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Abstract. 

The volatility distribution of the organic compounds present in SOA at different conditions is a key quantity that has to be

captured  in  order  to  describe  SOA  dynamics  accurately.  The  development  of  the  filter  inlet  for  gases  and  aerosols

(FIGAERO) and its coupling to chemical ionization mass spectrometer (CIMS) has enabled near simultaneous sampling of

gas  and  particle  phases  of  secondary  organic  aerosol  (SOA) through thermal  desorption  of  the  particles.  The thermal

desorption data  has recently  been shown to be interpretable  as  a  volatility distribution with the use of  positive matrix

factorization  (PMF)  method.  Similarly,  volatility  distribution  can  be  inferred  from  isothermal  particle  evaporation

experiments, when the particle size change measurements are analyzed with process modelling techniques. In this study we

compare the volatility distributions that are retrieved from FIGAERO-CIMS and particle size change measurements during

isothermal particle evaporation with process modelling techniques. We compare the volatility distributions at two different

relative humidity (RH) and two oxidation condition. At high RH conditions, where particles are in a liquid state, we show

that the volatility distributions derived the two ways are similar within reasonable assumption of uncertainty in the effective

saturation mass concentrations that are derived from FIGAERO-CIMS data. At dry conditions we demonstrate the volatility

distributions are comparable in one oxidation condition and in the other oxidation condition the volatility distribution derived

from the PMF analysis shows considerably more high volatility matter than the volatility distribution inferred from particle

size change measurements. We also show that the Vogel-Tammann-Fulcher equation together with a recent glass transition

temperature parametrization for organic compounds and PMF derived volatility distribution estimate are consistent with the

observed isothermal evaporation under dry conditions within the reported uncertainties. We conclude that the FIGAERO-

CIMS measurements analyzed with the PMF method are a promising method for inferring the organic compounds’ volatility

distribution, but care has to be taken when the PMF factors are interpreted. Future process modelling studies about SOA

dynamics and properties could benefit from simultaneous FIGAERO-CIMS measurements.
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1 Introduction

Aerosol particles have varying effects on health, visibility and climate (Stocker et al., 2013). Organic compounds comprise a

substantial amount of atmospheric particulate matter (Jimenez et al., 2009; Zhang et al., 2007) of which a major fraction is of

secondary  origin,  i.e.,  low-volatility  organic  compounds  formed  from  oxidation  reactions  between  volatile  organic

compounds  (VOCs)  and  ozone,  hydroxyl  radicals  and  nitrate  radicals  (Hallquist  et  al.,  2009).  The  aerosol  particles

containing these kind of oxidation products are called secondary organic aerosols (SOA) as opposed to primary organic

aerosols i.e. organic particles emitted directly to the atmosphere.  VOC oxidation reactions result in thousands of different

organic compounds (Goldstein and Galbally, 2007) A recent review by Glasius and Goldstein, (2016) pointed out that our

understanding of SOA is still lacking especially on formation and deposition, and their response to different physicochemical

properties of the organic compounds such as volatility. In addition, also the phase state of the organic compounds has been

shown to play a role in the SOA dynamics (Reid et al., 2018; Shiraiwa et al., 2017; Yli-Juuti et al., 2017; Renbaum-Wolff et

al., 2013; Virtanen et al., 2010)

 

The physicochemical  properties  of organic aerosols  can be studied directly and indirectly.  The Aerodyne Aerosol mass

spectrometer (AMS, Canagaratna et al., 2007; DeCarlo et al., 2006; Jayne et al., 2000) enabled direct and online composition

measurements  of  atmospheric  particles  for  the  first  time.  Combining  AMS  data  with  statistical  dimension  reduction

techniques such as factor analysis and positive matrix factorization  (PMF; Zhang et al.,  2011, 2007, 2005; Paatero and

Tapper, 1994) allowed researchers to draw conclusions on sources and types of atmospheric organic particulate matter from

the relatively complex mass spectra data.

The chemical ionization mass spectrometer (CIMS; Lee et al., 2014) coupled with the Filter Inlet for Gases and AEROsols

(FIGAERO-CIMS,  Lopez-Hilfiker et al., 2014) is a prominent online measurement technique to study both the gas and

particle  phases  of  SOA.  During  particle  phase  measurements,  a  key  advantage  over  the  AMS is  the  softer  chemical

ionization that retains much more of the molecular information of the compound than the electron impact ionization used in

the AMS. Typically, the collection of the particulate mass is conducted at room temperature which minimizes the loss of

semi-volatile compounds during collection. In addition to the overall chemical composition, the gradual desorption of the

particulate mass from the FIGAERO filter yields the thermal desorption behavior of each detected ion, i.e., it is a direct

measure  of  each  ion’s  volatility.  FIGAERO-CIMS  measurements  have  been  carried  out  in  both  laboratory  and  field

environments to study SOA composition from different VOC precursors and in both rural and polluted environments (Breton

et al., 2018; Huang et al., 2018; Lee et al., 2018; D’Ambro et al., 2017; Lopez-Hilfiker et al., 2015). However, the volatility

information in these data sets have barely been used.
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Besides direct mass spectrometer measurements, SOA properties have been inferred indirectly from growth (e.g. Pathak et

al., 2007 and references therein)  and isothermal evaporation (Buchholz et al., 2019a; D’Ambro et al., 2018; Yli-Juuti et al.,

2017; Wilson et al., 2015; Vaden et al., 2011) measurements. The complexity of organic compounds in these studies can be

alleviated with the use of a volatility basis set (Donahue et al., 2006), where organic compounds are grouped based on their

(effective)  saturation  concentration.  However,  the  experimental  setup  also  defines  the  range  of  C* values  that  can  be

estimated from the data. Vaden et al., (2011) and Yli-Juuti et al., (2017) have both shown that the volatility basis sets derived

from SOA growth  experiments  result  in  too  fast  SOA evaporation  compared  to  measured  evaporation  rates  when  the

volatility basis set is used as input for process models. Possible reasons for such discrepancies include the different C* ranges

to which the SOA growth and SOA evaporation experiments are sensitive and the role of vapor wall losses in SOA growth

experiments. This raises a need for alternative methods to derive organic aerosol volatility against which the volatilities

inferred from the direct particle size measurements can be compared to.

Recently, Buchholz et. al., (2019b) demonstrated that the FIGAERO-CIMS measurements during particle evaporation can be

mapped to a volatility distribution of organic compounds by conduction a PMF analysis. On the other hand,  Tikkanen et al.,

(2019) showed  that  the  volatility  distribution  can  be  inferred  from  isothermal  particle  evaporation  measurements  by

optimizing evaporation model input to match the measured evaporation rate at different humidity conditions. In this study,

we compare these two approaches for varying oxidation and particle water content conditions. Our main research questions

are  1)  Are  the  volatility  distributions  derived  from  particle  size  change  during  isothermal  evaporation  and  from  the

FIGAERO-CIMS  measurements  similar?  2)  How  to  interpret  the  PMF  results  of  FIGAERO-CIMS  data  in  terms  of

volatility? 3) Can a recently published glass transition temperature parametrization (DeRieux et al., 2018) combined with the

PMF analysis be used to model particle phase mass transfer limitation observed in evaporation at dry conditions, i.e., in the

absence of particle phase water? 

