
Authors’ response to comments received to manuscript “Comparing SOA volatility 
distributions derived from isothermal SOA particle evaporation data and FIGAERO-
CIMS measurements”

We thank both reviewer #1 and reviewer #2 for reviewing our manuscript and for the insightful 
comments that helped to improve the manuscript. Below we address the comments presented 
by the reviewers. The comments of the reviewers are shown in bold, our answers are shown 
as normal text, and the changes made to the manuscript are shown in italic. To improve 
readability we have numbered the comments of reviewer #2. All the line numbers given refer to
the revised version of the manuscript.

Please note that the parametrization used for calculating effective saturation mass 
concentration C* from the desorption temperatures of each PMF factor is different in the 
revised version of the manuscript than in the ACPD version of the manuscript. The 
parameterization used in the ACPD version corresponded for a different type of FIGAERO and
we have now revised the results using a parametrization applicable for the FIGAERO used in 
this study. The parametrization used in the revised version results in lower C* than the 
parametrization used in the ACPD version with the same desorption temperature input. This 
correction did not change our main conclusions. However, the new parametrization affects the 
results discussed in the comments 10 and 15 by the reviewer #2. 

Reviewer #1
In this manuscript, Tikkanen et al. compare SOA volatility derived from two different 

analyses: isothermal evaporation data and PMF applied to FIGAERO-CIMS 

data.Volatility is a critical property of organic aerosol, and I agree with the authors that 

the volatility data from FIGAERO-CIMS measurements have been under-utilized. This 

manuscript focuses on the comparison of the FIGAERO-CIMS PMF volatility data to 

isothermal evaporation data; the details of the FIGAERO-CIMS PMF volatility analysis 

are described in another manuscript currently under review (Buchholz et al., 2019 

https://www.atmos-chem-phys-discuss.net/acp-2019-926/). It seems to me that this 

manuscript can only be accepted if Buchholz et al., 2019 is also accepted. I also request

that my specific comments below be addressed before publication of this manuscript.

The companion manuscript Buchholz et al. (2019b) is now at the “Editor Final Decision” status 

after some further minor revisions.

1. The authors use data from previously conducted experiments in which SOA 

wasformed from alpha-pinene and ozone/OH. By varying experimental conditions, the 

SOA produced had low, medium or high O:C. Here, the authors only use experiments 

when the SOA formed had low or medium O:C. This choice is currently not explained or 

justified in the manuscript. In my opinion, the dataset utilized here is fairly limited,and 

the analysis would benefit from inclusion of these additional high O:C data. For 



Example, overall the authors find that the agreement between the two volatility analysis 

better for intermediate O:C than for low O:C, and I am curious about the agreement at 

high O:C.

Answer: The detailed analysis of the high O:C evapogram and particle composition data 
presented in Buchholz et al., (2019a and 2019b) strongly suggests an important influence of 
particle phase chemistry for these particles in the wet cases. For example, Buchholz et al., 
(2019a)  show that  one of the PMF factors  has a significant contribution to the total 
thermogram in the wet RTC sample (sample taken at the later stages of the evaporation) even 
though the same factor is virtually non-existing in the fresh sample. This means that 
compounds were being formed during the isothermal evaporation experiment.

Including the high O:C results in our manuscript would require particle phase chemical 
reactions to be included in the model. Not enough is known about such reactions and therefore
assumptions would need to be made about properties of the reaction products and the extent 
of the particle phase chemistry happening during the evaporation of the particles. This would 
lead to considerable uncertainty in the results. In our manuscript  we wanted to keep the 
analysis as simple as possible and therefore elected not to include the more complex high O:C
cases to the manuscript. Instead we included only the low and medium O:C cases for which 
Buchholz et al., (2019a,b) did not observe signs of significant effects from particle phase 
chemical reactions We have added the following explanation to line 91: 

The closer analysis of the high O:C experiments  suggest particle phase reactions during the 
evaporation (Buchholz et al., 2019a,b). To avoid the uncertainty that would arise from unknown particle
phase reactions, we chose not to include the high O:C data in our analysis. 

2. The main takeaways from the manuscript should be clarified. The authors state in the

abstract that “FIGAERO-CIMS measurements analyzed with the PMF method area 

promising method for inferring organic compounds’ volatility distribution”. The more 

detailed results point to the method working better under some conditions than 

others.It would be useful if the authors could make more concrete recommendations for

future use of this method (PMF applied to FIGAERO-CIMS data) to obtain information on

organic aerosol volatility.

Answer: This comment is also linked to the first and third comment made by reviewer #2 about

the discussion part of our manuscript. We have edited the discussion to better frame our 

findings. Please see our response to Reviewer 2.

Editorial comments: There are several typographical and grammatical errors in the 

manuscript. I include a list of examples below:



Line 19: “volatility distributions derived the two ways are comparable within reasonable

assumption”

Line 233: “and only evaporated th at different conditions”

Line 311: “To investigate the observed discrepancy more detailed”

Line 376: “In this section we compare VDPMF,opt of the fresh samples to VDPMF ofthe 

RTC sample to study are the two VD comparable.”

Line 521-522: “thermogram data is good estimating the volatility distribution of organic 

aerosols”

We thank reviewer #1 for pointing out these errors. We have corrected the ones presented 

here and also other typographical errors we found in the manuscript.

Reviewer #2

Review of acp-2019-927 ”Comparing SOA volatility distributions derived from isother-

mal SOA particle evaporation data and FIGAERO-CIMS measurements” by Olli-

PekkaTikkanen, Angela Buchholz, Arttu Ylisirniö, Siegfried Schobesberger, Annele 

Virtanen,and Taina Yli-Juuti

This paper describes a study that compared volatility distributions derived from direct 

evaporation measurements to estimates derived from measurements made using a 

FIGAERO-CIMS. Given the central role gas-particle partitioning plays in determining the 

amount of organic aerosol, this is an important topic. The FIGAERO-CIMS provides 

information on composition as a function of evaporation temperature but it has not 

been widely evaluated in the context of figuring out volatility distribution of complex 

aerosols.The paper describes a detailed analysis of previously published, relatively 

limited set of data – SOA formed from alpha-pinene formed in a oxidation flow reactor at

two differentO:C levels (low and medium). They consider low and high relative humidity 

and two different residence times. The very limited amount of the data is a real 

limitation to the paper. 



1. Major comments/issues that broadly apply to the manuscript –I found the paper to be 

a super detailed methods paper. It was not clear why it was submitted to ACP and not a 

journal like AMTD or AST. Based on the way the paper is written now, those journals are

a better fit for the manuscript. My feeling is that while the topic of organic aerosol 

volatility is relevant to ACP this paper seemed is a very narrow and specialized for that 

journal (to me it read like a physical chemistry methods papers).

Answer: In our manuscript we show that volatility information derived from FIGAERO-CIMS 

data is in agreement with the volatility information derived from isothermal evaporation 

experiments. Considering the recent popularity of the FIGAERO-CIMS instrument in laboratory

and atmospheric studies, we feel that this finding is of general interest to the ACP audience. 

We agree that the presentation of our manuscript is somewhat more technical than the ACP 

audience may expect. We have edited the discussion part of our manuscript to better frame 

our findings and balance the text against the technical details of our study.

2. I had a hard time interpreting some the figures (e.g. Figure 2), which were often very 

detailed and contained many comparisons. For example, do you really need to show the

three different VDevap results on Figures 2, 3 and 7 3 given they are basically the same 

– seems like an SI detail to help the focus the figure on what is important. This results 

in the paper have a bit of kitchen sink feel.

Answer: Thank you for this suggestion which helped as to clarify the presentation. We have 

edited the figures and tables the following way: 

• We moved the old figures 2, 3, 4, 5, 6 and 7 and tables 2 and 3, which show the VDPMF 

derived assuming different sample evaporation times to the supplementary material. 

◦ The new figures 2, 3, 4, 5, 6 and 7 and table 2 show the analysis only at the mean 

PMF sample evaporation time for the fresh samples (and at minimum PMF sample 

evaporation time of the RTC samples in figures 4 and 5 and table 2). 

◦ The old table 2 has been moved entirely to the supplement

◦ The captions of the figures 2, 3, 4, 5, 6 and 7 have been edited to describe the new 

figures better

Due to these changes in the presentation of the figures and tables we have also edited the 
main text where the figures are described in the results section.

3. A closely related comment to the previous one, while the text described the figures 

and the results, I found it lacking in discussion of the results were telling us, 

specifically around this technique. There was too much focus on describing the data 

versus what the data are telling us about the technique and aerosol volatility. If it is to 



be accepted in ACP, I think the paper should be extensively rewritten to make it more 

accessible and understandable to the ACP audience. 

Answer: We have expanded the discussion and conclusion parts of the manuscript to make it 

more accessible to the general ACP audience and to highlight the main findings. The changes 

are on lines 505-507, 515-517, 519-523, 540-543, 548-550, 554-557, 562-563.

4. I spent a fair bit of time on the paper and got repeatedly bogged down. E.g. 

essentially all the tables can easily be moved to SI(maybe keep a very collapsed version

of Table 1) because they are likely not of interest to a general ACP reader.

Answer: Please see our answer to comment 2

5. The very limited data set (a handful of conditions) seems like a pretty large 

limitation.Even for this limited set of data the method appears to not work so well for 

some conditions (e.g. low O:C in Figure 4b). There was also no discussion of 

experimental repeatability. There is probably enough data to justifying publication but 

this limitation of applying to a very narrow set of systems (and potentially 

overinterpreting the results) needs to be explicitly stated.

Answer: In figure 4 we compare the PMF VD with C*  calculated from peak temperature value 

(Tmax) of each factor to VDevap. As noted in the results section, the Tmax value is not adequate for

calculating C* when detailed particle dynamics (i.e. evaporation) is modelled. The VDPMF,opt 

whose C* values are optimized to match the evaporation data is able to capture the 

evaporation dynamics. The optimization fails only when we assume that the PMF sample 

represents the evaporating aerosol particles at the start of the fresh sample collection interval 

Overall the volatilities from FIGAERO-CIMS and isothermal evaporation agree for all our cases

as long as the uncertainties in C* are taken into account. 

We agree that the data sets available is a narrow one and we have added  a note about this 

limitation in Section 5 lines 540-543

We compared the two methods for obtaining the volatility distribution data for two different particle 

compositions and two evaporation conditions. The results are promising and suggest that the methods 

provide volatility distributions that are in agreement. We note that the data set available here is limited 

and additional investigations on comparing the methods are desirable in the future. 

The base case (low O:C a-pinene) has been studied in our lab in five separate measurement 
campaigns and the isothermal evaporation is the same within measurement error in all cases. 



Also in a later campaign, which is not part of this study as the detailed design and settings of 
the FIGAERO-CIMS were different, we did repeat FIGAERO-CIMS measurements of the same
type of aerosol on multiple days. The behavior of the identified PMF factors is the same 
between the different samples – only the contribution of background and contamination factors
changed significantly as the circumstances changed on different days (e.g. switching to a new 
filter in FIGAERO). We therefore have a good reason to expect that the results presented here
were repeatable even though repeated experiments were not included in this study. 

6. FIGAERO-CIMS – Given that it uses chemical ionization with iodide as the reagent ion

as opposed to electron impact ionization, there are always concerns about mass 

closure. What fraction of the SOA mass is being detected by the instrument? If a large 

fraction of the aerosol mass that is not, then that seems like a big problem. This issue 

needs to be explicitly discussed, including its implications for measuring volatility. 

More Molecular ions is a big advantage, but not measuring a large fraction of the 

material seems like a huge limitation as you are trying to draw inferences about the bulk

aerosol based on characterizing only a limited fraction of the aerosol.

The I- anion in an iodide CIMS preferably clusters with molecules which contain hydroxyl-, 
hydroperoxyl-, carboxyl- or peroxycarboxyl- groups in their structure. Most products of the 
reaction of a-pinene with OH or O3 contain two or more of these functional groups. Thus, the 
majority of them will be detectable with iodide CIMS even though it is more selective than EI. 
Mass closure studies for a-pinene SOA generated in a smog chamber have been conducted 
by Isaacman-VanWertz et al., (2017, 2018) comparing FIGAERO-CIMS to measurements with 
an SMPS (non-mass spectrometry technique) and a High-Resolution time of flight Aerosol 
Mass Spectrometer (AMS, Aerodyne research Inc., EI ionisation). They observed very good 
agreement for the detected particle phase carbon if FIGAERO-CIMS was calibrated as they 
laid out in the Supplement Material to Isaacman-VanWertz et al., (2018). The compounds 
produced in our study are comparable and thus a similarly good mass closure could be 
expected if similar sensitivity calibrations had been conducted for our FIGAERO system. 
However, such calibration is onerous and not available for the datasets at hand. So, by using 
uncalibrated FIGAERO-CIMS data here, we are implicitly assuming that the sensitivity towards
individual compounds is uncorrelated to the compounds’ volatility. We are not aware of 
published research against which to clearly test that assumption, but it appears plausible that 
less volatile compounds tend to be detected at higher sensitivity (Iyer et al., 2016; Lee et al., 
2014). To our aid comes the maximum sensitivity (corresponding to ionization at the kinetic 
limit), which is obtained, e.g., for most di-carboxylic acids (#C>3). But it is likely that a bias is 
introduced that shifts FIGAERO-derived SOA compositions towards lower volatility. Indeed, if 
such a bias was accounted for, it could bring the evapograms modelled using VDPMF closer to 
the observations, as in particular the initial (fast) evaporation of relatively volatile material may 
be systematically underestimated when relying on (uncalibrated) FIGAERO data [Note that 
such bias would less clearly apply to observed desorption signals that are due to thermal 
decomposition, so, e.g., PMF factors associated with decomposition would still lead to high 
estimates when their Tmax is translated to C* (i.e. opposite bias, towards higher volatility), as 
discussed in Section 3.1.]



