
Authors’ response to comments received to manuscript “Comparing SOA volatility 
distributions derived from isothermal SOA particle evaporation data and FIGAERO-
CIMS measurements”

We thank both reviewer #3 and reviewer #4 for reviewing our manuscript and for the helpful 
comments that helped to improve the manuscript. Below we address the comments presented 
by the reviewers. The comments of the reviewers are shown in bold, our answers are shown 
as normal text, and the changes made to the manuscript are shown in italic. We have 
numbered the specific comments of reviewer #4.

Reviewer #3
The authors have adequately addressed my concerns from the first iteration. I noticed 
some typographical errors in the added / revised text; hence the request for technical 
corrections.

We thank reviewer #3 for his/her comments. We have carefully read through the manuscript 
and corrected any typos found. 

Reviewer #4
The authors present here an investigation of how FIGAERO-CIMS thermal desorption 
data can be used to understand volatility distributions and evaporation kinetics, 
specifically through comparison to isothermal evaporation experiments. Overall, I think 
this is useful work of interest to the ACP community, and I think the authors have 
explored and considered in detail many of the potential areas of uncertainty in the 
approach. My opinion is that is generally suitable for publication in this journal. I have 
two main comments below that I think need to be discussed and addressed prior to 
publication, and list a number of specific comments below (in some cases, specific 
comments may just be specific examples/cases of the general comments and can be 
responded to as such).

Major comments:

1) Presentation. The authors are very detailed, but I fear this may contributed to the fact 
that I find this paper and these figures hard to get through. With all the different 
comparisons and model paramters, it takes a lot of re-reading sentences and mentally 
refreshing myself on the modeling frameworks to keep on top of what I am looking at. 
This is particularly true in considering all the variables in the evapogram modeling. 
Unfortunately I'm not sure I have a lot of concrete suggestions for how to fix this issue, 
it may just stem out of all the modeling details. I think one clear thing that might help 
would be to make the "takehome points" of the figures more clear within the figures 
themselves instead of relying entirely on captions and legends, for example: in all 
figures, including in each subplot what data set (e.g. "Fresh, medium O:C SOA") is 
being shown, in Figure 2 move most of the legend into the plot by just labeling 
"VD_evap" in gray and "Factors" in colored text, etc. Other possible ways to increase 
clarity might be: refer to and label the volatility classes as "low", "semi-volatile", and 
"volatile" instead of 1, 2, and 3 so the read doesn't have to keep track; spend less time 
discussing (and labeling in figures) the issues around min, mean, and max evaporation 



times since it doesn't really impact the conclusions and move most of that to the SI. A 
minor but still important issue is awkward phrasing and grammar - on top of general 
complexity of the presentation, there are a lots of grammatically questionable phrases 
and/or typos that should be fixed (some, but not all, are listed in the specific 
comments).

We thank reviewer #4 for these suggestions that helped to further clarify the presentation. We 
have made following changes to the figures in the main text:

• added the name of the data set to each subplot in Figures 1 – 8  in the manuscript
• added labels for each PMF factor in Figure 2 to make it easier to recognize the factors 

without looking the legends.
• Modified the legend texts in Figures 4 – 6 so that they are better in line with the main 

text and the captions
• Added text arrows to Figure 6 that explain what bar shows what data.

We have removed the mentions about min, mean and max evaporation times in lines 395, 
401-402, 404-406, 424, 429-432, 436-439, 539-541 and in the figure captions in the 
highlighted version of the manuscript. Instead, we briefly describe the results concerning 
different evaporation times in the captions of the supplementary Figure S8

The simulations of the fresh samples that start at the mean or maximum evaporation time 
resemble the measured evaporation and the evaporation simulations calculated with the 
VDevap. The simulation of the fresh sample that starts from the minimun evaporation time does 
not produce evaporation curve similar to the measurements. The results highlight the fact that 
it is not likely that the fresh sample consists of particles that have just entered the residence 
time chamber.

and Figure S9 

The results of medium O:C SOA in high RH experiments show that the VDPMF best resembles 
the VDPMF,opt of the maximum evaporation time, although the difference to the mean 
evaporation time is not significant. For low O:C SOA in high RH experiments, the results show 
that the VDPMF best resembles the VDPMF,opt of the mean evaporation time.

We have corrected the typos and phrases pointed out in the specific comments as well as read
through the manuscript carefully and corrected any typos / unclear sentences we found. 

In principle we agree that it would be useful to label volatility classes 1,2 and 3 into “low”, 
“semi-volatile” and “volatile” classes. In theory the volatility of a compound of course depends 
on the conditions where the volatility is studied and for our system it would be justified to name
the three classes as “low-volatile”, “semi-volatile” and “volatile”. In practice we think that the 
terms “low-volatile”, “semi-volatile” and “volatile” have settled within the SOA community to 
mean  specific C* ranges which are different from the C* ranges than what we use in our study
for our volatility classes 1, 2 and 3. To avoid confusion, we label the volatility classes with 
numbers, even though it is not the most convenient labeling.

2) Benefit of PMF. A core component of this work is the PMF analysis of the FIGAERO 
data, and the authors do a detailed investigation to understand thermogram-derived 
volatility. A major conclusion of this work is that PMF factors can seemingly be used to 
describe the volatility/evaporation, but only if you optimize the T --> C* conversion by 



fitting to evapogram data (i.e., account for the "uncertainty in the desorption 
temperature"). However, it's totally unclear to me that the PMF step is at all necessary, 
given the scale of that uncertainty, and the typical absence of evapogram data to 
provide that constraint. The C* that describes each factor is uncertain to around an 
order of magnitude, bounded by the desorption temperature range of the factor. Given 
this range of uncertainty (which is typical for C* estimates), what do you gain by having 
some specific T_max or T range associated with each factor? Why not just cut the 
thermogram into VBS bins based on temperatures (either by cutoff temperatures, or by 
fitting peaks constrained to the temperatures defining each bin)? Would this approach 
do any worse a job in comparison to the VD_evap or evaporation kinetics? This might 
even do better - M4, for instance, is very broad with T_max near T_25, so forcing all 
mass in the factor to this range might drive some bias. There are reasons beyond 
volatility you might want PMF, but this paper does not convince me that the effort of 
PMF provides any benefit in estimating volatility, and if not, why is it being used at all? 
Something needs to be added to this manuscript to provide support or context for this 
decision, e.g., a discussion of other peoples use of PMF for volatility; a discussion of 
why PMF might reasonably be expected to do a better job than a simple VBS approach; 
or a comparison of the present PMF approach to a VBS-only approach. Ideally, I'd love 
to see the VBS-only approach applied because if it works it informs how one can use 
the thermogram without the more complex need for PMF, but I would understand if the 
editor and/or authors feel that is beyond the scope. If it is beyond the scope, I do think it
should be considered and discussed as a possibility - one major takehome for me is 
that it seems like it should work at least within similar unceratinty, so I think it would 
broaden the audience and potential impact of this paper to explore the possibility.

There can be two important issues with deriving VBS distributions directly from the sum 
thermograms:

1) There can be a considerable contribution of background and/or contamination distorting
the sum thermogram. Especially, when the collected mass loading on the FIGAERO 
filter is low (few 10s of ng), it is important to separate the background from the real 
sample signal.

As also described in our reply to specific comment 21, the low O:C, fresh, dry sample 
had a significant contamination. In Figure AR1, we depict the measured (black circles) 
and reconstructed sum thermogram (blue line). The red line shows the reconstructed 
sum thermogram using only the contribution of L1-L5 and LD1, omitting the background
and contamination. It is clear that “binning” these two sum thermograms will lead to 
different VBS distributions.

The PMF approach identifies the instrument background (and contamination) and allowed 
us to omit it from further analysis.
 



Figure AR1: Measured and reconstructed sum thermogram 
for the low O:C, fresh, dry sample.

2) The Tmax → C* conversion is derived for single compounds relating their Tmax values to 
their volatility. The area or the shape of the thermogram is not considered. Without 
further studies, it is not clear if this discrete calibration can be applied to the continuum 
of the sum thermogram. 
A compromise could be to determine the Tmax value for each single ion thermogram and 
then use this as the volatility measure. However, there are multiple ions with multimodal
or broad single ion thermograms in our data set. A single Tmax value per ion again 
ignores the shape of the single ion thermogram, and thus possibly overestimates the 
volatility.

The PMF analysis can be understood as “binning” the sum thermogram by using the 
information from the desorption of all ions. The calculation time is clearly longer than for a 
simpler approach. But the amount of information and the solution of the issues mentioned 
above more than justifies that.

As the reviewer states, there are also reasons beyond volatility why one might want to use the 
PMF method. For example, one such reason might be understanding the particle phase 
chemistry during SOA evolution as was done in our group in Buchholz et al., (2019).

Because the PMF method might be important for interpreting the properties of the SOA 
constituents on a different level than calculating physicochemical properties from the mass 
spectrometer data, we feel that it is important to study that the method can also represent the 
volatility, which is perhaps the most important property for SOA formation and evolution, 
correctly. 

Comparing the PMF method to VBS-only approach is an intriguing idea, but we feel that it is 
out of the scope of this paper. We have added the following to the discussion part (lines 507-
512) in the revised version of the manuscript about the different methods to estimate the 
volatility

In addition to the PMF method used here, also other ways of characterizing SOA compound 
volatilities or VBS from FIGAERO-CIMS thermograms have been suggested (e.g. Stark et al., 
2017). These include, for example, the more straightforward method of  calculating the C* of 
each detected ion based on their Tmax, using Eq. (3) and lumping them into a traditional VBS. 
While such other methods may capture the volatility distributions sufficiently, the benefit of 
PMF method is that it offers a new way to understand what happens inside the particles, e.g. 



during the heating in FIGAERO. Here we have evaluated this method with respect to its ability 
to capture the volatilities of SOA.

Specific comments:

1. Line 40-41. This whole sentence is awkward English and difficult to understand, re-
phrase

We have rephrased the sentence to:

There exist gaps in the knowledge especially on formation and deposition of SOA as well as 
how the processes are affected by changing physicochemical properties such as volatility 
(Glasius and Goldstein, 2016).

2. Line 41. Should be phrased "the phase state...has also..."

We have moved the word ‘also’ as suggested.

3. Line 45. Mass Spectrometer should be capitalized

We have capitalized Mass Spectrometer.

4. Line 77. "conduction a" is a typo

We have changed “conduction” to “conducting”

5. Line 82. For "How to interpret..." is not a grammatically correct question, should be 
"How shoud....be interpreted?"

We have modified the sentence as:

How should the PMF results of FIGAERO-CIMS data be interpreted in terms of volatility?

6. Line 104-107. Do I understand correctly that these 80 nm particles sit in the 100 L 
chamber for 4-10 hours? Even a monodisperse population will have some size 
distribution - how do you account for particle-dependent wall losses that might change 
the apparent size distribution? These might be negligible, but if so, the authors should 
provide evidence to support such an assumption.

The selected monodisperse distribution is narrow. We fitted the measured size distributions 
with an asymmetric log-normal function from which we get the half-width of the distributions 
and the peak position. For the low O:C, wet experiment (which exhibited the strongest 
evaporation) the half-width was 9-10 nm for the 75 – 80 nm particles at the start of the 
experiment. After 10 h, the particle size may decrease to as low as 55 nm with a half-width of 
6-7nm. We do not expect significant size dependence of the particle wall loss for such narrow 
size distributions in the range of 80 - 50 nm.

7. Line 111. I don't think you need to include Aerodyne Research Inc. here, you already 
reference it in the paranthetical at the end of the sentence.

In line 111 we reference the Aerodyne Research Inc. first for the FIGAERO and later for the 
CIMS in the parenthesis. There are custom-build FIGAERO units thus it is necessary to 
indicate that the used unit was the model from Aerodyne Research Inc.



8. Line 114. It might be worth noting that in Isaacman-VanWertz et al. cited here, the 
volatility distribution of the FIGAERO-CIMS based on thermograms was similar to that 
of a TD-AMS. This suggests that any overall conclusions from the present work likely 
extend to other thermal desorption based estimates of volatility.

We would at least hope so. On the other hand, in Isaacman-VanWertz the authors test only 
one SOA system (α-pinene oxidized by OH). In general it might be that depending on which 
system is being investigated, different experimental methods may perform better or worse in 
producing accurate volatility distributions. For this reason, we feel that it is perhaps better not 
to draw conclusions from the present work to other thermal desorption based estimates of 
volatility.

9. Line 115. "a-" instead of "alpha-"

We have changed “a-” to “α” in line 115 in the old version of the manuscript.