2 Methods

2.1 Experimental particle evaporation data

The experimental data we use is the same as reported in Buchholz et al., (2019a,b). We briefly summarize the measurement

setup below. We generated the particles with a Potential Aerosol Mass (PAM) reactor (Kang et al., 2007; Lambe et al., 2011)

from the reaction of  α-pinene with O3 and OH at three different oxidation levels (average oxygen-to-carbon O:C ratios of

0.53, 0.69, and 0.96). We focus on the lowest O:C (0.53) and medium O:C (0.69) experiments in this work.  The closer

analysis of the high O:C experiments suggest particle phase reactions during the evaporation (Buchholz et al., 2019a,b). To

avoid the uncertainty that would arise from unknown particle phase reactions, we chose not to include the high O:C data in

our analysis.
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We chose  a  monodisperse  particle  population (mobility  diameter  dp  = 80 nm) with two nano tandem type  differential

mobility analyzers (nano-DMA; TSI inc., Model 3085) from the initial polydisperse particle population. The size selection

diluted the gas phase initiating particle evaporation. The monodisperse aerosol was left to evaporate in a 100 L stainless steel

residence time chamber (RTC). We measured the particle size distribution during the evaporation with a scanning mobility

particle sizer (SMPS; TSI inc., Model 3082+3775). The RTC filling took approximately 20 minutes and we performed the

first size distribution measurement in the middle of the filling interval. To obtain short residence time data (data before 10

minutes of evaporation) we added a bypass to the RTC which led the sample directly to the SMPS. By changing the length

of the bypass tubing, we were able to measure the particle size distribution between 2 s and 160 s of evaporation. We

measured the isothermal evaporation up to 4 – 10 hours depending on the measurement. We performed the measurements for

each oxidation level both at high relative humidity (RH = 80%) and at dry conditions (RH < 2 %). The change in particle

size with respect to time are called evapograms. In an evapogram, the horizontal axis presents evaporation time and vertical

axis shows the evaporation factor (EF), i.e., measured particle diameter divided by the initially selected particle diameter.

To classify the oxidation level of the particles, we derived the average O:C ratio from composition measurements with a

High-Resolution  Time-Of-Flight  Aerosol  Mass  Spectrometer  (AMS,  Aerodyne  Research  Inc.).  Further,  we  conducted

detailed  particle  composition  measurements  with  an  Aerodyne  Research  Inc.  FIGAERO,  (Lopez-Hilfiker  et  al.,  2014)

coupled with a chemical ionization mass spectrometer (CIMS) with iodide as the reagent ion (Aerodyne Research Inc., Lee

et al.,  2014).  Previous studies using FIGAERO-CIMS with iodide as the reagent ion found 50% or better mass closure

compared to more established methods of quantifying OA mass (albeit with high uncertainties;  Isaacman-VanWertz et al.,

(2017);  Lopez-Hilfiker  et  al.,  (2016)).  Therefore,  it  appears  that  the  bulk of  reaction  products  expected  from a-pinene

oxidation contains the functional groups required for detection by our FIGAERO-CIMS. 

In the FIGAERO inlet, particles are first collected on a PTFE filter. Then the collected particulate mass desorbs slowly due

to gradually heated nitrogen flow which is then transported into the CIMS for detection. We derived the average chemical

composition of the particles by integrating the detected signal of each ion over the whole desorption interval. For each ion,

the change  of  detected  signal  with desorption  temperature  is  called  thermogram and generally,  the  temperature  at  the

maximum of the thermogram (Tmax) is correlated to the volatility of the detected ion. Similar to Bannan et al., (2019) and

Stark et  al.,  (2017),  we calibrated the Tmax -  volatility relationship using compounds with known vapour pressure.  The

calibration procedure is described in the supplementary material.

We collected  particles for FIGAERO-CIMS analysis at two different stages of the evaporation. We refer to these samples

as either “fresh” or “RTC” samples. The fresh samples were collected for 30 minutes directly after the selection of the

monodisperse population. The RTC samples were collected after 3 to 4 hours of evaporation in the RTC for 75 minutes. The
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collected particulate mass was 140–260 ng and 20–70 ng for fresh and RTC samples, respectively.  More details  about

sample collection, desorption parameters, and data analysis can be found in Buchholz et al., (2019a).

2.2 The volatility distribution

We represent the myriad of organic compound in the SOA particles with a one-dimensional volatility basis set (1D VBS,

below only VBS, Donahue et al., 2006). The VBS groups the organic compounds into ‘bins’ based on their effective (mass)

saturation  concentration  C*,  defined  as  the  product  of  the  compounds activity  coefficient  and  saturation concentration.

Generally, a bin in the VBS represents the amount of organic material in the particle and gas phases. In our study, the walls

of the RTC have been shown to work as an efficient sink for gaseous organic compounds (Yli-Juuti et al., 2017). Thus, we

can assume that the gas phase in our experimental setup does not contain organic compounds, i.e., the amount of organic

matter in a bin is the amount in the particle phase. To distinguish from a traditional VBS that groups the organic compounds

to bins where there is  a decadal  difference in C* between two adjacent bins,  we call  the VBS in our work a volatility

distribution (VD). We present the amount of material  in each VD bin as dry mole fractions,  i.e.,  mole fractions of the

organics, excluding water. In the analysis presented below, we assign properties to each VD bin (e.g. molar mass) treating

each  bin as  if  it  consisted of  only a single organic  compound with a  single set  of  properties.  We label  these pseudo-

compounds as “VD compounds” to distinguish them from real organic compounds. The physicochemical properties of each

VD compound are listed in Table 1 as well as the ambient conditions of each evaporation experiment.

2.3 Deriving volatility distribution from an evapogram

We followed the similar approach as in Yli-Juuti et al., (2017) and Tikkanen et al., (2019) to derive a VD at the start of the

evaporation from an evapogram. To model the evaporation at high RH, we used a process model (liquid-like evaporation

model, hereafter LLEVAP) that assumes a liquid-like particle, i.e., a particle where there are no mass transfer limitations

inside the particle and where the rate of change of the mass of a VD compound in the particle phase can be calculated

directly from the gas phase concentrations of this VD compound near the particle surface and far away from the particle

(Vesala et al.,  1997; Lehtinen and Kulmala,  2003; Yli-Juuti et al.,  2017). In this case,  the main properties defining the

evaporation rate are the saturation concentrations of each VD compound and their amount in the particle.

We used the LLEVAP model to characterize the volatility ranges interpretable from the evaporation measurements.  We

calculated the limits by modelling evaporation of  a  hypothetical  particle  that  consists of one organic compound at  dry

conditions iterating the range of  log10  (C*) values from -5   to 5. We determined the minimum C* value with “detectable

evaporation”, i.e., at least 1% change in particle diameter during the evaporation time (up to 6 h) and the maximum C* value

before “complete evaporation” occurred, i.e., 99% evaporation within 10 s. The minimum  log10  (C*) calculated with this

method was -3  and the maximum log10 (C*) was 2. We then modelled the particle composition with six VD compounds with

C* values between these minimum and maximum values. Each VD compounds has a decadal difference in C* to adjacent VD
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compounds (the traditional VBS). We note that based on this analysis all the compounds with  log 10  (C*) < -3 will not

evaporate during the experimental time scale. This means that any compounds with lower C * than this threshold will be

assigned to the  log10 (C*)= -3 VD compound. Similarly, any compound with log10 (C*) > 2  will be classified into the  log10

(C*)= 2 VD compound or not be detected at all due to evaporating almost entirely before the first measurement point.