We have added the following to the revised version of the manuscript to lines 113-116 to 

clarify:

Previous studies using FIGAERO-CIMS with iodide as the reagent ion found 50% or better mass 

closure compared to more established methods of quantifying OA mass (albeit with high uncertainties; 

(Isaacman-VanWertz et al., 2017; Lopez-Hilfiker et al., 2016). Therefore, it appears that the bulk of 

reaction products expected from a-pinene oxidation contains the functional groups required for 

detection by our FIGAERO-CIMS.

And to lines 197-202:

One more potential source of bias is our implicit assumption of a constant sensitivity of the CIMS 

towards all compounds, which follows from the lack of calibration measurements for our datasets 

(which indeed is a challenging endeavour; e.g., Isaacman-VanWertz et al., (2018)). It is plausible that 

less volatile compounds tend to be detected at higher sensitivity (Iyer et al., 2016; Lee et al., 2014), up 

to a kinetic limit sensitivity. Consequently, a volatility distribution derived from FIGAERO-CIMS 

thermograms may be biased towards lower volatility (C* bins), at least for compositions not associated 

with thermal decomposition.

7. A closely related FIGAERO-CIMS concern – The FIGAERO only ramps to 200 oC 

(line200). This is likely much too low to evaporate all of the SOA. Can the authors 

estimate what fraction of mass is evaporated? Do they account for that in any way? 

This issue needs to explicitly addressed in manuscript.

Answer: As described in the reply to the previous comments, with appropriate sensitivity 
calibrations, the FIGAERO instrument ramping up to 200 °C gave mass closure with other 
instruments. 

Our (as well as other’s, e.g. Mohr et al., 2018) C* calibration suggests that at 200 °C the 
corresponding C* value is ~10-14 µg m-3, meaning compounds with this C* value will desorb at 
that temperature. This means that the recently defined class of ultra low volatility compounds 
(ULVOC, Schervish and Donahue, 2020) starting from C* values of 10-8.5 µg m-3 would still be 
detected. Additionally, one has to keep in mind that many of these E/ULVOC, especially 
dimers, will decompose at temperatures below their theoretical desorption temperature. The 
thermal decomposition products will have a much higher volatility and are detected as such. 
Most of the compounds assigned to the D-type factors are products of such decomposition. 
This is discussed in section 3.1.

8. Uniqueness of fit – The paper takes a very empirical approach of fitting data to 

extract volatility distributions. That is fine and expected given the complexity of the 

aerosols. However, the number of data points is often quite small, comparable to the 



number of free parameters. For example, Figure 4 shows 7 data points that are fit to ∼7 data points that are fit to 

determine VDevap. How many free parameters are in the VDevap model?

Line 516 indicates that you are fitting both C* and viscosity parameters – that is a lot of 

free parameters given the amount of data. The fit is clearly very underconstrained. The 

result is that there are likely many other solutions are close to the nominally best 

solution. This is an optimization problem and I suspect that the optimization function 

looks more like a plateau then a sharp peak therefore (within experimental uncertainty) 

there are likely many good solutions. 

While I gave one example where this occurs, this is a general issue with the paper. For 

example, I am concerned about the same problem for the FIGAERO PMF approach, 

because that also have many free parameters. Presumably all of these solutions are 

reasonably close across the data, but I suspect with diverge as one extrapolates away 

from the data. This is a major issue with these sorts of empirical approaches. The paper

needs to explicitly address this issue.

Answer: Here we address only the optimization done to high RH data. The comment refers 

also to low RH data which we will address in comment 16 where the optimization to low RH 

data is brought up again. 

In an optimization run the amount of data point is small compared to the number of free 

parameters. When VD mole fractions are optimized based on only the evapogram data 

(VDevap) the number of free parameters is equal to the number of VD bins minus 1 as the mole 

fractions must sum to one.  When the C* values are estimated from the high RH data the 

number of free parameters is equal to the number of PMF factors. However, in the latter case  

we are not optimizing a completely unconstrained model to the measurements. The C* values 

are given constraints from the PMF analysis and our goal is to inspect if it is possible to explain

the observed evaporation with these values.

Figure AR1  show how the estimated C* values are distributed among the 50 independent 

optimization runs performed for each fresh sample and mean sample evaporation time. The 

figure show that when the C* of a factor affects the evaporation dynamics i.e. the minimum 

and/or maximum value of a factor is inside the red dashed lines the C* values do not change 

much between different optimization runs. Note that the spread of values can become wider 

for a factor when its contribution to the total signal is close to zero (e.g. factor MD1a Fig AR1a 

or LD1a in Fig AR1b).



9. Here are some specific (but not exhaustive) comments (I spent several hours on this 

review but was unable to sort through all the details, even though I have published a 

fair bit on the topic of organic aerosol partitioning).

Line 65 – The paper highlights inconsistency between growth and evaporation experi-

ments. Ultimately C* is a thermodynamic property (certainly at the molecular level) so 

these inconsistencies point to changing aerosol composition or other properties. Some 

of this sort of framing may be useful. I.e. if the volatility distribution of the aerosol is 

really changing, then presumably this reflects some other changes in composition that 

alters the underlying C* values. Alternatively there could be issues with the kinetics of 

evaporation. The authors are familiar with all these issues but the introduction might be

improved with this framing. To me the issue seems more fundamental then measuring a

volatility distribution.

Answer: In line 65 we brought up the difference between SOA evaporation and growth 

measurements to point out that the volatility information derived from experiments  depends on

the experiment setup. The limitations of the methods raise a need to develop new tools for 

extracting the volatility information of SOA constituents.

Figure AR1: Box plots showing how the estimated C* of PMF factors are distributed in 50 independent optimization 
runs of high RH fresh samples. a) medium O:C mean sample evaporation time b) low O:C  mean sample evaporation 
time Black circles show the minimum and maximum possible value allowed in the optimization (based on the 
thermograms of the PMF factors) and red dashed lines show the minimum and maximum C* value that can be estimated
from the isothermal evaporation measurements.



We have modified the text in line 68-73 in the revised version of the manuscript to

However, the experimental setup also defines the range of C* values that can be estimated from the data.

Vaden et al., (2011) and Yli-Juuti et al., (2017) have both shown that the volatility basis sets derived 

from SOA growth experiments results in too fast SOA evaporation compared to measured evaporation 

rates when used as input for process models. Possible reasons for such discrepancies include the 

different C* ranges to which the SOA growth and SOA evaporation experiments are sensitive and the 

role of vapor wall losses in SOA growth experiments.

10. Line 327 – “matches better” Based on what quantitative metric? This is one example

of a broader issue of providing quantitative metrics of goodness of fit.

Answer: Note that the simulated evapogram curves in Fig. 4 have changed as we corrected 

the error in the Tmax-C* calibration. The evapograms calculated with the VDPMF of the medium 

O:C RTC sample produce almost equal evapogram as the one calculated with VDevap. We have

adjusted the text accordingly. Also, we increased the readability of the figure by showing only 

the simulations with medium evaporation time for the FIGAERO samples. 

The reviewer is correct, that this is a purely qualitative term and whenever suitable one should 

use objective and mathematically based parameters for such comparisons. But for this specific

example we decided to use a qualitative description rather than goodness of fit statistics. We 

are comparing the overall shape of the simulated and measured evapograms, but for the 

evapogram curves simulated with RTC VDPMF we have only 1 or 2 measurement points to 

directly compare to. It is very clear that the evapograms simulated with the fresh VDPMF 

underestimate the evaporation (too slow evaporation) for medium O:C particles while those 

using the RTC VDPMF create curves that display a very similar shape as those simulated with 

VDevap and estimated from the measured points. In the low O:C case, we now see a slight 

underestimation of evaporation rate using the fresh VDPMF and overestimation of evaporation 

rate with the RTC VDPMF. A simple goodness of fit parameter like the mean squared error 

would not reflect the direction of this discrepancy as a qualitative description can. Looking at 

the revised Fig. 4a where we show only one brown line we feel that “matches well” describes 

well what we want to say.

11. Table 1 – The analysis appears to have used an accommodation coefficient of 1 to 

interpret the evaporation data (alpha in Table 1 versus the alpha in equation (3)). This 

was not discussed or justified (none of the values were in Table 1 were justified). There 

are papers that report smaller values for this system (e.g. Saleh et al. Env. Sci. 



Tech.2013). How would reducing this value alter the results from the analysis? This 

should be discussed in the paper.

Answer: The theoretical framework used by Saleh et al., (2013) assumes that the mass-
accommodation coefficient includes any mass transfer limitations caused by high viscosity of 
the particle phase. In Saleh et al., (2013) SOA growth and evaporation experiments were 
performed with α-pinene ozonolysis SOA at 10% RH. Based on the work of Li et al., (2019) it is
likely that there are significant mass transfer limitations associated with this type of SOA and 
RH. Those mass transfer limitations likely decrease the mass-accommodation coefficient in 
Saleh et al., (2013). 

In our work, we model the mass transfer limitations explicitly with the KM-GAP model and thus 
the mass-accommodation coefficient in our work consists of effects due to e.g. surface sticking
which we neglect. Additionally, the work of Julin et al., (2014) reports near-unity mass-
accommodation coefficients for various organic molecules based on molecular dynamic 
simulations and experiments.

We have added justification for the properties of the organic compounds presented in Table 1 

as a footnote to the table

b) values are chosen to represent a generic organic compound with values similar to other α-pinene SOA
studies (e.g. Pathak et al., 2007; Vaden et al., 2011; Yli-Juuti et al., 2017).

12. Figure 2 indicates little agreement in the “raw” volatility distributions between the 

PMF and evaporation approach. This is mentioned but not discussed in the text. The 

figure is also very confusing since there are overlaps in the volatility of the different 

PMFfactors (i.e. one you don’t show a volatility distribution of the PMF factors). I think it

would be much clear if you lumped the factors together into a volatility 

distribution,using the colors to indicate the contribution of each factor to each bin (i.e. 

the volatility distribution would have stacked colored bars). Compared to Figure 2, there

is better agreement in Figure 3 when the offers have lumped in the material into larger 

bins wider than one order of magnitude. That seems encouraging, but this lumping 

process and its justification was not\discussed in the text.

Answer: In Figure 2 we show the information from PMF analysis that we utilized in the model 

simulations. Therefore, the range of C* values for each factor is an important piece of 

information and we find that combining the factors in stacked bars would not convey this 

information as directly. Our motivation for the lumping process was that when we examine the 

“raw” volatility distribution of Figure 2, it is not evident if the two VD are similar as the reviewer 

also points out. One issue complicating the comparison is that the PMF analysis does not set 

uni-distant C* values for the factors. The second point is that the FIGAERO samples can 

differentiate compounds with C* values below -2. These compounds do not evaporate under 

the investigated isothermal evaporation conditions and are thus already grouped into the 



lowest volatility bin in VDevap. We lumped both volatility distributions to volatility classes to study

the similarities between the distributions on a qualitative level. The justification for the choice of

these volatility classes is given in lines 325-328 of the manuscript. Finally, as a quantitative 

comparison we study what kind of evapograms the “raw” (i.e. “non-lumped”) VD would 

produce. We have clarified our reasoning in the beginning of the results section on line 280-

283:

We investigate the VD both on a qualitative and quantitative level. On a qualitative level we compare 

the amount of matter of different C* intervals. On a quantitative level we study what is the evaporation 

behavior of the particles based on the determined VD and how they compare to the measured 

evaporation.

 

13. How different are the evapograms (Figure 4) when you use these different 

representations? A key issue is what level of information is there in the data. As I have 

discussed in earlier comment this problem seems very under constrained given the 

amount of data they have collected.

Answer: We do not use the three lumped volatility classes VD in the model simulations. The 

evapograms are always calculated with the “raw” VD (the one shown in Fig. 2). We hope that 

the modifications of the text mentioned above in comment 12 clarifies this.

14. Line 109 – What compounds were used to calibrate Tmax? The paper should 

provide a calibration curve showing these results.

Answer: We used polyethylene glycols (PEG) solutions in acetonitrile with 5 to 8 glycol units. 
As requested, we added the calibration curve and a brief description to the SI material.

15. Figure 4 – It is interesting that the PMF approach performs better for the mediumO:C

aerosol compared to the low O:C aerosol. The PMF approach overestimates the 

evaporation of the This is mentioned on line 327, but only briefly discussed ( line500). ∼7 data points that are fit to 

The authors speculate it may be due to viscosity or particle phase chemistry. It Would 

be good to think about whether this indicates a shortcoming of the approach. For 

example, could this be due to the CIMS not detected a larger fraction of the less 

oxygenated aerosol? (This is related to some earlier comments).

Answer:  The Figure 4 has changed in the revised version of the manuscript as we corrected 

the error in the Tmax-C* calibration. With the new parametrization it looks like the PMF approach

(VDPMF) performs better for the low O:C aerosol compared to medium O:C aerosol. In both 



oxidation conditions the evapogram calculated with VDPMF of the fresh samples shows less 

evaporation than the measurements or the evapograms calculated with VDevap.

