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Key points: 24 
1. The black carbon (BC) transport across the Himalayas can overcome a majority of mountain 25 
ridges, but the valley transport is much more efficient.  26 
2. The complex topography results in stronger overall crossing-Himalayas transport primarily 27 
due to the enhanced valley wind, deeper valley channels, and induced small-scale favorable 28 
circulation. 29 
3. The complex topography generates 50% higher transport flux of BC across the Himalayas 30 
and 30-50% stronger BC radiative heating in the atmosphere up to 10 km over the Tibetan 31 
Plateau (TP) than that with the smoother topography, which implies that global climate models 32 
with relatively coarse resolution may introduce significant negative biases in estimating BC 33 
radiative forcing over the TP due to smooth topography. 34 
4. The different topography also leads to different distributions of snow cover and BC forcing 35 
in snow over the TP. 36 

37 
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Abstract 38 
Most of previous modeling studies about black carbon (BC) transport and impact over the 39 

Tibetan Plateau (TP) conducted simulations with horizontal resolutions coarser than 10 km that 40 

may not be able to resolve well the complex topography of the Himalayas. In this study, the 41 

two experiments covering entire Himalayas with the Weather Research and Forecasting Model 42 

coupled with chemistry (WRF-Chem) at the horizontal resolution of 4 km but with two 43 

different topography datasets (4-km complex topography and 20-km smooth topography) are 44 

conducted for pre-monsoon season (April, 2016) to investigate the impacts of topography on 45 

modeling the transport and distribution of BC over the TP. Both experiments show evident 46 

accumulation of aerosols near the southern Himalayas during the pre-monsoon season, 47 

consistent with the satellite retrievals. The observed episode of high surface BC concentration 48 

at the station near the Mt. Everest due to heavy biomass burning near the southern Himalayas 49 

is well captured by the simulations. The simulations indicate that the prevailing up-flow across 50 

the Himalayas driven by the large-scale circulation during the daytime is the dominant 51 

transport mechanism of South Asian BC into the TP, and is much stronger than that during the 52 

nighttime. The simulation with 4-km topography resolves more valleys and mountain ridges, 53 

and shows that the BC transport across the Himalayas can overcome a majority of mountain 54 

ridges but the valley transport is more efficient. The complex topography results in stronger 55 

overall crossing-Himalayas transport primarily due to the enhanced valley wind, deeper valley 56 

channels, and induced small-scale favorable circulation. This results in 50% higher transport 57 

flux of BC across the Himalayas and 30-50% stronger BC radiative heating in the atmosphere 58 

up to 10 km over the TP from the simulation with 4-km complex topography than that with 20-59 

km smoother topography. The different topography also leads to different distributions of snow 60 

cover and BC forcing in snow. This study implies that global climate models generally with 61 

even coarser resolutions than 20 km and therefore relatively smoother topography may 62 

introduce significant negative biases in estimating light absorbing aerosol radiative forcing 63 

over the TP. 64 

 65 

 66 

 67 

 68 

69 
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1. Introduction 70 

The Tibetan Plateau (TP) is the highest plateau in the world with an average elevation 71 

over 4 km and an area of approximately 2.5 × 106 km2, known as the world’s third pole (Qiu, 72 

2008), and its enormous dynamic and thermal effects have a huge impact on large-scale 73 

atmospheric circulation through the energy exchange with the atmosphere especially the 74 

troposphere, such as Asian monsoon (e.g., Ye and Wu, 1998; Duan and Wu, 2005; Wu et al., 75 

2007, 2012; Boos and Kuang, 2013; Chen and Bordoni, 2014; He et al., 2019; Zhao et al., 76 

2019). In addition, the glacial melting water of TP is one of the important sources of water 77 

resources of the Indus River, Ganges River, Yangtze River, and Yellow River in Asia (e.g., 78 

Singh and Bengtsson, 2004; Barnett et al., 2005; Immerzeel et al., 2010; Lutz et al., 2014). 79 

