporating particles at mean or maximum sample evaporation time resemble the
experimental evapogram and evapogram calculated with VDey., although the simulation in medium O:C condition shows a 5
times larger goodness-of-fit compared to the simulation calculated with VDey,p. The simulations starting from maximum
evaporation time of the fresh samples show similar results while the simulations starting from the minimum sample
evaporation time results in too slow evaporation (Fig. S8). The evapograms determined with the VDpyr, Of the RTC

samples agree with the measured evaporation as well.

Overall, these results demonstrate that the information derived from the fresh and RTC FIGAERO-CIMS samples can

describe the volatility of the evaporating particles, when uncertainty in the desorption temperature are considered.

3.4 Comparison of the volatility distribution of the fresh and RTC sample at high RH

In this section, we compare VDpwmg,qop Of the fresh samples to VDpwe of the RTC sample to study if the two VD are similar.
We compare the two VD at the mean evaporation time of the RTC sample. We calculated the evapograms with VDpug,ep Of
the fresh sample as the initial particle composition and recorded the mole fraction of each factor at mean evaporation time of
the RTC sample (216 minutes for medium O:C particles and 211 minutes for low O:C particles). Figure 6a and Fig. 6¢c show
this comparison for both medium O:C and low O:C particles. The factors are grouped into the three volatility classes
described in Sect. 3.2. In Fig. 6 we show the results from the analysis where VD pyr,o, was optimized by assigning the fresh
sample composition at the mean sample evaporation time. Similar comparison using minimum and maximum evaporation
time of the fresh sample is given in Fig. S9. To ensure that the factors are grouped to the same volatility classes for each
studied VD, we used the C” values of the VDpw o at mean sample evaporation time as basis according to which the grouping

is done.

Assuming that the fresh sample represents particles from the middle of the sampling interval (mean evaporation time), the
compositions simulated based on the VDpur, 0f the fresh samples are comparable to the corresponding VDpyr of the RTC
sample in both oxidation conditions (Fig. 6). The agreement is good especially for the low O:C case for which the VD pmr,op
show a slightly smaller contribution in volatility class 1 and corresponding higher contribution in volatility class 2 compared
to the VDpur of the RTC sample (Fig. 6¢). For medium O:C case, the VDpumron predicted higher contribution of volatility
class 1 and lower contribution of volatility class 2 compared to VDpwr (Fig 6a). For medium O:C conditions, the agreement
between VDpwr,ope and VDpyr improved when using the VDepyr,op 0f maximum fresh sample evaporation time, while VDpug op
of minimum fresh sample evaporation time show higher contribution of volatility class 2 and lower contribution of volatility

class 1 compared to the VDypyr of the RTC sample.
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These results show that the particle composition measured after few hours of evaporation is consistent with the composition
predicted based on composition observed at the start of evaporation and considering uncertainties of the interpreted C*
values. The level of the agreement changes depending on which evaporation time the fresh FIGAERO-CIMS sample is
assumed to represent. For medium O:C particles the VDpyr and VDpurop are more consistent when the fresh sample is
assumed to represent particles at the maximum sample evaporation time. For low O:C particles the VDpyg,qop resembles the

VDpuir of the RTC sample best at mean evaporation time.

3.5 Volatility distribution comparison at dry condition

Next, we analyzed the evaporation experiments under dry conditions where the evaporation rate was reduced compared to
the high RH conditions. We interpreted this difference as an indication of particle phase diffusion limitations at dry
conditions (Yli-Juuti et al., 2017). Using the initial particle composition information obtained from the high RH experiments
and the FIGAERO-CIMS data, we explored the effect of particle viscosity on the evaporation process. Our aim is to test if
the slower evaporation, presumably due to higher viscosity of the SOA can be captured with a recently developed viscosity
parametrization based on glass transition temperatures of various organic compounds (DeRieux et al., 2018). We also
compare the results using the viscosity parametrization to an approach where we fit both the viscosity and VD to the

evapogram.

First, we investigated the range of particle viscosities that are required to explain the observed slower evaporation at dry
conditions. For this, we simulated the particle evaporation in dry conditions based only on the evapogram data. We used the
VDevsp (i-€., the initial particle composition obtained by optimizing mole fractions of VD compounds with respect to the
observed evapogram at high RH) as the initial condition for the simulations and optimized the b; values (Eq. 3) for each VD
compound. The best fit simulation from this optimization agrees well with the observed size decrease in the dry experiments
for both low and medium O:C particles (Fig. 8, black line). Based on these simulations, the viscosity of the particles need to
increase from below 10° Pa s to approximately 10® Pa s during the evaporation in order to explain the evaporation rate

observed for the dry particles.