The point raised by the reviewer is a valid one. The PMF method lumps all the organic 

compounds detected by the CIMS into preset number of factors. These factors are then 

treated as surrogate compounds when the evapograms are calculated with the LLEVAP model

in Fig. 4. Given that in VDPMF only one value is assigned to C* of every PMF factor, it is not 

surprising that the VDPMF does not produce an evapogram similar to the measurements.

Because the VDPMF underestimates the evaporation, it seems possible that the iodide CIMS 

does not detect some fraction of the less oxygenated organic compounds, as we mentioned in 

our answer to comment 6. In our work, we expect that majority of the compounds are detected 

in the CIMS and the disagreement between measured and simulated evapograms in Fig. 4 

comes from lumping the organic compounds into surrogate compounds in the PMF analysis or

from the uncertainty in the conversion of desorption temperature to C*.

16. Figure 8. Optimized results (around line 440). The agreement seems impressive,but I

suspect this is a just the result of fitting a model with lots of free parameters toa small 

set of data. Therefore, I am not surprised that the fit is great. If the fit is under 

constrained is this telling us anything about the technique? It was not clear if the 

authors had tested the applicability of the extracted values from this optimization 

against data the model had not been fit to? If this optimization is to be presented these 

issues must be discussed and some sort of cross-validation presented.

Answer: We agree that in the case of optimizing simultaneously C* and viscosity parameters 

there are a lot of free parameters (although neither C* or b i are completely free parameters as 

they are restricted with minimum and maximum values) and therefore the estimates of 

parameter values from such optimizations should be interpreted with caution. However, our 

motivation with the low RH case was not to derive a universal parameterization. Our interest 

with the low RH data was to perform a cross-validation using a parametrization developed 

previously based on measurements of glass transition temperature of various organic 

compounds (DeRieux et al., 2018). Such validations of parameterizations against SOA 

dynamics are of importance if the parameterizations are to be used in the future e.g. for 

interpreting ambient or laboratory measurements or in large-scale model simulations of SOA 

formation. Our results show that the viscosity of SOA can be captured with this parametrization

given the uncertainty in the parametrization and the C* values that we estimated using the 

same approach as with the high RH data. We have clarified our intent with the low RH 

experiments by adding following to lines 426-430



Our aim is to test if the slower evaporation, presumably due to higher viscosity of the SOA can be 

captured with a recently developed viscosity parametrization based on glass transition temperatures of 

various organic compounds (DeRieux et al., 2018). We also compare the results using the viscosity 

parametrization to an approach where we fit both the viscosity and VD to the evapogram.

17. Figure 8 –I interpret the dashed lines as the range of predications for the FIGAERO 

based approach (i.e., using the “theory” to predict viscosity). Is that correct? It is hard 

to tell what comparisons are based on truly independent comparison just using the 

FIGAERO versus fits of the data.

Answer: The reviewer is correct. We have added following clarification to the caption of Fig. 8

Grey  lines show the minimum and maximum possible evaporation calculated with VDPMF,dry (C* of PMF 

factors calculated from Tmax) and the highest (the original parametrization of DeRieux et al., (2018), 

grey dashed lines) or the lowest (30 K subtracted from the Tg of every ion, grey solid line) studied 

viscosity.

18. Figure 8. Can’t differentiate between grey and black dashed lines.

Answer: We have changed the color of both lines to grey and changed one line to be solid and

the other dashed.

References

Buchholz, A., Ylisirniö, A., Huang, W., Mohr, C., Canagaratna, M., Worsnop, D. R., Schobesberger,
S. and Virtanen, A.: Deconvolution of FIGAERO-CIMS thermal desorption profiles using positive 
matrix factorisation to identify chemical and physical processes during particle evaporation, Atmos. 
Chem. Phys. Discuss., doi:https://doi.org/10.5194/acp-2019-926, 2019a.

Buchholz, A., Lambe, A. T., Ylisirniö, A., Li, Z., Tikkanen, O.-P., Faiola, C., Kari, E., Hao, L., 
Luoma, O., Huang, W., Mohr, C., Worsnop, D. R., Nizkorodov, S. A., Yli-Juuti, T., Schobesberger, 
S. and Virtanen, A.: Insights into the O:C-dependent mechanisms controlling the evaporation of α-
pinene secondary organic aerosol particles, Atmos. Chem. Phys., 19(6), 4061–4073, 
doi:10.5194/acp-19-4061-2019, 2019b.

DeRieux, W.-S. W., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K., Nizkorodov, S. A. and 
Shiraiwa, M.: Predicting the glass transition temperature and viscosity of secondary organic 
material using molecular composition, Atmos. Chem. Phys., 18(9), 6331–6351, 
doi:https://doi.org/10.5194/acp-18-6331-2018, 2018.

Isaacman-VanWertz, G., Massoli, P., E. O’Brien, R., B. Nowak, J., R. Canagaratna, M., T. Jayne, J., 
R. Worsnop, D., Su, L., A. Knopf, D., K. Misztal, P., Arata, C., H. Goldstein, A. and H. Kroll, J.: 
Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: 



current capabilities and remaining gaps, Faraday Discussions, 200(0), 579–598, 
doi:10.1039/C7FD00021A, 2017.

Isaacman-VanWertz, G., Massoli, P., O’Brien, R., Lim, C., Franklin, J. P., Moss, J. A., Hunter, J. F., 
Nowak, J. B., Canagaratna, M. R., Misztal, P. K., Arata, C., Roscioli, J. R., Herndon, S. T., Onasch, 
T. B., Lambe, A. T., Jayne, J. T., Su, L., Knopf, D. A., Goldstein, A. H., Worsnop, D. R. and Kroll, J.
H.: Chemical evolution of atmospheric organic carbon over multiple generations of oxidation, 
Nature Chem, 10(4), 462–468, doi:10.1038/s41557-018-0002-2, 2018.

Iyer, S., Lopez-Hilfiker, F., Lee, B. H., Thornton, J. A. and Kurtén, T.: Modeling the Detection of 
Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization, J. Phys. Chem. A, 
120(4), 576–587, doi:10.1021/acs.jpca.5b09837, 2016.

Julin, J., Winkler, P. M., Donahue, N. M., Wagner, P. E. and Riipinen, I.: Near-Unity Mass 
Accommodation Coefficient of Organic Molecules of Varying Structure, Environ. Sci. Technol., 
48(20), 12083–12089, doi:10.1021/es501816h, 2014.

Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurtén, T., Worsnop, D. R. and Thornton, J. A.: An 
Iodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: 
Application to Atmospheric Inorganic and Organic Compounds, Environ. Sci. Technol., 48(11), 
6309–6317, doi:10.1021/es500362a, 2014.

Li, Z., Tikkanen, O.-P., Buchholz, A., Hao, L., Kari, E., Yli-Juuti, T. and Virtanen, A.: Effect of 
Decreased Temperature on the Evaporation of α-Pinene Secondary Organic Aerosol Particles, ACS 
Earth Space Chem., 3(12), 2775–2785, doi:10.1021/acsearthspacechem.9b00240, 2019.

Lopez-Hilfiker, F. D., Mohr, C., D’Ambro, E. L., Lutz, A., Riedel, T. P., Gaston, C. J., Iyer, S., 
Zhang, Z., Gold, A., Surratt, J. D., Lee, B. H., Kurten, T., Hu, W. W., Jimenez, J., Hallquist, M. and 
Thornton, J. A.: Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: 
Implications for IEPOX Derived SOA, Environ. Sci. Technol., 50(5), 2200–2209, 
doi:10.1021/acs.est.5b04769, 2016.

Mohr, C., Lopez-Hilfiker, F. D., Yli-Juuti, T., Heitto, A., Lutz, A., Hallquist, M., D’Ambro, E. L., 
Rissanen, M. P., Hao, L., Schobesberger, S., Kulmala, M., Mauldin III, R. L., Makkonen, U., Sipilä,
M., Petäjä, T. and Thornton, J. A.: Ambient observations of dimers from terpene oxidation in the gas
phase: Implications for new particle formation and growth, Geophysical Research Letters, 2958–
2966, doi:10.1002/2017GL072718@10.1002/(ISSN)1944-8007.GRLHIGHLIGHTS2017, 2018.

Pathak, R. K., Presto, A. A., Lane, T. E., Stanier, C. O., Donahue, N. M. and Pandis, S. N.: 
Ozonolysis of α-pinene: parameterization of secondary organic aerosol mass fraction, Atmos. 
Chem. Phys., 7(14), 3811–3821, doi:10.5194/acp-7-3811-2007, 2007.

Saleh, R., Donahue, N. M. and Robinson, A. L.: Time Scales for Gas-Particle Partitioning 
Equilibration of Secondary Organic Aerosol Formed from Alpha-Pinene Ozonolysis, Environ. Sci. 
Technol., 47(11), 5588–5594, doi:10.1021/es400078d, 2013.

Schervish, M. and Donahue, N. M.: Peroxy radical chemistry and the volatility basis set, Atmos. 
Chem. Phys., 20(2), 1183–1199, doi:10.5194/acp-20-1183-2020, 2020.

Vaden, T. D., Imre, D., Beránek, J., Shrivastava, M. and Zelenyuk, A.: Evaporation kinetics and 
phase of laboratory and ambient secondary organic aerosol., Proc. Natl. Acad. Sci. U.S.A., 108(6), 
2190–2195, doi:10.1073/pnas.1013391108, 2011.



Yli-Juuti, T., Pajunoja, A., Tikkanen, O.-P., Buchholz, A., Faiola, C., Väisänen, O., Hao, L., Kari, 
E., Peräkylä, O., Garmash, O., Shiraiwa, M., Ehn, M., Lehtinen, K. and Virtanen, A.: Factors 
controlling the evaporation of secondary organic aerosol from α-pinene ozonolysis, Geophys. Res. 
Lett., 44(5), 2016GL072364, doi:10.1002/2016GL072364, 2017.



Comparing  SOA  volatility  distributions  derived  from  isothermal
SOA particle evaporation data and FIGAERO-CIMS measurements

Olli-Pekka  Tikkanen1,2,3  ,  Angela  Buchholz1,  Arttu  Ylisirniö1,  Siegfried  Schobesberger1,  Annele
Virtanen1 and Taina Yli-Juuti1

1Department of Applied Physics, University of Eastern Finland, Kuopio, 70210, Finland
2  Department of Agricultural Sciences, University of Helsinki, Helsinki, 00790, Finland
3  Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of
Helsinki, Finland

Correspondence to: Olli-Pekka Tikkanen (olli-pekka.tikkanen@helsinki.fi)(op.tikkanen@uef.fi) 

Abstract. 

The volatility distribution of the organic compounds present in SOA at different conditions is a key quantity that has to be

captured  in  order  to  describe  SOA  dynamics  accurately.  The  development  of  the  filter  inlet  for  gases  and  aerosols

(FIGAERO) and its coupling to chemical ionization mass spectrometer (CIMS) has enabled near simultaneous sampling of

gas  and  particle  phases  of  secondary  organic  aerosol  (SOA) through thermal  desorption  of  the  particles.  The thermal

desorption data  has recently  been shown to be interpretable  as  a  volatility distribution with the use of  positive matrix

factorization  (PMF)  method.  Similarly,  volatility  distribution  can  be  inferred  from  isothermal  particle  evaporation

experiments, when  the particle size change measurements are analyzed with process modelling techniques. In this study we

compare the volatility distributions that are retrieved from FIGAERO-CIMS and particle size change measurements during

isothermal particle evaporation with process modelling techniques. We compare the volatility distributions at two different

relative humidity (RH) and two oxidation condition. At high RH conditions, where particles are in a liquid state, we show

that the volatility distributions derived the two ways are similarcomparable within reasonable assumption of uncertainty in

the effective saturation mass concentrations that are derived from FIGAERO-CIMS data. At dry conditions we demonstrate

the volatility distributions are comparable in one oxidation condition and in the other oxidation condition the volatility

distribution derived from the PMF analysis shows considerably more high volatility matter than the volatility distribution

inferred from particle size change measurements. We also show that the Vogel-Tammann-Fulcher equation together with a

recent glass transition temperature parametrization for organic compounds and PMF derived volatility distribution estimate

are consistent with the observed isothermal evaporation under dry conditions within the reported uncertainties. We conclude

that the FIGAERO-CIMS measurements analyzed with the PMF method are a promising method for inferring the organic

compounds’ volatility distribution, but care has to be taken when the PMF factors are interpreted. Future process modelling

studies about SOA dynamics and properties could benefit from simultaneous FIGAERO-CIMS measurements.
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1 Introduction

Aerosol particles have varying effects on health, visibility and climate (Stocker et al., 2013). Organic compounds comprise a

substantial amount of atmospheric particulate matter (Jimenez et al., 2009; Zhang et al., 2007) of which a major fraction is of

secondary  origin,  i.e.,  low-volatility  organic  compounds  formed  from  oxidation  reactions  between  volatile  organic

compounds  (VOCs)  and  ozone,  hydroxyl  radicals  and  nitrate  radicals  (Hallquist  et  al.,  2009).  The  aerosol  particles

containing these kind of oxidation products are called secondary organic aerosols (SOA) as opposed to primary organic

aerosols i.e. organic particles emitted directly to the atmosphere.  VOC oxidation reactions result in thousands of different

organic compounds (Goldstein and Galbally, 2007). A recent review by Glasius and Goldstein, (2016) pointed out that our

understanding of SOA is still lacking especially on formation and deposition, and their response to different physicochemical

properties of the organic compounds such as volatility. In addition, also the phase state of the organic compounds has been

shown to play a role in the SOA dynamics (Reid et al., 2018; Shiraiwa et al., 2017; Yli-Juuti et al., 2017; Renbaum-Wolff et

al., 2013; Virtanen et al., 2010)

 

The physicochemical  properties  of organic aerosols  can be studied directly and indirectly.  The Aerodyne Aerosol mass

spectrometer (AMS, Canagaratna et al., 2007; DeCarlo et al., 2006; Jayne et al., 2000) enabled direct and online composition

measurements  of  atmospheric  particles  for  the  first  time.  Combining  AMS  data  with  statistical  dimension  reduction

techniques such as factor analysis and positive matrix factorization  (PMF; Zhang et al.,  2011, 2007, 2005; Paatero and

Tapper, 1994) allowed researchers to draw conclusions on sources and types of atmospheric organic particulate matter from

the relatively complex mass spectra data.