We calculated the dry particle mole fraction of each VD compound at the start of the evaporation by fitting the evaporation

predicted with the process model to the measured evapograms. Our goal was to minimize the mean squared error in vertical

direction between the experimental data and the LLEVAP output. We used the Monte Carlo Genetic Algorithm (MCGA,

Berkemeier et al., 2017; Tikkanen et al., 2019) for the input optimization.  In the optimization, we set the population size to

be 400 candidates, number of elite members to 20 (5% of the population), number of generations to 10, and number of

candidates drawn in the Monte  Carlo (MC) part to 3420 which corresponds to half of the total process model evaluations

done during the optimization. We performed the optimization 50 times for each evapogram and selected the best fit VD

estimate for further analysis.

The VD derived from the evapograms are hereafter referred to as the VDevap. The initial composition of the SOA particles in

the dry and wet experiments were the same and can be described by the same fitted VDevap as the particles were generated at

the same conditions in the PAM and only the evaporation conditions changed. 

2.4 Deriving volatility distribution from FIGAERO-CIMS measurement

As shown by Bannan et al., (2019) and Stark et al., (2017), the peak desorption temperature, Tmax, can be used together with

careful calibration to link desorption temperatures from the FIGAERO filter to C * values for the detected ions. In principle,

this would allow us to assign one C* value to each ion thermogram. But this assumes that one detected ion characterized by

its exact mass is indeed just one compound. In practice, this is not always the case and for some ion thermograms a bimodal

structure or distinct shoulders/broadening are visible. This can be caused by isomers of different volatility which cannot be

separated even by high resolution mass spectra. 

Another complication arises due to the thermal desorption process delivering the collected aerosol mass into the CIMS.

Especially multi-functional, and hence low volatility compounds may thermally decompose before they desorb from the

filter, and thus be detected as smaller ions. The apparent desorption temperature is then determined by the thermal stability

of the compound and not its volatility. Typically, this decomposition processes start at a minimum temperature and will not

create a well-defined peak shape (Buchholz et al.,  2019b,  Schobesberger et al.,  2018) presumably because an observed

decomposition  product  may  have  multiple  sources,  especially  when  including  all  isomers,  and  the  ion  signal  for  the

respective composition may overlap with the signal of isomers derived from true desorption. E.g., a true constituent of the

SOA  particle  may  give  rise  to  an  observed  main  thermogram  peak,  but  it  may  be  broadening  and/or  tailing  if  a
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decomposition product has the same composition. By ignoring this and simply using the Tmax values, the true volatility of the

SOA particle constituents will be overestimated, i.e., the derived VD will be biased towards higher C* bins.

One more potential source of bias is our implicit assumption of a constant sensitivity of the CIMS towards all compounds,

which follows from the lack of calibration measurements for our datasets (which indeed is a challenging endeavour; e.g.,

Isaacman-VanWertz et al., (2018)). It is plausible that less volatile compounds tend to be detected at higher sensitivity (Lee

et al., EST, 2014; Iyer et al., JPC, 2016), up to a kinetic limit sensitivity. Consequently, a volatility distribution derived from

FIGAERO-CIMS thermograms may be biased towards lower volatility (C* bins), at least for compositions not associated

with thermal decomposition.

To  separate  the  multiple  sources  possibly  contributing  to  each  ion  thermogram  (isomers  and  thermal  decomposition

products), we applied the Positive Matrix Factorisation (PMF, Paatero and Tapper, 1994) to the FIGAERO-CIMS data set.

PMF is  a  well-established  mathematical  technique  in  atmospheric  science  mostly  used  to  identify  the  contribution  of

different sources of aerosol particle constituents or trace gases in the atmosphere. PMF represents the measured matrix of

time-series of mass spectra, X, as a linear combination of a (unknown) number of constant source profiles, F, with varying

contributions over time, G:

X=G⋅F+ E (1)

E is a matrix containing the residuals between the measured (X) and the fitted data (G F⸱F ). Values for G and F are found by

minimising this residual, Eij, scaled by the corresponding measurement error, Sij, for each ion i at each time j

Q=∑
i=1

m

∑
j=1

n

(
Ei , j

S i , j
) (2)

Each row in F contains a factor mass spectrum and each column in G holds the corresponding time series of contribution by

each factor. In the case of FIGAERO-CIMS data, the time series is equivalent to the desorption temperature ramp during the

thermogram and will be called “mass loading profile” below. The absolute values (temperature or time) are irrelevant for the

performance of PMF as the “x values” are only used to determine the order of the data points but have no influence on the

model output (Paatero and Tapper, 1994). This allowed us to combine multiple separate thermogram measurements into one

data set and conducting a PMF analysis. This simplified the comparison of factors between measurements. More details

about the PMF method in the specific case of FIGAERO-CIMS data can be found in Buchholz et al., (2019b).

Once the PMF algorithm was applied to the FIGAERO-CIMS data we calculated the VD from the mass loading matrix G.

We interpolated each factor’s mass loading profile with a resolution of 100 sample points between two temperature steps to

gain sufficient statistics for further analysis. Tmax was determined as the temperature of the maximum of the factor mass

loading series. We integrated the factor mass loading profile and defined the temperatures where the value of the integral
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reaches 25% and 75% of its maximum value. This temperature interval formed the factors desorption temperature range  and

the corresponding C* values will be used in Sect. 3.3. We converted the Tmax values into  C*  values and the desorption

temperature  range  into  a  C*  range  with  a  parametrization  derived  from calibration  measurements  (see  Supplementary

material for details) with organic compounds with known C* values.

C*
=

exp (α+βT factor )M org

R T ambient

109
(3)

where C*
 is the effective saturation concentration in units μgm-3, Morg is the molar mass of the organic compound assumed to

be Morg = 0.2 kg mol-1, R is the universal gas constant, Tfactor (in °C in Eq. 3) is the temperature of the mass loading profile

and Tamibent (in Kelvin in Eq. 3) is the ambient temperature where the evaporation happens (see Table 1), α and β are the fitted

coefficients from the calibration data α=(-1.431±0.31) and β=(-0.207±0.006) °C-1. We applied the lower and higher bounds

of the fitting coefficients’ uncertainty when we calculated the  C* range in Sect 3.3. Finally, the signal fraction of each factor

was calculated by dividing the integral of a factor’s signal over the whole temperature range with the sum of integrals of all

factors. We compare this signal fraction to the dry mole fraction in the VD evap. We refrained from converting the counts per

second signal into moles as no adequate transmission and sensitivity measurements were available for the used FIGAERO-

CIMS setup. We refer the volatility distribution calculated from the PMF data using the T max values of each factor as VDPMF

later in this work.

With Eq. (3), we can calculate the minimum and maximum C* values that can be resolved from a FIGAERO thermogram.

