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Abstract 8 

Nitrous acid (HONO) in the core city of the Central Plains Economic Region was 9 

measured using an ambient ion monitor from January 9 to 31, 2019. Measurement time 10 

intervals were classified into the following periods in accordance with the daily mean 11 

values of PM2.5: clean days (CD), polluted days (PD), and severely polluted days (SPD). 12 

The HONO concentrations during CD, PD, and SPD were 1.2, 2.3, and 3.7 ppbv, 13 

respectively. The contribution of the homogeneous reaction, heterogeneous conversion, 14 

and direct emission to HONO sources varied under different pollution levels. The mean 15 

values of the net HONO production of the homogeneous reaction (POH+NO
net ) in CD, PD, 16 

and SPD periods were 0.13, 0.26, and 0.56 ppbv h−1, respectively. The average 17 

conversions of NO2  (CHONO) in CD, PD, and SPD periods were 0.72×10−2, 18 

0.64×10−2, and 1.54×10−2 h−1, respectively, indicating that the heterogeneous 19 

conversion of NO2 was unimportant than the homogeneous reaction. Furthermore, the 20 

net production of the homogeneous reaction may have been the main factor for the 21 

increase in HONO under high-NOX conditions (i.e., when the concentration of NO was 22 

higher than that of NO2) at nighttime. Daytime HONO budget analysis showed that the 23 

mean values of the unknown source (Punknown) during CD, PD, and SPD periods were 24 

0.26, 0.40, and 1.83 ppbv h−1, respectively. The values of POH+NO
net  , CHONO, and 25 

Punknown in the SPD period were comparatively larger than those in other periods, 26 

indicating that HONO participated in many reactions. The proportions of nighttime 27 

HONO sources also changed during the entire sampling period. Direct emission and a 28 
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heterogeneous reaction controlled HONO production in the first half of the night and 29 

provided a contribution larger than that of the homogeneous reaction. The proportion 30 

of homogenization gradually increased in the second half of the night due to the steady 31 

increase in NO concentration. The hourly level of HONO abatement pathways, except 32 

for OH + HONO, was at least 0.22 ppbv h−1 in the SPD period. The cumulative 33 

frequency distribution of the HONOemission/HONO ratio (less than 20%) was 34 

approximately 77%, which suggested that direct emission was not important. The 35 

heterogeneous HONO production increased when the relative humidity (RH) increased, 36 

but it decreased when RH increased further. The average HONO/NOX ratio (4.9%) was 37 

more than twice the assumed globally averaged value (2.0%). 38 

1. Introduction 39 

Nitrous acid (HONO) is important in the photochemical cycle and can provide 40 

hydroxyl radicals (OH) (Harrison et al., 1996):  41 

HONO + hv → ·OH + NO (300 nm < λ < 405 nm)                        (R1). 42 

According to measurement and simulation studies (Alicke et al., 2002), the contribution 43 

of HONO to ·OH concentration can reach 25−50%, especially when the concentration 44 

of OH radicals produced by the photolysis of ozone, acetone, and formaldehyde is 45 

relatively low (two to three hours after sunrise) (Czader et al., 2012). HONO photolysis 46 

was the most important primary source of ·OH which contributed up to 46 % of the 47 

total primary production rate of radicals for daytime conditions (Tan et al., 2018). ·OH 48 

is an important oxidant in the atmosphere, and it can react with organic substances, 49 

control the oxidation capacity of the atmosphere, and accelerate the formation of 50 

secondary aerosols in the urban atmosphere (Sörgel et al., 2011). Therefore, the changes 51 

in the contribution of the homogeneous reaction, heterogeneous conversion, and direct 52 

emission during pollution can be observed by studying the formation mechanism of 53 

HONO. 54 

Several instruments have been used to determine ambient HONO concentrations, 55 

and these include differential optical absorption spectrophotometer (DOAS) 56 
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(Elshorbany et al., 2012; Winer and Biermann, 1994), long path absorption photometer 57 

(LOPAP) (Heland et al., 2001), wet chemical derivatization technique-HPLC/UV-Vis 58 

detection (Michoud et al., 2014), stripping coil-UV/Vis absorption photometer (SC-AP) 59 

(Pinto et al., 2014), IBBCEAS (Duan et al., 2018; Min et al., 2016), CIMS (Hirokawa 60 

et al., 2009; Roberts et al., 2010), and ambient ion monitor (AIM) (VandenBoer et al., 61 

2014). A result comparison of different instruments showed that SC-AP is compatible 62 

with two spectral measurement instruments, namely, LOPAP and DOAS (Pinto et al., 63 

2014). Compared with HONO measured by SC-AP deployed onsite, HONO measured 64 

by AIM has a small error and is within the acceptable analytical uncertainty 65 

(VandenBoer et al., 2014). Previous studies have reported that HONO concentrations 66 

range from a few pptv in clean remote areas to several ppbv (0.1−2.1 ppbv) in air-67 

polluted urban areas (Hou et al., 2016; Michoud et al., 2014).  68 

The sources of HONO are direct emission and homogeneous and heterogeneous 69 

reactions (Acker et al., 2005; Grassian, 2001; Kurtenbach et al., 2001). HONO can be 70 

directly discharged into the atmosphere during vehicle operation and biomass 71 

combustion. Through a tunneling experiment, Kurtenbach et al. (2001) have discovered 72 

that motor vehicles emit a small amount of HONO, and the HONO/NOX ratio of HONO 73 

combustion sources (aside from NOX and other pollutants) is 0.1–0.8%. Another study 74 

showed that the homogeneous reaction of NO and OH radicals is the major source of 75 

HONO under increased NO concentrations (Spataro et al., 2013). Furthermore, HONO 76 

can react with the ·OH (Alicke et al., 2003; Vogel et al., 2003). Tong et al. (2015) used 77 

NO + OH and HONO + OH homogeneous reactions, to calculate the net generation rate 78 

of HONO homogeneous reactions at night, which are expressed as:  79 

NO + ·OH → HONO                                               (R2); 80 

HONO + ·OH → NO2 + H2O                                         (R3). 81 

Such calculations have been applied in studies on homogeneous reactions and daytime 82 

budgets (Hou et al., 2016; Huang et al., 2017). These are studies of homogeneous 83 

reactions, and some researchers have begun to explore the mechanism of NO2 84 
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heterogeneous reactions. Finlayson-Pitts et al. (2003) studied the mechanism of 85 

chemical adsorption of NO2 and H ions on the adsorbed surface was revealed by using 86 

isotope-labeled water: 87 

2NO2 + H2O → HONO + HNO3                                      (R4). 88 

In China, most studies for HONO have been focused on the Yangtze River Delta, Pearl 89 