Previous studies found aerosols in the atmosphere over/around the TP could change the 80 

regional climate of Asia (e.g., Qian et al., 2011, 2015; Lau et al., 2017, 2018). Model 81 

simulations showed that the absorptive aerosols changed the surface radiative flux over the TP 82 

by 5-25 W m-2 during the pre-monsoon season in April and May and led to the changes in 83 

summer monsoon circulations (Qian et al., 2011). Meanwhile, aerosol may affect the 84 

atmosphere by modulating the vertical structure of cloud and precipitation around the TP, and 85 

thus change the distribution of atmospheric latent heat around the TP, which is the main driving 86 

force of regional atmosphere circulations (e.g., Li et al., 2010, 2017, 2019). Moreover, when 87 

absorbing aerosols settle on the snow-covered areas, they will blacken the surface of snow 88 

cover and glacier to a large extent (e.g., Hansen and Nazarenko, 2004; Ramanathan and 89 

Carmichael, 2008; Lau et al., 2010, 2018; Lee et al., 2013; Zhang et al., 2017, 2018), reduce 90 

the snow albedo so as to absorb more solar radiation and cause the consequences of accelerated 91 

melting (e.g., Ramanathan et al., 2007; Ming et al., 2009; Yasunari et al., 2010; Ji et al., 2015; 92 

Zhang et al., 2015). According to the Intergovernmental Panel on Climate Change Fifth 93 

Assessment Report (IPCC AR5), the radiative forcing caused by the important component of 94 

absorbing aerosols, black carbon (BC), on the surface snow is 0.04 W m-2 (0.02-0.09 W m-2) 95 

on global average, and the regional forcing (such as over the Arctic and the Himalayas) can be 96 

considerably large.  97 

The TP is surrounded by various sources of pollutants. Over the South of TP, previous 98 

studies have suggested that South Asia was the main source of pollutants transported to the 99 

plateau (e.g., Cong et al., 2009, 2015a, b; Kopacz et al., 2011; Lu et al., 2012; Zhao et al., 2013; 100 

Wang et al., 2015; Zhang et al., 2015; Kang et al., 2015; Li et al., 2016; Chen et al., 2018; Kang 101 

et al., 2019). A huge blanket or layer of “haze” composes of light-absorbing carbonaceous 102 
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aerosol particles that often erupts in the pre-monsoon season over South Asia and has a 103 

significant influence on the plateau (e.g., Prasad and Singh, 2007; Engling and Gelencser, 104 

2010). Among them, biomass burning emission reaching the maximum in pre-monsoon season 105 

over South Asia is one of the dominant sources (e.g., Cong et al., 2015b). Many studies 106 

investigated the transport mechanisms of South Asian pollutants to the TP and found that the 107 

pollutants transported across the Himalayas were mainly due to the combination of large-scale 108 

circulation and regional wind (e.g., Hindman and Upadhyay, 2002; Cao et al., 2010; Dumka et 109 

al., 2010; Marinoni et al., 2010; Cong et al., 2015a; Kang et al., 2015; Lüthi et al., 2015; Zhang 110 

et al., 2017). Cong et al. (2015a) conducted seven-day backward air-mass trajectories 111 

experiment and found strong westerly passed through western Nepal, northwest India and 112 

Pakistan (i.e., southern Himalayas) in the pre-monsoon season. Dumka et al. (2010) and Kang 113 

et al. (2015) inferred from the trajectory analysis that long-distance transport from Africa and 114 

Europe may also affect the BC concentration of Himalayas in addition to the influence of 115 

regional pollution.  116 

Although previous studies have confirmed the transport of pollutants across the Himalayas, 117 

the complex topography of Himalayas complicates transport mechanisms. On one hand, Cao 118 

et al. (2010) revealed that the Himalayas acted as a huge barrier to the transport of a large 119 

amount of BC over the plateau based on model simulations. On the other hand, some studies 120 

found that the valleys across the Himalayas served as channels for efficient transport of 121 

pollutants (e.g., Hindman and Upadhyay, 2002; Marinoni et al., 2010). Marinoni et al. (2010) 122 

analyzed the observation of wind at a station of the southern Himalayas and found that a distinct 123 

valley wind system with the prominent southerly continuously transported pollutants to the 124 

plateau. Most of these studies used observations and back-trajectory models to demonstrate the 125 

transport pathways of pollutants to the TP, which cannot explicitly reveal the transport 126 

mechanisms underneath, in particular quantifying the impacts of complex topography.  127 

A few of modeling studies investigated the pollutant transport mechanisms using 3-D 128 

chemical transport models (e.g., Kopacz et al., 2011; Liu et al., 2015; Zhang et al., 2017; Yang 129 

et al., 2018). However, most of them simulated transport processes at relatively coarse 130 

horizontal resolutions (e.g., 20-100 km), which cannot resolve well the complex topography of 131 