10. Line 143. Why not just call them "VD bins" in all cases, and avoid the confusion with
"compounds"? Having read the paper in detail, it's not clear to me that the use of the 
term VD compound is at all necessary - each bin has average properties (e.g., T_max) 
and I don't see any need to refer to them explicitly as psuedo-individual compounds.

Thank you for this suggestion. We have changed all occurrences of “VD compound” to “VD 
bin”.

11. Line 144. Are these really the properties of each VD compound? It looks like just 
basic assumptions about the properties of all (not each) bin. This sentence makes me 
think the Table is going to contain a list of many different properties for each of the 
bins.

To avoid confusion we have changed the sentence in line 144 of the old version of the 
manuscript from

The physicochemical properties of each VD bin are listed in Table 1 as well as the ambient 
conditions of each evaporation experiment.

to

The physicochemical properties of each VD bin are assumed to be the same. These 
properties and the ambient conditions of each evaporation experiment are listed in Table 1.

12. Table 1. Use column and row dividers to make clear that the rows with only one 
value are for all columns

We have added column dividers to Table 1.

13. Line 219. "and conducting a" should read "and conduct a"

We have changed this as suggested. 

14. Line 223-224. I don't understand the purpose of this interpolation. Isn't the mass 
loading profile basically a represenation of mass as a function of time/temperature? 
What do the authors mean a temperature "step". Usually, the CIMS collects data at ~1 
Hz - how large a step in temperature occurs in one second? Do the authors mean they 



interpolate 100 spectra per degree C? Or 100 spectra per Hz? I would guess that if you 
are just interpolating from your existing data, this would not actually increase your 
statistical power, since the amount of "real" information is not increasing, but I'm not a 
statistician so I'm not sure.

The raw CIMS data had indeed a time resolution of 1 Hz. But because the raw signals of many
ions were so low (and noisy), it was necessary to average the raw signals over a longer time 
period before the high-resolution analysis could be conducted. We used 20 s as averaging 
intervals which leads to an average DT between two adjacent data points of ~4°C during the 
linear phase of the heating ramp. 

While the overall shape of the thermograms is still visible, this T grid is to coarse to determine 
Tmax and the 25th/75th percentiles directly. One option would be to fit the thermograms with a 
function, assuming a peak shape (e.g. gaussian or log-normal). Instead we chose to apply a 
linear interpolation assuming a continuous, linear distribution between two adjacent data 
points.

We have modified the paragraph in lines 225-229 in the revised version of the manuscript to:
 
Once the PMF algorithm was applied to the FIGAERO-CIMS data we calculated the VD from 
the mass loading matrix G. Due to the very low signal strength of many ions, the CIMS data 
had been averaged over 20 s leading to enhance the reliability of the high-resolution analysis. 
This leads to an average desorption temperature difference ΔTdesorp  ≈ 4°C between two 
adjacent data points. To overcome this coarse Tdesorp grid, we interpolated each factor’s mass 
loading profile with a resolution of 100 sample points between two temperature steps to gain 
sufficient statistics for further analysis.

15. Line 243. Missing close parenthesis

We have added a closing parenthesis.

16. Line 251. Out of curiosity, how was 0.3 nm chosen? This is approximately the length
of 2 carbon-carbon bonds, so effectively a monolayer or thinner.

The 0.3 nm was chosen to be close to one monolayer in the particle. In practice, we wanted to 
choose as small a value as possible for computational reasons that still makes physically 
sense.

17. Line 256-258. This assertion is made a few times, but it's not clear to me if this is 
simply an assertion, or if it is also observed that the VD_evap model suggests this to be
true as well. This should be clarified/discussed

The fact that the particles are produced in the same conditions and only evaporate in different 
conditions is an important aspect for interpreting these data and for modelling the evaporation. 
It means that when we determine VDevap at t = 0 s from experiment in one relative humidity, we 
can use the same VD as the initial VD (at t = 0 s) for modelling the evaporation at different 
relative humidity.

The experiment set-up was specifically designed to assure that the starting composition of the 
particles were the same. We monitored the output from the OFR continuously with an AMS. 
FIGAERO-CIMS samples of the polydisperse Aerosol were taken on different experiment 
days. Both instruments showed very little variety in the particle composition with time. The 
monodisperse sample is then selected from this polydisperse distribution. The only difference 
will be the water content in the particles. But as we compare the organic mole fractions the 



assumption still holds. The results from our VDevap modelling do not contradict this aspect from 
the experimental set-up.

18. Line 271. The mass spectra contains ions, not compounds. In any case, do I 
understand correctly that DeRieux et al provide a way to estimate Tg as a function of 
molecular formula? This isn't quite clear.

The reviewer is correct here. We have clarified this in line 278 in the revised version of the 
manuscript.

This parametrization requires the number of carbon, oxygen and hydrogen atoms to calculate 
the Tg.

19. Line 285. What is the difference between Figures 1 and S2? I see that the 
contaminant and blank factors have been removed, and MD1 and has been split, but 
this is not all of the differences. For instance, in Figure S2 factor M1 coes to ~5000 
signal, but only 2000 signal in Figure 1. The caption seem to imply these are the same 
data, but they don't look like it. Also, the desorption temperatures in Figure 1 go down 
to 0 C, which I don't think is correct.

Thank you for noticing this! The figure S2 wrongly shows the PMF factors for the experiments 
done in dry conditions. We have corrected the figure S2 to show all the PMF factors for the 
experiments done in high RH. The difference between Fig. 1 and Fig. S2 is that the latter 
shows the full 7- or 9- factor PMF results including also factors from filter background and from
contamination (in the low O:C case). In Fig. 1, these background and contamination factors 
are removed and the decomposition factor (factors M/LD1 in Fig. S2) is split into two parts 
(factors M/LD1a/b in Fig. 1). 

We have corrected also the issue where the desorption temperatures went down to 0 °C. In 
the plots where the desorption temperature went down to 0 °C, we had by accident included a 
data point below 23 °C that should not have been there.

20. Line 288. I think it's fine to point the reader to Buchholz for details, but a one or two 
sentence summary explanation is still necessary, I think, so the reader does not have to
go to Buchholz unless they want the details. In other words, its fine to have a 
companion paper, but to be a separate paper, this paper still needs to be readable and 
understandable on its own.

The arguments for favoring a PMF solution over another need quite a bit of background 
information in this specific case. The details are explained in the companion paper. But to 
improve readability we added the following brief explanation in lines 294-297 in the revised 
version of the manuscript

We carefully investigated the Q/Qexp, time series of scaled and unscaled residuals, and the 
ability of a PMF solution to capture the characteristic behavior of as many single ion 
thermograms as possible (see Buchholz 2019b for details). Based on this analysis, a 7-factor 
solution was chosen for the medium O:C cases and a 9-factor solution for the low O:C ones. 

21. Line 291. How was it determined that they were "clearly an artifact"?

The dominant ions in these two factors were formic and lactic acid. Their signals in this sample
were 10 times higher than in any other sample in the data set. While these two compounds do 
occur in SOA particles, they are also the most common contaminants for FIGAERO-CIMS 



measurements. Our lab exhibits quite high gas-phase concentrations of formic acid due to e.g.
using it as a calibrant. Filters exposed to room air will take up some formic acid from the gas 
phase. An elevated lactic acid signal typically stems from touching the FIGAERO inlet with 
bare hands during maintenance (which is not standard procedure but can happen). Normally, 
such contaminations on the filter or inlet would have been removed by the cleaning cycles 
performed each day. But clearly something must have gone wrong on that specific day.

The second piece of evidence can be derived from additional samples that were collected 
during the measurement campaign. We could not use that data due to malfunctions of the 
temperature sensors, i.e. no reliable Tdesorp values were available. However, the total 
composition measurements (integrating over the full desorption cycle) are still valid and did not
show such high formic and lactic acid values for low O:C, fresh, dry particles. 
Thus, we can conclude that the elevated values in the sample presented in the paper were 
indeed caused by a singular contamination of the filter or inlet. Normally, such a contaminated 
sample would be disregarded as “bad”. But with the PMF analysis, we could identify the part of
the signal affected by the contamination and remove it, thus salvaging the information from this
sample.

22. Line 295. This is a run-on sentence and should be split apart, probably at the first 
comma.

We have split the sentence at the first comma.

23. Line 299-301. I see why the authors split M/LD into two peaks, but this is a 
somewhat false dichomomty between the M/L peaks and the M/LD peaks - in reality they
probably all contain some decomposition, it's just that for the other peaks it is a smooth
enough transition as to appear monomodal.

The key difference between the V- and D-type factors is that V-type factors exhibit 1 single 
peak (i.e. all compounds in it fall into a narrow volatility range), while the D-type factors have a 
flat or dual peak thermogram shape. This means that, yes, a V-type factor may contain thermal
decomposition products. But then it will not contain the direct desorption part for that same ion.
For the D-type factor, this is exactly what happens.

An example is shown below the factors M1 -M5 and MD1 for the ions [C8H12O5 ∙ I]- and [C4H2O4

∙ I]-. The colored background indicates the direct desorption (grey) and thermal decomposition 
(red) temperature range that we applied for the splitting of MD1. Note how the first part of MD1
falls in the same Tdesorp range as the V-type factors M1-M3. M5 falls in the thermal 
decomposition range where we also find the second part of MD1. So, factors M1-M3 are 
dominated by directly desorbing isomers of this composition. M5 is most likely dominated by 
thermal decomposition products. M4 may have contributions of both. This means that for all 
but 1 V-type factor the splitting of the integration area will have no effect as they are either 
almost completely in one or the other. 



Figure AR2: Factor thermograms for the ion [C8H12O5 ∙ I]- (left) and [C4H2O4 ∙ I]- (right). The grey 
background indicates the direct desorption range and the red background the thermal 
decomposition range used for splitting MD1.

24. Line 323. It would helpful to note here (based on the SI) that the selection of min, 
mean, or max evap time does not significantly impact the conclusions of this work.

We have added the following to line 332 in the revised version of the manuscript.

The choice of sample evaporation time does not affect the conclusions we draw about the 
analysis presented in this section.

25. Figure 3. It might be helpful to include error bars. Sources of uncertainty on 
VD_evap presumabely include min, mean, max evap time, and possible uncertainties in 
the LLEVAP model. Sources of uncertainty in VD_PMF are harder to assess - definitely 
uncertainty in the T --> C* conversion as discussed below, also theoretically PMF 
uncertainties but those are harder to understand in this context, and maybe other 
things?
Similarly, what is the benefit of grouping VD_PMF in this way? It requires all the mass in
one factor to be assigned into a bin based on T_max. Why note just slice the 
thermogram by the relevant temperatures, and bin mass just based on evaporation 
temperature (without the need for PMF)? I guess that's actually an overall question - 
does PMF really improve modeling or understanding of volatility, or would slicing the 
thermogram into C* bins just based on temperature yield basically the same 
conclusions?

We show the uncertainty associated with VDevap in Figure S6. In our opinion the benefit of 
grouping the volatility distributions like we do in Figure 3 is that it allows us to compare VDevap 
and VDPMF on a qualitative level (answering for example questions like “which VD contains 
more non-volatile material”). This kind of analysis is hard to make solely from Figure 2 where 
the two distributions are plotted in a C*-Xmole,dry plot. We mention the reasoning for this kind of 
analysis in lines 287-290.

Regarding the remark about the usefulness of PMF see our response to the second major 
comment.



26. Lines 391-392. It is reassuring that the desorption profile is usable in this way, but it 
is notable that uncertainty in the C* of each factor seems to be on the order of 1 log unit
based on Table 2. Such issues are typical in volatility experiments, but really suggest 
that this assumption of using T_max to describe a PMF factor is highly uncertain. 
Unless the operator has some evapogram data to validate against (which is of course 
uncommon), it is not clear that such an assumption should be used, nor is it clear that 
uncertainty in the desorption temperature can feasibily be considered. This does not 
mean the present work is not valuable, because the assumptions being tested are being
used by the community, but I think it actually should present more doubt or caution in 
applying the assumptions being tested.

We do put doubt on the ability of the PMF results to represent volatility when the volatility is 
calculated from the Tmax in the discussion part of the manuscript (lines 514-517 in the revised 
version of the manuscript).

We have the added following also to the conclusions to lines 562-563 in the revised version of 
the manuscript.

[...]and it should be noted that deriving the volatilities based on only the Tmax of PMF factors 
may not be sufficient for representing detailed SOA dynamics.

27. Line 506-507. Qualitatively I agree, but it's not clear that is quantitatively true - 
attempting to model evaporation using the PMF results alone (without optimization by 
comparison to an evapogram) yields moderately but not wholely successful results 
(Fig. 4). This is addressed below, but I think maybe this starting sentence needs to be 
tempered.
 