River Delta, and Jing-Jin-Ji region. For example, Hao et al. (2006) reported that field 90 

measurement results, especially HONO/NO2 and relative humidity (RH), have a 91 

significant correlation and proved that heterogeneous reactions are an important source 92 

of nighttime HONO. Although the specific chemical mechanisms of heterogeneous 93 

reactions remain unknown, the intensity of HONO formation by NO2 can be expressed 94 

by the HONO conversion frequency (Alicke et al., 2002; Li et al., 2012). Su et al. 95 

(2008a) revealed the importance of the ·OH from HONO during daytime (9:00–15:00 96 

local time) and found that many unknown sources which are closely related to the solar 97 

radiation leading to HONO formation. The unknown sources of HONO may include 98 

the NO2 photolysis of sooty surface and adsorbed nitric acid and nitrate at UV 99 

wavelengths (Kleffmann et al., 1999). The homogeneous nucleation of NO2, H2O, and 100 

NH3 is the HONO formation pathway (Zhang and Tao, 2010). In the meanwhile, HONO 101 

can deposit and react with amines in forming nitrosamines (Li et al., 2012) for sinking. 102 

The method of budget analysis needs to include the HONO sources and sinks. The 103 

researchers suggested that the method of budget analysis is crucial for obtaining the 104 

missing source. Spataro et al. (2013) measured the HONO level in Beijing’s urban area 105 

and discussed the spatiotemporal changes, meteorological effects, and contributions of 106 

HONO from different sources. They used the measured HONO data to compare 107 

pollution periods in Beijing’s urban and suburban areas. Tong et al. (2015) discovered 108 

that the pathway of the HONO formation mechanism, namely, direct emission, 109 

heterogeneous formation, and homogeneous reaction is the same, but the pathway is 110 

different in the two sites. A few studies (Cui et al., 2018; Hou et al., 2016) compared 111 

the characteristics and sources of HONO during severe-pollution and clean periods. 112 
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Although the definitions of the two periods are different, both can be used to analyze 113 

the diurnal variation, source, and daytime budget of HONO during the aggravation of 114 

pollution. 115 

There is no study of HONO in the Central Plains Economic Region (CPER), with 116 

a total population of 0.18 billion by the end of 2011. CPER is the important region for 117 

food production and modern agriculture published by the Chinese government 118 

(http://www.gov.cn/zhengce/content/2011-10/07/content_8208.htm). The file 119 

described the different factors which affect atmospheric pollution, including the level 120 

of economic development, energy structure, industrial structure and geographical 121 

location (solar radiation) with the Yangtze River Delta, Pearl River Delta, and Jing-Jin-122 

Ji region. As the core city of CPER, Zhengzhou characterized by severe PM (particulate 123 

matters) pollution (Jiang et al., 2017; 2018d), is selected in the study. In recent years, 124 

comprehensive PM research has been conducted on the chemical characteristics of PM 125 

in Zhengzhou (Jiang et al., 2018b; Li et al., 2019), source apportionment (Jiang et al., 126 

2018c; 2018e; Liu et al., 2019), health risks (Jiang et al., 2019a; 2019b), and emission 127 

source profiles (Dong et al., 2019; Jiang et al., 2018a). However, no study has been 128 

performed on the sources and characteristics of HONO in Zhengzhou. Moreover, no 129 

synthetic research on different pollution levels in the area is available. In the current 130 

study, AIM was used to sample and analyze HONO concentrations. The interactions 131 

between HONO and other factors, such as PM2.5, during pollution, were assessed to 132 

understand the formation and removal of HONO and the influence on different 133 

pollution periods. The levels of PM2.5 were divided into three periods to analyze the 134 

HONO sources, sinks, and reactions in different periods. Many papers (Huang et al., 2017; 135 

Tong et al., 2016) took PM2.5 as the main control factor of HONO, and studied the differences 136 

of HONO sources and characteristics between clean and polluted periods. No homogeneous 137 

reaction, direct emission, heterogeneous reaction, and daytime budget analysis were conducted 138 

during the period of worsening pollution (namely HD period in this paper). Total NOX 139 

emissions in cities with different leading factors of emissions have been declining year 140 



 

6 

by year due to Chinese government emission control measures, but some Chinese cities 141 

are still in high-NOX areas (e.g. Beijing, Shanghai, Guangzhou and Zhengzhou.) (Kim 142 

et al., 2015; Liu et al., 2017). Under high-NOX conditions, some papers (Cui et al., 2018; 143 

Hou et al., 2016) suggested that heterogeneous reaction was the main source of HONO 144 

and did not conduct a quantitative analysis of homogeneous reaction, especially in 145 

winter. So, we explore relevant studies of homogeneous reactions. In addition, the 146 

source contributions of HONO at night varied with the degree of pollution level were 147 

not explained. RH was also analyzed to provid a detailed understanding of HONO 148 

generation intensity under different RH conditions. Analysis of the sources of HONO 149 

at night provides strong support for conducting HONO budget analysis during daytime. 150 

To the best of the authors’ knowledge, the formation characteristics of HONO at 151 

continuous and high time resolutions and different pollution levels have not been 152 

studied in Zhengzhou. This work can assist the governments of the CPER in 153 

formulating policy to decrease the level of HONO precursors, i.e., NO and NO2, 154 

and HONO direct emission from the vehicle. 155 

2. Experiment and methods 156 

2.1. Sampling site and period 157 

The sampling site is on the rooftop (sixth floor) of a building in Zhengzhou 158 

University (34°48’ N, 113°31’ E), which is located in the northwestern part of 159 

Zhengzhou, China. The observation height is about 20 m from the ground, and the 160 

observation platform is relatively open without any tall buildings around. The site is 161 

about 500 m from the western Fourth-Ring Expressway of Zhengzhou City and about 162 

2 km from Lian Huo Expressway to the north. The measurement period was from 163 

January 9 to 31, 2019. Daily data were divided into two periods, namely, daytime (7:00–164 

18:00 local time) and nighttime (19:00–6:00 the next day, LT). 165 

2.2. Instruments 166 

AIM (URG-9000D, Thermo, USA), an online ion chromatographic monitoring 167 

system for particle and gas components in the atmosphere, was used to measure HONO 168 
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concentration continuously at a temporal resolution of 1 h. The atmospheric airflow 169 

entered the PM2.5 cyclone cutting head through the sample tube, and gas–solid 170 

separation was performed with a parallel plate denuder with a new synthetic polyamide 171 

membrane. The denuder had no moving parts and could be changed without stopping 172 

the sampler. HONO was absorbed by the denuder with an absorption liquid (5.5 mol 173 

m−3 H2O2). The chemicals that could be oxidized were absorbed by H2O2 on the porous 174 

membrane surface, but several gases (e.g., O2 and N2) were expelled by the air pump. 175 