The chemical ionization mass spectrometer (CIMS; Lee et al., 2014) coupled with the Filter Inlet for Gases and AEROsols

(FIGAERO-CIMS,  Lopez-Hilfiker et al., 2014) is a prominent online measurement technique to study both the gas and

particle  phases  of  SOA.  During  particle  phase  measurements,  a  key  advantage  over  the  AMS is  the  softer  chemical

ionization that retains much more of the molecular information of the compound than the electron impact ionization used in

the AMS. Typically, the collection of the particulate mass is conducted at room temperature which minimizses the loss of

semi-volatile compounds during collection. In addition to the overall chemical composition, the gradual desorption of the

particulate mass from the FIGAERO filter yields the thermal desorption behaviour of each detected ion, i.e., it is a direct

measure  of  each  ion’s  volatility.  FIGAERO-CIMS  measurements  have  been  carried  out  in  both  laboratory  and  field

environments to study SOA composition from different VOC precursors and in both rural and polluted environments (Breton

et al., 2018; Huang et al., 2018; Lee et al., 2018; D’Ambro et al., 2017; Lopez-Hilfiker et al., 2015). However, the volatility

information in these data sets have barely been used.
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Besides direct mass spectrometer measurements, SOA properties have been inferred indirectly from growth (e.g. Pathak et

al., 2007 and references therein)  and isothermal evaporation (Buchholz et al., 2019a; D’Ambro et al., 2018; Yli-Juuti et al.,

2017; Wilson et al., 2015; Vaden et al., 2011) measurements. The complexity of the organic compounds in these studies can

be alleviated with the use of a volatility basis set  (Donahue et al., 2006), where organic compounds are grouped based on

their (effective) saturation concentration. However, the experimental setup also defines the range of C*   values that can be

estimated from the data. for example,,as Vaden et al., (2011) and Yli-Juuti et al., (2017) have both shown that the volatility

basis sets derived from SOA growth experiments results in too fast SOA evaporation compared to measured evaporation

rates when the volatility basis set is used as input forin process models. Possible reasons for such discrepancies include the

different C*   ranges to which the SOA growth and SOA evaporation experiments are sensitive and the role of vapor wall

losses in SOA growth experiments. This raises a need for alternative methods to derive organic aerosol volatility against

which the volatilities inferred from the direct particle size measurements can be compared to.

Recently, Buchholz et. al., (2019b) demonstrated that the FIGAERO-CIMS measurements during particle evaporation can be

mapped to a volatility distribution of organic compounds by conduction a PMF analysis. On the other hand,  Tikkanen et al.,

(2019) showed  that  the  volatility  distribution  can  be  inferred  from  isothermal  particle  evaporation  measurements  by

optimizing evaporation model input to match the measured evaporation rate at different humidity conditions. In this study,

we compare these two approaches for varying oxidation and particle water content conditions. Our main research questions

are  1)  Are  the  volatility  distributions  derived  from  particle  size  change  during  isothermal  evaporation  and  from  the

FIGAERO-CIMS measurements similarcomparable? 2) How to interpret the PMF results of FIGAERO-CIMS data in terms

of volatility? 3) Can a recently published glass transition temperature parametrization (DeRieux et al., 2018) combined with

the PMF analysis be used to model particle phase mass transfer limitation observed in evaporation at dry conditions, i.e., in

the absence of particle phase water? 

2 Methods

2.1 Experimental particle evaporation data

The experimental data we use is the same as reported in Buchholz et al., (2019a,b). We briefly summarize the measurement

setup below. We generated the particles with a Potential Aerosol Mass (PAM) reactor (Kang et al., 2007; Lambe et al., 2011)

from the reaction of  α-pinene with O3 and OH at three different oxidation levels (average oxygen-to-carbon O:C ratios of

0.53, 0.69, and 0.96). We focus on the lowest O:C (0.53) and medium O:C (0.69) experiments in this work . The closer

analysis of the high O:C experiments suggest particle phase reactions during the evaporation (Buchholz et al., 2019a,b). To

avoid the uncertainty that would arise from unknown particle phase reactions, we chose not to include the high O:C data in

our analysis. 
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We chose  a  monodisperse  particle  population (mobility  diameter  dp  = 80 nm) with two nano tandem type  differential

mobility analyzers (nano-DMA; TSI inc., Model 3085) from the initial polydisperse particle population. The size selection

diluted the gas phase initiating particle evaporation. The monodisperse aerosol was left to evaporate in a 100 L stainless steel

residence time chamber (RTC). We measured the particle size distribution during the evaporation with a scanning mobility

particle sizer (SMPS; TSI inc., Model 3082+3775). The RTC filling took approximately 20 minutes and we performed the

first size distribution measurement inat the middle of the filling interval. To obtain short residence time data (data before 10

minutes of evaporation) we added a bypass to the RTC which led the sample directly to the SMPS. By changing the length

of the bypass tubing, we were able to measure the particle size distribution between 2 s and 160 s of evaporation. We

measured the isothermal evaporation up to 4 – 10 hours depending on the measurement. We performed the measurements for

each oxidation level both at high relative humidity (RH = 80%) and at dry conditions (RH < 2 %). The change in particle

size with respect to time are called evapograms. In an evapogram, the horizontal axis presents evaporation time and vertical

axis shows the evaporation factor (EF), i.e., measured particle diameter divided by the initially selected particle diameter.

To classify the oxidation level of the particles, we derived the average O:C ratio from composition measurements with a

High-Resolution  Time-Of-Flight  Aerosol  Mass  Spectrometer  (AMS,  Aerodyne  Research  Inc.).  Further,  we  conducted

detailed  particle  composition  measurements  with  an  Aerodyne  Research  Inc.  FIGAERO,  (Lopez-Hilfiker  et  al.,  2014)

coupled with a chemical ionization mass spectrometer (CIMS) with iodide as the reagent ion (Aerodyne Research Inc., Lee

et al.,  2014).  Previous studies using FIGAERO-CIMS with iodide as the reagent ion found 50% or better mass closure

compared to more established methods of quantifying OA mass (albeit with high uncertainties; Isaacman-VanWertz et al.,

(2017); Lopez-Hilfiker et al.,  (2016)).  Therefore,  it  appears  that  the bulk of reaction products expected from a-pinene

oxidation contains the functional groups required for detection by our FIGAERO-CIMS.

 In the FIGAERO inlet, particles are first collected on a PTFE filter. Then the collected particulate mass desorbs slowly due

to gradually heated nitrogen flow which is then transported into the CIMS for detection. We derived the average chemical

composition of the particles by integrating the detected signal of each ion over the whole desorption interval. For each ion,

the change  of  detected  signal  with desorption  temperature  is  called  thermogram and generally,  the  temperature  at  the

maximum of the thermogram (Tmax) is correlated to the volatility of the detected ion. Similar to Bannan et al., (2019) and

Stark et  al.,  (2017),  we calibrated the Tmax -  volatility relationship using compounds with known vapour pressure. The

calibration procedure is described in the supplementary material.

We collected  particles for  FIGAERO-CIMS analysis at two different stages of the evaporation. We refer to these samples

stages as either “fresh” or “RTC” samples. The fresh samples were collected for 30 minutes directly after the selection of the

monodisperse population. The RTC samples were collected after 3 to 4 hours of evaporation in the RTC for 75 minutes. The
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collected particulate mass was 140–260 ng and 20–70 ng for fresh and RTC samples, respectively.  More details  about

sample collection, desorption parameters, and data analysis can be found in Buchholz et al., (2019a).

2.2 The volatility distribution

We represent the myriad of organic compound in the SOA particles with a one-dimensional volatility basis set (1D VBS,

below only VBS, Donahue et al., 2006). The VBS groups the organic compounds into ‘bins’ based on their effective (mass)

saturation  concentration  C*,  defined  as  the  product  of  the  compounds activity  coefficient  and  saturation concentration.

Generally, a bin in the VBS represents the amount of organic material in the particle and gas phases. In our study, the walls

of the RTC have been shown to work as an efficient sink for gaseous organic compounds (Yli-Juuti et al., 2017). Thus, we

can assume that the gas phase in our experimental setup does not contain organic compounds, i.e., the amount of organic

matter in a bin is the amount in the particle phase. To distinguish from a traditional VBS that groups the organic compounds

to bins where there is  a decadal  difference in C* between two adjacent bins,  we call  the VBS in our work a volatility

distribution (VD). We present the amount of material  in each VD bin as dry mole fractions,  i.e.,  mole fractions of the

organics, excluding water. In the analysis presented below, we assign properties to each VD bin (e.g. molar mass) treating

each  bin as  if  it  consisted of  only a single organic  compound with a  single set  of  properties.  We label  these pseudo-

compounds as “VD compounds” to distinguish them from real organic compounds. The physicochemical properties of each

VD compound are listed in Table 1 as well as the ambient conditions of each evaporation experiment.

2.3 Deriving volatility distribution from an evapogram

We followed the similar approach as in Yli-Juuti et al., (2017) and Tikkanen et al., (2019) to derive a VD at the start of the

evaporation from an evapogram. To model the evaporation at high RH, we used a process model (liquid-like evaporation

model, hereafter LLEVAP) that assumes a liquid-like particle, i.e., a particle where there are no mass transfer limitations

inside the particle and where the rate of change of the mass of a VD compound in the particle phase can be calculated

directly from the gas phase concentrations of this VD compound near the particle surface and far away from the particle

(Vesala et al.,  1997; Lehtinen and Kulmala,  2003; Yli-Juuti et al.,  2017). In this case,  the main properties defining the

evaporation rate are the saturation concentrations of each VD compound and their amount in the particle.

We used the LLEVAP model to characterize the volatility ranges interpretable from the evaporation measurements.  We

calculated the limits by modelling evaporation of  a  hypothetical  particle  that  consists of one organic compound at  dry

conditions iterating the range of  log10  (C*) values from -5   to 5. We determined the minimum C* value with “detectable

evaporation”, i.e., at least 1% change in particle diameter during the evaporation time (up to 6 h) and the maximum C* value

before “complete evaporation” occurred, i.e., 99% evaporation within 10 s. The minimum  log10  (C*) calculated with this

method  was  -3  μgmgm-3 and  the  maximum  log10  (C*)  was  2.  We  then  modelled  the  particle  composition  with  six  VD

compounds with C* values between these minimum and maximum values. Each VD compounds has a decadal difference in
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C* to adjacent VD compounds (the traditional VBS). We note that based on this analysis all the compounds with  log10 (C*) <

-3 will not evaporate during the experimental time scale. This means that any compounds with lower C * than this threshold

will be assigned to the  log10 (C*)= -3 VD compound. Similarly, any compound with log10 (C*) > 2  will be classified into the

log10 (C*)= 2 VD compound or not be detected at all due to evaporating almost entirely before the first measurement point.

We calculated the dry particle mole fraction of each VD compound at the start of the evaporation by fitting the evaporation

predicted with the process model to the measured evapograms. Our goal was to minimize the mean squared error in vertical

direction between the experimental data and the LLEVAP output. We used the Monte Carlo Genetic Algorithm (MCGA,

Berkemeier et al., 2017; Tikkanen et al., 2019) for the input optimization.  In the optimization, we set the population size to

be 400 candidates, number of elite members to 20 (5% of the population), number of generations to 10, and number of

candidates drawn in the Monte  Carlo (MC) part to 3420 which corresponds to half of the total process model evaluations

done during the optimization. We performed the optimization 50 times for each evapogram and selected the best fit VD

estimate for further analysis.

The VD derived from the evapograms are hereafter referred to as the VDevap. The initial composition of the SOA particles in

the dry and wet experiments were the same and can be described by the same fitted VDevap as the particles were generated at

the same conditions in the PAM and only the evaporation conditions changed. 

2.4 Deriving volatility distribution from FIGAERO-CIMS measurement

As shown by Bannan et al., (2019) and Stark et al., (2017), the peak desorption temperature, Tmax, can be used together with

careful calibration to link desorption temperatures from the FIGAERO filter to C * values for the detected ions. In principle,

this would allow us to assign one C* value to each ion thermogram. But this assumes that one detected ion characterized by

its exact mass is indeed just one compound. In practice, this is not always the case and for some ion thermograms a bimodal

structure or distinct shoulders/broadening are visible. This can be caused by isomers of different volatility which cannot be

separated even by high resolution mass spectra. 