Second, we tested the performance of the composition dependent viscosity parameterization by DeRiuex et al. (2018) used
together with the PMF results. For this, we calculated the volatility distribution, VD pumrary, based on the Thax values of the
factors from the fresh sample of the evaporation experiment at dry conditions (in the same way as VD pwr for the high RH
case). The mole fraction of each factor was calculated from the mass loading profile giving the initial mole fraction of each
VD compound for the simulations. We assigned this VDpurary as the particle composition at the mean evaporation time of the
fresh sample, i.e. 15 minutes, and simulated the particle evaporation from there onward. The particle size at the beginning of
the simulation (i.e. at 15 minutes of evaporation) was taken from the above simulations optimized based only on the

evapogram data, which fitted well to the measurements. We calculated the viscosity parameter b; value for each VD

14



450

455

460

465

470

475

480

compound as described in Section 2.5 based on the mass spectra of the factor and the parameterization by DeRieux et al.
(2018). This resulted in too high viscosity for particles to evaporate in practice at all during the length of the experiment for
both low and medium O:C particles (grey dashed line in Fig. 8). Therefore, we also conducted a simulation where the
viscosity parameter b; value for each factor was calculated based on the viscosity parameterization by setting the T, values of
all compounds 30 K lower than the parametrization predicted, which is in line with the uncertainties reported by DeRiuex et
al. (2018). In this case, the simulated evaporation was faster than observed for medium O:C conditions (grey solid line in
Fig. 8a) and similar to the evapogram calculated with VD.y,, for low O:C conditions (grey solid line in Fig. 8b). This suggest
that the observed evaporation rate at dry conditions and the viscosity parametrization by DeRieux et al. (2018) may be
consistent with each other within the uncertainty range of the viscosity parametrization and the uncertainty range of the C” of

PMF factors.

Similar to Fig. 3, we show in Fig. 7 the comparison of VDpmray (C* from Tpax) to the VDey, at dry conditions and mean
sample evaporation time with the VD compounds grouped into the three volatility classes. We show the mass loading
profiles and the volatility distributions at dry conditions in Fig. S10 and Fig. S11. Figure S12 shows the same comparison as
Fig 7 for other sample evaporation times. For medium O:C particles, VDpumrary calculated from the fresh sample has more
contribution of volatility classes 1 and 3 and less of volatility class 2 compared to the corresponding VD evp. For low O:C
particles, the VDpmray Of the fresh sample has more contribution of volatility class 3 and less of volatility classes 1 and 2
compared to the VDewp. For medium O:C particles, the differences between the VDpyray and VDey,, leave open the
possibility that the underestimated evaporation rate calculated using VDepwmrary is partly a result of inaccuracy in volatility
description and not solely due to the high estimated viscosity. For low O:C particles the underestimated evaporation most
likely stems from the high estimated viscosity since the VDpmray is shifted towards higher volatility compounds than the

VDevap-

As a third investigation on the viscosity, we used again the PMF results of the fresh sample at dry conditions to initialize the
particle composition in the model at the mean fresh sample evaporation time, i.e., at 15 minutes. The mole fraction of each
factor was calculated from the mass loading profile giving the initial mole fraction of each VD compound for the simulations
similar to the high RH analysis. Then, using the MCGA algorithm together with the KM-GAP model, we estimated the b;
coefficient and C* of each VD compound by optimizing the KM-GAP simulated evapogram to the measured evapogram at
dry condition. This way we obtained both the initial volatility distribution (VDpwmray,ep) and viscosity parameters b
simultaneously. For this optimization, we restricted the C” values of the factors based on the 25" and 75" percentile of the
desorption temperature of the factors, similarly as done above for VDpwmr,op, and the viscosity parameter b; values based on
the DeRieux et al. (2018) parameterization. The b; values calculated with the original parametrization by DeRieux et al.,
(2018) were set as the upper limit for b; values. The lower limit for b; values were calculated by setting the glass transition

temperature of each compound 30 K lower than the parametrization predicted. As above, also in these simulations the initial
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particle size was taken from the simulations where optimization was based on only the evapogram data. For both medium
and low O:C particles it was possible to find a set of C" and b; values that produced an equally good match to experimental

data as the VD..,, (purple and yellow lines in Fig. 8).