We agree and have added the following to lines 497-498 in the revised version of the 
manuscript to mark that the VDPMF and VDPMF,dry do not capture the evaporation dynamics 
quantitatively

Qualitatively, VDPMF and VDPMF,dry capture the evaporation dynamics well in all studied cases, 
although quantitatively there were discrepancies
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Abstract. 

The volatility distribution of the organic compounds present in secondary organic aerosol (SOA) at different conditions is a

key quantity that has to be captured in order to describe SOA dynamics accurately. The development of the filter inlet for

gases  and aerosols  (FIGAERO) and its  coupling to a chemical  ionization mass spectrometer  (CIMS) has  enabled  near

simultaneous sampling of gas and particle phases of secondary organic aerosol (SOA) through thermal desorption of the

particles. The thermal desorption data has been recently been shown to be interpretable as a volatility distribution with the

use of  the  positive matrix factorization (PMF) method. Similarly, volatility distributions can be inferred from isothermal

particle  evaporation  experiments,  when  the  particle  size  change  measurements  are  analyzed  with  process  modelling

techniques. In this study, we compare the volatility distributions that are retrieved from FIGAERO-CIMS and particle size

change measurements during isothermal particle evaporation with process modelling techniques. We compare the volatility

distributions at two different relative humidity (RH) and two oxidation condition. InAt high RH conditions, where particles

are  in  a  liquid state,  we show that  the  volatility  distributions  derived via the  two ways  are  similar  within reasonable

assumption of uncertainty in the effective saturation mass concentrations that are derived from FIGAERO-CIMS data. InAt

dry conditions, we demonstrate that the volatility distributions are comparable in one oxidation condition, and in the other

oxidation condition the volatility distribution derived from the PMF analysis shows considerably more high volatility matter

than the volatility distribution inferred from particle size change measurements. We also show that the Vogel-Tammann-

Fulcher  equation  together  with  a  recent  glass  transition  temperature  parametrization  for  organic  compounds  and  PMF

derived volatility distribution estimate are consistent with the observed isothermal evaporation under dry conditions within

the reported uncertainties.  We conclude that  the FIGAERO-CIMS measurements  analyzed  with the PMF method are a

promising method for inferring the  organic compounds’  volatility distribution of organic compounds, but care has to be

taken when the PMF factors are analyzedinterpreted. Future process modelling studies about SOA dynamics and properties

could benefit from simultaneous FIGAERO-CIMS measurements.
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1 Introduction

Aerosol particles have varying effects on health, visibility and climate (Stocker et al., 2013). Organic compounds comprise a

substantial amount of atmospheric particulate matter (Jimenez et al., 2009; Zhang et al., 2007) of which a major fraction is of

secondary  origin,  i.e.,  low-volatility  organic  compounds  formed  from  oxidation  reactions  between  volatile  organic

compounds  (VOCs)  and  ozone,  hydroxyl  radicals  and  nitrate  radicals  (Hallquist  et  al.,  2009).  The  aerosol  particles

containing these kind of oxidation products are called secondary organic aerosols (SOA) as opposed to primary organic

aerosols i.e., organic particles emitted directly to the atmosphere.  VOC oxidation reactions result in thousands of different

organic compounds  (Goldstein and Galbally, 2007) .A recent review by There exist gaps in the knowledge especially on

formation and deposition of SOA as well as how the processes are affected by changing physicochemical properties such as

volatility( Glasius and Goldstein, (2016) .pointed out that our understanding of SOA is still lacking especially on formation

and deposition, and their response to different physicochemical properties of the organic compounds such as volatility.  In

addition, also the phase state of the organic compounds has also been shown to play a role in the SOA dynamics (Reid et al.,

2018; Shiraiwa et al., 2017; Yli-Juuti et al., 2017; Renbaum-Wolff et al., 2013; Virtanen et al., 2010)

 

The physicochemical properties of organic aerosols can be studied directly and indirectly. The Aerodyne Aerosol  Mmass

Sspectrometer  (AMS,  Canagaratna  et  al.,  2007;  DeCarlo  et  al.,  2006;  Jayne  et  al.,  2000) enabled  direct  and  online

composition measurements  of  atmospheric  particles  for  the  first  time.  Combining AMS data  with statistical  dimension

reduction techniques such as factor analysis and positive matrix factorization (PMF; Zhang et al., 2011, 2007, 2005; Paatero

and Tapper, 1994) allowed researchers to draw conclusions on sources and types of atmospheric organic particulate matter

from the relatively complex mass spectra data.

The  Cchemical  Iionization  Mmass  Sspectrometer  (CIMS;  Lee et  al.,  2014)  coupled with the Filter Inlet  for Gases  and

AEROsols (FIGAERO-CIMS, Lopez-Hilfiker et al., 2014) is a prominent online measurement devicetechnique to study both

the gas and particle  phases of SOA. During particle phase measurements,  a key advantage over the AMS is the softer

chemical  ionization  that  retains  much  more  of  the  molecular  information  of  the  compound  than  the  electron  impact

ionization used in the AMS. Typically,  the collection of  the particulate mass  is  conducted at  room temperature  which

minimizes  the loss  of  semi-volatile  compounds during  collection.  In  addition to  the overall  chemical  composition,  the

gradual desorption of the particulate mass from the FIGAERO filter yields the thermal desorption behavior of each detected

ion,  i.e.,  it  is  a  direct  measure  of  each  ion’s  volatility.  FIGAERO-CIMS measurements  have  been  carried  out  in  both

laboratory and field environments to study SOA composition from different VOC precursors and in both rural and polluted

environments (Breton et al., 2018; Huang et al., 2018; Lee et al., 2018; D’Ambro et al., 2017; Lopez-Hilfiker et al., 2015).

However, the volatility information in these data sets have barely been used.
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Besides direct mass spectrometer measurements, SOA properties have been inferred indirectly from growth (e.g. Pathak et

al., 2007 and references therein)  and isothermal evaporation (Buchholz et al., 2019a; D’Ambro et al., 2018; Yli-Juuti et al.,

2017; Wilson et al., 2015; Vaden et al., 2011) measurements. The complexity of organic compounds in these studies can be

alleviated with the use of a volatility basis set (Donahue et al., 2006), where organic compounds are grouped based on their

(effective)  saturation  concentration.  However,  the  experimental  setup  also  defines  the  range  of  C* values  that  can  be

estimated from the data. Vaden et al., (2011) and Yli-Juuti et al., (2017) have both shown that the volatility basis sets derived

from SOA growth  experiments  result  in  too  fast  SOA evaporation  compared  to  measured  evaporation  rates  when  the

volatility basis set is used as input for process models. Possible reasons for such discrepancies include the different C* ranges

to which the SOA growth and SOA evaporation experiments are sensitive to and the role of vapor wall losses in SOA growth

experiments. This raises a need for alternative methods to derive organic aerosol volatility against which the volatilities

inferred from the direct particle size measurements can be compared to.

Recently, Buchholz et. al., (2019b) demonstrated that the FIGAERO-CIMS measurements during particle evaporation can be

mapped to a volatility distribution of organic compounds by conductingon a PMF analysis. On the other hand,  Tikkanen et

al.,  (2019) showed that the volatility distribution can be inferred from isothermal particle evaporation measurements by

optimizing the evaporation model input to yieldmatch the measured evaporation rate at different humidity conditions. In this

study, we compare these two approaches for varying oxidation and particle water content conditions. Our main research

questions are 1) Are the volatility distributions derived from particle size change during isothermal evaporation and from the

FIGAERO-CIMS measurements  similar?  2)  How  to interpret  theshould the   PMF results  of  FIGAERO-CIMS data be

interpreted in terms of volatility? 3) Can a recently published glass transition temperature parametrization (DeRieux et al.,

2018) combined  with  the  PMF analysis  be  used  to  model  particle  phase  mass  transfer  limitations observed  for  thein

evaporation inat dry conditions, i.e., in the absence of particle phase water? 

2 Methods

2.1 Experimental particle evaporation data

The experimental data we use is the same as reported in Buchholz et al., (2019a,b). We briefly summarize the measurement

setup below. We generated the particles with a Potential Aerosol Mass (PAM) reactor (Kang et al., 2007; Lambe et al., 2011)

from the reaction of  α-pinene with O3 and OH at three different oxidation levels (average oxygen-to-carbon O:C ratios of

0.53, 0.69, and 0.96). We focus on the lowest O:C (0.53) and medium O:C (0.69) experiments in this work. The closer

analysis of the high O:C experiments suggests particle phase reactions during the evaporation (Buchholz et al., 2019a,b). To

avoid the uncertainty that would arise from unknown particle phase reactions, we chose not to include the high O:C data in

our analysis.
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We selectedchose a monodisperse particle population (mobility diameter dp = 80 nm) with two nano tandem type differential

mobility analyzers (nano-DMA; TSI inc., Model 3085) from the initial polydisperse particle population. The size selection

diluted the gas phase initiating particle evaporation. The monodisperse aerosol was left to evaporate in a 100 L stainless -

steel  residence time chamber (RTC). We measured the particle size distribution during the evaporation with a scanning

mobility  particle  sizer  (SMPS;  TSI inc.,  Model  3082+3775).  The RTC filling  took  approximately  20  minutes  and  we

performed the first size distribution measurement in the middle of the filling interval. To obtain short residence time data

(data before 10 minutes of evaporation) we added a bypass to the RTC which led the sample directly to the SMPS. By

changing the length of the bypass tubing, we were able to measure the particle size distribution between 2 s and 160 s of

evaporation. We measured the isothermal evaporation up to 4 – 10 hours depending on the measurement. We performed the

measurements for each oxidation level both at high relative humidity (RH = 80%) and at dry conditions (RH < 2 %). The

change in particle size with respect to time are called evapograms. In an evapogram, the horizontal axis presents evaporation

time and  the  vertical axis shows the evaporation factor (EF), i.e.,  the  measured particle diameter divided by the initially

selected particle diameter.

To classify the oxidation level of the particles, we derived the average O:C ratio from composition measurements with a

High-Resolution  Time-Of-Flight  Aerosol  Mass  Spectrometer  (AMS,  Aerodyne  Research  Inc.).  Further,  we  conducted

detailed  particle  composition  measurements  with  an  Aerodyne  Research  Inc.  FIGAERO,  (Lopez-Hilfiker  et  al.,  2014)

coupled with a chemical ionization mass spectrometer (CIMS) with iodide as the reagent ion (Aerodyne Research Inc., Lee

et al.,  2014).  Previous studies using FIGAERO-CIMS with iodide as the reagent ion found 50% or better mass closure

compared to more established methods of quantifying OA mass (albeit with high uncertainties;  Isaacman-VanWertz et al.,

(2017); Lopez-Hilfiker et al.,  (2016)). Therefore,  it  appears  that  the bulk of reaction products expected from  αa-pinene

oxidation contains the functional groups required for detection by our FIGAERO-CIMS.

In the FIGAERO inlet, particles are first collected on a PTFE filter. Then the collected particulate mass desorbs slowly due

to  a  gradually heated nitrogen flow. The desorbed gaseous compounds which isare then transported into the CIMS for

detection. We derived the average chemical composition of the particles by integrating the detected signal of each ion over

the  whole  desorption  interval.  For  each  ion,  the  change  of  detected  signal  with  desorption  temperature  is  called a

thermogram and generally, the temperature at the maximum of the thermogram (Tmax) is correlated to the volatility of the

detected ion. Similar to Bannan et al., (2019) and Stark et al., (2017), we calibrated the Tmax - volatility relationship using

compounds with known vapour pressure. The calibration procedure is described in the supplementary material.

We collected  particles for FIGAERO-CIMS analysis at two different stages of the evaporation. We refer to these samples

as either “fresh” or “RTC” samples. The fresh samples were collected for 30 minutes directly after the selection of the
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monodisperse population. The RTC samples of the residual particles were collected for 75 minutes after 3 to 4 hours of

evaporation in the RTC for 75 minutes. The collected particulate mass was 140–260 ng and 20–70 ng for the fresh and the

RTC samples, respectively. More details about sample collection, desorption parameters, and data analysis can be found in

Buchholz et al., (2019a).

2.2 The volatility distribution

We represent the myriad of organic compound in the SOA particles with a one-dimensional volatility basis set (1D VBS,

below only VBS, Donahue et al., 2006). The VBS groups the organic compounds into ‘bins’ based on their effective (mass)

saturation  concentration  C*,  defined  as  the  product  of  the  compounds activity  coefficient  and  saturation concentration.