Another complication arises due to the thermal desorption process delivering the collected aerosol mass into the CIMS.

Especially multi-functional, and hence low volatility compounds may thermally decompose before they desorb from the

filter, and thus be detected as smaller ions. The apparent desorption temperature is then determined by the thermal stability

of the compound and not its volatility. Typically, this decomposition processes start at a minimum temperature and will not

create a well-defined peak shape (Buchholz et al.,  2019b,  Schobesberger et al.,  2018) presumably because an observed

decomposition  product  may  have  multiple  sources,  especially  when  including  all  isomers,  and  the  ion  signal  for  the

respective composition may overlap with the signal of isomers derived from true desorption. E.g., a true constituent of the

SOA  particle  may  give  rise  to  an  observed  main  thermogram  peak,  but  it  may  be  broadening  and/or  tailing  if  a
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decomposition product has the same composition. By ignoring this and simply using the Tmax values, the true volatility of the

SOA particle constituents will be overestimated, i.e., the derived VD will be biased towards higher C* bins.

One more potential source of bias is our implicit assumption of a constant sensitivity of the CIMS towards all compounds,

which follows from the lack of calibration measurements for our datasets (which indeed is a challenging endeavour; e.g.,

Isaacman-VanWertz et al., (2018)). It is plausible that less volatile compounds tend to be detected at higher sensitivity

(Iyer et al., 2016; Lee et al., 2014), up to a kinetic limit sensitivity. Consequently, a volatility distribution derived from

FIGAERO-CIMS thermograms may be biased towards lower volatility (C*   bins), at least for compositions not associated

with thermal decomposition.

To  separate  the  multiple  sources  possibly  contributing  to  each  ion  thermogram  (isomers  and  thermal  decomposition

products), we applied the Positive Matrix Factorisation (PMF, Paatero and Tapper, 1994) to the FIGAERO-CIMS data set.

PMF is  a  well-established  mathematical  technique  in  atmospheric  science  mostly  used  to  identify  the  contribution  of

different sources of aerosol particle constituentss or trace gases in the atmosphere. PMF represents the measured matrix of

time-series of mass spectra, X, as a linear combination of a (unknown) number of constant source profiles, F, with varying

contributions over time, G:

X=G⋅F+ E (1)

E is a matrix containing the residuals between the measured (X) and the fitted data (G F⸱F ). Values for G and F are found by

minimising this residual, Eij, scaled by the corresponding measurement error, Sij, for each ion i at each time j

Q=∑
i=1

m

∑
j=1

n

(
Ei , j

S i , j
) (2)

Each row in F contains a factor mass spectrum and each column in G holds the corresponding time series of contribution by

each factor. In the case of FIGAERO-CIMS data, the time series is equivalent to the desorption temperature ramp during the

thermogram, and will be called “mass loading profile” below. The absolute values (temperature or time) are irrelevant for the

performance of PMF as the “x values” are only used to determine the order of the data points but have no influence on the

model output (Paatero and Tapper, 1994). This allowed us to combine multiple separate thermogram measurements into one

data set and conducting a PMF analysis. This simplified the comparison of factors between measurements. More details

about the PMF method in the specific case of FIGAERO-CIMS data can be found in Buchholz et al., (2019b).

Once the PMF algorithm was applied to the FIGAERO-CIMS data we calculated the VD from the mass loading matrix G.

We interpolated each factor’s mass loading profile with a resolution of 100 sample points between two temperature steps to

gain sufficient statistics for further analysis. Tmax was determined as the temperature of the maximum of the factor mass

loading series. We integrated the factor mass loading profile and defined the temperatures where the value of the integral
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reaches 25% and 75% of its maximum value. This temperature interval formed the factors desorption temperature range  and

the corresponding C*   values will be used in Sect. 3.3. We converted the Tmax values into  a C*  values and the desorption

temperature  range  into  a  C*  range  with  thea parametrization  based  derived  from  calibration  measurements (see

Supplementray material for details) with organic compounds with known C* values.

C*
=

exp (α+βT factor )M org

R T ambient

109
(3)

where C*
 is the effective saturation concentration in units μgmgm-3, Morg is the molar mass of the organic compound assumed to

be Morg = 0.2 kg mol-1, R is the universal gas constant, Tfactor (in °C in Eq. 3) is the temperature of thein mass loading profile

and Tamibent (in Kelvin in Eq. 3) is the ambient temperature where the evaporation happens (see Table 1), α and β are the fitted

coefficients from the calibration data α=(-1.431±0.310.618±3.739) and β=(9±0.0035-0.1-0.207±0.006)  °CK-1. We applied

the lower and higher bounds of the fitting coefficients’ uncertainty when we calculated the minimum and maximum for the

allowed C* range invalues in Sect 3.3. Finally, the signal fraction of each factor was calculated by dividing the integral of a

factor’s signal over the whole temperature range with the sum of integrals of all factors’ signalsall factors. We compare this

signal fraction to the dry mole fraction in the VDevap. We refrained from converting the counts per second signal into moles

as no adequate transmission and sensitivity measurements were available for the used FIGAERO-CIMS setup. We refer the

volatility distribution calculated from the PMF data using the Tmax values of each factor as VDPMF later in this work.

With  Eq. (3)Tmax calibration the,  we can calculate  the minimum and maximum C* values  that  can be resolved from a

FIGAERO thermogram. The desorption temperature was ramped between 27 °C and 200 °C, but defined peaks (and thus

Tmax values can be detected only between 30 and 180 °C. Thus, the resolvable log10 (C*) values range from 1.6 to -11.91.7 to

-11.1. It has to be kept in mind that strictly this calibration only applies to the Tmax values of a single ion thermogram.

2.5 Modelling particle viscosity at dry conditions

To model the mass transfer limitations observed in the evaporation measurements at dry conditions (Buchholz et al., 2019a)

we used the Kinetic multilayer model for gas particle interactions (KM-GAP;  Shiraiwa et al.,  2012) with modifications

described in  Yli-Juuti et al.,  (2017) and Tikkanen et al., (2019).  The main modifications to the original model was that

during evaporation the topmost layer (the quasi static surface layer) merges with the first bulk layer if the thickness of the

layer is smaller than 0.3 nm. We calculated the viscosity at each layer of the particle as

log10(ηj)=∑
i=1

N

Xmole ,i , j log10(bi),  (4)

where Xmole,i,j is the mole fraction of the VD compound i in layer j and bi is a coefficient that describes the contribution of 

each VD compound to the overall viscosity.
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Since we generated the particles in the same environment (PAM chamber)  and only  the  evaporation  happeneded th at

different conditions, the VD at the start of the evaporation derived from high RH data represents also the composition at the

start of the evaporation at dry conditions. Then we can use the best fit VD evap from the high RH data as input for KM-GAP

and fit the bi values in Eq. (4) to the dry data set. We set the minimum and maximum allowed values for b i to 10-15
 and 1020,

respectively. To estimate the bi  values when modelling the evaporation with VDPMF at dry conditions, we calculated these bi

terms using the mass spectra of each factor (F in Eq. 1) and the Vogel-Tammann-Fulcher (VTF) equation (DeRieux et al.,

2018; Angell, 2002, 1995) 

ηi=η∞exp (
T 0 ,i D

T−T0 , i
) , (5)

where ηi is the viscosity of a VD compound / PMF factor i which can be seen as a proxy for bi in an ideal solution, η∞ is the

viscosity at infinite temperature, T0,i is the Vogel temperature of i, and D is a fragility parameter. Setting η∞ = 10-5
  Pa s and

η(Tg) = 1012 Pa s  (e.g. DeRieux et al., 2018; Gedeon, 2018), where Tg is the glass transition temperature of a compound

yields 

T 0 ,i≈
39.14 T g , i

39.14+D
. (6)

We calculated  Tg for  every  compound in the PMF mass spectra  with a  parametrization  for  SOA matter  developed by

DeRieux et al.,  (2018). We then computed Tg for each PMF factor as a mass fraction weighted sum of glass transition

temperatures of individual compounds (DeRieux et al., 2018; Dette et al., 2014). Based on the Tg,i for each PMF factor we

calculated the viscosity of each PMF factor with Eqs. (5) and (6) and used them as an approximation for b i. We used fragility

parameter value D = 10 according to DeRieux et al., (2018).

3 Results

In this section we first focus on the high RH experiments where evaporation is modelled with the LLEVAP model. We will

first compare  VDevap  and VDPMF when the C* of a PMF factor is determined from the factor’s Tmax. Then, we compare the

volatility distributions where the C* of a PMF factor is determined as athe range from the 25th and 75th percentile desorption

temperatures.  Lastly,  we  studycompare the volatility  distributions at  dry  conditions. We investigate the VD both on a

qualitative and quantitative level. On a qualitative level we compare the amount of matter of different C*   intervals relevant

for the evaporation process. On a quantitative level we study what is the evaporation behavior of the particles based on the

determined VD and how they compare to the measured evaporation.
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3.1 PMF solution interpretation

Figure S21 and Fig S2 shows all mass loading profiles derived from FIGAERO-CIMS measurements  of evaporation of

medium and low O:C particles at high RH. The corresponding factor mass spectra can be found in Fig. S33 and Fig. S44. A

key step in any PMF analysis is determining the “right” number of factors as this can affect the interpretation of the results.

A 7-factor solution was chosen for the medium O:C cases and a 9-factor solution for the low O:C ones (see Buchholz 2019b

for details). Two additional factors in the low O:C case were needed to capture a contamination on the FIGAERO filter

during the  dry,  fresh  sample  (factors  LC1 and LC2 in  Fig.  S21 and  Fig.  S42).  As  these  two factors  were  clearly  an

artifactartefact introduced by the FIGAERO filter sampling, we omitted their contribution  the data setfrom for the following

analysis. From careful comparison of the factor profiles and mass spectra with filter blank measurements, we determined that

factor MB1 in medium O:C case and factor LB1 in low O:C case describe the filter/instrument background and are thus also

excluded from the VD comparison presented below.

Factors 1-5 in both O:C cases  exhibit a monomodal peak shape and can thus be characterizsed by their Tmax values, factor

MD1 in medium O:C case and factor LD1 in low O:C case needs to be investigated more closely, as its factor mass spectrum

and the sometimes bimodal mass loading profile suggest that this factor contains compounds stemming from both direct

desorption (desorption T<100 °C) and thermal decomposition (desorption T >100 °C, see Buchholz et al., 2019b for details).

To account for this, the factor is split into two with the first half containing the signal from desorption temperature below

100  °C (factor  M/LD1a)  and  the  second  half  containing  that  above  100  °C (factor  M/LD1b).  We  treat  these  factors

separately. We note that now the latter half of the split factor is dominated by thermal decomposition products so that the

apparent desorption temperature is actually the temperature at which thermal decomposition leads to products which desorb

at this temperature. This apparent desorption temperature is thus a lower limit for the decomposing parent compound, i.e.,

the true volatility of these parent compounds is even lower. However, the desorption temperatures are so high that they lead

to log10(C*) < -3  and are thus below the comparable range for VDevap. Figure 1 (high RH data) and Fig. S105 (dry condition

data)  show the mass loading profiles  derived from FIGAERO-CIMS measurements  of medium and low O:C particles’

evaporation after we excluded the contamination and background factors and split the decomposition factors.

3.2 Volatility distribution comparison at high RH based on factor Tmax

To compare VDevap and VDPMF, we need to determine the time interval in the evapogram that the VDPMF represents. We

collected the fresh samples directly after the size selection. As the particles were collected on a filter for 30 minutes, the

collected sample represents particles that have evaporated from 0 up to 30 minutes in the organic vapour free air. We note

that  this  is  different  from  the  standard  FIGAERO-CIMS  sample  collection  where  particles  are  collected  in  a  quasi-

equilibrium with the surrounding gas phase and no significant evaporation occurs  (Lopez-Hilfiker et al., 2014). For RTC
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samples, we need to consider also that not all particles have evaporated for the same time due to the filling of the RTC for ca.

20 minutes. We determined the minimum time the particles have evaporated in the RTC as the time when we started the

sample collection minus the RTC filling time. We determined the maximum evaporation time in the RTC to be the time

when we stopped the sample collection plus the filling time. These minimum and maximum comparison times are shown in

Table S12 and they are referred to as minimum and maximum (sample) evaporation time. The mean (sample) evaporation

time is defined to beIn addition, we also compare the volatility distributions at the middle of the sample collection interval,

i.e., the mean (sample) evaporation time. For simplicity we will show in the main text the results from analysis where the

FIGAERO-CIMS samples were assumed to represents the particles at the mean sample evaporation time. We show the

analysis where the samples were assumed to represent the particles at minimum and maximum evaporation time in the

supplementary material.

Figure 2 shows VDevap and VDPMF  for medium (Fig. 2a-b) and low O:C (Fig. 2c-d) particles at high RH. In the VDPMF

calculated from Tmax, values of each factor (black crosses), the factors fall into three different volatility classes within our

chosen particle size and experimental time scale: practically non-volatile (log10(C*) ≤ -2), slightly volatile ( -2 < log10(C*) ≤

0,) and volatile (log10(C*) > 0). We use these three volatility classes to compare the volatility distributions in Fig. 3 where

each VD compound are grouped to these three volatility classes. Figure 3 presents the VDPMF where C* of each factor is

calculated from the Tmax value and compares this VDPMF  to what VDevap is at the  minimum,  mean and maximum time the

FIGAERO samples had evaporated. We show the same comparison for minimum and maximum evaporation time in Fig. S5

and Fig. S6.