Figures 6b and 6d show the comparison of the measured and simulated particle composition, grouped to the three volatility
classes, at RTC sample collection time for the dry experiments for low and medium O:C particles. The measured
composition is the VD calculated from the PMF results of the RTC sample at dry conditions. The optimized C" values of the
factors from the corresponding dry experiment were used for these VD. The simulated particle composition is taken from the
optimized model run (optimized VDpuropeary @and b;) at the mean RTC sample collection time similar to the high RH cases
presented in Fig. 6a and Fig. 6¢. For low O:C particles there is a clear discrepancy: the VDopwme o, imply a much larger relative
contribution from the volatility classes 2 and 3 and a smaller contribution from the volatility class 1 compared to the
measurements. This inconsistency may be related to the rather high viscosities in the simulations. The viscosity of the low
O:C particles in this optimized simulation was rather high, n >10° Pa s, throughout the evaporation, slowing the evaporation
of the higher volatility compounds. Similar evaporation curve could be obtained with lower viscosity and lower volatilities

of the compounds.

4 Discussion

VDpyvr and VDpwray capture qualitatively the evaporation dynamics well in all studied cases. For the VDpyr of the fresh
samples, the first and second factor desorb at low heating temperatures (below 100 °C) indicating that these factors represent
high volatility organic compounds that evaporate almost completely from the particles in the experimental time scale of our
isothermal evaporation experiments. In the RTC samples, these factors show significantly lower or non-existing signal
strength relative to the other factors. The factors that desorb at high temperatures show an increase in the relative signal
strength in the RTC samples compared to the fresh samples which is consistent with the expected increase in relative
contribution of lower volatility compounds along evaporation. These findings indicate that the FIGAERO-CIMS
measurements of a-pinene SOA and the applied PMF method give a good overall picture of the evolution of the volatility

distribution during evaporation.

At high RH, the VDpyr that was derived from T of each factors mass loading profile did not produce evapogram similar
to the measured ones, when the VDpyr was used as an input to the LLEVAP model. This reflects the sensitivity of particle
evaporation to the C" values and suggest that the VDpwr is not directly applicable as a particle composition estimate for
detailed particle dynamics study. When we allowed uncertainty in the C” values of each factor we were able to explain most
of the discrepancy between the simulated and measured evapograms. The simulated evapograms, after optimizing the C" of

each factor from their appropriate ranges, are close to the experimental values for all other cases except when the FIGAERO
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sample is interpreted to represent particles at the start of fresh sample’s collection interval (minimum evaporation time). Our
results also demonstrate the need for careful investigation of the representative time of the sample when filter-collected

samples are applied for dynamic processes such as evaporation.

In this study we assumed a quite large uncertainty range for the desorption temperature of each PMF factor and it is not
certain that the determination of VDpmr,q Would be successful if the allowed ranges for C* of PMF factors would be lower.
Thus, there remains work to be done in studying what is the total uncertainty that rises from combining the FIGAERO-CIMS
measurements with the PMF method and to what extent the PMF factors can be thought to represent surrogate organic

compounds for the purpose of detailed SOA dynamics studies.

We note that care has to be taken when PMF results are transferred to volatility distributions, especially with regard to
separating the contribution of instrument background and contamination from the true sample. When the sample mass was
low (in the low O:C RTC sample) we noticed that the first half of the bimodal (factor LD1a) resulted in a high mole fraction
even though the absolute signal strength of the factor did not change between the fresh and the RTC sample, which is usually
an indication that this signal is caused by instrument background. However, the signal strength of this factor was low enough
in all cases to not affect the overall VD estimation. More details on the interpretation of B- and D-type factors and potential

factor blending can be found in Buchholz et al, (2019b)

At low RH, VDpymray of the fresh sample in low O:C case showed noticeably higher amount of high volatility matter than
VDevap. This discrepancy between the volatility distributions is not expected and raises a need for further studies on the role
of viscosity and possible particle phase chemistry to SOA particle dynamics. Future studies should investigate the possibility

of chemical reactions that modify the volatility of organic compounds and how viscosity is described in process models.

5 Conclusions

We compared volatility distributions derived from FIGAERO-CIMS measurements with PMF analysis to volatility
distributions derived from fitting a process model to match measured size change of particles during isothermal evaporation.
We compared the two methods for obtaining the volatility distribution data for two different particle compositions and two
evaporation conditions. The results are promising and suggest that the methods provide volatility distributions that are in
agreement. We note that the data set available here is limited and additional investigations on comparing the methods are

desirable in the future.