Generally, a bin in the VBS represents the amount of organic material in the particle and gas phases. In our study, the walls

of the RTC have been shown to work as an efficient sink for gaseous organic compounds (Yli-Juuti et al., 2017). Thus, we

can assume that the gas phase in our experimental setup does not contain organic compounds, i.e., the amount of organic

matter in a bin is the amount in the particle phase. To distinguish from a traditional VBS that groups the organic compounds

to bins wheresuch that there is a decadal difference in C* between two adjacent bins, we call the VBS in our work a volatility

distribution (VD). We present the amount of material in each VD bin as the dry mole fractions, i.e., the mole fractions of the

organics, excluding water. In the analysis presented below, we assign properties to each VD bin (e.g. molar mass) treating

each  bin as  if  it  consisted  of  only a single organic  compound with a  single set  of  properties. .We label  these  pseudo-

compounds as “VD compounds” to distinguish them from real organic compounds  The physicochemical properties of each

VD bin are assumed to be the same. These properties and the ambient conditions of each evaporation experiment are listed in

Table 1.The physicochemical properties of each VD compound are listed in Table 1 as well as the ambient conditions of

each evaporation experiment.

2.3 Deriving volatility distribution from an evapogram

We followed the similar approach as in Yli-Juuti et al., (2017) and Tikkanen et al., (2019) to derive a VD at the start of the

evaporation from an evapogram. To model the evaporation at high RH, we used a process model (liquid-like evaporation

model, hereafter LLEVAP) that assumes a liquid-like particle, i.e., a particle where there are no mass transfer limitations

inside the particle and where the mass fluxrate of change of the mass of a VD compoundVD bin in the particle phase can be

calculated directly from the gas phase concentrations of theis VD compoundVD bin near the particle surface and far away

from the particle (Vesala et al., 1997; Lehtinen and Kulmala, 2003; Yli-Juuti et al., 2017). In this case, the main properties

defining the evaporation rate are the saturation concentrations of each VD compoundVD bin and their relative amount in the

particle.

We  used  the  LLEVAP  model  to  characterize  the  volatility  ranges that  can  be  interpretedable from  the  evaporation

measurements. We calculated the rangelimits by modelling evaporation of a hypothetical particle that consists of one organic
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compound evaporating inat dry conditions. We calculated the evaporation for iterating the range of  log10 (C*) values from -5

to 5. We determined the minimum C* value to be the value that still showedwith “detectable evaporation”, i.e., at least 1%

change in particle diameter during the evaporation time (up to 6 h) and the maximum C * value  to be the value  before

“complete evaporation” occurred, i.e., 99% particle diameter changeevaporation within the first 10 s. The minimum  log10

(C*) calculated with this method was -3  and the maximum log10 (C*) was 2. We then modelled the particle composition with

six VD compoundVD bins with C* values between these minimum and maximum values. Each VD compoundVD bins has a

decadal difference in C* to adjacent VD compoundVD bins (like in the traditional VBS). We note that based on this analysis

all  the  compounds  with   log10  (C*)  <  -3 will  not  evaporate  during  the  experimental  time  scale.  This  means  that  any

compounds with lower C* than this threshold will be assigned to the  log10  (C*)= -3 VD compoundVD bin. Similarly, any

compound with log10 (C*) > 2  will be classified into the  log10 (C*)= 2 VD compoundVD bin or not be detected at all due to

evaporating almost entirely before the first measurement point.

We calculated the dry particle mole fraction of each  VD compoundVD bin at the start of the evaporation by fitting the

evaporation predicted with the process model to the measured evapograms. Our goal was to minimize the mean squared

error  in  vertical  direction  between the experimental  data  and  the LLEVAP output.  We used the Monte  Carlo Genetic

Algorithm (MCGA, Berkemeier et al., 2017; Tikkanen et al., 2019) for the input optimization.  In the optimization, we set

the population size to be 400 candidates, number of elite members to 20 (5% of the population), number of generations to 10,

and number of candidates drawn in the Monte  Carlo (MC) part to 3420 which corresponds to half of the total process model

evaluations done during the optimization. We performed the optimization 50 times for each evapogram and selected the best

fit VD estimate for further analysis.

The VD derived from the evapograms isare hereafter referred to as the VDevap. The initial composition of the SOA particles

in the dry and wet experiments were the same and can be described by the same fitted VD evap as the particles were generated

at the same conditions in the PAM and only the evaporation conditions changed. 

2.4 Deriving volatility distribution from FIGAERO-CIMS measurement

As shown by Bannan et al., (2019) and Stark et al., (2017), the peak desorption temperature, Tmax, can be used together with

a careful calibration to link desorption temperatures from the FIGAERO filter to C* values for the detected ions. In principle,

this would allow us to assign one C* value to each ion thermogram. But this assumes that one detected ion characterized by

its exact mass is indeed just one compound. In practice, this is not always the case and for some ion thermograms a bimodal

structure or distinct shoulders/broadening are visible. This can be caused by isomers of different volatility which cannot be

separated even by high resolution mass spectra. 
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Another complication arises due to the thermal desorption process delivering the collected aerosol mass into the CIMS.

Especially, multi-functional, and hence low volatility compounds may thermally decompose before they desorb from the

filter, and thus be detected as smaller ions. The apparent desorption temperature is then determined by the thermal stability

of the compound and not its volatility. Typically, this decomposition processes start at a minimum temperature and will not

create a well-defined peak shape (Buchholz et al.,  2019b,  Schobesberger et al.,  2018) presumably because an observed

decomposition  product  may  have  multiple  sources,  especially  when  including  all  isomers,  and  the  ion  signal  for  the

respective  composition  may overlap  with  the  signal  of  isomers  derived  from true  desorption.  For  exampleE.g.,  a  true

constituent of the SOA particle may give rise to an observed main thermogram peak, but it may be broadening and/or tailing

if a decomposition product has the same composition. By ignoring this and simply using the Tmax values, the true volatility of

the SOA particle constituents will be overestimated, i.e., the derived VD will be biased towards higher C* bins.

One more potential source of bias is our implicit assumption of a constant sensitivity of the CIMS towards all compounds,

which follows from the lack of calibration measurements for our datasets (which indeed is a challenging endeavour; e.g.,

Isaacman-VanWertz et al., (2018)). It is plausible that less volatile compounds tend to be detected at higher sensitivity (Iyer

et  al.,  2016;  Lee  et  al.,  2014), up  to  a  kinetic  limit  sensitivity.  Consequently,  a  volatility  distribution  derived  from

FIGAERO-CIMS thermograms may be biased towards lower volatility (C* bins), at least for compositions not associated

with thermal decomposition.

To  separate  the  multiple  sources  possibly  contributing  to  each  ion  thermogram  (isomers  and  thermal  decomposition

products), we applied the Positive Matrix Factorizsation (PMF, Paatero and Tapper, 1994) to the FIGAERO-CIMS data set.

PMF is  a  well-established  mathematical  technique  in  atmospheric  science  mostly  used  to  identify  the  contribution  of

different sources of aerosol particle constituents or trace gases in the atmosphere. PMF represents the measured matrix of

time-series of mass spectra, X, as a linear combination of a (unknown) number of constant source profiles, F, with varying

contributions over time, G:

X=G⋅F+ E (1)

E is a matrix containing the residuals between the measured (X) and the fitted data (G F⸱F ). Values for G and F are found by

minimizsing this residual, Eij, scaled by the corresponding measurement error, Sij, for each ion i at each time j

Q=∑
i=1

m

∑
j=1

n

(
Ei , j

S i , j
) (2)

Each row in F contains a factor mass spectrum and each column in G holds the corresponding time series of contribution by

each factor. In the case of FIGAERO-CIMS data, the time series is equivalent to the desorption temperature ramp during the

thermogram and will be called “mass loading profile” below. The absolute values (temperature or time) are irrelevant for the

performance of PMF as the “x values” are only used to determine the order of the data points but have no influence on the
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model output (Paatero and Tapper, 1994). This allowed us to combine multiple separate thermogram measurements into one

data set and conducting a PMF analysis. This simplified the comparison of factors between measurements. More details

about the PMF method in the specific case of FIGAERO-CIMS data can be found in Buchholz et al., (2019b).

Once the PMF algorithm was applied to the FIGAERO-CIMS data we calculated the VD from the mass loading matrix G.

Due to the very low signal strength of many ions, the CIMS data had been averaged over 20 s leading to enhance the

reliability of the high-resolution analysis. This leads to an average desorption temperature difference ΔTdesorp  ≈ 4°C between

two adjacent data points. To overcome this coarse Tdesorp grid, wWe interpolated each factor’s mass loading profile with a

resolution of 100 sample points between two temperature steps to gain sufficient statistics for further analysis. T max was

determined as the temperature atof the maximum signal inof the factor mass loading profileseries. We integrated the factor

mass loading profile and defined the temperatures where the value of the integral reaches 25% and 75% of its maximum

value. This temperature interval formed the factors desorption temperature range  and the corresponding C* values will be

used in Sect. 3.3. We converted the Tmax values into  C* values and the desorption temperature range into a C* range with a

parametrization derived from calibration measurements (see SupplementarySupplementray material for details) with organic

compounds with known C* values.

C*
=

exp (α+βT factor )M org

R T ambient

109
(3)

where C*
 is the effective saturation concentration in units μgm-3, Morg is the molar mass of the organic compound assumed to

be Morg = 0.2 kg mol-1, R is the universal gas constant, Tfactor (in °C in Eq. 3) is the temperature of the mass loading profile

and Tamibent (in Kelvin in Eq. 3) is the ambient temperature at whichwhere the evaporation happens (see Table 1), α and β are

the fitted coefficients from the calibration data α=(-1.431±0.31) and β=(-0.207±0.006) °C-1. We applied the lower and higher

bounds of the fitting coefficients’ uncertainty when we calculated the  C*  range in Sect 3.3.  Finally, the signal fraction of

each factor was calculated by dividing the integral of a factor’s signal over the whole temperature range with the sum of

integrals of all factors. We compare this signal fraction to the dry mole fraction in the VDevap. We refrained from converting

the counts per second signal into moles as no adequate transmission and sensitivity measurements were available for the

used FIGAERO-CIMS setup. We refer the volatility distribution calculated from the PMF data using the Tmax values of each

factor as VDPMF later in this work.

With Eq. (3), we can calculate the minimum and maximum C* values that can be resolved from a FIGAERO thermogram.

The desorption temperature was ramped between 27 °C and 200 °C, but defined peaks (and thus Tmax values) can be detected

only between 30 and 180 °C. Thus, the resolvable log10 (C*) values range from 1.6 to -11.9. It has to be kept in mind that

strictly this calibration only applies to the Tmax values of a single ion thermogram.
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2.5 Modelling particle viscosity at dry conditions

To model the mass transfer limitations observed in the evaporation measurements at dry conditions (Buchholz et al., 2019a)

we used the  kKinetic multilayer model for gas particle interactions (KM-GAP;  Shiraiwa et al., 2012) with modifications

described in Yli-Juuti et al., (2017) and Tikkanen et al., (2019). The main modification to the original model was that during

evaporation the topmost layer (the quasi static surface layer) merges with the first bulk layer if the thickness of the layer is

smaller than 0.3 nm. We calculated the viscosity at each layer of the particle as

log10(ηj)=∑
i=1

N

Xmole ,i , j log10(bi),  (4)

where Xmole,i,j is the mole fraction of the VD compoundVD bin i in layer j and bi is a coefficient that describes the 

contribution of each VD compoundVD bin to the overall viscosity.

Since we generated the particles in the same environment (PAM chamber) and only the evaporation happened at  different

conditions, the VD at the start of the evaporation derived from high RH data represents also the composition at the start of

the evaporation inat dry conditions. Then we can use the best fit VDevap from the high RH data as input for KM-GAP and fit

the bi values in Eq. (4) to the dry data set. We set the minimum and maximum allowed values for b i to 10-15
 and 1020,

respectively. To estimate the bi values when modelling the evaporation with VDPMF inat dry conditions, we calculated these bi

terms using the mass spectra of each factor (F in Eq. 1) and the Vogel-Tammann-Fulcher (VTF) equation (DeRieux et al.,

2018; Angell, 2002, 1995) 

ηi=η∞exp (
T 0 ,i D

T−T0 , i
) , (5)

where ηi is the viscosity of the itha VD compoundVD bin / PMF factor. i which ηi can be seen as a proxy for bi in an ideal

solution., η∞ is the viscosity at infinite temperature, T0,i is the Vogel temperature of the ith VD bin i, and D is a fragility

parameter. Setting  η∞  = 10-5
 Pa s and  η(Tg) = 1012 Pa s (e.g. DeRieux et al., 2018; Gedeon, 2018), where Tg is the glass

transition temperature of a compound yields 

T 0 ,i≈
39.14 T g , i

39.14+D
. (6)

We calculated  Tg for  every  compound in the PMF mass spectra  with a  parametrization  for  SOA matter  developed by

DeRieux et al., (2018). This parametrization requires the number of carbon, oxygen and hydrogen atoms to calculate the Tg.