The desorption temperature was ramped between 27 °C and 200 °C, but defined peaks (and thus T max values can be detected

only between 30 and 180 °C. Thus, the resolvable log10 (C*) values range from 1.6 to -11.9. It has to be kept in mind that

strictly this calibration only applies to the Tmax values of a single ion thermogram.

2.5 Modelling particle viscosity at dry conditions

To model the mass transfer limitations observed in the evaporation measurements at dry conditions (Buchholz et al., 2019a)

we used the Kinetic multilayer model for gas particle interactions (KM-GAP;  Shiraiwa et al.,  2012) with modifications

described in Yli-Juuti et al., (2017) and Tikkanen et al., (2019). The main modification to the original model was that during

evaporation the topmost layer (the quasi static surface layer) merges with the first bulk layer if the thickness of the layer is

smaller than 0.3 nm. We calculated the viscosity at each layer of the particle as

log10(ηj)=∑
i=1

N

Xmole ,i , j log10(bi),  (4)

where Xmole,i,j is the mole fraction of the VD compound i in layer j and bi is a coefficient that describes the contribution of 

each VD compound to the overall viscosity.
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Since we generated the particles in the same environment (PAM chamber) and only the evaporation happened at different

conditions, the VD at the start of the evaporation derived from high RH data represents also the composition at the start of

the evaporation at dry conditions. Then we can use the best fit VD evap from the high RH data as input for KM-GAP and fit

the bi values in Eq. (4) to the dry data set. We set the minimum and maximum allowed values for b i to 10-15
 and 1020,

respectively. To estimate the bi  values when modelling the evaporation with VDPMF at dry conditions, we calculated these bi

terms using the mass spectra of each factor (F in Eq. 1) and the Vogel-Tammann-Fulcher (VTF) equation (DeRieux et al.,

2018; Angell, 2002, 1995) 

ηi=η∞exp (
T 0 ,i D

T−T0 , i
) , (5)

where ηi is the viscosity of a VD compound / PMF factor i which can be seen as a proxy for bi in an ideal solution, η∞ is the

viscosity at infinite temperature, T0,i is the Vogel temperature of i, and D is a fragility parameter. Setting η∞ = 10-5
 Pa s and

η(Tg) = 1012 Pa s (e.g. DeRieux et al., 2018; Gedeon, 2018), where Tg is the glass transition temperature of a compound

yields 

T 0 ,i≈
39.14 T g , i

39.14+D
. (6)

We calculated  Tg for  every  compound in the PMF mass spectra  with a  parametrization  for  SOA matter  developed by

DeRieux et al.,  (2018). We then computed Tg for each PMF factor as a mass fraction weighted sum of glass transition

temperatures of individual compounds (DeRieux et al., 2018; Dette et al., 2014). Based on the Tg,i for each PMF factor we

calculated the viscosity of each PMF factor with Eqs. (5) and (6) and used them as an approximation for b i. We used fragility

parameter value D = 10 according to DeRieux et al., (2018).

3 Results

In this section we first focus on the high RH experiments where evaporation is modelled with the LLEVAP model. We will

first compare  VDevap  and VDPMF when the C* of a PMF factor is determined from the factor’s Tmax. Then, we compare the

volatility distributions where the C*  of a PMF factor is determined as a range from the 25th and 75th percentile desorption

temperatures. Lastly, we study the volatility distributions at dry conditions. We investigate the VD both on a qualitative and

quantitative  level.  On  a  qualitative  level  we  compare  the  amount  of  matter  of  different  C* intervals  relevant  for  the

evaporation  process.  On a  quantitative  level  we  study what  is  the  evaporation  behavior  of  the  particles  based  on  the

determined VD and how they compare to the measured evaporation.
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3.1 PMF solution interpretation

Figure S2  shows  mass loading profiles derived from FIGAERO-CIMS measurements of medium and low O:C particles at

high RH. The corresponding factor mass spectra can be found in Fig. S3 and Fig. S4. A key step in any PMF analysis is

determining the “right” number of factors as this can affect the interpretation of the results. A 7-factor solution was chosen

for the medium O:C cases and a 9-factor solution for the low O:C ones (see Buchholz 2019b for details). Two additional

factors in the low O:C case were needed to capture a contamination on the FIGAERO filter during the dry, fresh sample

(factors LC1 and LC2 in Fig. S2 and Fig. S4). As these two factors were clearly an artifact introduced by the FIGAERO

filter sampling, we omitted their contribution for the following analysis. From careful comparison of the factor profiles and

mass spectra with filter blank measurements, we determined that factor MB1 in medium O:C case and factor LB1 in low

O:C case describe the filter/instrument background and are thus also excluded from the VD comparison presented below.

Factors 1-5 in both O:C cases exhibit a monomodal peak shape and can thus be characterized by their Tmax values, factor

MD1 in medium O:C case and factor LD1 in low O:C case needs to be investigated more closely, as its factor mass spectrum

and the sometimes bimodal mass loading profile suggest that this factor contains compounds stemming from both direct

desorption (desorption T<100 °C) and thermal decomposition (desorption T>100 °C, see Buchholz et al., 2019b for details).

To account for this, the factor is split into two with the first half containing the signal from desorption temperature below

100  °C (factor  M/LD1a)  and  the  second  half  containing  that  above  100  °C (factor  M/LD1b).  We  treat  these  factors

separately. We note that now the latter half of the split factor is dominated by thermal decomposition products so that the

apparent desorption temperature is actually the temperature at which thermal decomposition leads to products which desorb

at this temperature. This apparent desorption temperature is thus a lower limit for the decomposing parent compound, i.e.,

the true volatility of these parent compounds is even lower. However, the desorption temperatures are so high that they lead

to log10(C*) < -3  and are thus below the comparable range for VDevap. Figure 1 (high RH data) and Fig. S10 (dry condition

data) show the mass loading profiles derived from FIGAERO-CIMS measurements of medium and low O:C particles after

we excluded the contamination and background factors and split the decomposition factors.

3.2 Volatility distribution comparison at high RH based on factor Tmax

To compare VDevap and VDPMF, we need to determine the time interval in the evapogram that the VDPMF represents. We

collected the fresh samples directly after the size selection. As the particles were collected on a filter for 30 minutes, the

collected sample represents particles that have evaporated from 0 up to 30 minutes in the organic vapour free air. We note

that  this  is  different  from  the  standard  FIGAERO-CIMS  sample  collection  where  particles  are  collected  in  a  quasi-

equilibrium with the surrounding gas phase and no significant evaporation occurs  (Lopez-Hilfiker et al., 2014). For RTC

samples, we need to consider also that not all particles have evaporated for the same time due to the filling of the RTC for ca.

10

285

290

295

300

305

310

315



20 minutes. We determined the minimum time the particles have evaporated in the RTC as the time when we started the

sample collection minus the RTC filling time. We determined the maximum evaporation time in the RTC to be the time

when we stopped the sample collection plus the filling time. These minimum and maximum comparison times are shown in

Table S1 and they are referred to as minimum and maximum (sample) evaporation time. The mean (sample) evaporation

time is defined to be at the middle of the sample collection interval. For simplicity we will show in the main text the results

from analysis where the FIGAERO-CIMS samples were assumed to represents the particles at the mean sample evaporation

time.  We  show  the  analysis  where  the  samples  were  assumed  to  represent  the  particles  at  minimum  and  maximum

evaporation time in the supplementary material.