Himalayas. It is noteworthy that studies about the aerosol climatic impact over the TP also used 132 

climate models at relatively coarse horizontal resolutions (e.g., Flanner and Zender, 2005; 133 

Menon et al., 2010; Kopacz et al., 2011; Qian et al., 2011, 2015; He et al., 2014; Zhang et al., 134 

2015; Ji et al., 2016). So far, there is only one study that used a chemical transport model at a 135 

horizontal resolution of sub-10 km to investigate pollutant transport mechanisms over the 136 
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eastern Himalayas (Cao et al., 2010). Furthermore, none of studies assessed quantitatively the 137 

impacts of topography on modeling the pollutant transport across the Himalayas and hence on 138 

estimating aerosol distribution and radiative forcing over the TP.  139 

In order to examine the potential impacts of complex topography on pollutant transport 140 

across the Himalayas over the TP, this study conducts multiple experiments with the Weather 141 

Research and Forecasting Model coupled with chemistry (WRF-Chem, Grell et al., 2005; 142 

Skamarock et al., 2008). The WRF-Chem model is selected because it includes the interaction 143 

between meteorology and aerosol and is widely used for regional modeling of aerosol and its 144 

climatic impact (e.g., Cao et al., 2010; Zhao et al., 2010, 2011, 2012, 2014; Wu et al., 2013; 145 

Gao et al., 2014; Huang et al., 2015; Fan et al., 2015; Feng et al., 2016; Zhong et al., 2017; 146 

Sarangi et al., 2019; Liu et al., 2020). The model has also been used to investigate the aerosol 147 

transport and climatic impact over the Himalayas region (e.g., Feng et al., 2016; Cao et al., 148 

2010; Sarangi et al., 2019). The model is suitable for simulations at hydrostatic and non-149 

hydrostatic scales and thus can be used for investigating the impacts of resolution-dependent 150 

feature, such as topography, on modeling results. In particular, the meteorological part of the 151 

model (WRF) has been systematically evaluated and used to investigate the impacts of 152 

resolutions on simulations of moisture transport and climate over the Himalayas region (e.g., 153 

Shi et al., 2008; Karki et al., 2017; Lin et al., 2018). All of these previous studies with the 154 

model lay the foundation for this modeling study.  155 

Two experiments with different topography representations are conducted to investigate 156 

the impacts of topography complexity on the pollutant transport across the Himalayas and the 157 

resulting radiative forcing over the TP. The simulations are conducted for April 2016 in pre-158 

monsoon season, because South Asia is seriously polluted during this period and the pollutants 159 

transported to the TP during the period may have significant impacts on Asian monsoon system 160 

(e.g., Lau et al., 2006a, b; Ding et al., 2009; Kuhlmann and Quaas, 2010; Qian et al., 2011, 161 

2015). In addition, the observed concentration of BC at the observation station besides Mt. 162 

Everest shows an evident pollution episode from April 5th to 16th of 2016, deserving the 163 

investigation of the transport mechanisms. The rest of the paper is organized as follows. Section 164 

2 describes briefly the WRF-Chem model, the physics parameterizations, and the model 165 

configuration for this study, followed by a description of data for evaluation. The series of 166 

numerical experiments at different resolutions are analyzed in Section 3. The findings are then 167 

summarized and discussed in Section 4. 168 

 169 
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2. Methodology 170 

2.1 Model and experiments 171 

2.1.1 WRF-Chem model 172 

In this study, the version of WRF-Chem updated by University of Science and Technology 173 

of China (USTC version of WRF-Chem) is used. This USTC version of WRF-Chem includes 174 

some additional capabilities such as the diagnosis of radiative forcing of aerosol species, land 175 

surface coupled biogenic volatile organic compound (VOC) emission, aerosol-snow 176 

interaction compared with the publicly released version (Zhao et al., 2013a, b, 2014, 2016; Hu 177 

et al., 2019; Du et al., 2020). The Model for Simulating Aerosol Interactions and Chemistry 178 