We then computed Tg for each PMF factor as a mass fraction weighted sum of glass transition temperatures of individual

compounds (DeRieux et al., 2018; Dette et al., 2014). Based on the Tg,i offor each PMF factor, we calculated the viscosity of
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each PMF factor with Eqs. (5) and (6) and used them as an approximation for b i. We used fragility parameter value D = 10 in

the calculations  according to DeRieux et al., (2018).

3 Results

In this section we first focus on the high RH experiments where evaporation is modelled with the LLEVAP model. We will

first compare VDevap toand VDPMF for whichnwhe the C* of a PMF factor is determined from the factor’s Tmax value. Then, we

compare the volatility distributions where the C*  of a PMF factor is determined as a range from the 25th and 75th percentile

desorption temperatures. Lastly, we study the volatility distributions inat dry conditions. We investigate the VD both on a

qualitative and quantitative level. On a qualitative level we compare the amount of matter of different C * intervals relevant

for the evaporation process. On a quantitative level we study what is the evaporation behavior of the particles based on the

determined VD and how do they compare to the measured evaporation.

3.1 PMF solution interpretation

Figure S2  shows mass loading profiles derived from the FIGAERO-CIMS measurements  of medium and low O:C particles

at high RH. The corresponding factor mass spectra can be found in Fig. S3 and Fig. S4. A key step in any PMF analysis is

determining the “right” number of factors as this can affect the interpretation of the results. We carefully investigated the Q/

Qexp, time series of scaled and unscaled residuals, and the ability of a PMF solution to capture the characteristic behavior of

as many single ion thermograms as possible (see Buchholz 2019b for details). Based on this analysis, a 7-factor solution was

chosen for the medium O:C cases and a 9-factor solution for the low O:C ones.A 7-factor  solution was chosen for the

medium O:C cases and a 9-factor solution for the low O:C ones (see Buchholz 2019b for details) . The two additional factors

in the low O:C case were needed to capture a contamination on the FIGAERO filter during the dry, fresh sample (factors

LC1 and LC2 in Fig. S2 and Fig. S4). As these two factors were clearly an artifact introduced by the FIGAERO filter

sampling, we omitted their contribution for the following analysis. From careful comparison of the factor profiles and mass

spectra with filter blank measurements, we determined that factor MB1 in the medium O:C case and factor LB1 in the low

O:C case describe the filter/instrument background and are thus also excluded from the VD comparison presented below.

Factors 1-5 in both O:C cases exhibit a monomodal peak shape and can thus be characterized by their Tmax values., Ffactor

MD1 in the medium O:C case and factor LD1 in the low O:C case needs to be investigated more closely, as theirits factor

mass spectrum and the sometimes bimodal mass loading profile suggest that theseis factors contains compounds stemming

from both direct desorption (desorption T<100 °C) and thermal decomposition (desorption T>100 °C, see Buchholz et al.,

2019b for details). To account for this, the factor is split into two with the first half containing the signal from desorption

temperatures below 100 °C (factor M/LD1a) and the second half containing that above 100 °C (factor M/LD1b). We treat

these factors separately. We note that now the latter half of the split factor is dominated by thermal decomposition products
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so that the apparent desorption temperature is actually the temperature at which thermal decomposition leads to products

which desorb at this temperature. This apparent desorption temperature is thus a lower limit for the decomposing parent

compound, i.e., the true volatility of these parent compounds is even lower. However, the desorption temperatures are so

high that they lead to log10(C*) < -3  and are thus below the comparable range for VDevap. Figure 1 (high RH data) and Fig.

S10 (dry condition data) show the mass loading profiles derived from FIGAERO-CIMS measurements of medium and low

O:C particles after we excluded the contamination and background factors and split the decomposition factors.

3.2 Volatility distribution comparison at high RH based on factor Tmax

To compare VDevap and VDPMF, we need to determine the time interval in the evapogram that the VDPMF represents. We

collected the fresh samples directly after the size selection. As the particles were collected  on a filter for 30 minutes, the

collected sample represents particles that have evaporated from 0 up to 30 minutes in the organic vapour free air. We note

that this is different  from the standard FIGAERO-CIMS sample collection where the particles are collected in a quasi-

equilibrium with the surrounding gas phase and no significant evaporation occurs  (Lopez-Hilfiker et al., 2014). For RTC

samples, we also need to consider also that not all particles have evaporated for the same time due to the filling of the RTC

for ca. 20 minutes. We determined the minimum time the particles have evaporated in the RTC as the time when we started

the sample collection minus the RTC filling time. We determined the maximum evaporation time in the RTC to be the time

when we stopped the sample collection plus the filling time. These minimum and maximum comparison times are shown in

Table S1 and they are referred to as minimum and maximum (sample) evaporation time. The mean (sample) evaporation

time is defined to be at the middle of the sample collection interval. For simplicity, we will show in the main text the results

from  the  analysis  where  the  FIGAERO-CIMS  samples  were  assumed  to  represents  the  particles  at  the  mean  sample

evaporation  time.  We show the  analysis  where  the  samples  were  assumed to  represent  the  particles  at  minimum and

maximum evaporation  time in the  supplementary  material. The choice  of  sample  evaporation  time does not  affect  the

conclusions we draw about the analysis presented in this section.

Figure 2 shows VDevap and VDPMF for medium (Fig. 2a-b) and low O:C (Fig. 2c-d) particles inat high RH experiments. In the

VDPMF calculated from Tmax value of each factor (black crosses), the factors fall into three different volatility classes within

our chosen particle size and experimental time scale: practically non-volatile (log10(C*) ≤ -2), slightly volatile ( -2 < log10(C*)

≤ 0,) and volatile (log10(C*) > 0). We use these three volatility classes to compare the volatility distributions in Fig. 3 where

each VD compoundVD bin are grouped to these three volatility classes. Figure 3 presents the VDPMF where C* of each factor

is calculated from the Tmax value and compares this VDPMF  to what VDevap is at the mean time the FIGAERO samples had

evaporated prior to collection. We show the same comparison for the minimum and maximum evaporation time in Fig. S5

and Fig. S6.

11

320

325

330

335

340

345

350



After the volatility class grouping is applied, we see that there are differences between VD evap and VDPMF. With VDPMF of the

fresh samples there are excess amount of matter  in the lowest volatility class (volatility class 1) and less material in the

volatility class 2 compared to VDevap. forIn both oxidation condition.  In addition, the VDPMF of low O:C fresh sample shows

more material in the highest volatility class (volatility class 3) in VDPMF compared to VDevap.. 

To investigate the observed discrepancies further, we used the VDPMF shown in Fig. 2 as an input to the LLEVAP model and

calculated the corresponding isothermal evaporation behavior (i.e. the evapogram). We show these simulated evapograms in

Fig. 4a for the medium O:C case and in Fig. 4b for the low O:C condition together with the simulated evapogram calculated

using VDevap as an input for the LLEVAP model. The simulated evapograms calculated with the VDPMF of the fresh samples

do not match the measured evapograms predicting less evaporation, while the evapogram calculated with VDevap agrees well

with the experimental evapogram (black lines in Fig. 4), as expected since this is the goal of the VD evap determination. The

simulation calculated with the VDPMF of the fresh sample (light blue lines in Fig. 4 for the mean evaporation time and Fig. S7

for other evaporation times) shows slower evaporation than the observations or the simulation calculated with VDevap.. This is

consistent with the results show in Fig. 3 where the VDPMF contained more low volatility material than the VDevap. 

Figure 4 also shows also the simulated evapograms calculated with VDPMF of the RTC samples (light brown lines in Fig. 4

and Fig. S7). in these cases, the particles size decreases little within the simulation time scale. With medium O:C particles,

the  simulated  evaporation  matches well  to the  measured  evaporation well.  With  low  O:C  particles,  the  evaporation

calculated with VDPMF is too fast. The shape of the evapogram does not match the measured one.

3.3 Applying desorption range to characterize the volatility of PMF factors

The Tmax value is a practical choice for the characteristic temperature of the desorption process. However, as we saw ion

Sect. 3.2, the VDPMF calculated from the peak desorption temperatures did not produce the measured evapogram when used

as an input  forto the LLEVAP model. Working under the assumption that all material collected on the FIGAERO filter,

including the higher volatility material, is detected in the CIMS and then captured in the PMF analysis, we will relax the

assumption that the volatility of the factor is characterized strictly by the Tmax value of the factor and investigate the VDPMF

further. We will explore how the VDPMF changes when the desorption temperature and the resulting C* are interpreted to

contain  uncertainty  and  if  the  VDPMF considering  these  uncertainty  ranges  is  consistent  with  the  observed  isothermal

evaporation.  The  uncertainty  in  the  desorption  temperature  raises  from  the  facts  that  compounds  volatilize  from  the

FIGAERO filter throughout the heating and, therefore, one value might not be adequate to characterize the C* of a factor and

that each PMF factor contains multiple compounds with distinct C*.

We calculated the 25th and 75th percentiles of the desorption temperatures of each factor  and converted them to effective

saturation concentrations as described in Ssect.ion 2.4 (see diamond markers in Fig. 1). We show the resulting C* ranges in
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Fig. 2 as horizontal solid lines where the line colour matches the colour of the factors in Fig. 1. We then ran  the MCGA

optimization  by  setting  thea number  of  compounds  equal  to  the  number  of  PMF factors,  the  molar  fraction  for  each

compound at the FIGAERO-CIMS sampling time fixed to the molar fraction of the corresponding factor and set the C* as the

optimized  variables  restricted  to  the  range corresponding  to  the  25 th and  75th percentile  desorption temperature.  In  the

optimization the goodness-of-fit statistics was calculated as a mean squared error similar to the determination of VDevap.

As the fresh samples were collected between 0 and 30 minutes from the start of the evaporation, we sought for a fitting set of

C* values  for  evaporation starting at 0, 15 and 30 minutes. Again, wWe show the results for the mean sample evaporation

time (15 min) in the main text and the  results for the other evaporation times in the supplementary material. Due to scarcity

of particle size measurements at the collection time of the RTC sample, we will apply this analysis only to the VDPMF of the

RTC sample at its minimum evaporation time. In each optimization, we set the initial particle diameter to be the same as

what is simulated with VDevap. We derived 50 C* estimates for both samples and each evaporation time. From these 50

estimates we chose the best fit evapogram. We refer to these optimized volatility distributions as VDPMF,opt to separate them

from the VDPMF  where we used Tmax to characterize C* of a PMF factor.

We show the optimized C* values forming VDPMF,opt in Table 2 (see Table S2 for results with minimum and maximum

sample evaporation times). Figure 5 shows the best fit evaporation simulations calculated with VDPMF,opt. The other sample

evaporation times are displayed in the supplementary material Fig. S8. For both oxidation condition, the simulations were

the fresh sample is set to represent the evaporating particles at mean or maximum sample evaporation time  resemble the

experimental evapogram and evapogram calculated with VDevap, although the simulation  of thein medium O:C condition

shows a 5 times larger goodness-of-fit  value  compared to the simulation calculated with VDevap.  The simulations starting

from maximum evaporation time of the fresh samples show similar results while the simulations starting from the minimum

sample evaporation time results in too slow evaporation (Fig. S8).  The evapograms determined with the VDPMF,opt of the RTC

samples agree with the measured evaporation as well.  

Overall,  these results  demonstrate  that  the information derived  from the fresh and RTC FIGAERO-CIMS samples  can

describe the volatility of the evaporating particles, when uncertaintiesy in the desorption temperature are considered.

3.4 Comparison of the volatility distribution of the fresh and RTC sample inat high RH conditions

In this section, we compare VDPMF,opt of the fresh samples to VDPMF of the RTC sample to study if the two VD are similar.