Figure 2 shows VDevap and VDPMF  for medium (Fig. 2a-b) and low O:C (Fig. 2c-d) particles at high RH. In the VDPMF

calculated from Tmax value of each factor (black crosses), the factors fall into three different volatility classes within our

chosen particle size and experimental time scale: practically non-volatile (log10(C*) ≤ -2), slightly volatile ( -2 < log10(C*) ≤

0,) and volatile (log10(C*) > 0). We use these three volatility classes to compare the volatility distributions in Fig. 3 where

each VD compound are grouped to these three volatility classes. Figure 3 presents the VDPMF where C* of each factor is

calculated from the Tmax value and compares this VDPMF  to what VDevap is at the mean time the FIGAERO samples had

evaporated. We show the same comparison for minimum and maximum evaporation time in Fig. S5 and Fig. S6.

After the volatility class grouping is applied, we see that there are differences between VD evap and VDPMF. With VDPMF of the

fresh samples there are excess amount of matter  in the lowest volatility class (volatility class 1) and less material in the

volatility class 2 compared to VDevap. In both oxidation condition.  In addition, the low O:C fresh sample shows more material

in the volatility class 3 in VDPMF compared to VDevap.. 

To investigate the observed discrepancies further, we used the VDPMF shown in Fig 2 as an input to the LLEVAP model and

calculated the corresponding isothermal evaporation behavior (i.e. the evapogram). We show these simulated evapograms in

Fig. 4a for the medium O:C case and in Fig 4b for low O:C condition together with the simulated evapogram calculated

using VDevap as an input for the LLEVAP model. The simulated evapograms calculated with VD PMF of the fresh samples do

not match the measured evapograms predicting less evaporation, while the evapogram calculated with VD evap agrees well

with the experimental evapogram (black lines in Fig. 4), as expected since this is the goal of the VD evap determination. The

simulation calculated with VDPMF of the fresh sample (light blue lines in Fig. 4 for mean evaporation time and Fig. S7 for

other evaporation times) shows slower evaporation than the observations or the simulation calculated with VD evap.. This is

consistent with the results show in Fig. 3 where the VDPMF contained more low volatility material than the VDevap. 

Figure 4 shows also the simulated evapograms calculated with VDPMF of the RTC samples (light brown lines in Fig. 4 and

Fig. S7). in these cases, the particles size decreases little within the simulation time scale. With medium O:C particles, the
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simulated evaporation matches well to the measured evaporation.  With low O:C particles, the evaporation calculated with

VDPMF is too fast. The shape of the evapogram does not match the measured one.

3.3 Applying desorption range to characterize the volatility of PMF factors

The Tmax value is a practical choice for the characteristic temperature of the desorption process. However, as we saw on Sect.

3.2 the VDPMF calculated from the peak desorption temperatures did not produce the measured evapogram when used as an

input to the LLEVAP model. Working under the assumption that all material collected on the FIGAERO filter, including the

higher volatility material, is detected in the CIMS and then captured in the PMF analysis we will relax the assumption that

the volatility of the factor is characterized strictly by the Tmax value of the factor and investigate the VDPMF  further. We will

explore how the VDPMF changes when the desorption temperature and the resulting C* are interpreted to contain uncertainty

and  if  the  VDPMF considering  these  uncertainty  ranges  is  consistent  with  the  observed  isothermal  evaporation.  The

uncertainty  in  the  desorption  temperature  raises  from  the  facts  that  compounds  volatilize  from  the  FIGAERO  filter

throughout the heating and, therefore, one value might not be adequate to characterize the C * of a factor and that each PMF

factor contains multiple compounds with distinct C*.

We calculated the 25th and 75th percentiles of the desorption temperatures of each factor  and converted them to effective

saturation concentrations as described in section 2.4 (see diamond markers in Fig. 1). We show the resulting C* ranges in Fig.

2 as horizontal solid lines where the line colour matches the colour of the factors in Fig. 1. We then ran MCGA optimization

by setting a number of compounds equal to the number of PMF factors, molar fraction for each compound at the FIGAERO-

CIMS sampling time fixed to the molar  fraction of  the corresponding factor  and set  the C* as the optimized variables

restricted to the range corresponding to the 25th and 75th percentile desorption temperature. In the optimization the goodness-

of-fit statistics was calculated as a mean squared error similar to the determination of VDevap.

As the fresh samples were collected between 0 and 30 minutes from the start of the evaporation, we sought for a fitting set of

C* values  for  evaporation starting at 0, 15 and 30 minutes. We show the results for the mean sample evaporation time (15

min)  in  the  main  text  and  the other  evaporation  times  in  the  supplementary  material. Due to  scarcity  of  particle  size

measurements at collection time of the RTC sample, we will apply this analysis only to the VD PMF of the RTC sample at its

minimum evaporation time. In each optimization we set the initial particle diameter to be the same as what is simulated with

VDevap. We derived 50 C* estimates for both samples and each evaporation time. From these 50 estimates we chose the best

fit evapogram. We refer to these optimized volatility distributions as VDPMF,opt to separate them from the VDPMF  where we

used Tmax to characterize C* of a PMF factor.

We  show  the  optimized  C* values  forming  VDPMF,opt in  Table  2  (see  Table  S2  for  minimum  and  maximum  sample

evaporation  times).  Figure  5  shows  the  best  fit  evaporation  simulations  calculated  with  VDPMF,opt.  The  other  sample
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evaporation times are displayed in the supplementary material Fig. S8. For both oxidation condition, the simulations were

the fresh sample is set to represent the evaporating particles at mean or maximum sample evaporation time resemble the

experimental evapogram and evapogram calculated with VDevap, although the simulation in medium O:C condition shows a 5

times larger goodness-of-fit compared to the simulation calculated with VDevap. The simulations starting from maximum

evaporation  time  of  the  fresh  samples  show similar  results  while  the  simulations  starting  from the  minimum sample

evaporation time results in too slow evaporation  (Fig.  S8). The evapograms determined with the VDPMF,opt of  the RTC

samples agree with the measured evaporation as well.  

Overall,  these  results  demonstrate  that  the information derived  from the fresh and RTC FIGAERO-CIMS samples can

describe the volatility of the evaporating particles, when uncertainty in the desorption temperature are considered.

3.4 Comparison of the volatility distribution of the fresh and RTC sample at high RH

In this section, we compare VDPMF,opt of the fresh samples to VDPMF of the RTC sample to study if the two VD are similar.

We compare the two VD at the mean evaporation time of the RTC sample. We calculated the evapograms with VDPMF,opt  of

the fresh sample as the initial particle composition and recorded the mole fraction of each factor at mean evaporation time of

the RTC sample (216 minutes for medium O:C particles and 211 minutes for low O:C particles). Figure 6a and Fig. 6c show

this comparison for both medium O:C and low O:C particles.  The factors  are grouped  into the three volatility classes

described in Sect. 3.2. In Fig. 6 we show the results from the analysis where VD PMF,opt was optimized by assigning the fresh

sample composition at the mean sample evaporation time. Similar comparison using minimum and maximum evaporation

time of the fresh sample is given in Fig. S9. To ensure that the factors are grouped to the same volatility classes for each

studied VD, we used the C* values of the VDPMF,opt at mean sample evaporation time as basis according to which the grouping

is done.