In all studied experimental data sets we were able to capture the measured evaporation with the fitting method. With high

RH experiments, VDpur deviated from VD..., especially when the FIGAERO samples were collected at the early stages of
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the evaporation. However, qualitatively, both types of VD evolved similarly, i.e., the fraction of lower volatility compounds
increased, and the fraction of higher volatility compounds decreased during the evaporation of the particles. These results
suggest that the changes in FIGAERO-CIMS derived volatility distributions over the isothermal evaporation are consistent

with the observed isothermal evaporation and the detailed SOA dynamics are sensitive for the uncertainties in C” values.

The volatility distribution from PMF at high RH agreed with the observed isothermal evaporation better when we interpreted
the volatility of each factor as a range of possible C” values and optimized the C" values from these ranges with respect to the
measurements. These results suggest that the FIGAERO-CIMS measurements combined with PMF method does not only
provide qualitative information of the volatilities of the SOA constituents but it also has potential for quantitative
investigation of the volatility distributions. However, more work is needed to constrain the uncertainties rising from the

conversion of the FIGAEO-CIMS desorption temperatures to C* values.

At dry conditions, we were able to simulate the evapograms based on the PMF results using the VTF equation and glass
transition temperature parametrization of DeRieux et al., (2018) when both C" and viscosity parameters where optimized and
allowed to contain reasonable uncertainties. For both oxidation conditions the measured composition at the later stages of
evaporation suggested considerably lower volatility than the simulations. These results suggest that the tested viscosity
parameterization is not in disagreement with the observed SOA evaporation, however the uncertainties related to the method

are significant from the point of view of simulating SOA dynamics.

Based on our analysis we conclude that using the PMF method with FIGAERO-CIMS thermogram data is good for
estimating the volatility distribution of organic aerosols when the organic compounds present in the particle phase have low
volatilities with respect to the sample collection and analysis time scale. Specifically, VDpwr is useful for extracting
information about organic compounds that do not evaporate during the evaporation measurements at room temperature.
VDpwme is applicable to detailed particle dynamics studies when desorption temperature of the factor is characterized with a
range around the T, value. Furthermore, combining VDopwmr e, With detailed process modelling and input optimization could
allow quantification of other physical or chemical properties of organic aerosols since the FIGAERO-CIMS data constrains
the particle composition and effectively decreases the search space that needs to be explored with global optimization

methods.
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Table 1: The ambient conditions and properties of the organic compounds used in estimating the VDe.,. The variables are,

from top to bottom, temperature (T) during the evaporation, relative humidity (RH), gas phase diffusion coefficient (Dgorg),

molar mass (M), particle phase density (p), particle surface tension (¢) and mass accommodation coefficient (). Rows that

only have one value are the same in every column.

Variable Medium O:C  Low O:C Medium O:C  Low O:C
High RH High RH dry dry

T (K) 293.85 293.75 293.75 293.35

RH (%) 82.4 83.5 0 0

Dy, (cm?s™) 0.05

MP (g mol ™) 200

p’ (kg m™) 1200

o’ (mN m™) 40

o 1

9 The gas phase diffusion coefficients are scaled to correct temperatures by multiplying with a factor of (T/273.15)"" (Reid

et al., 1987)

® values are chosen to represent a generic organic compound with values similar to other a-pinene SOA studies (e.g. Pathak

et al., 2007; Vaden et al., 2011; Yli-Juuti et al., 2017).
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Table 2: The best fit C” values for medium O:C and low O:C high RH experiments when C" values of PMF factors were
optimized with respect to the measured isothermal evaporation. C” values were optimized by assuming the FIGAERO-CIMS
sample represents particle composition at the mean sample evaporation time for the fresh sample and the minimum sample
evaporation time for the RTC sample. The C” values are rounded to two significant digits and are in units pgm™. C” values

below 10 ugm™ are not reported explicitly since the evapogram fitting method is not sensitive to these values.