The abundance of other gaseous acids and bases affected the efficiency of HONO 176 

collection by AIM due to the relation between Henry’s law constant and pH. This 177 

measurement method and its details have been successfully evaluated in many field 178 

studies (Markovic et al., 2012; Wang et al., 2019; Yang et al., 2020), and shown in the 179 

supplement. In addition, a QXZ1.0 automatic weather station (Yigu Technologies, 180 

China) was used for synchronous observation of meteorological parameters, including 181 

temperature (T), RH, wind direction (WD), and wind speed (WS). The temporal 182 

resolution of the model analyzer (TE [used for measuring O3], 48i [used for measuring 183 

CO], 42i [used for measuring NO, NOX, and NO2], and TEOM 1405 PM2.5 monitor 184 

[used for measuring PM2.5], Thermo Electron, USA) is 1 h. Detailed information can 185 

be found in the work of (Wang et al., 2019). Measurement technique, detection limit, 186 

and accuracy of measured species are shown in Table S1.  187 

During the sampling period, all instruments were subject to strict quality control 188 

to avoid possible contamination. The instrument accessories and sampling process were 189 

periodically replaced and calibrated, respectively. The instrument parts and 190 

consumables were changed before the observation process, and the sampling flow was 191 

calibrated to reduce the negative effect of accessories. Before this measurement period, 192 

the membrane of the denuder has been replaced and standard anion and cation solutions 193 

have been prepared on Jan. 3rd. The standard curve should be drawn to ensure the 194 

appropriateness of the correlation coefficient (≥ 0.999) and the accuracy of the sample 195 

retention time and response value. The minimum detection limit of AIM was 0.004 196 
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ppbv. Other detailed information can be found in the work of (Wang et al., 2019). 197 

3. Results and Discussion 198 

3.1. Temporal variations of meteorological parameters and pollutants 199 

The daily changes in meteorological parameters and PM2.5 are shown in Fig. 1. In 200 

accordance with the daily average concentration level of PM2.5, the analysis and 201 

measurement process was divided into three periods (clean days [CD], polluted days 202 

[PD], and severely polluted days [SPD]). The days wherein the daily averages of PM2.5 203 

were lower than the daily average of second grade in China National Ambient Air 204 

Quality Standards (CNAAQS) (75 μg m−3) represented CD (January 9, 16, 17, 21, 22, 205 

23, 26, and 31), with RH ranging from 5 to 79% and WS ranging from 0 to 4.2 m s−1. 206 

The days wherein the daily averages of PM2.5 were between 75 and 115 μg m−3 207 

represented PD (January 10, 15, 18, 20, 25, 27, and 28), with RH ranging from 17 to 208 

86% and WS ranging from 0 to 4.6 m s−1. The days wherein the daily averages of PM2.5 209 

were higher than 115 μg m−3 represented SPD (January 11, 12, 13, 14, 19, 24, 29 and 210 

30), with RH ranging from 30 to 96% and WS ranging from 0 to 3.5 m s−1. Northwest 211 

or east wind was observed in most of the observation periods, except for January 21–212 

22. WD was north, the maximum WS reached 4 m/s, the PM2.5 concentration decreased 213 

rapidly, and the effect of pollutant removal was evident. Table 1 lists the data statistics 214 

of HONO, PM2.5, NO2, NO, NOX, HONO/NO2, HONO/NOX, O3, CO, T, RH, WS, and 215 

WD during the measurement period together with their mean value ± standard deviation. 216 

The meteorological parameters in Table 1 show that the average RH in CD, PD, and 217 

SPD periods was 33, 49, and 68%, respectively. In SPD, RH was high and WD was low 218 

(mean value of 0.4 m s−1). 219 

In accordance with the data on trace gases, the average HONO values in CD, PD, 220 

and SPD were 1.1, 2.3, and 3.7 ppbv, respectively. The mean values of NO2 were 25, 221 

33, and 42 ppbv (46, 63, and 78 μg m−3 lower than the first grade in CNAAQS [80 μg 222 

m−3]), respectively. The mean values of CO were 1, 1, and 2 ppmv (1, 2, and 2 mg m−3 223 

lower than the first grade in CNAAQS [4 mg m−3]), respectively. Fig. 2 shows the 224 
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concentration changes in HONO and gas species throughout the measurement period. 225 

The variations of the average HONO, PM2.5, NO2, and CO in the three periods were 226 

similar. The mean values of all pollutant concentrations except O3 in the SPD period 227 

were the largest, and those in the CD period were the smallest. The highest mean value 228 

of O3 occurred in the CD period, similar to previous observations (Hou et al., 2016; 229 

Huang et al., 2017; Zhang et al., 2019). 230 

The HONO concentrations ranged from 0.2 to 14.8 ppbv and had an average of 231 

2.5 ppbv, which is higher than the average values of 0.6 (Rappenglück et al., 2013), 1.5 232 

(Hou et al., 2016), and 1.0 ppbv (Huang et al., 2017) in previous urban studies. The 233 

diurnal variations of HONO during the measurement were similar in the three periods, 234 

as shown in Fig. 3 and Fig. 4. The diurnal variations of HONO, NO, NO2, O3, 235 

HONO/NO2, and HONO/NOX are illustrated in Fig. 4. The error bars of Fig. 4 were 236 

placed separately in the tables of the supplement (Table S2). After sunset, the HONO 237 

concentrations in CD, PD, and SPD began to accumulate due to the attenuation of solar 238 

radiation and the stabilization of the boundary layer (Cui et al., 2018). The maximum 239 

values of 1.7, 4.1, and 6.9 ppbv were reached in the morning (08:00–10:00 LT) in CD, 240 

PD, and SPD, respectively. After 10:00 LT, the HONO concentration decreased because 241 

of the increased solubility and rapid photolysis, remaining at a low level before sunset 242 

(14:00–16:00 LT). The NO concentration decreased rapidly in the forenoon, and 243 

remained low in the afternoon. After sunset, the concentrations of NO and NO2 began 244 

to increase and remained at a higher level than the daytime. Furthermore, the diurnal 245 

variation of NO in the CD period was similar to that of NO2. The peak was reached at 246 

around 09:00 LT due to vehicle emission in the morning rush hours, and the lowest 247 

value was observed at around 16:00 LT. After 18:00 LT, the boundary layer height 248 

decreased in the evening rush hours, resulting in an increase in NO and NO2 249 

concentrations (Hendrick et al., 2014). O3 showed a diurnal cycle and had maximum 250 

values in CD, PD, and SPD periods in the afternoon. The HONO/NO2 ratio is 251 

commonly used to estimate the formation of HONO in NO2 transformation (Wang et 252 
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al., 2013). Compared with HONO formation, NO2 transformation is less affected by the 253 

migration of atmospheric airmass during atmospheric migration (Li et al., 2012). The 254 