Assuming that the fresh sample represents particles from the middle of the sampling interval (mean evaporation time), the

compositions simulated based on the VDPMF,opt of the fresh samples are comparable to the corresponding VDPMF of the RTC

sample in both oxidation conditions (Fig. 6). The agreement is good especially for the low O:C case for which the VD PMF,opt

show a slightly smaller contribution in volatility class 1 and corresponding higher contribution in volatility class 2 compared

to the VDPMF of the RTC sample (Fig. 6c). For medium O:C case, the VDPMF,opt predicted higher contribution of volatility

class 1 and lower contribution of volatility class 2 compared to VDPMF (Fig 6a). For medium O:C conditions, the agreement

between VDPMF,opt and VDPMF improved when using the VDPMF,opt of maximum fresh sample evaporation time, while VDPMF,opt

of minimum fresh sample evaporation time show higher contribution of volatility class 2 and lower contribution of volatility

class 1 compared to the VDPMF of the RTC sample. 
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These results show that the particle composition measured after few hours of evaporation is consistent with the composition

predicted based on composition observed at the start  of evaporation and considering uncertainties of the interpreted C*

values. The level of the agreement changes depending on which evaporation time the fresh FIGAERO-CIMS sample is

assumed to represent.  For medium O:C particles the VDPMF and VDPMF,opt are more consistent when the fresh sample is

assumed to represent particles at the maximum sample evaporation time. For low O:C particles the VDPMF,opt resembles the

VDPMF of the RTC sample best at mean evaporation time.

3.5 Volatility distribution comparison at dry condition

Next, we analyzed the evaporation experiments under dry conditions where the evaporation rate was reduced compared to

the  high  RH conditions.  We  interpreted  this  difference  as  an  indication  of  particle  phase  diffusion  limitations  at  dry

conditions (Yli-Juuti et al., 2017). Using the initial particle composition information obtained from the high RH experiments

and the FIGAERO-CIMS data, we explored the effect of particle viscosity on the evaporation process. Our aim is to test if

the slower evaporation, presumably due to higher viscosity of the SOA can be captured with a recently developed viscosity

parametrization  based  on glass  transition temperatures  of  various organic  compounds  (DeRieux et  al.,  2018).  We also

compare the results using the viscosity parametrization to an approach where we fit  both the viscosity and VD to the

evapogram.

First, we investigated the range of particle viscosities that are required to explain the observed slower evaporation at dry

conditions. For this, we simulated the particle evaporation in dry conditions based only on the evapogram data. We used the

VDevap (i.e., the initial particle composition obtained by optimizing mole fractions of VD compounds with respect to the

observed evapogram at high RH) as the initial condition for the simulations and optimized the b i values (Eq. 3) for each VD

compound. The best fit simulation from this optimization agrees well with the observed size decrease in the dry experiments

for both low and medium O:C particles (Fig. 8, black line). Based on these simulations, the viscosity of the particles need to

increase from below 105 Pa s to approximately 108 Pa s during the evaporation in order to explain the evaporation rate

observed for the dry particles. 

Second, we tested the performance of the composition dependent viscosity parameterization by DeRiuex et al. (2018) used

together with the PMF results. For this, we calculated the volatility distribution, VD PMF,dry, based on the Tmax values of the

factors from the fresh sample of the evaporation experiment at dry conditions (in the same way as VD PMF for the high RH

case). The mole fraction of each factor was calculated from the mass loading profile giving the initial mole fraction of each

VD compound for the simulations. We assigned this VDPMF,dry as the particle composition at the mean evaporation time of the

fresh sample, i.e. 15 minutes, and simulated the particle evaporation from there onward. The particle size at the beginning of

the simulation (i.e.  at  15 minutes  of  evaporation)  was  taken  from the above simulations optimized based  only on the

evapogram data,  which  fitted  well  to  the  measurements.  We calculated  the  viscosity  parameter  b i value  for  each  VD
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compound as described in Section 2.5 based on the mass spectra of the factor and the parameterization by DeRieux et al.

(2018). This resulted in too high viscosity for particles to evaporate in practice at all during the length of the experiment for

both low and medium O:C particles (grey dashed line in Fig. 8). Therefore,  we also conducted a simulation where the

viscosity parameter bi value for each factor was calculated based on the viscosity parameterization by setting the Tg values of

all compounds 30 K lower than the parametrization predicted, which is in line with the uncertainties reported by DeRiuex et

al. (2018). In this case, the simulated evaporation was faster than observed for medium O:C conditions (grey solid line in

Fig. 8a) and similar to the evapogram calculated with VDevap for low O:C conditions (grey solid line in Fig. 8b). This suggest

that the observed evaporation rate at dry conditions and the viscosity parametrization by DeRieux et al. (2018) may be

consistent with each other within the uncertainty range of the viscosity parametrization and the uncertainty range of the C * of

PMF factors.

Similar to Fig. 3, we show in Fig. 7 the comparison of VDPMF,dry (C* from Tmax) to the VDevap at dry conditions and mean

sample evaporation time with the VD compounds grouped into the three  volatility classes.  We show the mass loading

profiles and the volatility distributions at dry conditions in Fig. S10 and Fig. S11. Figure S12 shows the same comparison as

Fig 7 for other sample evaporation times. For medium O:C particles, VDPMF,dry calculated from the fresh  sample has more

contribution of volatility classes 1 and 3 and less of volatility class 2 compared to the corresponding VD evap. For low O:C

particles, the VDPMF,dry  of the fresh sample has more contribution of volatility class 3 and less of volatility classes 1 and 2

compared  to  the  VDevap. For  medium O:C  particles,  the  differences  between  the  VDPMF,dry and  VDevap leave  open  the

possibility that the underestimated evaporation rate calculated using VDPMF,dry is partly a result of inaccuracy in volatility

description and not solely due to the high estimated viscosity. For low O:C particles the underestimated evaporation most

likely stems from the high estimated viscosity since the VDPMF,dry is shifted towards higher volatility compounds than the

VDevap. 

As a third investigation on the viscosity, we used again the PMF results of the fresh sample at dry conditions to initialize the

particle composition in the model at the mean fresh sample evaporation time, i.e., at 15 minutes. The mole fraction of each

factor was calculated from the mass loading profile giving the initial mole fraction of each VD compound for the simulations

similar to the high RH analysis. Then, using the MCGA algorithm together with the KM-GAP model, we estimated the b i

coefficient and C* of each VD compound by optimizing the KM-GAP simulated evapogram to the measured evapogram at

dry  condition.  This  way  we  obtained  both  the  initial  volatility  distribution  (VDPMF,dry,opt)  and  viscosity  parameters  bi

simultaneously. For this optimization, we restricted the C* values of the factors based on the 25 th and 75th percentile of the

desorption temperature of the factors, similarly as done above for VDPMF,opt, and the viscosity parameter bi values based on

the DeRieux et al. (2018) parameterization. The b i values calculated with the original parametrization by DeRieux et al.,

(2018) were set as the upper limit for bi values. The lower limit for bi values were calculated by setting the glass transition

temperature of each compound 30 K lower than the parametrization predicted. As above, also in these simulations the initial
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particle size was taken from the simulations where optimization was based on only the evapogram data. For both medium

and low O:C particles it was possible to find a set of C* and bi values that produced an equally good match to experimental

data as the VDevap (purple and yellow lines in Fig. 8).