We compare the two VD at the mean evaporation time of the RTC sample. We calculated the evapograms with the VDPMF,opt

of the fresh sample as the initial particle composition and recorded the mole fraction of each factor at  the mean evaporation

time of the RTC sample (216 minutes for medium O:C particles and 211 minutes for low O:C particles). Figure 6a and Fig.
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6c show this comparison for both medium O:C and low O:C particles. The factors are grouped  into the three volatility

classes described in Sect. 3.2. In Fig. 6 we show the results from the analysis where VDPMF,opt was optimized by assigning the

fresh  sample  composition  at  the  mean  sample  evaporation  time.  Similar  comparisons using  minimum  and  maximum

evaporation time of the fresh sample  areis givenshown in Fig.  S9. To ensure that  the factors  are  grouped to the same

volatility classes for each studied VD, we used the C* values of the VDPMF,opt at the mean sample evaporation time as basis

according to whichfor the grouping is done.

TAssuming that the fresh sample represents particles from the middle of the sampling interval (mean evaporation time), t he

compositions simulated based on the VDPMF,opt of the fresh samples are comparable to the corresponding VDPMF of the RTC

sample in both oxidation conditions (Fig. 6). The agreement is good, especially for the low O:C case for which the VDPMF,opt

showed a slightly smaller contribution in volatility class 1 and a corresponding higher contribution in volatility class 2

compared to the VDPMF of the RTC sample (Fig. 6c). For the medium O:C case, the VDPMF,opt predicted a higher contribution

of volatility class 1 and a lower contribution of volatility class 2 compared to VDPMF (Fig 6a). For medium O:C conditions,

the agreement between VDPMF,opt and VDPMF improved when using the VDPMF,opt of maximum fresh sample evaporation time,

while  VDPMF,opt of  minimum  fresh  sample  evaporation  time  show  higher  contribution  of  volatility  class  2  and  lower

contribution of volatility class 1 compared to the VDPMF of the RTC sample. 

These results show that the particle composition measured after few hours of evaporation is consistent with the composition

predicted based on the composition observed at the start of evaporation whileand considering uncertainties of the interpreted

C* values. The level of the agreement changes depending on which evaporation time the fresh FIGAERO-CIMS sample is

assumed to represent.  For medium O:C particles the VDPMF and VDPMF,opt are more consistent when the fresh sample is

assumed to represent particles at the maximum sample evaporation time. For low O:C particles the VDPMF,opt  resembles the

VDPMF of the RTC sample best at mean evaporation time.

3.5 Volatility distribution comparison inat dry conditions

Next, we analyzed the evaporation experiments inunder dry conditions where the evaporation rate was reduced compared to

the high RH conditions.  We interpreted  this difference  as  an indication of particle  phase diffusion limitations  inat dry

conditions (Yli-Juuti et al., 2017). Using the initial particle composition information obtained from the high RH experiments

and the FIGAERO-CIMS data, we explored the effect of particle viscosity on the evaporation process. Our aim is to test if

the slower evaporation, presumably due to higher viscosity of the SOA, can be captured with a recently developed viscosity

parametrization  based  on glass  transition temperatures  of  various organic  compounds  (DeRieux et  al.,  2018).  We also

compare the results using the viscosity parametrization to an approach where we fit  both the viscosity and VD to the

evapogram.
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First, we investigated the range of particle viscosities that are required to explain the observed slower evaporation inat dry

conditions. For this, we simulated the particle evaporation in dry conditions based only on the evapogram data. We used the

VDevap (i.e., the initial particle composition obtained by optimizing mole fractions of VD compoundVD bins with respect to

the observed evapogram inat high RH conditions) as the initial  particle composition estimatecondition for the simulations

and optimized the bi values (Eq. 3) for each VD compoundVD bin. The best fit simulation from this optimization agrees well

with the observed size decrease in the dry experiments for both low and medium O:C particles (Fig. 8, black line). Based on

these simulations, the viscosity of the particles needs to increase from below 105 Pa s to approximately 108 Pa s during the

evaporation in order to explain the evaporation rate observed for the dry particles. 

Second, we tested the performance of the composition dependent viscosity parameterization by DeRiuex et al. (2018) used

together with the PMF results. For this, we calculated the volatility distribution, VD PMF,dry, based on the Tmax values of the

factors from the fresh sample of the evaporation experiment at dry conditions (in the same way as for VDPMF for the high RH

case). The mole fraction of each factor was calculated from the mass loading profile to givegiving the initial mole fraction of

each  VD  compoundVD  bin for  the  simulations.  We  assigned  this  VDPMF,dry as  the  particle  composition  at  the  mean

evaporation time of the fresh  sample,  i.e.  15 minutes,  and simulated the particle  evaporation  from there  onwards.  The

particle size at the beginning of the simulation (i.e. at 15 minutes of evaporation) was taken from the above simulations

optimized based only on the evapogram data, which fitted well to the measurements. We calculated the viscosity parameter

bi value  for  each  VD compoundVD bin as  described  in  Section  2.5  based  on  the  mass  spectra  of  the  factor  and  the

parameterization by DeRieux et al. (2018). This resulted in too high viscosity for particles to evaporate in practice at all

during the length of the experiment for both low and medium O:C particles (grey dashed line in Fig. 8). Therefore, we also

conducted  a  simulation  where  the  viscosity  parameter  bi value  for  each  factor  was  calculated  based  on  the  viscosity

parameterization by setting the Tg values of all compounds 30 K lower than the parametrization predicted, which is in line

with the uncertainties reported by DeRiuex et al. (2018). In this case, the simulated evaporation was faster than observed for

the medium O:C conditions (grey solid line in Fig. 8a) and similar to the evapogram calculated with  the VDevap for low O:C

conditions (grey solid line in Fig. 8b). This suggest that the observed evaporation rate at dry conditions and the viscosity

parametrization by DeRieux et al. (2018) may be consistent with each other within the uncertainty range of the viscosity

parametrization and the uncertainty range of the C* of PMF factors.

Similar to Fig. 3, we show in Fig. 7 the comparison of VDPMF,dry (C* from Tmax) to the VDevap inat dry conditions and at the

mean sample evaporation time with the VD compoundVD bins grouped into the three volatility classes. We show the mass

loading profiles and the volatility distributions of experiments inat dry conditionss in Fig. S10 and Fig. S11. Figure S12

shows the same comparison as Fig. 7 for other sample evaporation times. For medium O:C particles, VDPMF,dry calculated

from the fresh  sample has more contribution of volatility classes 1 and 3 and less of volatility class 2 compared to the

corresponding VDevap. For the low O:C particles, the VDPMF,dry  of the fresh sample has more contribution of volatility class 3
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and less of  volatility classes  1 and 2  compared to the VDevap. For medium O:C particles,  the differences  between the

VDPMF,dry and VDevap leave open the possibility that the underestimated evaporation rate calculated using VDPMF,dry is partly a

result of inaccuracy in volatility description and not solely due to the high estimated viscosity. For  the low O:C particles, the

underestimated evaporation most likely stems from the high estimated viscosity since the VDPMF,dry is shifted towards higher

volatility compounds than the VDevap. 

As a third investigation ofn the viscosity, we used again the PMF results of the fresh sample inat dry conditions to initialize

the particle composition in the model at the mean fresh sample evaporation time, i.e., at 15 minutes. The mole fraction of

each factor was calculated from the mass loading profile giving the initial mole fraction of each VD compoundVD bin for

the simulations similar to the high RH analysis. Then, using the MCGA algorithm together with the KM-GAP model, we

estimated the bi coefficient and C* of each VD compoundVD bin by optimizing the KM-GAP simulated evapogram to the

measured evapogram  inat dry conditions.  This way we obtained both the initial  volatility distribution (VDPMF,dry,opt) and

viscosity parameters bi simultaneously. For this optimization, we restricted the C* values of the factors based on the 25th and

75th percentile of the desorption temperature of the factors, (similarly  asto what was  done above for VDPMF,opt), and the

viscosity parameter bi values based on the DeRieux et al. (2018) parameterization. The b i values calculated with the original

parametrization by DeRieux et al., (2018) were set as the upper limit for the bi values. The lower limit for the bi values were

calculated by setting the glass transition temperature of each compound 30 K lower than the parametrization predicted. As

above, also in these simulations the initial particle size was also taken from the simulations where the optimization was

based on only the evapogram data. For both medium and low O:C particles , it was possible to find a set of C* and bi values

that produced an equally good match to experimental data as the VDevap (purple and yellow lines in Fig. 8).

Figures 6b and  Fig.  6d show the comparison of the measured and simulated particle composition, grouped  into the three

volatility  classes,  at the RTC sample collection time for  the dry experiments  for  low and medium O:C particles.  The

measured composition is the VD calculated from the PMF results of the RTC samples inat dry conditions. The optimized C*

values of the factors from the corresponding dry experiment were used for these VD. The simulated particle composition is

taken from the optimized model run (optimized VDPMF,opt,dry and bi) at the mean RTC sample collection time similar to the

high RH cases presented in Fig. 6a and Fig. 6c. For low O:C particles there is a clear discrepancy: the VDPMF,dry,opt impliesy a

much larger relative contribution from the volatility classes 2 and 3 and a smaller contribution from the volatility class 1

compared to the measurements. This inconsistency may be related to the rather high viscosities in the simulations. The

viscosity of the low O:C particles in this optimized simulation was rather high, η  > 108     Pa s, throughout the evaporation,

slowing  the  evaporation  of  the  higher  volatility  compounds.  Similar  evaporation  curve  could  be  obtained  with  lower

viscosity and lower volatilities of the VD binscompounds.
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4 Discussion

Qualitatively,  VDPMF and  VDPMF,dry capture  qualitatively  the  evaporation  dynamics  well  in  all  studied  cases,  although

quantitatively there were discrepancies. For the VDPMF of the fresh samples, the first and second factor desorb at low heating

temperatures (below 100 °C) indicating that these factors represent high volatility organic compounds that evaporate almost

completely from the particles in the experimental time scale of our isothermal evaporation experiments. In the RTC samples,

these factors show significantly lower or non-existing signal strength relative to the other factors. The factors that desorb at

high temperatures show an increase in the relative signal strength in the RTC samples compared to the fresh samples which

is consistent with the expected increase in relative contribution of lower volatility compounds along evaporation. These

findings indicate that the FIGAERO-CIMS measurements of  α-pinene SOA  and the applied PMF method  give a good

overall picture of the evolution of the volatility distribution during evaporation.

In addition to the PMF method used here,  also other ways of characterizing SOA compound volatilities or  VBS from

FIGAERO-CIMS  thermograms  have  been  suggested  (e.g.  Stark  et  al.,  2017).  These  include,  for  example,  the  more

straightforward method of  calculating the C*   of each detected ion based on their Tmax, using Eq. (3) and lumping them into a

traditional VBS. While such other methods may capture the volatility distributions sufficiently, the benefit of PMF method is

that it offers a new way to understand what happens inside the particles, e.g. during the heating in FIGAERO. Here we have

evaluated this method with respect to its ability to capture the volatilities of SOA.

At high RH, the VDPMF that was derived from Tmax of each factor’s mass loading profile did not produce evapogram similar

to the measured ones, when the VDPMF was used as an input forto the LLEVAP model. This reflects the sensitivity of the

particle evaporation to the C* values and suggest that the VDPMF is not directly applicable as a particle composition estimate

for detailed particle dynamics study. When we allowed uncertainty in the C* values of each factor we were able to explain

most of the discrepancy between the simulated and measured evapograms. The simulated evapograms, after optimizing the

C*  of each factor from their appropriate ranges, are close to the experimental values for all other cases except when the

FIGAERO sample is interpreted to represent particles at the start of fresh sample’s collection interval (minimum evaporation

time). Our results also demonstrate the need for careful investigation of the representative time of the sample when filter-

collected samples are applied for dynamic processes such as evaporation.

In this study we assumed a quite large uncertainty range for the desorption temperature of each PMF factor and it is not

certain that the determination of VDPMF,opt would be successful if the allowed ranges for C* of PMF factors would be lower.

Thus, there remains work to be done in studying what is the total uncertainty that rises from combining the FIGAERO-CIMS

measurements with the PMF method and to what extent the PMF factors can be thought to represent surrogate organic

compounds for the purpose of detailed SOA dynamics studies. 
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We note that care has to be taken when PMF results are transferred to volatility distributions, especially with regard to

separating the contribution of instrument background and contamination from the true sample. When the sample mass was

low (in the low O:C RTC sample) we noticed that the first half of the bimodal (factor LD1a) resulted in a high mole fraction

even though the absolute signal strength of the factor did not change between the fresh and the RTC sample, which is usually

an indication that this signal is caused by instrument background. However, the signal strength of this factor was low enough

in all cases to not affect the overall VD estimation. More details on the interpretation of B- and D-type factors and potential

factor blending can be found in Buchholz et al, (2019b).