Medium O:C fresh sample Medium O:C RTC sample Low O:C fresh sample Low O:C RTC sample

Factor M1/L.1 4.96 -10! 36.10 3.06 -10™ <10
Factor M2/1.2 2.89 -10! 4.12-10" 3.55 10" 2.40-10%
Factor M3/L3 9.93 -10°® 442 -10° 2.87 102 7.13 -10°
Factor M4/L4 <103 <103 1.54-10° <103
Factor M5/L5 <103 <10? <103 <10?
Factor D1a 7.68 - 10" 69.35 130.03 1.04 - 10!
Factor D1b <10? <10? <103 <10*
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Figure 1: Main PMF mass loading profiles for high RH conditions a) medium O:C fresh, b) medium O:C RTC, c) low O:C

fresh and d) low O:C RTC sample. Black crosses indicate the peak desorption temperature T ., and diamonds mark the 25"

and 75™ percentiles of the factors area.
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Figure 2: Volatility distributions in high RH experiments determined from model fitting (VDevp) and PMF analysis of
FIGAERO-CIMS data (VDewmr) for a) medium O:C fresh, b) medium O:C RTC, c) low O:C fresh, d) low O:C RTC sample.
VDevsp is shown for the best fit simulation (grey bars) at the mean evaporation time of the FIGAERO-CIMS sample. Black
crosses show the logi(C") calculated for each PMF factor from the peak desorption temperature Tp.. The horizontal

coloured lines show the range of logio(C") calculated from the 25™ and 75" percentiles of each PMF factors mass loading

profile.
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Figure 3: Comparison of VDpyr and VD, at mean sample evaporation time in high RH experiments for a) medium O:C
fresh, b) medium O:C RTC, c) low O:C fresh, d) low O:C RTC sample.. The VD compounds are grouped into three different
volatility classes class 1: log(C") < -2, class 2: -2 < log(C") < 0, class 3: log(C") > 0.
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with VDpwme (turquoise lines for VDpwr of fresh sample and light brown lines for VDpme RTC sample for a) medium O:C b)

low O:C.
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FIGAERO-CIMS sample (purple and yellow solid lines) and RTC sample (red dashed lines) are shown.

31




mole,dry

a) b)
0 8 0-8 1 .RTC VDPMFIVDPMF,dry
5 0.6 50.6 C from VDpye one / YDpue opt ary
@
0.4 20.4
x x |:|Fresh VPeur opt ! VPour opt ary
0.2 0.2 H mean evap. time
0 - 0 -
3

1 2 3
Volatility class VoIat|I|ty class
1 1
_ c) d)

08 0.8 .RTCVDPMF/VDPMF,dry
50_6 50.6 C" from VDoyie opt ! VP opt.dry
@ 9‘
el o
£0.4 £0.4

x x |:|Fresh VDPMFPpt/VDPMFIOpt’dW

0.2 0.2 mean evap. time

0 N 0 =
1 . .2 3 3
Volatility class VoIat|I|ty class

Figure 6: Comparison of the simulated composition (VDpwmr,op; VDpmE,opeary) at the RTC sample mean evaporation time to the
VDpme obtained from the RTC sample. The simulated compositions (VDpueep in @ and ¢, VDpmeopiary in b and d) are taken
from the best fit simulated evapogram obtained from the optimization of the C” values of fresh sample PMF factors to
measured evapogram. a) medium OC high RH, b) medium O:C low RH, c) low O:C high RH and d) low O:C low RH
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time in order to ensure the comparability. The volatility classes are class 1: log(C") < -2, 2: -class 2 < log(C") < 0, class 3:

log(C") > 0.
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condition experiments for a) medium O:C fresh, b) medium O:C RTC, c) low O:C fresh and d) low O:C RTC sample. The
VD compounds are grouped into three volatility classes. class 1: log(C") < -2, class 2: -2 < log(C") < 0, class 3: log(C") > 0.
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Figure 8: Evapogram showing the measured isothermal evaporation of a) medium O:C particles b) low O:C particles at dry
conditions and their uncertainty in time (red and yellow markers and black whiskers) together with the simulated
evapograms. The best fit simulated evapogram calculated with VD, (obtained from high RH experiments) and optimizing
b; is shown with black solid line. Grey lines show the minimum and maximum possible evaporation calculated with
VDpuray (C™ of PMF factors calculated from Timsx) and the highest (the original parametrization of DeRieux et al., (2018),
grey dashed lines) or the lowest (30 K substracted from the T, of every ion, grey solid line) studied viscosity. Purple and
yellow solid lines show the best fit simulated evapograms calculated with the optimized VD pumeopary (based on assumption

that the FIGAERO sample represents particles at mean of the sample collection interval) and b; restricted based on the

DeRieux et al. (2018) parameterization .
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