Figures 6b and 6d show the comparison of the measured and simulated particle composition, grouped to the three volatility

classes,  at  RTC  sample  collection  time  for  the  dry  experiments  for  low  and  medium  O:C  particles.  The  measured

composition is the VD calculated from the PMF results of the RTC sample at dry conditions. The optimized C * values of the

factors from the corresponding dry experiment were used for these VD. The simulated particle composition is taken from the

optimized model run (optimized VDPMF,opt,dry and bi) at the mean RTC sample collection time similar to the high RH cases

presented in Fig. 6a and Fig. 6c. For low O:C particles there is a clear discrepancy: the VDPMF,opt imply a much larger relative

contribution from the volatility  classes  2 and 3 and a smaller  contribution from the volatility class  1  compared  to  the

measurements. This inconsistency may be related to the rather high viscosities in the simulations. The viscosity of the low

O:C particles in this optimized simulation was rather high, η  >108 Pa s, throughout the evaporation, slowing the evaporation

of the higher volatility compounds. Similar evaporation curve could be obtained with lower viscosity and lower volatilities

of the compounds.

4 Discussion

VDPMF and VDPMF,dry capture qualitatively the evaporation dynamics well in all studied cases. For the VDPMF  of the fresh

samples, the first and second factor desorb at low heating temperatures (below 100 °C) indicating that these factors represent

high volatility organic compounds that evaporate almost completely from the particles in the experimental time scale of our

isothermal  evaporation  experiments.  In  the RTC samples,  these factors  show significantly lower or  non-existing signal

strength relative to the other factors. The factors that desorb at high temperatures show an increase in the relative signal

strength in the RTC samples compared to the fresh samples which is consistent  with the expected  increase  in relative

contribution  of  lower  volatility  compounds  along  evaporation.  These  findings  indicate  that  the  FIGAERO-CIMS

measurements of α-pinene SOA and the applied PMF method  give a good overall picture of the evolution of the volatility

distribution during evaporation.

At high RH, the VDPMF that was derived from Tmax of each factors mass loading profile did not produce evapogram similar

to the measured ones, when the VDPMF was used as an input to the LLEVAP model. This reflects the sensitivity of particle

evaporation to the C* values and suggest that the VDPMF is not directly applicable as a particle composition estimate for

detailed particle dynamics study. When we allowed uncertainty in the C* values of each factor we were able to explain most

of the discrepancy between the simulated and measured evapograms. The simulated evapograms, after optimizing the C * of

each factor from their appropriate ranges, are close to the experimental values for all other cases except when the FIGAERO
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sample is interpreted to represent particles at the start of fresh sample’s collection interval (minimum evaporation time). Our

results also demonstrate the need for careful  investigation of the representative time of the sample when filter-collected

samples are applied for dynamic processes such as evaporation.

In this study we assumed a quite large uncertainty range for the desorption temperature of each PMF factor and it is not

certain that the determination of VDPMF,opt would be successful if the allowed ranges for C* of PMF factors would be lower.

Thus, there remains work to be done in studying what is the total uncertainty that rises from combining the FIGAERO-CIMS

measurements with the PMF method and to what extent the PMF factors can be thought to represent surrogate organic

compounds for the purpose of detailed SOA dynamics studies. 

We note that care has to be taken when PMF results are transferred to volatility distributions, especially with regard to

separating the contribution of instrument background and contamination from the true sample. When the sample mass was

low (in the low O:C RTC sample) we noticed that the first half of the bimodal (factor LD1a) resulted in a high mole fraction

even though the absolute signal strength of the factor did not change between the fresh and the RTC sample, which is usually

an indication that this signal is caused by instrument background. However, the signal strength of this factor was low enough

in all cases to not affect the overall VD estimation. More details on the interpretation of B- and D-type factors and potential

factor blending can be found in Buchholz et al, (2019b)

At low RH, VDPMF,dry of the fresh sample in low O:C case showed noticeably higher amount of high volatility matter than

VDevap.  This discrepancy between the volatility distributions is not expected and raises a need for further studies on the role

of viscosity and possible particle phase chemistry to SOA particle dynamics. Future studies should investigate the possibility

of chemical reactions that modify the volatility of organic compounds and how viscosity is described in process models.

5 Conclusions

We  compared  volatility  distributions  derived  from  FIGAERO-CIMS  measurements  with  PMF  analysis  to  volatility

distributions derived from fitting a process model to match measured size change of particles during isothermal evaporation.

We compared the two methods for obtaining the volatility distribution data for two different particle compositions and two

evaporation conditions. The results are promising and suggest that the methods provide volatility distributions that are in

agreement. We note that the data set available here is limited and additional investigations on comparing the methods are

desirable in the future. 

In all studied experimental data sets we were able to capture the measured evaporation with the fitting method. With high

RH experiments, VDPMF deviated from VDevap especially when the FIGAERO samples were collected at the early stages of
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the evaporation. However, qualitatively, both types of VD evolved similarly, i.e., the fraction of lower volatility compounds

increased, and the fraction of higher volatility compounds decreased during the evaporation of the particles. These results

suggest that the changes in FIGAERO-CIMS derived volatility distributions over the isothermal evaporation are consistent

with the observed isothermal evaporation and the detailed SOA dynamics are sensitive for the uncertainties in C* values.

The volatility distribution from PMF at high RH agreed with the observed isothermal evaporation better when we interpreted

the volatility of each factor as a range of possible C* values and optimized the C* values from these ranges with respect to the

measurements. These results suggest that the FIGAERO-CIMS measurements combined with PMF method does not only

provide  qualitative  information  of  the  volatilities  of  the  SOA  constituents  but  it  also  has  potential  for  quantitative

investigation of the volatility distributions. However,  more work is needed to constrain the uncertainties rising from the

conversion of the FIGAEO-CIMS desorption temperatures to C* values.

At dry conditions, we were able to simulate the evapograms based on the PMF results using the VTF equation and glass

transition temperature parametrization of DeRieux et al., (2018) when both C* and viscosity parameters where optimized and

allowed to contain reasonable uncertainties. For both oxidation conditions the measured composition at the later stages of

evaporation suggested considerably lower volatility than the simulations.  These results suggest  that  the tested viscosity

parameterization is not in disagreement with the observed SOA evaporation, however the uncertainties related to the method

are significant from the point of view of simulating SOA dynamics.

Based  on  our  analysis  we  conclude  that  using  the  PMF method  with  FIGAERO-CIMS thermogram data  is  good  for

estimating   the volatility distribution of organic aerosols when the organic compounds present in the particle phase have low

volatilities  with  respect  to  the  sample  collection  and  analysis  time  scale.  Specifically,  VD PMF is  useful  for  extracting

information about organic compounds that do not evaporate during the evaporation measurements at room temperature.