HONO/NO2 ratio in the CD period began to increase after sunset and reached its peak 255 

at night. Then, it decreased in the morning as a result of the enhancement of NO2 256 

emission and photolysis of HONO. However, the mean value of HONO/NO2 in PD and 257 

SPD periods gradually increased from nighttime and eventually reached the maximum 258 

values of 14.3 and 18.9% at 09:00 and 10:00 LT, respectively. The average HONO/NOX 259 

ratio (4.9%) was more than twice the assumed globally averaged value (2.0%) 260 

(Elshorbany et al., 2014). This result indicates that the strength of the heterogeneous 261 

reaction increased slightly with the exacerbation of pollution. The HONO/NO2 ratio 262 

showed a diurnal cycle with a low level in the afternoon and a high level after sunset 263 

due to the heterogeneous reaction of NO2 on the ground and aerosol surface (Su et al., 264 

2008b). For comparison, the daytime and nighttime HONO, HONO/NO2, and 265 

HONO/NOX mean values in other cities around the world are listed in Table 2. The 266 

values of HONO, HONO/NO2, and HONO/NOX in Zhengzhou are relatively higher 267 

than those in other parts of the world. The reason for this phenomenon is that 268 

Zhengzhou is a high-NOX area which provides HONO with abundant precursors (NO2 269 

and NO) in winter (Kim et al., 2015).  270 

3.2. Nocturnal HONO sources and formation 271 

3.2.1. Homogeneous reaction of NO and OH 272 

The homogeneous reaction of NO and OH (R2 and R3) is the main pathway of 273 

HONO formation in the gas phase. Spataro et al. (2013) found that the formation 274 

mechanism leads to an increase in HONO in high-pollution areas with an increase in 275 

NO at night. POH+NO
net  can be understood as the net hourly HONO production amount 276 

of homogeneous reaction and is calculated as 277 

POH+NO
net  = kOH+NO [OH][NO] – kOH+HONO [OH][HONO]                (1). 278 

At T = 298 K and P = 101 kPa, the rate constants of kOH+NO and kOH+HONO are 279 

9.8×10−12 and 6.0×10−12 cm3 molecule−1 s−1, respectively (Atkinson et al., 2004; Sander 280 
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et al., 2003). [OH] is the concentration of ·OH that was not measured during the 281 

campaign. Tan et al. (2018) found that by the field measurement, the average 282 

concentration of ·OH in Beijing at nighttime was about 2.5×105 molecule cm−3. 283 

Moreover, the same ·OH concentration was also used to calculate the homogeneous 284 

reaction of HONO in the recent researches of Beijing (Zhang et al., 2019), Shanghai 285 

(Cui et al., 2018), and Xi’an (Huang et al., 2017). And, nighttime OH concentration 286 

increased as the latitude decreases ranged 3 to 6×105 molecule cm−3 (Lelieveld et al., 287 

2016). Zhengzhou has a lower latitude than Beijing, so the concentration of OH used 288 

in this study is 2.5×105 molecule cm−3. POH+NO
net   primarily depends on the 289 

concentrations of NO and HONO because the values of kOH+NO and kOH+HONO are close. 290 

Fig. 5 shows the nocturnal variations of POH+NO
net , NO, and HONO during CD, PD, and 291 

SPD periods. The uncertainties of POH+NO
net , NO, and HONO in Fig. 5 are shown in 292 

Table S3. When the NO levels were high, the variations of POH+NO
net  followed those of 293 

NO during the three periods (Atkinson et al., 2004). The mean value of POH+NO
net  was 294 

0.33 ppbv h−1, and the specific values in CD, PD, and SPD periods were 0.13, 0.26, and 295 

0.56 ppbv h−1, respectively. We assumed ±  50% ·OH values to estimate the 296 

uncertainty of POH+NO
net . The ·OH values of 1.25×105 and 3.75×105 molecule cm−3 were 297 

calculated the POH+NO
net  values of 0.16 and 0.49 ppbv h−1. 298 

POH+NO
net  varied from 0.01 to 0.47 ppbv h−1 during the CD period. The mean value 299 

of POH+NO
net  increased before midnight, decreased after midnight, and increased slightly 300 

at 3 am. In the PD period, POH+NO
net  ranged from 0.07 to 0.44 ppbv h−1. The situation 301 

was similar to that in the CD period, except that the value remained almost constant. In 302 

addition, the contribution of HONO from homogeneous reaction during the SPD period 303 

was larger than those in the CD and PD periods, and the level of POH+NO
net , with an 304 

average value of 0.56 ppbv h−1, was lower than the value in a previous study (2.18 ppbv 305 

h−1 in Beijing) (Tong et al., 2015). From 19:00 LT to 03:00 LT, the mean value of 306 

POH+NO
net  increased from 0.15 to 0.9 ppbv h−1. HONO increased from 2.84 to 4.59 ppbv 307 

and subsequently decreased to 4.43 ppbv. By integrating POH+NO
net   during the eight 308 
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hours, the homogeneous reaction can provide an accumulated HONO formation of at 309 

least 3.36 ppbv (i.e., 0.15 + 0.20 + 0.25 + 0.25 + 0.35 + 0.56 + 0.7 + 0.9 ppbv). However, 310 

the mean accumulation value of measured HONO in this nighttime period was merely 311 

1.59 ppbv. With the increase in pollution level, the HONO accumulation period at 312 

nighttime increased. This result indicates that first, the homogeneous reaction of OH + 313 

NO is sufficient to augment HONO in the first half of the night, although NO2 314 

transformation and other sources may still exist. When the concentration of NO is 315 

relatively high, the net production generated by OH + NO may be the leading factor for 316 

the increase in HONO at night (Tong et al., 2015). Second, the hourly level of HONO 317 

abatement pathways, except OH + HONO, should be at least 0.22 ppbv h−1 (i.e., 3.36 – 318 

1.59 ppbv)/8 h). This phenomenon may arise because the dry deposition on ground 319 

surfaces can be the main HONO removal pathway at night, similar to a previous study 320 

(Li et al., 2012). 321 

3.2.2. Direct emission 322 

At present, no HONO emission inventory or emission factor database for 323 

Zhengzhou is available. As a result, estimating any HONO from direct emission is 324 

difficult. In the current study, directly emitted HONO could have been generated by 325 

vehicle exhaust and biomass combustion because the site is close to the western Fourth-326 