In dry conditionsAt low RH, VDPMF,dry of the fresh sample in low O:C case showed noticeably higher amount of high

volatility matter than VDevap.  This discrepancy between the volatility distributions is not expected and raises a need for

further studies on the role of viscosity and possible particle phase chemistry to SOA particle dynamics. Future studies should

investigate  the  possibility  of  chemical  reactions that  modify the  volatility  of  organic  compounds and how viscosity  is

described in process models.

5 Conclusions

We  compared  volatility  distributions  derived  from  FIGAERO-CIMS  measurements  with  PMF  analysis  to  volatility

distributions derived from fitting a process model to match measured size change of particles during isothermal evaporation.

We compared the two methods for obtaining the volatility distribution data for two different particle compositions and two

evaporation conditions. The results are promising and suggest that the methods provide volatility distributions that are in

agreement. We note that the data set available here is limited and additional investigations on comparing the methods are

desirable in the future. 

In all studied experimental data sets, we were able to capture the measured evaporation with the fitting method. WithIn high

RH experiments, VDPMF deviated from VDevap especially when the FIGAERO samples were collected at the early stages of

the evaporation. However, qualitatively, both types of VD evolved similarly, i.e., the fraction of lower volatility compounds

increased, and the fraction of higher volatility compounds decreased during the evaporation of the particles. These results

suggest that the changes in FIGAERO-CIMS derived volatility distributions over the isothermal evaporation are consistent

with the observed isothermal evaporation and the detailed SOA dynamics are sensitive for the uncertainties in the C* values.

The volatility distribution derived from with the PMF method at high RH agreed with the observed isothermal evaporation

better  when we interpreted  the volatility  of  each  factor  as  a  range of  possible C* values  and  optimized  the  C* values
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withinfrom these ranges with respect to the measurements. These results suggest that the FIGAERO-CIMS measurements

combined with PMF method does not only provide qualitative information of the volatilities of the SOA constituents but it

also has potential for quantitative investigation of the volatility distributions. However, more work is needed to constrain the

uncertainties rising from the conversion of the FIGAEO-CIMS desorption temperatures to C* values. and it should be noted

that deriving the volatilities based on only the Tmax of PMF factors may not be sufficient for representing detailed SOA

dynamics.

InAt dry conditions, we were able to simulate the evapograms based on the PMF results using the VTF equation and the

glass  transition temperature  parametrization  of  DeRieux et  al.,  (2018) whenif both  C* and  viscosity  parameters  where

optimized and allowed to contain reasonable uncertainties.  For both oxidation conditions the measured composition at the

later stages of evaporation suggested considerably lower volatility than the simulations. These results suggest that the tested

viscosity parameterization is not in disagreement with the observed SOA evaporation, however the uncertainties related to

the method are significant from the point of view of simulating SOA dynamics.

Based  on  our  analysis  we  conclude  that  using  the  PMF method  with  FIGAERO-CIMS thermogram data  is  good  for

estimating   the volatility distribution of organic aerosols when the organic compounds present in the particle phase have low

volatilities  with  respect  to  the  sample  collection  and  analysis  time  scale.  Specifically,  VD PMF is  useful  for  extracting

information about organic compounds that do not evaporate during the evaporation measurements at room temperature.

VDPMF is applicable to detailed particle dynamics studies when desorption temperature of the factor is characterized with a

range around the Tmax value. Furthermore, combining VDPMF,opt with detailed process modelling and input optimization could

allow quantification of other physical or chemical properties of organic aerosols since the FIGAERO-CIMS data constrains

the particle  composition and effectively  decreases  the search  space  that  needs to  be explored with global  optimization

methods.

Code availability: The process models  used in this study can be acquired upon request from the corresponding author. The

MCGA code is can be obtained from available in https://doi.org/10.5281/zenodo.3759733
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Table 1: The ambient conditions and properties of the organic compounds used in estimating the VDevap. The variables are,

from top to bottom, temperature (T) during the evaporation, relative humidity (RH), gas phase diffusion coefficient (Dg,org),

molar mass (M), particle phase density (ρ), particle surface tension (σ)) and mass accommodation coefficient (α). Rows that

only have one value are the same in every column. 

Variable Medium O:C 

High RH

Low O:C

High RH

Medium O:C  

dry

Low O:C 

dry

T (K) 293.85 293.75 293.75 293.35

RH (%) 82.4 83.5 0 0

Da,b
gas (cm2 s-1) 0.05

Mb (g mol-1) 200

ρb (kg m-3) 1200

σ)b (mN m-1)   40

αb   1
a) The gas phase diffusion coefficients are scaled to correct temperatures by multiplying with a factor  of (T/273.15) 1.75  (Reid

et al., 1987)

b) values are chosen to represent a generic organic compound with values similar to other α-pinene SOA studies (e.g. Pathak

et al., 2007; Vaden et al., 2011; Yli-Juuti et al., 2017).
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Table 2: The best fit C* values for medium O:C and low O:C high RH experiments when C* values of PMF factors were

optimized with respect to the measured isothermal evaporation. C* values were optimized by assuming the FIGAERO-CIMS

sample represents particle composition at the mean sample evaporation time for the fresh sample and the minimum sample

evaporation time for the RTC sample. The C* values are rounded to two significant digits and are in units μgm -3. C* values

below 10-3 μgm-3 are not reported explicitly since the evapogram fitting method is not sensitive to these values.

Medium O:C  fresh sample Medium O:C RTC sample Low O:C  fresh sample Low O:C RTC sample 

Factor M1/L1 4.96 ·10-1 36.10 3.06 ·10-1 <10-3

Factor M2/L2 2.89 ·10-1 4.12·10-1 3.55 ·10-1 2.40·10-2 

Factor M3/L3 9.93 ·10-3 4.42 ·10-3 2.87 ·10-2 7.13 ·10-3 

Factor M4/L4 < 10-3 < 10-3 1.54 ·10-3 < 10-3  

Factor M5/L5 < 10-3 < 10-3 < 10-3 < 10-3 

Factor D1a 7.68 · 10-1 69.35 130.03 1.04 · 10-1 

Factor D1b < 10-3 < 10-3 < 10-3 < 10-3
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Figure 1: Main positive matrix factorization (PMF) mass loading profiles for thermal desorption of secondary organic 

aerosol (SOA) from α-pinene at high RH conditions 

a) Fresh sample of medium O:C SOA  

b) Residual particles of medium O:C SOA after 173-259 minutes of evaporation in a residence time chamber (RTC), i.e., the 

RTC sample  

c) Fresh sample of low O:C SOA  

d) Residual particles of low O:C SOA after 168-254 minutes of evaporation in the RTC, i.e. the RTC sample. 

Black crosses indicate the peak desorption temperature Tmax and the diamonds mark the 25th and 75th percentiles of each 

factor’s the area of each factor.
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Figure 2:  Volatility distributions in high RH experiments determined from model fitting (VDevap) and PMF analysis of 

FIGAERO-CIMS data (VDPMF) for the same four cases shown in Fig. 1. 

a) Fresh sample of medium O:C SOA 

b) Residual particles of medium O:C SOA (the RTC sample)

c) Fresh sample of low O:C SOA

d) Residual particles of low O:C SOA (the RTC sample).

VDevap is shown for the best fit simulation (grey bars) at the mean evaporation time of the FIGAERO-CIMS sample. Black 

crosses show the log10(C*) calculated for each PMF factor from the peak desorption temperature Tmax. The horizontal 

coloured lines show the range of log10(C*) calculated from the 25th and 75th percentiles of each PMF factor’s mass loading 

profile. 
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Figure 3: Comparison of VDPMF and VDevap at the mean sample evaporation time in high RH experiments for the same four 

cases shown in Fig. 1.

a) Fresh sample of medium O:C SOA  

b) Residual particles of medium O:C SOA (the RTC sample) 

c) Fresh sample of low O:C SOA 

d) Residual particles of low O:C SOA (the RTC sample).

The VD compoundVD bins shown in Fig. 2 are grouped into three different volatility classes based on their evaporation 

tendency with respect to the measurement time scale and particle size. The limits for each volatility class are shown at the 

top and are the same for each subfigure. The VDPMF shows lower overall volatility than the VDevap except for subfigure d 

(RTC sample of low O:C SOA) where the VDPMF shows higher overall volatility than the VDevap. 
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Figure  4:  Evapograms of high RH experiments showing the evaporation factors (remaining fraction of the initial particle

diameter;  circles)  and  their  uncertainty  in  time  for  a)  medium O:C  SOA and  b)  low O:C  SOA,  LLEVAP simulated

evapograms calculated using the best  fit  VDevap (black solid lines) and LLEVAP simulated evapograms calculated with

VDPMF (turquoise lines for VDPMF of fresh SOA and light brown lines for simulation with VDPMF of the residual particles

evaporated 173-259 minutes and 168-254 minutes for medium O:C and low O:C SOA, respectively).  The evapograms

calculated with the VDPMF of fresh  samples  SOA show lower rate of evaporation than the evapogram calculated with the

VDevap consistent with volatility distribution shown in Fig. 3. The evapograms calculated with the VDPMF of the residual

particles (the RTC sample) show a similar rate of evaporation for medium O:C SOA and a faster rate of evaporation for low

O:C SOA compared to evapograms calculated with VDevap similarly consistent with Fig. 3.
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Figure 5: Evapograms of high RH experiments showing the evaporation factors (circles), their uncertainty in time (black 

whiskers), the best fit simulated evapogram calculated with VDevap (black solid line) and the best fit simulated evapograms 

calculated with the volatility distribution where the effective saturation concentration (C*) of each PMF factors are fitted to 

the measurements (VDPMF,opt). 

a) Medium O:C SOA 

b) Low O:C SOA.

The colored solid lines are for the fresh SOA and the dashed lines for the residual particles collected from the RTC after 173-

259 minutes and 168-254 minutes of evaporation for medium O:C and low O:C SOA, respectively. For fitting, the C* of each

PMF factor were allowed values from their respective 25th and 75th percentile desorption temperature shown in Fig. 1.   

All the evapograms calculated with the VDPMF,opt match the measured evaporation highlighting that the volatility distribution 

determined from the FIGAERO-CIMS data with the PMF method can describe the dynamics of evaporating SOA particles 

when uncertainties in the C* of the factors are considered. 
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Figure 6: Comparison of the simulated particle composition (VDPMF,opt, VDPMF,opt,dry) to the particle composition determined 

from the residual particles collected from the RTC (VDPMF/VDPMF,dry) after 173-259 minutes and 168-254 minutes of 

evaporation for medium O:C and low O:C SOA, respectively. The comparison is done at the mean evaporation time of the 

residual particles. The simulated compositions (VDPMF,opt in a and c, VDPMF,opt,dry in b and d) are taken from the best fit 

simulated evapogram obtained from the optimization of the C* values of fresh sample’s PMF factors to the measured 

evapogram. The volatility of individual VD compoundVD bins are grouped into three volatility classes similar to Fig. 3. The 

limits for each volatility class are shown at the top and are the same for each subfigure. The C* values from 

VDPMF,opt/VDPMF,opt,dry were used for corresponding VDPMF/VDPMF,dry when the volatility grouping was calculated in order to 

ensure the comparability.

a) Medium O:C SOA in high RH experiment

b) Medium O:C SOA in dry conditionlow RH experiment

c) Low O:C SOA in high RH experiment

d) Low O:C SOA in dry conditionlow RH experiment.

In the high RH cases (subgfigures a and c) the volatility distributions simulated based on VDPMF,opt of the fresh SOA are 

similar to the measured VDPMF, while for the dry condition  the low RHfor cases (subfigures b and d) the volatility 

distributions simulated based on VDPMF,opt,dry show higher volatility than the measured VDPMF.
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Figure 7: Comparison of VDPMF,dry (volatility distribution withherew C* is calculated from the peak desorption temperature, 

Tmax, of each PMF factor) and VDevap (volatility distribution determined by fitting LLEVAP model to measured evapogram) 

at the mean evaporation time of the SOA samples in dry condition experiments. The VD compoundVD bins are grouped into

three different volatility classes similar to Fig. 3. The limits for each volatility class are shown at the top and are the same for

each subfigure.

a) Fresh sample of medium O:C SOA

b) Residual particles of medium O:C SOA after 170-256 minutes of evaporation (the RTC sample)

c) Fresh sample of low O:C SOA

d) Residual particles of low O:C SOA after 152-238 minutes of evaporation (the RTC sample).