After the volatility class grouping is applied, we see that there are differences between VDevap and VDPMF. With VDPMF of the

fresh samples there are excess amount of matter  in the lowest volatility class (volatility class 1) and less material in the

volatility class 2 compared to VDevap. In both oxidation condition. there is an excess amount of matter in the highest volatility

class (volatility class 3) of the VDPMF compared to the VDevap  In addition, the low O:C fresh sample shows more material in

the volatility class 3 in VDPMF  compared to VDevap.in all the cases. Fig. 3) the VDPMF does not directly match any of the

VDevap. For particles with medium O:C, VDPMF shows more contribution of  volatility class 2 and less of in volatility class 1

compared to VDevap. and Fig. 3), the VDPMF seems to be the closest to the VDevap at the very start of the evaporation. With the

RTC samples (Fig. 3band  With the fresh samples (Fig. 3 

To investigate the observed discrepanciesy furthermore detailed, we used the VDPMF shown in Fig 2 as an input to  for the

LLEVAP model and calculated the corresponding isothermal evaporation behavior (i.e. the evapogram). We show these

simulated evapograms in Fig. 4a for the medium O:C case and in Fig 4b for low O:C condition together with the simulated

evapogram calculated  using  VDevap as  an  input  forfor the  LLEVAP model. The  derived  VDPMF represents  the  particle

composition averaged over the sample collection interval. To account for this, we run the model by starting the evapogram
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simulations  calculated  with  VDPMF either  at  the  start  of  this  interval  (minimum isothermal  evaporation  before  sample

collection),  at  the  mean  (mean  isothermal  evaporation  before  sample  collection),  or  at  the  end  (maximum isothermal

evaporation before sample collection). The simulated evapograms calculated with VDPMF of the fresh samples do not match

the measured evapograms predicting less evaporation, while the evapogram calculated with VDevap agrees well with the

experimental evapogram (black lines in Fig. 4), as  we expected since this iswas the goal of the VDevap determination. The

simulation calculated with VDPMF of the fresh sample (light blue lines in Fig. 4 for mean evaporation time and Fig. S7 for

other evaporation times) shows slower evaporation than the observations or the simulation calculated with VD evap.. This is

consistent with the results show in Fig. 3 where the VDPMF contained more low volatility material than the VDevap. ). If VDPMF

is set to be the particle composition at mean or maximum evaporation time the simulated evaporation is faster than the

measured one.  4 as the particle composition at minimum evaporation time, the simulated evaporation is slower than the

measured evaporation (light blue lines in Fig. ’If we take the VDPMF of the fresh samples

Figure 4 shows also the simulated evapograms calculated with VDPMF of the RTC samples (light brown lines in Fig. 4 and

Fig. S7). in these cases, the particles size decreases little within the simulation time scale. With medium O:C particles, the

simulated evaporation matches wellbetter to the measured evaporation. than the simulations calculated with the VDPMF of the

fresh sample although the simulated evapograms shows a slightly higher rate of evaporation than what is measured.  With

low O:C particles,  the evaporation calculated  with VDPMF is  too fast.  The shape of the evapogram does not match the

measured one.

3.3 Applying desorption range to characterize the volatility of PMF factors

The Tmax value is a practical choice for the characteristic temperature of the desorption process. However, as we saw on Sect.

3.21 the VDPMF calculated from the peak desorption temperatures did not produce the measured evapogram when used as an

input to the LLEVAP model. Working under the assumption that all material collected on the FIGAERO filter, including the

higher volatility material, is detected in the CIMS and then captured in the PMF analysis we will relax the assumption that

the volatility of the factor is characterized strictly by the  Tmax value of the factor and investigate the VDPMF  further. We will

explore how the VDPMF changes when the desorption temperature and the resulting C* are interpreted to contain uncertainty

and  if  the  VDPMF considering  these  uncertainty  ranges  is  consistent  with  the  observed  isothermal  evaporation.  The

uncertainty in the desorption temperature raises from the facts that compounds volatilizevolatilise  from the FIGAERO filter

throughout the heating and, therefore, one value might not be adequate to characterize the C * of a factor and that each PMF

factor contains multiple compounds with distinct C*.

We calculated the 25th and 75th percentiles of the desorption temperatures of each factor  and converted them to effective

saturation concentrations as described in section 2.4 (see diamond markers in Fig. 1). We show the resulting C* ranges in Fig.

2 as horizontal solid lines where the line colour matches the  factor’s colour of the factors in Fig. 1. We then ran MCGA
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optimization by setting a number of compounds equal to the number of PMF factors, molar fraction for each compound at

the FIGAERO-CIMS sampling time fixed to the molar fraction of the corresponding factor and set the C* as the optimized

variables restricted to the range corresponding to the 25th and 75th percentile desorption temperature. In the optimization the

goodness-of-fit statistics was calculated as a mean squared error similar to the determination of VDevap.

As the fresh samples were collected between 0 and 30 minutes from the start of the evaporation, we sought for a fitting set of

C* values  for for evaporation starting at 0, 15, and 30 minutes. We show the results for the mean sample evaporation time

(15 min) in the main text and the other evaporation times  in the supplementary material. Due to scarcity of particle size

measurements at collection time of the RTC sample, we will apply this analysis only to the VD PMF of the RTC sample at its

minimum evaporation time. In each optimization we set the initial particle diameter to be the same as what is simulated with

VDevap. We derived 50 C* estimates for both samples and each evaporation time. From these 50 estimates we chose the best

fit evapogram. We refer to these optimized volatility distributions as VDPMF,opt to separate them from the VDPMF  where we

used Tmax to characterize C* of a PMF factor.

We  show the  optimized  C* values  forming  VDPMF,opt in  Table  23 (see  Table  S2  for  minimum and  maximum sample

evaporation times) for all the studied cases. Figure 5a shows the best fit evaporation simulations calculated with VDPMF,opt of

the medium O:C fresh sample. The other sample evaporation times are displayed in the supplementary material Fig. S8. All

the  simulated  evapograms For  both  oxidation  condition,  the  simulations  were  the  fresh  sample  is  set  to  represent  the

evaporating particles at mean or maximum sample evaporation time resemble the experimental evapogram and evapogram

calculated with VDevap,. although the simulation in medium O:C condition shows a 5 times larger goodness-of-fit compared to

the simulation calculated with VDevap. The simulations starting from maximum evaporation time of the fresh samples show

similar results while the simulations starting from the minimum sample evaporation time results in too slow evaporation

(Fig. S8). The evapograms determined with the VDPMF,opt of the RTC samples agree with the measured evaporation as well.

shows faster evaporation than the measurements. 

 from the point of 30 minutes of isothermal evaporation does not match the measured evapogram butmatch the experimental

evapogram and the simulated evapogram using VDevap as input. The evapogram using VDPMF,opt startings. The evapograms

initialized at 0 min and15 min  low O:C sampleforhe simulated evapograms calculated with VDPMF,opt Figure 5b shows t

For finding the VDPMF,opt for the low O:C RTC sample starting at  minimum sample evaporation time (168 minutes) we

needed to exclude factor LD1a from the calculations to be able to derive the VDPMF,opt. As Buchholz et al., (2019b)  reported,

the mass spectrum of factor LD1a is dominated by compounds that come from the FIGAERO filter / instrument background.

In low O:C RTC sample factor L1a is present at such high relative signal strength that its mole fraction is significant to other

factors even though the absolute signal strength does not change drastically between the fresh and the RTC sample. The high

relative  contribution  of  factor  LD1a  is  most  probably  due  to  the  low amount  of  organic  matter  available  for  sample

collection. 
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Overall,  these  results  demonstrate  that  the information derived from the fresh  and RTC FIGAERO-CIMS samples  can

describe  the volatility composition of  the  evaporating  particles,  when  uncertainty  in  the  desorption  temperature  are

considered.

3.4 Comparison of the volatility distribution of the fresh and RTC sample at high RH

In this section, we compare VDPMF,opt of the fresh samples to VDPMF of the RTC sample to study  ifare the two VD are

comparablesimilar.  We  compare  the  two  VD  at  the  mean  evaporation  time  of  the  RTC  sample.  We  calculated  the

evapograms with VDPMF,opt  of the fresh sample as the initial particle composition starting from different sample evaporation

times and recorded the mole fraction of each factor at mean evaporation time of the RTC sample (216 minutes for medium

O:C particles and 211 minutes for low O:C particles). Figure 6a and Fig. 6c show this comparison for both medium O:C and

low O:C particles. where t The factors are grouped  into the three volatility classes described in Sect. 3.2. In Fig. 6 we show

the results from the analysis where VDPMF,opt was optimized by assigning the fresh sample composition at the mean sample

evaporation time. Similar comparison using minimum and maximum evaporation time of the fresh sample is given in Fig.

S9. To ensure that the factors are grouped to the same volatility classes for each studied VD, we used the C* values of the

VDPMF,opt at mean sample evaporation time as basis according to which the grouping is done.

Assuming that the fresh sample represents particles from the middle of the sampling interval (mean evaporation time), the

compositions simulated based on the VDPMF,opt  of the fresh samples are comparable to the corresponding VDPMF of the RTC

sample in both oxidation conditions (Fig. 6). The agreement is good especially for the low O:C case for which the VDPMF,opt

show a slightly smaller contribution in volatility class 1 and corresponding higher contribution in volatility class 2 compared

to the VDPMF of the RTC sample (Fig. 6c). For medium O:C case, the VDPMF,opt predicted higher contribution of volatility

class 1 and lower contribution of volatility class 2 compared to VDPMF (Fig 6a). ForIn mediumboth O:C conditionslevels, the

agreement between VDPMF,opt and VDPMF improved when using the VDPMF,opt of maximum fresh sample evaporation time,

while VDPMF,opt of  minimum  fresh  sample  evaporation  time  show  higher  contribution  of  volatility  class  2  and  lower

contribution of volatility class 1 compared to than the VDPMF of the RTC sample. Contrary, the VDPMF,opt of maximum fresh

sample  evaporation  time in  the  medium O:C case  (Fig.  6a)  shows higher  contribution of  volatility  class  1  and  lower

contribution of volatility class 2 than the VDPMF of the RTC sample. These results show that even though we calculated the

VDPMF,opt starting from the minimum and maximum possible sample evaporation time, the VDPMF,opt of the fresh samples are

consistent with the RTC samples only if  the VDPMF,opt represents  particle composition around the middle of the sample

collection interval.

These results show that the particle composition measured after few hours of evaporation is consistent with the composition

predicted based on composition observed at the start  of evaporation and considering uncertainties of the interpreted C*
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values. The level of the agreement changes depending on which evaporation time the fresh FIGAERO-CIMS sample is

assumed to represent.  For medium O:C particles the VDPMF and VDPMF,opt are more consistent when the fresh sample is

assumed to represent particles at the maximum sample evaporation time. For low O:C particles the VDPMF,opt  resembles the

VDPMF of the RTC sample best at mean evaporation time.

3.5 Volatility distribution comparison at dry condition

Next, we analyzsed the evaporation experiments under dry conditions where the evaporation rate was reduced compared to

the  high  RH conditions.  We  interpreted  this  difference  as  an  indication  of  particle  phase  diffusion  limitations  at  dry

conditions (Yli-Juuti et al., 2017). Using the initial particle composition information obtained from the high RH experiments

and the FIGAERO-CIMS data, we explored the effect of particle viscosity on the evaporation process. Our aim is to test if

the slower evaporation, presumably due to higher viscosity of the SOA can be captured with a recently developed viscosity

parametrization  based  on glass  transition temperatures  of  various organic  compounds  (DeRieux et  al.,  2018).  We also

compare the results using the viscosity parametrization to an approach where we fit  both the viscosity and VD to the

evapogram.

First, we investigated the range of particle viscosities that are required to explain the observed slower evaporation at dry

conditions. For this, we simulated the particle evaporation in dry conditions based only on the evapogram data. We used the

VDevap (i.e., the initial particle composition obtained by optimizing mole fractions of VD compounds with respect to the

observed evapogram at high RH) as the initial condition for the simulations and optimized the b i values (Eq. 3) for each VD

compound. The best fit simulation from this optimization agrees well with the observed size decrease in the dry experiments

for both low and medium O:C particles (Fig. 8, black line). Based on these simulations, the viscosity of the particles need to

increase from below 105 Pa s to approximately 108 Pa s during the evaporation in order to explain the evaporation rate

observed for the dry particles. 

Second, we tested the performance of the composition dependent viscosity parameterization by DeRiuex et al. (2018) used

together with the PMF results. For this, we calculated the volatility distribution, VD PMF,dry, based on the Tmax values of the

factors from the fresh sample of the evaporation experiment at dry conditions (in the same way as VD PMF for the high RH

case). The mole fraction of each factor was calculated from the mass loading profile giving the initial mole fraction of each

VD compound for the simulations. We assigned this VDPMF,dry as the particle composition at the mean evaporation time of the

fresh sample, i.e. 15 minutes, and simulated the particle evaporation from there onwards. The particle size at the beginning

of the simulation (i.e. at 15 minutes of evaporation) was taken from the above simulations optimized based only on the

evapogram data, which fitted well  withto the measurements. We calculated the viscosity parameter bi value for each VD

compound as described in Section 2.5 based on the mass spectra of the factor and the parameterization by DeRieux et al.