Ring Expressway of Zhengzhou City and about Lian Huo Expressway to the north. 327 

Hence, only night data (17:00–06:00 LT) were considered to avoid the problem of 328 

instant photolysis of directly emitted HONO. In a previous study, the HONO/NOX ratio 329 

from tunnel measurement was set to 0.65% to estimate an upper limit of HONO emitted 330 

by traffic near the site (Kurtenbach et al., 2001). The minimum value of HONO/NOX 331 

in the SPD period in the current work was 1.5%, which is slightly higher than the value 332 

measured in the abovementioned study. Directly emitted HONO at night was not 333 

transformed immediately. The HONO concentrations corrected by direct emissions are 334 

given as 335 

   [HONO]correct = [HONO] – [HONO]emission = [HONO] – 0.0065  × [NOX]  (2), 336 
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where [HONO]emission, [NOX], and 0.0065 are direct emission HONO concentration, 337 

NOX concentration, and HONO/NO2 direct emission ratio, respectively. The direct 338 

emission contribution was estimated by comparing the direct emission HONO with the 339 

observed HONO. The ranges of HONOemission/HONO in CD, PD, and SPD periods were 340 

2–52%, 6–34%, and 2–41%, respectively, and the mean values were 17, 16, and 16%, 341 

respectively. The frequency distribution of the HONOemission/HONO ratio at nighttime 342 

is shown in Fig. 6. For this upper limit estimation, the frequency distribution of 343 

HONOemission/HONO (less than 20%) was approximately 77%. Hence, direct emission 344 

may not be the main reason for the high growth of HONO levels. Compared with the 345 

direct emission of other sites, that of the measurement site accounted for a lower 346 

proportion possibly because the site is relatively far from the highway on the campus. 347 

3.2.3. Heterogeneous conversion of NO2 to HONO 348 

NO2 is an important precursor for HONO formation.  In addition, recent 349 

field measurements in many urban locations have shown  that a positive 350 

correlation exists between HONO and NO2 (Cui et al., 2018; Hao et al., 351 

2006; Huang et al., 2017; Zhang et al., 2019), suggesting they have a 352 

common source. Moreover,  Acker et al. (2005) reported that different 353 

meteorological conditions may lead to significant differences in the 354 

relationship between the source and receptor, and these differences lead to 355 

various types of correlation. During the measurement period, the 356 

HONO/NO2 ratio varied between 1.3 and 59.0%, with an average of 7.6%, 357 

which is slightly higher than the averaged value of 6.2% in a previous study 358 

(Cui et al., 2018). The HONO/NO2 ratio calculated in this work is much 359 

larger than that calculated for direct emission (< 1%) (Kurtenbach et al., 2001), 360 

suggesting that heterogeneous reactions may be a more important pathway 361 

for HONO production than direct emissions.  With regard to the 362 

heterogeneous conversion of NO2, several studies (An et al., 2012; Shen and 363 

Zhang, 2013) have reported that the surface of soot particles is the medium 364 
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of NO2 conversion. The contribution of soot surface to HONO production is 365 

usually much lower than expected because the uptake efficiency of NO 2  366 

decreases with the prolonged reaction time caused by surface deactivation.  367 

The aerosol surface is an important medium for the heterogeneous 368 

transformation from NO2 to HONO (Liu et al., 2014). The mass 369 

concentration of aerosols was used as an alternative to identify the influence 370 

of aerosols in this study because the surface density of aerosols could not be 371 

obtained. 372 

The correlations between PM2.5 and HONO/NO2 ratio in CD, PD, and 373 

SPD periods are shown in Fig. 7. With the exacerbation of the PM2.5 level, 374 

the average value of HONO/NO2 gradually increased, indicating that the 375 

aerosol surface occupied an important position in the heterogeneous 376 

transformation. A comparison of HONO/NO2 and HONO with PM2.5 showed 377 

that the correlation between HONO/NO2 and PM2.5 (R2 = 0.23) was weaker 378 

than that between HONO and PM2.5 (R2 = 0.55) in the entire period. The 379 

main source of HONO could not have been the transformation of NO2. 380 

Notably, the HONO correlation in the PD period was significantly stronger 381 

than that in the two other periods. This result proves that HONO-related 382 

reactions occurred more frequently during this period.  The fair correlation 383 

between HONO and PM2.5 may pinpoint the mainly anthropogenic origins of these two 384 

pollutants with the high direct or indirect contribution of combustion sources. The 385 

reason for the increased HONO during the heavy pollution period could be by the 386 

comparatively high loading and large particle surface (Cui et al., 2018). Similar 387 

phenomena have been observed in a correlation study on CO and HONO 388 

wherein CO was used as a tracer for traffic-induced emissions and tested by 389 

considering the correlation between HONO and CO over an identical time 390 

interval (Qin et al., 2009). The correlation coefficient between HONO and 391 

CO was relatively moderate (R2 = 0.43), indicating that HONO and CO 392 
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could come from the same source of emissions . Generally speaking, CO and 393 

NO are mainly related to combustion processes such as vehicle emissions, 394 

fossil fuel and biomass combustion (Tong et al., 2016). Thus, fossil fuel and 395 

biomass combustion may contribute to HONO production, but they can not 396 

be measured directly.  397 

The absorbed water influences the heterogeneous formation (Stutz et 398 

al., 2004). The influence of RH on the heterogeneous conversion is shown 399 

in Fig. 7(d). When RH was less, the HONO/NO2 ratio slowly increased.  400 

When RH was increased, the HONO/NO2 ratio began to increase rapidly 401 

with RH. The HONO/NO2 ratio decreased when RH reached a certain high 402 

level. Similar variation patterns have been obtained in previous studies 403 

(Huang et al., 2017; Qin et al., 2009; Tong et al., 2015). Surface adsorbed 404 

water functions not only as sources but also as sinks of HONO by affecting 405 

the hydrolysis of NO2 and the sedimentation of HONO to generate HONO 406 

(Ammann et al., 1998). When RH ranged at the middle level, the 407 

heterogeneous conversion of NO2 to HONO was more significant than that 408 

of deposition. This phenomenon confirms that RH improved the conversion 409 

efficiency (Stutz et al., 2004). However, the surface reached saturation when 410 