The VDPMF,dry shows lower overall volatility than the VDevap for medium O:C SOA. For low O:C SOA the VDPMF,dry shows 

higher volatility for fresh sample and similar volatility compared to the VDevap after 152-238 minutes of evaporation.
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Figure 8: Evapograms showing the measured isothermal evaporation of a) medium O:C SOA b) low O:C SOA in dry 

condition experiments and their uncertainty in time (red and yellow markers and black whiskers) together with the simulated 

evapograms. The best fit simulated evapogram calculated with VDevap (obtained from high RH experiments) and optimizing 

bi is shown with black solid line. Grey lines show the minimum and maximum possible evaporation calculated with VDPMF,dry

(C* of PMF factors calculated from Tmax) atnd the highest (the original parametrization of DeRieux et al., (2018), grey dashed

lines) or the lowest (30 K subtracted from the Tg of every ion, grey solid line) studied viscosity. Purple and yellow solid lines

show the best fit simulated evapograms calculated with the optimized VDPMF,opt,dry (based on the assumption that the 

FIGAERO sample represents particles at the mean of the sample collection interval) and bi restricted based on the DeRieux 

et al. (2018) parameterization. The figure shows, similar to Fig. 5, that the volatility distribution determined from the 

FIGAERO-CIMS data with the PMF method is consistent with the measured evaporation of the SOA particles once the 

uncertainty in the effective saturation concentration and the glass transition temperature parametrization of DeRieux et al., 

(2018) are considered. 



Supplementary material

FIGAERO-CIMS calibration 

Figure S1 shows the results of the Tmax to Psat calibration measurements done using polyethylene 
glycols (PEG) solutions in acetonitrile with 5 to 8 glycol units (blue dots). A bBivariate linear fit 
(Pitkänen et al., 2016; York et al., 2004) ,that takes the uncertainties of the points into account was 
then applied to normal logarithm of the Psat values as a function ofvs. measured Tmax values. 
Literature values of Psat with uncertainties were taken from Krieger et al., (2018) and standard 
deviation of three Tmax measurements was used as uncertainty for Tmax values.
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Table S1: Minimum, mean and maximum time that the particles have evaporated during the FIGAERO sample 
collection. All times are relative to the start of RTC filling.

Sample Minimum evaporation time 
(min)

Mean evaporation time 
(min)

Maximum evaporation time 
(min)

 Medium O:C high RH fresh   0   15   30
 Medium O:C high RH RTC   173   216   259
 Medium O:C dry fresh   0   15   30
 Medium O:C dry RTC   170   213   256
 Low O:C high RH fresh   0   15   30
 Low O:C high RH RTC   168   211   254
 Low O:C dry fresh   0   15   30

Low O:C dry RTC 152 195 238



Table S2: The best fit C* values for medium O:C and low O:C high RH experiments when C* values of PMF factors  
were optimized with respect to the measured isothermal evaporation. For each experiment three different results are 
given which correspond to simulations initialized with the PMF mole fraction at the minimum, mean and maximum 
time that the particles have evaporated during the sample collection (See Table S1). The C* values are rounded to two 
significant digits and are in units μgmgm-3. C* values below 10-3 μgmgm-3 are not reported explicitly since the evapogram 
fitting method is not sensitive to these values.

Medium
O:C  fresh

sample
min evap.

time

Medium
O:C  fresh

sample
mean evap.

time

Medium
O:C  fresh

sample
max evap.

time

Medium
O:C RTC
sample 

min evap.
time

Low O:C
fresh

sample
min evap.

time

Low O:C
fresh

sample
mean evap.

time

Low O:C
fresh

sample
max  evap.

time

Low O:C
RTC

sample 
min evap.

time

Factor M1/L1 3.47 4.96 ·10-1 1.48 ·10-1 36.10 11.40 3.06 ·10-1 8.91 ·10-2 <10-3

Factor M2/L2 2.89 · 10-1 2.89 ·10-1 2.17 ·10-1 4.12·10-1 6.79 · 10-1 3.55 ·10-1 3.63 ·10-1 2.40·10-2

Factor M3/L3 1.00 ·10-2 9.93 ·10-3  2.11 ·10-3 4.42 ·10-3 2.88 ·10-2 2.87 ·10-2 9.55 ·10-3 7.13 ·10-3

Factor M4/L4 < 10-3 < 10-3 < 10-3 < 10-3 1.55 ·10-3 1.54 ·10-3 < 10-3 < 10-3

Factor M5/L5 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3

Factor D1a 96.63 7.68 · 10-1 9.86 ·10-2 69.35 133.83 130.03 3.49 ·10-1 1.04 · 10-1

Factor D1b < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3



Figure S1: Calibration measurements and fitted parametrization which connects the maximum desorption temperature 
Tmax to saturation vapor pressure Psat.



Figure S2: Full positive matrix factorization (PMF) mass loading profiles for thermal desorption of secondary organic 
aerosol (SOA) from α-pinene at high RH conditions. 
a) Fresh sample of medium O:C SOA 
b) Residual particles of medium O:C SOA after 173-259 minutes of evaporation in a residence time chamber (RTC), i.e.
the RTC sample 
c) Fresh sample of low O:C SOA 
d) Residual particles of low O:C SOA after 168-254 minutes of evaporation in the RTC, i.e. the RTC sample.
The black crosses show the peak desorption temperature Tmax and the diamonds show the 25th and 75th percentiles of the 
factors area. In medium O:C samples’ analysis, factor MB1 is omitted and factor MD1 is divided into a new factors 
MD1a and MD1b. In low O:C samples’ analysis, factors LC1 and LC2 are omitted and factor LD1 is divided into new 
factors LD1a and LD1b. See Sect. 3.1 in the main text for details.



Figure S3: PMF mass spectra for medium O:C samples. These factors correspond to factors shown in Fig. S2.



Figure S4: PMF mass spectra for low O:C samples. These factors correspond to factors shown in Fig. S2.



Figure S5: Volatility distributions in high RH experiments determined from model fitting of evapogram data (VDevap) 
and PMF analysis of FIGAERO-CIMS data (VDPMF)  for the same four cases shown in Fig. S2 
a) Fresh sample of medium O:C SOA  
b) Residual particles of medium O:C SOA (the RTC sample)
c) Fresh sample of low O:C SOA 
d) Residual particles of low O:C SOA (the RTC sample).
VDevap is shown for the best fit simulation (grey bars). The different grey shades show the VDevap in the simulation at 
minimum, mean and maximum time that the particles have evaporated when the FIGAERO sample was collected (see 
Table S1). Black crosses show the log10(C*) calculated for each PMF factor from the peak desorption temperature Tmax. 
The horizontal colored lines show the range of log10(C*) calculated from the 25th and 75th percentiles of each PMF 
factors mass loading profile. 



Figure S6: Comparison of VDPMF and VDevap in high RH experiments for the same four cases shown in Fig. S2. 
a) Fresh sample of medium O:C SOA  
b) Residual particles of medium O:C SOA (the RTC sample)
c) Fresh sample of low O:C SOA 
d) Residual particles of low O:C SOA (the RTC sample).
The VD compounds are grouped into three different volatility classes. Min, mean and max evaporation time refer to the 
FIGAERO sample collection times presented in Table S1. The VD compounds shown in Fig. S5 are grouped into three 
different volatility classes based on their evaporation tendency with respect to the measurement time scale and particle 
size. The limits for each volatility class are shown at the top and are the same for each subfigure.



Figure S7: Evapograms of high RH experiments showing the measured evaporation factors (remaining fraction of 
initial particle diameter; circles) and their uncertainty in time for a) medium O:C SOA and b) low O:C SOA, LLEVAP 
simulated evapograms calculated using the best fit VDevap (black solid lines) and LLEVAP simulated evapograms 
calculated with VDPMF (turquoise solid lines for VDPMF of fresh samples and light brown solid lines for VDPMF of the 
RTC samples). The three turquoise and brown lines present model simulations where the fresh and RTC sample, 
respectively, were assumed to represent the particle composition at the minimum, mean or maximum evaporation time 
of the sample (see Table S1). 



 

Figure S8: Evapograms of high RH experiments showing the measured evaporation factors (circles) and their 
uncertainty in time (black whiskers), the best fit simulated evapogram calculated with VDevap (black solid line) and the 
best fit simulated evapograms calculated with the volatility distribution where the effective saturation concentration (C*)
of each PMF factors are fitted to the measurements (VDPMF,opt).
a) Medium O:C SOA 
b) Low O:C SOA.
The colored solid lines are for the fresh SOA with varying starting time of the simulation. These simulations assumed 
that the fresh sample represented the particle composition at the minimum, mean or maximum evaporation time of the 
fresh FIGAERO-CIMS sample.  and tThe dashed lines are showing the simulations based on  for the SOA collected 
from the RTC after 173-259 minutes and 168-254 minutes of evaporation for medium O:C and low O:C SOA, 
respectively. For these residual particle samples, the FIGAERO-CIMS sample was assumed to represent the minimum 
evaporation time of the sample (see Sect. 3.2 in the main text).. For fitting, the C* of each PMF factor were allowed 
values from their respective 25th and 75th percentile desorption temperature shown in Fig. S5.
The simulations of the fresh samples that start at the mean or maximum evaporation time resemble the measured 
evaporation and the evaporation simulations calculated with the VDevap. The simulation of the fresh sample that starts 
from the minimun evaporation time does not produce evaporation curve similar to the measurements. The results 
highlight the fact that it is not likely that the fresh sample consists of particles that have just entered the residence time 
chamber. 



Figure S9: Comparison of the simulated particle composition (VDPMF,opt, VDPMF,opt,dry) at varying assumed sample 
evaporation times to the particle composition determined for SOA collected from the RTC (VDPMF/VDPMF,dry) after 173-
259 minutes and 168-254 minutes of evaporation for medium O:C and low O:C SOA, respectively. The simulated 
compositions (VDPMF,opt in a and c, VDPMF,opt,dry in b and d) are taken from the best fit simulated evapogram obtained from
the optimization of the C* values of fresh sample PMF factors to measured evapogram. The volatility of individual VD 
compounds are grouped into three volatility classes similar to Fig. S6. The limits for each class are shown at the top and
are the same for each subfigure. The C* values from VDPMF,opt/VDPMF,opt,dry at the mean evaporation time were used for 
corresponding VDPMF/VDPMF,dry when the volatility grouping was calculated in order to ensure the comparability.
a) Medium O:C SOA in high RH experiment
b) Medium O:C SOA in low RH experiment
c) Low O:C SOA in high RH experiment
d) Low O:C SOA in low RH experiment.
The results of medium O:C SOA in high RH experiments show that the VDPMF best resembles the VDPMF,opt of the 
maximum evaporation time, although the difference to the mean evaporation time is not significant. For low O:C SOA 
in high RH experiments, the results show that the VDPMF best resembles the VDPMF,opt of the mean evaporation time.



Figure S10: Main PMF mass loading profiles from experiments done in dry conditions.
a) Fresh sample of medium O:C SOA 
b) Residual particles of medium O:C SOA after 170-256 minutes of evaporation in a residence time chamber (RTC), i.e.
the RTC sample 
c) Fresh sample of low O:C SOA 
d) Residual particles of low O:C SOA after 152-238 minutes of evaporation in the RTC. The black crosses show the 
peak desorption temperature Tmax and the diamonds show the 25th and 75th percentiles of the factors area.



Figure S11:  Volatility distributions in dry conditions experiments determined from model fitting to the evapogram data
(VDevap) and PMF analysis of FIGAERO-CIMS data (VDPMF)  for the same four cases shown in Fig. S10.
a) Fresh sample of medium O:C SOA  
b) Residual particles of medium O:C SOA (the RTC sample)
c) Fresh sample of low O:C SOA 
d) Residual particles of low O:C SOA (the RTC sample).
VDevap is shown for the best fit simulation (grey bars). The different grey shades show the VDevap in the simulation at 
minimum, mean and maximum time that the particles have evaporated when the FIGAERO sample was collected (see 
Table S1). Black crosses show the log10(C*) calculated for each PMF factor from the peak desorption temperature Tmax. 
The horizontal colored lines show the range of log10(C*) calculated from the 25th and 75th percentiles of each PMF 
factors mass loading profile. 



Figure S12:  Comparison of VDPMF,dry (volatility distribution where C* is calculated from Tmax of each PMF factor) and 
VDevap (volatility distribution determined by fitting LLEVAP model to measured evapogram) at varying sample 
evaporation times in dry condition experiments.  The VD compounds are grouped into three different volatility classes 
similar to Fig. S6. The limits for each volatility class are shown at the top and are the same for each subfigure.
a) Fresh sample of medium O:C SOA
b) Residual particle of medium O:C SOA after 170-256 minutes of evaporation (the RTC sample)
c) Fresh sample of low O:C SOA
d) Residual particles of low O:C SOA after 152-238 minutes of evaporation (the RTC sample).