(2018).  This resulted in  too high viscosity for  particles  to  evaporate  in  practicepractise at  all  during the length of the
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experiment for both low and medium O:C particles (greyblack dashed line in Fig. 8). Therefore, we also conducted  made a

simulation where the viscosity parameter bi value for each factor was calculated based on the viscosity parameterization by

setting the Tg values of all compounds 30 K lower than the parametrization predicted, which is in line with the uncertainties

reported  by DeRiuex et  al.  (2018).  In  this  case, the simulated  evaporation  was  faster  than  observed for  medium O:C

conditions (grey  dashedsolid line in Fig. 8a) and similar to the evapogram calculated with VDevap for low O:C conditions

(grey  solid  line  in  Fig.  8b).  This  suggest  that  the  observed  evaporation  rate  at  dry  conditions  and  the  viscosity

parametrization by DeRieux et al. (2018) may be consistent with each other within the uncertainty range of the viscosity

parametrization and the uncertainty range of the C* of PMF factors.

Similar to Fig. 3, we show in Fig. 7 the comparison of VDPMF,dry (C* from Tmax) to the VDevap at dry conditions and mean

sample evaporation time with the VD compounds grouped into the three volatility classes.  We show the mass loading

profiles and the volatility distributions at dry conditions in Fig. S105 and Fig. S116. Figure S12 shows the same comparison

as Fig 7 for other sample evaporation times. For medium O:C particles, VDPMF,dry calculated both from the fresh and RTC

sample hasve slightly more contribution of volatility classes 1 and 2 and 3 and less of volatility class  21 compared to the

corresponding VDevap. For low O:C particles, the VDPMF,dry  of the fresh sample has more contribution of volatility class 3 and

less of volatility classes 1 and 2 differs substantially from compared to the VDevap especially in the case of the fresh sample: considerably more matter is in

the highest volatility class (class 3) than in the lowest volatility class (class 1) .  For medium O:C particles, the differences between the VDPMF,dry and VDevap

leave open the possibility that the underestimated evaporation rate calculated using VDPMF,dry is partly a result of inaccuracy

in  volatility  description  and  not  solely  due  to  the  high  estimated  viscosity.  For  low O:C particles  the  underestimated

evaporation most  likely stems from the high estimated viscosity since  the VDPMF,dry is  shifted towards  higher volatility

compounds than the VDevap.   dashed line in Fig. 8) originates from the high estimated viscosity.  blackOverall, the VDPMF,dry

suggests higher volatility compared to the VDevap. Therefore, the underestimation of the evaporation rate when using the

VDPMF,dry together with the viscosity parameterization (

As a third investigation on the viscosity, we used again the PMF results of the fresh sample at dry conditions to initialize the

particle composition in the model at the mean fresh sample evaporation time, i.e., at 15 minutes. Also at this time, tThe mole

fraction of each factor wasere calculated from the mass loading profile giving the initial mole fraction of each VD compound

for the simulations similar to the high RH analysis. Then, using the MCGA algorithm together with the KM-GAP model, we

estimated the bi coefficient and C* of each VD compound by optimizing the KM-GAP simulated evapogram to the measured

evapogram  at  dry  condition.  This  way  we  obtained  both  the  initial  volatility  distribution  (VDPMF,dry,opt)  and  viscosity

parameters bi simultaneously.   For this optimization, we restricted the C* values of the factors based on the 25th and 75th

percentile of the desorption temperature of the factors, similarly as done above for VDPMF,opt, and the viscosity parameter bi

values based on the DeRieux et al. (2018) parameterization. The b i values calculated with the original parametrization by

DeRieux et al., (2018) were set as the upper limit for b i values. The lower limit for bi values were calculated by setting the
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glass transition temperature of each  compound 30 K lower than the parametrization predicted.  As above,  also in these

simulations the initial particle size was taken from the simulations where optimization was based on only the evapogram

data. For both medium and low O:C particles it was possible to find a set of C* and bi values that produced an equally good

match to experimental data as the VDevap produced (purple and yellow lines in Fig. 8a). For low O:C particles, the match to

experimental data was slightly weaker than with the VDevap (yellow line in Fig. 8b).  

Figures 6b and 6d shows the comparison of the measured and simulated particle composition, on the basis of grouped to the

three volatility classes, at  RTC sample collection time for the dry experiments for low and medium O:C particles.  The

measured composition is the VD calculated from the PMF results of the RTC sample at dry conditions. and Tthe optimized

C* values of the factors from the corresponding dry experiment were used for these VD. The simulated particle composition

is taken from the optimized model run (optimized VDPMF,opt,dry and bi) at the mean RTC sample collection time similar to the

high RH cases presented in Fig. 6a and Fig. 6c. For medium O:C particles the measured and simulated composition at mean

of the RTC collection time are in agreement. For low O:C particles there is a clear discrepancy: the VDPMF,optmeasurements

imply a much larger relative contribution from the volatility classes 21 and 3 and a smaller contribution from the volatility

class 12 compared to the measurementssimulations. This inconsistency may be related to the rather high viscosities in the

simulations. The viscosity of the low O:C particles in this optimized simulation was rather high, η  >108 Pa s, throughout the

evaporation, slowing the evaporation of the higher volatility compounds. Similar evaporation curve could be obtained with

lower viscosity and lower volatilities of the compounds.

4 Discussion

VDPMF and VDPMF,dry capture qualitatively the evaporation dynamics well in all studied cases. For the VDPMF  of the fresh

samples, the first and second factor desorb at low heating temperatures (below 100 °C) indicating that these factors represent

high volatility organic compounds that evaporate almost completely from the particles in the experimental time scale of our

isothermal  evaporation  experiments.  In  the RTC samples,  these factors  show significantly lower or  non-existing signal

strength relative to the other factors. The factors that desorb at high temperatures show an increase in the relative signal

strength in the RTC samples compared to the fresh samples which is consistent  with the expected  increase  in relative

contribution  of  lower  volatility  compounds  along  evaporation. These  findings  indicate  that  the  FIGAERO-CIMS

measurements of α-pinene SOA and the applied PMF method  give a good overall picture of the evolution of the volatility

distribution during evaporation.

At high RH, the VDPMF that was derived from Tmax of each factors mass loading profile did not produce evapogram similar

to the measured ones, when the VDPMF was used as an input to the LLEVAP model. This reflects the sensitivity of particle

evaporation to the C* values and suggest that the VDPMF is not directly applicable as a particle composition estimate for
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detailed particle dynamics study.  When we allowed uncertainty in the C* values of each factor we were able to explain most

of the discrepancy between the simulated and measured evapograms. The simulated evapograms, after optimizing the C * of

each factor from their appropriate ranges, are close to the experimental values  forat all other cases except n the low O:C

casei when the  FIGAERO sample   VDPMFis interpreted to represent particles at the  startend of fresh sample’s collection

interval  (minimummaximum evaporation  time). Our  results  also  demonstrate  the  need  for  careful  investigation  of  the

representative time of the sample when filter-collected samples are applied for dynamic processes such as evaporation.

. 

In this study we assumed a quite large uncertainty range for the desorption temperature of each PMF factor and it is not

certain that the determination of VDPMF,opt would be successful if the allowed ranges for C*   of PMF factors would be lower.

Thus, there remains work to be done in studying what is the total uncertainty that rises from combining the FIGAERO-CIMS

measurements with the PMF method and to what extent the PMF factors can be thought to represent surrogate organic

compounds for the purpose of detailed SOA dynamics studies. 

.Even though we assumed a quite large uncertainty range for the desorption temperature of each factor, the resulting C *

estimates range in most cases around one order of magnitude. In the cases where the C * range is higher and a factor has high

enough signal, the estimated C* values in VDPMF,opt are closer to the C* calculated from Tmax of the factor than the extremes of

the range (e.g. factor 2 and factor 4 in medium O:C high RH experiments). This highlights the fact that even though the C *

estimated  from  Tmax  did  not  produce  exactly  comparable  evapograms,  the  C* values  that  produce  correct  evaporation

dynamics are not far away from those derived from the Tmax values

We note that care has to be taken when PMF results are transferred to volatility distributions, especially with regard to

separating the contribution of instrument background and contamination from the true sample. When the sample mass was

low (in the low O:C RTC sample) we noticed that the first half of the bimodal (factor LD1a) resulted in a high mole fraction

even though the absolute signal strength of the factor did not change between the fresh and the RTC sample, which is usually

an indication that this signal is caused by instrument background. Factor LD1a affects the VD calculations only when the

collected mass is low. Removing this factor from the low O:C RTC sample allowed us to derive VDPMF,opt that produces an

evapogram similar to the experiment. However, tThe signal strength of this factor was low enough in all other cases to not

affect the overall VD estimation. More details on the interpretation of B- and D-type factors and potential factor blending

can be found in Buchholz et al, (2019b)

At low RH, VDPMF,dry of the fresh sample in low O:C case showed noticeably higher amount of high volatility matter than

VDevap. e cannot explain these differences with a single factor like in the low O:C high RH RTC sample case since in dry

conditions  multiple  high  volatility  factors  show  up  in  the  PMF  solution.W This  discrepancy  between  the  volatility

distributions is  not  expected  and raises  a  need  for  further  studies  on the  role  of  viscosity  and  possible  particle  phase
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chemistry to SOA particle dynamics. Future studies should investigate the possibility of chemical reactions that modify the

volatility of organic compounds and how viscosity is described in process models.

5 Conclusions

We  compared  volatility  distributions  derived  from  FIGAERO-CIMS  measurements  with  PMF  analysis  to  volatility

distributions derived from fitting a process model to match measured size change of particles during isothermal evaporation.

We compared the two methods for obtaining the volatility distribution data for two different particle compositions and two

evaporation conditions. The results are promising and suggest that the methods provide volatility distributions that are in

agreement. We note that the data set available here is limited and additional investigations on comparing the methods are

desirable in the future. 

In all studied experimental data sets we were able to capture the measured evaporation with the fitting method. With high

RH experiments, VDPMF deviated from VDevap especially when the FIGAERO samples were collected at the early stages of

the evaporation. However, qualitatively, both types of VD evolved similarly, i.e., the fraction of lower volatility compounds

increased, and the fraction of higher volatility compounds decreased during the particles’ evaporation of the particles. These

results suggest  that the changes in FIGAERO-CIMS derived volatility distributions over the isothermal evaporation are

consistent with the observed isothermal evaporation and the detailed SOA dynamics are sensitive for the uncertainties in C *  

values.

The volatility distribution from PMF at high RH agreed with the observed isothermal evaporationmatched the experimental

values better when we interpreted the volatility of  each factor as a range of possible C* values and optimized the C* values

from  these  ranges  with  respect  to  the  measurements. These  results  suggest  that  the  FIGAERO-CIMS  measurements

combined with PMF method does not only provide qualitative information of the volatilities of the SOA constituents but it

also has potential for quantitative investigation of the volatility distributions. However, more work is needed to constrain the

uncertainties rising from the conversion of the FIGAEO-CIMS desorption temperatures to C*   values.

At dry conditions, we were able to simulate the evapograms based on the PMF results using the VTF equation and glass

transition temperature parametrization of DeRieux et al., (2018) when both C* and viscosity parameters where optimized and

allowed  to  contain  reasonable  uncertainties.  For  medium O:C  particles  also  the  simulated  composition  evolution  was

consistent with the measurements. However,  For both oxidation conditions for low O:C particles the measured composition

at the later stages of evaporation suggested considerably lowerhigher volatility than the simulations. These results suggest

that  the  tested  viscosity  parameterization  is  not  in  disagreement  with  the  observed  SOA  evaporation,  however  the

uncertainties related to the method are significant from the point of view of simulating SOA dynamics.
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Based  on  our  analysis  we  conclude  that  using  the  PMF method  with  FIGAERO-CIMS thermogram data  is  good  for

estimating   the volatility distribution of organic aerosols when the organic compounds present in the particle phase have low

volatilities  with  respect  to  the  sample  collection  and  analysis  time  scale.  Specifically,  VD PMF is  useful  for  extracting

information about organic compounds that do not evaporate during the evaporation measurements at room temperature.

VDPMF is applicable to detailed particle dynamics studies when desorption temperature of the factor is characterized with a

range around the Tmax value. Furthermore, combining VDPMF,opt with detailed process modelling and input optimization could

allow quantification of other physical or chemical properties of organic aerosols since the FIGAERO-CIMS data constrains

the particle  composition and effectively  decreases  the search  space  that  needs to  be explored with global  optimization

methods.
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Table 1: The ambient conditions and properties of the organic compounds used in estimating the VDevap. The variables are,

from top to bottom, temperature (T) during the evaporation, relative humidity (RH), gas phase diffusion coefficient (Dg,org),

molar mass (M), particle phase density (ρ), particle surface tension (σ)) and mass accommodation coefficient (α). Rows that

only have one value are the same in every column. 

Variable Medium O:C 

High RH

Low O:C

High RH

Medium O:C  

dry

Low O:C 

dry

T (K) 293.85 293.75 293.75 293.35

RH (%) 82.4 83.5 0 0

Da,b  gas (cm2 s-1) 0.05

0.05

0.05

0.05

Mb   (g mol-1) 200

200

200

200

ρb   (kg m-3) 1200

1200

1200

1200

σ)b   (mN m-1)   40

40

40

40

αb     1

1

1

1
a) The gas phase diffusion coefficients are scaled to correct temperatures by multiplying with a factor  of (T/273.15) 1.75  (Reid

et al., 1987)
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b)   values are chosen to represent a generic organic compound with values similar to other α-pinene SOA studies (e.g. Pathak

et al., 2007; Vaden et al., 2011; Yli-Juuti et al., 2017).
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Table 2: Minimum, mean and maximum time that the particles have evaporated during the FIGAERO sample collection. All

times are relative to the start of RTC filling.