RH reached a certain high level. The excess water restricted NO2 411 

transformation (Wojtal et al., 2011). The absorption and dissolution of 412 

HONO by the saturated surface water layer caused HONO/NO2 ratio to 413 

decrease drastically. 414 

The correlation between HONOcorrect and NO2 at nighttime is shown in 415 

Fig. S1. HONOcorrect was used in the calculation to exclude the influence of 416 

direct emission on NO2 conversion. The nocturnal variations of HONOcorrect, 417 

NO2, and HONOcorrect/NO2 ratios in the CD, PD, and SPD periods are 418 

presented in Fig. 8. The uncertainties of HONOcorrect, NO2, and 419 

HONOcorrect/NO2 ratios in Fig. 8 are shown in Table S4. In general, the 420 
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HONOcorrect/NO2 ratio reached its maximum at or before midnight but 421 

decreased after midnight.  In the PD and SPD periods, HONO was generated 422 

by heterogeneous reaction (R4), and NO2 decreased after midnight. The 423 

production of HONO was equal to its loss (mainly night deposition) , and 424 

HONO concentration reached a relatively banlance. In the current study, 425 

directly emitted HONO state (Stutz, 2002). The weak correlation between 426 

nighttime HONO/NO2 and PM2.5 can be reasonably explained by the stable 427 

HONOcorrect/NO2 ratio after midnight (Qin et al., 2009). A previous study (Xu 428 

et al., 2015) found that a low HONOcorrect in the first half of the night (19:00–429 

00:00 LT) indicates an important contribution of automobile exhaust 430 

emissions, and a low HONOcorrect in the second half of the night  means 431 

heterogeneous reactions dominate.  Therefore, the heterogeneous reaction 432 

conversion rate of HONO was calculated in the current study by using the 433 

data of HONOcorrect. 434 

The conversion rate of HONO (CHONO) is usually used as an indicator 435 

to test the efficiency of NO2 heterogeneous reactions. Total HONOcorrect was 436 

assumed to be generated by the heterogeneous transformation of NO 2. The 437 

formula for the conversion rate of NO2 (CHONO) is as follows (Su et al., 438 

2008a; Xu et al., 2015): 439 

CHONO =
 ([HONOcorrect]t2 − [HONOcorrect]t1

(t2 − t1) [NO2]
                           (3), 440 

where [NO2] is the average concentration of NO2 within the t2–t1 time 441 

interval (1 h). In this study, the averaged conversion rate of NO2 was 442 

1.02×10−2 h−1. The mean values of CHONO in the CD, PD, and SPD periods 443 

were 0.72×10−2, 0.64×10−2, and 1.54×10−2 h−1, respectively. The averaged 444 

conversion rates in this study were 0.58×10−2 and 1.46×10−2 h−1 higher than 445 

those of Beijing I (polluted) and II (heavily polluted) periods, respectively.  446 

The increase in the conversion rate demonstrates that NO2 had high reaction 447 

efficiency through the process from NO2 to HONO in the aggravation of 448 
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pollution, which could have led to the high utilization efficiency of the 449 

aerosol surface. The exact uptake coefficients of NO2 on ground and aerosol surfaces 450 

are variable and should be different (Harrison and Collins, 1998). The present analysis 451 

simplified this process by treating the ground and aerosol surfaces the same. The uptake 452 

coefficient is mainly dependent on the surface characteristics, e.g. surface type and 453 

moisture (Lu et al., 2018). 454 

3.3. Daytime HONO budget 455 

The expression of d HONO / d t represents the observed variations of hourly 456 

HONO concentrations, for which we can use Δ HONO/Δ t instead: 457 

d HONO / d t = sources − sinks 458 

          =(Punknown + POH+NO + Pemi + Phet) −(LOH+HONO + Lphoto)         (4), 459 

POH+NO = kOH+NO [OH] [NO]                                        (5), 460 

LOH+HONO = kOH+HONO [OH] [HONO]                                 (6). 461 

The d HONO / d t calculated from the measurements was small and evenly 462 

distributed around zero (Li et al., 2012). Punknown is the production rate by an 463 

unknown daytime HONO source. POH+NO is the rate of reaction of NO and 464 

OH. Pemi represents the direct emission rate of HONO from combustion 465 

processes. By studying the source and reduction, the daytime HONO budget was 466 

analyzed with Eq. (4) (Su et al., 2008b). The heterogeneous transformation 467 

mechanism was assumed to be the same for day and night.  Therefore, the 468 

daytime heterogeneous productivity (Phet= CHONO × [NO2]) was calculated 469 

with the nighttime mean values of CHONO in different periods. LOH+HONO is 470 

the rate of the reaction between OH and HONO (R3).  The calculation 471 

formulas of POH+NO and LOH+HONO have been provided in Section 3.2.1. Upon 472 

sunlight irradiation, ·OH and NO were formed as R1. Lphoto represents the 473 

photolysis loss rate of HONO (Lphoto = JHONO × [HONO]). The photolysis 474 

frequency and ·OH concentration could not be directly measured in this 475 

study. Therefore, the tropospheric ultraviolet and visible (TUV) transfer 476 
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model of the National Center for Atmospheric Research 477 

(http://cprm.acom.ucar.edu/Models/TUV/  478 

Interactive_TUV/) (Hou et al., 2016) was used to calculate the JHONO value. 479 

The JHONO values obtained this way were assumed in clear sky days without clouds. O3 480 

column and the surface albedo. O3 column density measured by the Ozone Monitoring 481 

Instrument (OMI, data available at https://ozonewatch.gsfc.nasa.gov/data/omi/Y2019/). 482 

The O3 column density ranges from 292 to 306 DU during the entire period. The 483 

experimental site being situated in an urban region, the surface albedo is considered as 484 

0.13 (Sailor, 1995). The ground elevation and the measurement altitude are 168 and 485 

188 m respectively. The concentration of OH radicals was calculated with the formulas 486 

of NO2, O3, and JO
1
D in the supplement (Rohrer and Berresheim, 2006). Aerosol 487 

effects were considered by using aerosol optical thickness (AOD), single 488 

scattering albedo (SSA), and Angstrom exponent as inputs in the TUV 489 

model. Typical AOD, SSA, and Angstrom exponent values of 1.32, 0.9, and 490 

1.3, respectively, were adopted for the PD and SPD periods. In the CD 491 

period, the respective values were 0.66, 0.89, and 1.07 (Che et al., 2015; 492 

Cui et al., 2018; Hou et al., 2016). We wanted to study that under the same 493 

output conditions from the TUV model in the PD and SPD periods, the 494 

impact of different pollution levels changed on the daytime budget. Hence, 495 

the average profiles of JHONO and JO 1D concentrations in the CD, PD, and 496 

SPD periods are shown in Fig. 9. The mean values of JHONO and ·OH 497 

concentration at noon in the CD, PD, and SPD periods were 5.93×10 −4, 498 

3.79×10−4, and 3.79×10−4 molecule cm−3 and 4.10×106, 2.93×106, and 499 

3.76×106 molecule cm−3, respectively. The results of the calculated OH radicals 500 

ranged from (0.58−11.49) ×106 molecule cm−3, and the mean value was 3.57 ×106 501 

molecule cm−3 at noon in Zhengzhou. 502 

Each production and loss rate of daytime HONO during CD, PD, and 503 

SPD periods is illustrated in Fig. 9 together with dHONO/dt. Punknown was at 504 
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a high level before midday. Punknown approached 0 ppbv h−1 after midday. In 505 

the CD, PD, and SPD periods, the mean values of  Punknown were 0.26, 0.40, 506 

and 1.83 ppbv h−1, respectively; the mean values of  POH+NO were 1.14, 2.07, and 507 