VDPMF is applicable to detailed particle dynamics studies when desorption temperature of the factor is characterized with a

range around the Tmax value. Furthermore, combining VDPMF,opt with detailed process modelling and input optimization could

allow quantification of other physical or chemical properties of organic aerosols since the FIGAERO-CIMS data constrains

the particle  composition and effectively  decreases  the search  space  that  needs to  be explored with global  optimization

methods.

Code availability: The process models  used in this study can be acquired upon request from the corresponding author. The

MCGA code is can be obtained from https://doi.org/10.5281/zenodo.3759733
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Table 1: The ambient conditions and properties of the organic compounds used in estimating the VDevap. The variables are,

from top to bottom, temperature (T) during the evaporation, relative humidity (RH), gas phase diffusion coefficient (Dg,org),

molar mass (M), particle phase density (ρ), particle surface tension (σ)) and mass accommodation coefficient (α). Rows that

only have one value are the same in every column. 

Variable Medium O:C 

High RH

Low O:C

High RH

Medium O:C  

dry

Low O:C 

dry

T (K) 293.85 293.75 293.75 293.35

RH (%) 82.4 83.5 0 0

Da,b
gas (cm2 s-1) 0.05

Mb (g mol-1) 200

ρb (kg m-3) 1200

σ)b (mN m-1)   40

αb   1
a) The gas phase diffusion coefficients are scaled to correct temperatures by multiplying with a factor  of (T/273.15) 1.75  (Reid

et al., 1987)

b) values are chosen to represent a generic organic compound with values similar to other α-pinene SOA studies (e.g. Pathak

et al., 2007; Vaden et al., 2011; Yli-Juuti et al., 2017).

25

600

605

610

615



Table 2: The best fit C* values for medium O:C and low O:C high RH experiments when C* values of PMF factors were

optimized with respect to the measured isothermal evaporation. C* values were optimized by assuming the FIGAERO-CIMS

sample represents particle composition at the mean sample evaporation time for the fresh sample and the minimum sample

evaporation time for the RTC sample. The C* values are rounded to two significant digits and are in units μgm -3. C* values

below 10-3 μgm-3 are not reported explicitly since the evapogram fitting method is not sensitive to these values.

Medium O:C  fresh sample Medium O:C RTC sample Low O:C  fresh sample Low O:C RTC sample 

Factor M1/L1 4.96 ·10-1 36.10 3.06 ·10-1 <10-3

Factor M2/L2 2.89 ·10-1 4.12·10-1 3.55 ·10-1 2.40·10-2 

Factor M3/L3 9.93 ·10-3 4.42 ·10-3 2.87 ·10-2 7.13 ·10-3 

Factor M4/L4 < 10-3 < 10-3 1.54 ·10-3 < 10-3  

Factor M5/L5 < 10-3 < 10-3 < 10-3 < 10-3 

Factor D1a 7.68 · 10-1 69.35 130.03 1.04 · 10-1 

Factor D1b < 10-3 < 10-3 < 10-3 < 10-3
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Figure 1: Main PMF mass loading profiles for high RH conditions a) medium O:C fresh, b) medium O:C RTC, c) low O:C

fresh and d) low O:C RTC sample. Black crosses indicate the peak desorption temperature Tmax and  diamonds mark the 25th

and 75th percentiles of the factors area.
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Figure  2:  Volatility distributions in high RH experiments determined from model fitting (VDevap) and PMF analysis  of

FIGAERO-CIMS data (VDPMF) for a) medium O:C fresh, b) medium O:C RTC, c) low O:C fresh, d) low O:C RTC sample.

VDevap is shown for the best fit simulation (grey bars) at the mean evaporation time of the FIGAERO-CIMS sample. Black

crosses  show the  log10(C*)  calculated  for  each  PMF factor  from the  peak  desorption  temperature  Tmax.  The  horizontal

coloured lines show the range of log10(C*) calculated from the 25th and 75th percentiles of each PMF factors mass loading

profile. 
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Figure 3: Comparison of VDPMF and VDevap at mean sample evaporation time in high RH experiments for a) medium O:C

fresh, b) medium O:C RTC, c) low O:C fresh, d) low O:C RTC sample.. The VD compounds are grouped into three different

volatility classes class 1:  log(C*) ≤ -2, class 2: -2 < log(C*) < 0, class 3: log(C*) > 0.
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Figure 4: Evapograms showing the high RH measured evaporation factors (circles) and their uncertainty in time, LLEVAP

simulated evapograms calculated using the best fit VDevap (black solid lines) and LLEVAP simulated evapograms calculated

with VDPMF (turquoise lines for VDPMF of fresh sample and light brown lines for VDPMF RTC sample for a) medium O:C b)

low O:C.
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Figure  5: Evapograms  showing  the  high  RH measured  evaporation  factors  (circles),  their  uncertainty  in  time  (black

whiskers), the best fit simulated evapogram calculated with VDevap (black solid line) and the best fit simulated evapogram

calculated with VDPMF,opt  for a) medium O:C, b) low O:C. Evapograms simulated with VDPMF,opt optimized from both fresh

FIGAERO-CIMS sample (purple and yellow solid lines) and RTC sample (red dashed lines) are shown. 
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Figure 6: Comparison of the simulated composition (VDPMF,opt, VDPMF,opt,dry) at the RTC sample mean evaporation time to the

VDPMF obtained from the RTC sample. The simulated compositions (VDPMF,opt  in a and c, VDPMF,opt,dry in b and d) are taken

from the best fit simulated evapogram obtained from the optimization of the C * values of fresh sample PMF factors to

measured evapogram.  a) medium OC high RH, b) medium O:C low RH, c) low O:C high RH and d) low O:C low RH

samples. The same C* values were used for each VD calculated from the VDPMF,opt and VDPMF,opt,dry  at the mean evaporation

time in order to ensure the comparability. The volatility classes are class 1:  log(C*) ≤ -2, 2: -class 2 < log(C*) < 0, class 3:

log(C*) > 0. 
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Figure 7: Comparison of VDPMF,dry (i.e. C* calculated from Tmax of each factor) and VDevap  at mean evaporation time in dry

condition experiments for a) medium O:C fresh, b) medium O:C RTC, c) low O:C fresh and d) low O:C RTC sample. The

VD compounds are grouped into three volatility classes.  class 1:  log(C*) ≤ -2, class 2: -2 < log(C*) < 0, class 3: log(C*) > 0. 
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Figure 8: Evapogram showing the measured isothermal evaporation of a) medium O:C particles b) low O:C particles at dry

conditions  and  their  uncertainty  in  time  (red  and  yellow  markers  and  black  whiskers)  together  with  the  simulated

evapograms. The best fit simulated evapogram calculated with VDevap (obtained from high RH experiments) and optimizing

bi is  shown with black  solid  line.  Grey   lines  show the minimum and maximum possible  evaporation  calculated  with

VDPMF,dry (C* of PMF factors calculated from Tmax) and the highest (the original parametrization of DeRieux et al., (2018),

grey dashed lines) or the lowest (30 K substracted from the Tg of every ion, grey solid line) studied viscosity.  Purple and

yellow solid lines show the best fit simulated evapograms calculated with the optimized  VD PMF,opt,dry  (based on assumption

that the FIGAERO sample represents particles at mean of the sample collection interval) and b i restricted based on the

DeRieux et al. (2018) parameterization . 
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