Sample Minimum evaporation time 

(min)

Mean evaporation time 

(min)

Maximum evaporation time 

(min)

 Medium O:C high RH fresh   0   15   30
 Medium O:C high RH RTC   173   216   259
 Medium O:C dry fresh   0   15   30
 Medium O:C dry RTC   170   213   256
 Low O:C high RH fresh   0   15   30
 Low O:C high RH RTC   168   211   254
 Low O:C dry fresh   0   15   30

Low O:C dry RTC 152 195 238
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Table 23: The best fit C* values for medium O:C and low O:C high RH experiments when C* values of PMF factors  were

optimized with respect to the measured isothermal evaporation. C*   values were optimized by assuming the FIGAERO-CIMS

sample represents particle composition at the mean sample evaporation time for the fresh sample and the minimum sample

evaporation time for the RTC sample.For each experiment three different results are given which correspond to simulations

initialized with the PMF mole fraction at the minimum, mean and maximum time that the particles have evaporated during

the sample collection (See Table 2). The C* values are rounded to two significant digits and are in units μgmgm-3. C* values

below 10-3 μgmgm-3 are not reported explicitly since the evapogram fitting method is not sensitive to these values.

Medium

O:C  fresh

sample

min evap.

time

Medium

O:C  fresh

sample

mean evap.

time

Medium

O:C  fresh

sample

max evap.

time

Medium

O:C RTC

sample 

min evap

time

Low O:C

fresh

sample

min evap.

time

Low O:C

fresh

sample

mean evap.

time

Low O:C

fresh

sample

max  evap.

time

Low O:C

RTC

sample 

min evap

time

Factor M1/L1
9.79·10-1

4.96 ·10-1  

5.36 ·10-1

3.07 ·10-1
36.10 3.06

·10-1

9.76 ·10-1
3.06 ·10-1  

1.92 ·10-1
1.92 ·10-1 <10-3

Factor M2/L2
6.10

2.89 ·10-1  

2.32 ·10-1
7.01 ·10-2

4.12·10-1  

9.41·10-2
12.61

3.55 ·10-1  

7.98 ·10-1
8.15 ·10-1

2.40·10-2  

1.65·10-1

Factor M3/L3
1.68 ·10-1

9.93 ·10-3  

2.37 ·10-2
9.49 ·10-3

4.42 ·10-3  

9.50 ·10-2

2.90 ·10-1
2.87 ·10-2  

2.57 ·10-2
2.48 ·10-2

7.13 ·10-3  

7.32 ·10-2

Factor M4/L4
1.39 ·10-2 < 10-3 < 10-3 < 10-3 5.52 ·10-2

1.54   ·10-3  

2.65 ·10-3
2.65 ·10-3

< 10-3    2.14

·10-2

Factor M5/L5
< 10-3 < 10-3 < 10-3 < 10-3 1.14 ·10-2

< 10-3  

1.55·10-3
< 10-3

< 10-3   7.33

·10-3

Factor D1a 

70.14
7.68 · 10-1  

10.86
1.67 ·10-2 69.35 11.82 59.73

130.03 7.48

·10-1
7.34 ·10-1 1.04 · 10-1   /

Factor D1b < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3 < 10-3
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Figure 1: Main positive matrix factorization (PMF) mass loading profiles for thermal desorption of secondary organic 

aerosol (SOA) from α-pinene at high RH conditions 

a) Fresh sample of medium O:C SOA , samplefresh 

b) Residual particles of medium O:C SOA after 173-259 minutes of evaporation in a residence time chamber (RTC), i.e., the 

RTC sample ,sampleRTC  

c) Fresh sample of low O:C SOA  sample,fresh 

d) Residual particles of low O:C SOA after 168-254 minutes of evaporation in the RTC, i.e. the RTC sample .RTC sample. 

Black crosses indicate the peak desorption temperature Tmax and the diamonds mark the 25th and 75th percentiles of each the 

factor’s area.
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Figure 2:  Volatility distributions in high RH experiments determined from model fitting (VDevap) and PMF analysis (VDPMF)

ofn FIGAERO-CIMS data (VDPMF) for the same four cases shown in Fig. 1. 

 a) Fresh sample of medium O:C SOA ,  samplefresh

b) Residual particles of medium O:C SOA (the RTC sample),  sampleRTC

c) Fresh sample of low O:C SOA,  samplefresh

d) Residual particles of low O:C SOA (the RTC sample).RTC sample. 

VDevap is shown for the best fit simulation (grey bars) at the mean evaporation time of the FIGAERO-CIMS sample. The 

different grey shades show the VDevap in the simulation at minimum, mean and maximum time that the particles have 

evaporated when the FIGAERO sample was collected (see Table 2). Black crosses show the log10(C*) calculated for each 

PMF factor from the peak desorption temperature Tmax. The horizontal coloured lines show the range of log10(C*) calculated 

from the 25th and 75th percentiles of each PMF factor’s mass loading profile. 
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Figure 3: Comparison of VDPMF and VDevap at mean sample evaporation time in high RH experiments for the same four 

cases shown in Fig. 1.

a) Fresh sample of medium O:C SOA  

b) Residual particles of medium O:C SOA (the RTC sample) 

c) Fresh sample of low O:C SOA 

d) Residual particles of low O:C SOA (the RTC sample). . 

The VD compounds shown in Fig. 2 are grouped into three different volatility classes based on their evaporation tendency 

with respect to the measurement time scale and particle size. The limits for each volatility class are shown at the top and are 

the same for each subfigure. The VDPMF shows lower overall volatility than the VDevap except for subfigure d (RTC sample of

low O:C SOA) where the VDPMF shows higher overall volatility than the VDevap.   a) medium O:C fresh sample, b) medium 

O:C RTC sample, c) low O:C fresh sample, d) low O:C RTC sample.:  log(C*) ≤ -2, 2: -2 < log(C*) < 0, 3: log(C*) > 0. The 

volatility classes are 1Min, mean and max evaporation time refer to the FIGAERO sample collection times presented in 

Table 2.. 
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Figure 4:  Evapograms of high RH experiments showing the high RH measured evaporation factors (remaining fraction of

the initial particle diameter;  circles)  and their uncertainty in time for a) medium O:C SOA and b) low O:C SOA,and their

uncertainty in time, LLEVAP simulated evapograms calculated using the best fit VDevap (black solid lines) and LLEVAP

simulated evapograms calculated with VDPMF (turquoise solid lines for VDPMF of fresh SOA sample and light brown solid

lines for simulations with VDPMF of the residual particles evaporated 173-259 minutes and 168-254 minutes for medium O:C

and low O:C SOA, respectively)sampleRTC   a) medium O:C b) low O:C.. The evapograms calculated with VDPMF of fresh

SOA show lower rate of evaporation than the evapogram calculated with VDevap consistent with volatility distribution shown

in Fig. 3. The evapograms calculated with VDPMF of the residual particles (the RTC sample) show similar rate of evaporation

for medium O:C SOA and faster rate of evaporation for low O:C SOA compared to evapograms calculated with VD evap

similarly consistent with Fig. 3.
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Figure 5: Evapograms of high RH experiments showing the high RH measured evaporation factors  (circles),  and their 

uncertainty in time (black whiskers), and the best fit simulated evapogram calculated with VDevap (black solid line) and. 

Other lines show the best fit simulated evapograms calculated with the volatility distribution where the effective saturation 

concentration (C*  ) of each PMF factors are fitted to the measurements  (VDPMF,opt). a) medium O:C, b) low O:C. 

a) Medium O:C SOA 

b) Low O:C SOA.

The colored solid lines are for the fresh SOA and the dashed lines for the residual particles collected from the RTC after 173-

259 minutes and 168-254 minutes of evaporation for medium O:C and low O:C SOA, respectively. For fitting, the C*   of each

PMF factor were allowed values from their respective 25th   and 75th   percentile desorption temperature shown in Fig. 1.   

All the evapograms calculated with the VDPMF,opt match the measured evaporation highlighting that the volatility distribution 

determined from the FIGAERO-CIMS data with the PMF method can describe the dynamics of evaporating SOA particles 

when uncertainties in the C*   of the factors are considered. 
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Figure 6: Comparison of the simulated particle composition (VDPMF,opt, VDPMF,opt,dry) to the particle composition determined 

from the residual particles collected from the RTC (VDPMF/VDPMF,dry) after 173-259 minutes and 168-254 minutes of 

evaporation for medium O:C and low O:C SOA, respectively. The simulated compositions ( VDPMF,opt in a and c,  (VDPMF,opt,dry

for subfiguresin b and dc) are taken from the best fit simulated evapogram obtained from the optimization of the C*   values of

fresh sample PMF factors to measured evapogram. The volatility of individual VD compounds are grouped into three 

volatility classes similar to Fig. 3. The limits for each volatility class are shown at the top and are the same for each 

subfigure. The C*   values from VDPMF,opt/VDPMF,opt,dry were used for corresponding VDPMF/VDPMF,dry when the volatility 

grouping was calculated in order to ensure the comparability.

a) Medium O:C SOA in high RH experiment

b) Medium O:C SOA in low RH experiment

c) Low O:C SOA in high RH experiment

d) Low O:C SOA in low RH experiment.

In the high RH cases (sugfigures a and c) the volatility distributions simulated based on VDPMF,opt of the fresh SOA are 

similar to the measured VDPMF, while for the low RH cases (subfigures b and d) the volatility distributions simulated based on

VDPMF,opt,dry show higher volatility than the measured VDPMF.The subscripts min, mean and max refer to the points from the 

fresh sample collection interval from where the VDPMF,opt simulations were initialised (see Table 2) collection interval of the 

RTC sample. time of the) of RTC samples at the mean cof the fresh samples to VDPMF  (VDPMF,dry for subfigures b and . a) 

medium OC high RH samples, b) medium O:C low RH samples, c) low O:C high RH samples d) low O:C low RH 

samples.The volatility classes are 1:  log(C*) ≤ -2, 2: -2 < log(C*) < 0, 3: log(C*) > 0. 
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Figure 7: Comparison of VDPMF,dry (volatility distribution where C*   is calculated from the peak desorption temperature, Tmax, 

of each PMF factor) and VDevap (volatility distribution determined by fitting LLEVAP model to measured evapogram) at 

mean evaporation time of the SOA samples in dry condition experiments. The VD compounds are grouped into three 

different volatility classes similar to Fig. 3. The limits for each volatility class are shown at the top and are the same for each 

subfigure.

a) Fresh sample of medium O:C SOA

b) Residual particles of medium O:C SOA after 170-256 minutes of evaporation (the RTC sample)

c) Fresh sample of low O:C SOA

d) Residual particles of low O:C SOA after 152-238 minutes of evaporation (the RTC sample).

The VDPMF,dry shows lower overall volatility than the VDevap for medium O:C SOA. For low O:C SOA the VDPMF,dry shows 

higher volatility for fresh sample and similar volatility compared to VDevap after 152-238 minutes of evaporation. a) medium 

O:C fresh sample, b) medium O:C RTC sample, c) low O:C fresh sample, d) low O:C RTC sample. 1:  log(C*) ≤ -2, 2: -2 < 

log(C*) < 0, 3: log(C*) > 0.  The volatility classes areMin, mean and max evaporation time refer to the FIGAERO sample 

collection times presented in Table 2. .he VD compounds are grouped into three volatility classes where t
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Figure  8:  Evapograms showing the measured isothermal evaporation of a) medium O:C  SOAparticles b) low O:C SOA

particles inat dry condition experimentss and their uncertainty in time (red and yellow markers and black whiskers) together

with the simulated evapograms.  and tThe best  fit  simulated evapogram calculated with VDevap (obtained from high RH

experiments) and optimizing bi is shown with (black solid line).. .(see Table 2)Purple and yellow solid lines show the best fit

simulated evapograms calculated with VDPMF,opt,dry   assuming that the FIGAERO sample represents particles at mean of the

sample collection interval  Black and Ggrey dashed lines show the minimum and maximum possible evaporation calculated

with VDPMF,dry  (C*   of PMF factors calculated from Tmax)  and the highest (the original parametrization of  DeRieux et al.,

(2018), grey dashed lines) or the lowest (30 K subtracted from the Tg of every ion, grey solid line) studied viscosity. Purple

and yellow solid lines show the best  fit  simulated evapograms calculated with the optimized VDPMF,opt,dry  (based on the

assumption that the FIGAERO sample represents particles at the mean of the sample collection interval) and b i restricted

based on the DeRieux et al. (2018) parameterization. The figure shows, similar to Fig. 5, that the volatility distribution

determined from the FIGAERO-CIMS data with the PMF method is consistent with the measured evaporation of the SOA

particles once the uncertainty in the effective saturation concentration and the glass transition temperature parametrization of

DeRieux et al., (2018) are considered. simulated evapograms where particle viscosity is calculated using the VTF equation

and glass transition temperature Tg according to  DeRieux et al., (2018)  (black dashed line) or Tg is calculated according

DeRieux et al., (2018) and 30 K is subtracted from the Tg value (grey dashed line).