4.03 ppbv h−1, respectively; the mean values of  Pemi were 0.17, 0.30, and 0.43 508 

ppbv h−1, respectively; and the mean values of Phet were 0.14, 0.18, and 0.55 509 

ppbv h−1, respectively. The midday time Punknown (1.83 ppbv h−1) calculated in 510 

Zhengzhou during the winter haze pollution period was close to the result obtained from 511 

Beijing’s urban area (Hou et al., 2016) (1.85 ppbv h−1). The Punknown contribution to 512 

daytime HONO sources in CD, PD, and SPD periods accounted for 15, 14, and 28% 513 

of the HONO production rate (Punknown + POH+NO + Pemi + Phet), respectively. Previous 514 

studies (Spataro et al., 2013; Yang et al., 2014) have shown that meteorological 515 

conditions, such as solar radiation and WS, can affect unknown sources. The low 516 

Punknown contribution of daytime HONO concentration may be related to the low solar 517 

radiation and low wind speed during severe pollution. The concentration of NO has a 518 

great influence on POH+NO, so the homogeneous reaction is still an important pathway 519 

of HONO production during the daytime. In addition to the photolysis of HONO and 520 

the homogeneous reaction of HONO and OH, one or more important sinks might exist 521 

to control the variation between the sources and sinks of the daytime HONO during 522 

complex contamination. However, further research is needed to analyze the unknown 523 

sources of daytime HONO. 524 

4. Conclusions 525 

Ambient HONO measurement using AIM with other atmospheric pollutants and 526 

meteorological parameters was conducted in the CPER. The HONO concentrations 527 

during the entire measurement varied from 0.2 to 14.8 ppbv, with an average of 2.5 528 

ppbv. The HONO concentrations in the CD, PD, and SPD periods were 1.1, 2.3, and 529 

3.7 ppbv, respectively, and the HONO/NO2 ratios were 4.7, 7.1, and 9.4%, respectively. 530 

HONO concentration was a combined action of direct emission and heterogeneous 531 

reaction, and the contributions of the two were higher than that of homogeneous 532 
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reaction in the first half of the night. However, the proportion of homogenization 533 

gradually increased in the second half of the night due to the steady increase in NO 534 

concentration. The hourly level of other HONO abatement pathways aside from OH + 535 

HONO should be at least 0.22 ppbv h−1 in the SPD period. The sum of the frequency 536 

distributions of the HONOemission/HONO ratio (less than 20%) was approximately 77%, 537 

indicating that the direct emission of HONO was not the main source of the observed 538 

HONO level at night. The mean values of HONOemission/HONO in the CD, PD, and SPD 539 

periods were 17, 16, and 16%, respectively. This phenomenon means that the policy of 540 

restricting motor vehicles published by the local government in January 2019 had a 541 

good effect on decreasing HONO emissions. In addition, when RH increased at the 542 

middle level, the heterogeneous HONO production increased, but it decreased when 543 

RH increased further due to the effect of surface water. The contribution of the three 544 

sources varied with different pollution levels. The mean values of CHONO in the 545 

CD, PD, and SPD periods were 0.72×10−2, 0.64×10−2, and 1.54×10−2 h−1, 546 

respectively. At nighttime in the SPD period, the heterogeneous conversion of NO2 547 

appeared to be unimportant. Furthermore, the net production generated by 548 

homogeneous reaction may be the leading factor for the increase in HONO under high-549 

NOX conditions (i.e., the concentration of NO was relatively higher than that of NO2) 550 

at nighttime. The mean value of POH+NO
net  in the CD, PD, and SPD periods were 0.13, 551 

0.26, and 0.56 ppbv h−1, respectively. Daytime HONO budget analysis showed that the 552 

mean values of Punknown in the CD, PD, and SPD periods were 0.26, 0.40, and 1.83 ppbv 553 

h−1, respectively. Although the values of POH+NO had high uncertainty because of the 554 

variation of NO concentrations, POH+NO contributed the most to HONO production 555 

during the daytime. After the analysis, CHONO, POH+NO
net , and Punknown in the SPD period 556 

were larger than those in the other periods, indicating that HONO participated in many 557 

reactions. 558 
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Figure Captions: 

Fig. 1. Temporal trends of hourly average T, RH, WD, WS, and PM2.5 during the measurement. (The 

shaded areas: white for the CD period; gray for the PD period; red for the SPD period.) 

Fig. 2. Temporal variations of hourly average HONO, NO, NO2, O3, and CO during the measurement. 

(The shaded areas: white for the CD period; gray for the PD period; red for the SPD period.) 

Fig. 3. Diurnal variations of HONO during the measurement. 

Fig. 4. Diurnal variations of HONO, NO, NO2, O3, HONO/NO2, and HONO/NOX. The blue points and 

lines represented the CD period; the black points and lines represented the PD period; the red points and 

lines represented the SPD period. 

Fig. 5. Nocturnal variations of 𝐏𝐎𝐇+𝐍𝐎
𝐧𝐞𝐭 , HONO and NO during CD, PD and SPD periods.  

Fig. 6. Percentage distribution of the nighttime HONOemission/HONO. (The dotted line represents the 

average of HONOemission/HONO.) 

Fig. 7. Nighttime correlation studies between PM2.5 and HONO/NO2, PM2.5 and HONO, CO and 

HONO, RH and HONO/NO2 during the entire measurement period, CD, PD, and SPD periods. The blue 

represented the full measurement period; the light blue represented CD period; the black represented PD 

period; the red represented SPD period. 

Fig. 8. Nocturnal variations of HONOcorrect, NO2, and HONOcorrect/NO2 in CD, PD and SPD periods.  

Fig. 9. The average profiles of JHONO and JO
1

D concentrations during the daytime, and production and 

loss rate of the daytime HONO in CD, PD and SPD periods. 
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Fig. 1. Temporal trends of hourly average T, RH, WD, WS, and PM2.5 during the measurement. (The 

shaded areas: white for the CD period; gray for the PD period; red for the SPD period.) 
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Fig. 2. Temporal variations of hourly average HONO, NO, NO2, O3, and CO during the measurement. 

(The shaded areas: white for the CD period; gray for the PD period; red for the SPD period.)
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Fig. 3. Diurnal variations of HONO during the measurement. 
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Fig. 4. Diurnal variations of HONO, NO, NO2, O3, HONO/NO2, and HONO/NOX. The blue points and 

lines represented the CD period; the black points and lines represented the PD period; the red points and 

lines represented the SPD period. 
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Fig. 5. Nocturnal variations of POH+NO
net , HONO and NO during CD, PD and SPD periods.  
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Fig. 6. Percentage distribution of the nighttime HONOemission/HONO. (The dotted line represents the 

average of HONOemission/HONO.) 
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Fig. 7. Nighttime correlation studies between PM2.5 and HONO/NO2, PM2.5 and HONO, CO and HONO, 

RH and HONO/NO2 during the entire measurement period, CD, PD, and SPD periods. The blue represented 

the full measurement period; the light blue represented CD period; the black represented PD period; the red 

represented SPD period. 
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Fig. 8. Nocturnal variations of HONOcorrect, NO2, and HONOcorrect/NO2 in CD, PD and SPD periods.  
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Fig. 9. The average profiles of JHONO and JO
1

D concentrations during the daytime, and production and 

loss rate of the daytime HONO in CD, PD and SPD periods. 
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Table Captions: 

Table 1. Data statistics of HONO, PM2.5, NO2, NO, NOX, HONO/NO2, HONO/NOX, O3, CO, T, RH, 

and WS during the measurement period, mean value ± standard deviation. 

Table 2. Comparisons of the daytime and nighttime HONO level, HONO/NO2, and HONO/NOX mean 

values in Zhengzhou and other sites around the world. 
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Table 1. 

Data statistics of HONO, PM2.5, NO2, NO, NOX, HONO/NO2, HONO/NOX, O3, CO, T, RH, and WS during the measurement period, mean value ± standard 

deviation. 

Trace gases 

 CD  PD  SPD 

Total days 

Day Night All Day Night All Day Night All 

PM2.5  

(μg m-3) 
37 ± 15 41 ± 17 39 ± 16 80 ± 32 93 ± 46 87 ± 40 148 ± 29 147 ± 33 147 ± 31 91 ± 54 

HONO 

(ppbv) 
0.9 ± 0.7 1.4 ± 0.7 1.1 ± 0.7 1.9 ± 1.7 2.7 ± 1.3 2.3 ± 1.5 3.5 ± 2.7 4.0 ± 1.1 3.7 ± 2.1 2.5 ± 1.9 

CO  

(ppmv) 
1 ± 0.3 1 ± 0.3 1 ± 0.3 1± 0.4 1 ± 0.6 1 ± 0.5 2 ± 0.6 2 ± 0.4 2 ± 0.5 1 ± 0.6 

NO  

(ppbv) 
18.4 ± 39.3 15 ± 34.3 16.7 ± 36.8 20.3 ± 26.2 30.7 ± 33.6 25.5 ± 30.4 40.8 ± 50.8 64.3 ± 82.1 52.5 ± 68.9 31.8 ± 51.4 

NO2  

(ppbv) 
23 ± 13 26 ± 13 25 ± 13 29 ± 9 38 ± 10 33 ± 11 40 ± 11 43 ± 10 42 ± 11 33 ± 14 

O3  

(ppbv) 
21.4 ± 11.5 13.8 ± 10.0 17.6 ± 11.4 17.4 ± 11.9 8.9 ± 8.1 13.1 ± 10.9 15.6 ± 14.2 7.9 ± 7.1 11.8 ± 11.8 14.2 ± 11.7 

HONO/NO2 

(%) 
4.2 ± 3.6 5.3 ± 2.2 4.7 ± 3.1 6.8 ± 5.8 7.4 ± 3.9 7.1 ± 4.9 9.0 ± 7.7 9.8 ± 5.8 9.4 ± 6.8 7.6 ± 6.4 

HONO/NOX 

(%) 
3.3 ± 2.7 6.0 ± 5.6 4.5 ± 4.5 4.4 ± 2.5 4.6 ± 1.7 4.5 ± 2.1 5.3 ± 3.4 5.8 ± 4.7 5.6 ± 4.1 4.9 ± 3.8 

RH  

(%) 
30 ± 21 36 ± 20 33 ± 21 44 ± 17 54 ± 18 49 ± 18 64 ± 18 73 ± 13 68 ± 16 50 ± 24 

WS  

(m s-1) 
0.8 ± 1.0 0.5 ± 0.7 0.7 ± 0.9 1.1 ± 1.4 0.6 ± 0.9 0.9 ± 1.2 0.4 ± 0.7 0.3 ± 0.6 0.4 ± 0.7 0.6 ± 0.9 

T  

(℃) 
4.3 ± 4.6 2.7 ± 3.6 3.5 ± 4.2 3.7 ± 3.3 2.6 ± 3.1 3.1 ± 3.2 4.6 ± 3.2 2.9 ± 2.1 3.8 ± 2.8 3.5 ± 3.5 
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Table 2. 

Comparisons of the daytime and nighttime HONO level, HONO/NO2, and HONO/NOX mean values in Zhengzhou and other sites around the world. 

Date (Site) Instrument 
HONO (ppbv) HONO/NO2 (%) HONO/NOX (%) 

Reference 
Day Night N/D Day Night Day Night 

Oct.–Nov. 2014 

(Beijing, urban) 

LOPAP 

(long path absorption 

photometer) 

0.9 1.8 2.0 2.6 4.6 1.7 2.2 Tong et al., 2015 

Feb.–Mar. 2014 

(Beijing, urban) 
LOPAP 

1.8 2.1 1.2 3.8 4.3 2.5 2.5 

Hou et al., 2016 
(Severe haze) 

0.5 0.9 1.8 7.8 3.0 5.1 2.4 

(Clean) 

Jul. 2006 

(Guangzhou, rural) 
LOPAP 0.2 0.9 4.5 1.0 2.5 4.3 4.5 Li et al., 2012 

Jul. 2014–Aug. 2015  

(Xi'an, urban) 
LOPAP 0.5 1.6 3.2 3.3 6.2   Huang et al., 2017 

Aug. 2010–Jun. 2012 

(Shanghai, urban) 
Active DOAS 0.8 1.1 1.4 4.2 4.5   Wang et al., 2013 

Jul. 2009 

(Paris, urban) 

wet chemical derivatization 

technique-HPLC/UV-VIS 

detection 

0.1 0.2 2.0 3.3 2.5   
Michoud et al., 

2014 

Jan. 2019 AIM 2.2 2.8 1.3 6.8 8.5 4.4 5.5 This study 

 