(MOSIAC) (Zaveri et al., 2008) and the Carbon Bond Mechanism-Z (CBM-Z) gas phase 179 

mechanisms (Zaveri and Peters, 1999) are selected. The MOSAIC aerosol scheme uses an 180 

approach of segmentation to represent aerosol size distribution with four or eight discrete size 181 

bins (Fast et al., 2006). It consists of a range of physical and chemical processes such as 182 

nucleation, condensation, coagulation, aqueous phase chemistry, and water uptake by aerosol. 183 

The parameterization of dry deposition of aerosol mass and number is according to the method 184 

of Binkowski and Shankar (1995), including particle diffusion and gravitational effects. 185 

Aerosol-cloud interactions were included in the model by Gustafson et al. (2007) for 186 

calculating the activation and re-suspension between dry aerosols and cloud droplets. The wet 187 

removal of grid-resolved stratiform clouds/precipitation includes two aspects, namely in-cloud 188 

removal (rainout) and below-cloud removal (washout) by Easter et al. (2004) and Chapman et 189 

al. (2009), respectively. Aerosol optical properties such as single scattering albedo (SSA) and 190 

scattering asymmetry and so on are calculated at each model grid through the function of 191 

wavelength. The shortwave (SW) and longwave (LW) refractive indices of aerosols use the 192 

Optical Properties of Aerosols and Clouds (OPAC) data set (Hess et al., 1998), with a detailed 193 

description of the computation of aerosol optical properties can be found in Barnard et al. (2010) 194 

and Zhao et al. (2013a). For both short wave and long wave radiation, aerosol radiation 195 

feedback combined with the Rapid Radiative Transfer Model (RRTMG) (Mlawer et al., 1997; 196 

Iacono et al., 2000) was implemented by Zhao et al (2011). For the diagnosis of the optical 197 

properties and direct radiative forcing of various aerosol species in the atmosphere, the method 198 

described by Zhao et al (2013a) is adopted. The radiative forcing of light absorbing aerosol in 199 

surface snow is estimated with the Snow, Ice, and Aerosol Radiative model (SNICAR) 200 

(Flanner and Zender, 2005) in the land surface scheme as introduced by Zhao et al. (2014). 201 
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More details about the coupling between the WRF-Chem and SNICAR models can be found 202 

in Zhao et al. (2014). 203 

2.1.2 Numerical experiments 204 

 In this study, the WRF-Chem simulations are performed with two nested domains (one-205 

way nesting), one outer domain at 20 km horizontal resolution with 350250 grid cells (62°E 206 

-112°E, 1°N -38°N) and one inner domain at 4 km horizontal resolution with 400300 grid 207 

cells (75°E -92°E, 23°N -35°N) (Fig. 1). The inner domain roughly covers the entire Himalayas. 208 

The WRF-Chem simulations conducted in this study use the terrain following coordinate 209 

(Skamarock et al., 2008). To resolve the vertical structure of transport across the Himalayas, 210 

the simulations are configured with 54 vertical layers and denser layers near the surface. For 211 

example, averaged over a region (26°N-28°N, 76°E-80°E) near the southern Himalayas, there 212 

are about 17 layers below 2 km above the ground (Fig. 2). The goal of this study is to investigate 213 

the impacts of different representations of topography on the transport of BC across the 214 

Himalayas. Therefore, besides this control experiment, one sensitivity experiment is also 215 

conducted with the same configuration as the control one except that the topography of the 216 

inner domain at 4 km resolution is prescribed to follow that at 20 km resolution similar as 217 

previous studies (e.g., Shi et al., 2008; Wu et al., 2012; Lin et al., 2018). More specifically, the 218 

sensitivity experiment applies a single value for each nested 55 grids over the inner domain 219 

as the corresponding grid of 20 km over the outer domain. The two experiments are referred to 220 

the simulations with complex and smooth topography, respectively, hereafter. Fig. 3 shows the 221 

spatial distribution of terrain height over the inner domain with complex (4-km dataset) and 222 

smooth (20-km dataset) topography. It is evident that the terrain is much smoother from the 223 

20-km dataset than from the 4 km dataset. The mountain ridges and valleys can be resolved to 224 

some extent in the 4-km dataset but mostly missed or underestimated at 20-km. The probability 225 

distributions of terrain height from the 20-km and 4-km datasets (Fig. S1 in the supporting 226 

material) show that the difference between the two datasets is small for the terrain height lower 227 

than ~4.5 km but is significant for the terrain height above ~4.5 km. The difference of results 228 

from the two experiments over the inner domain is analyzed as the impacts of topography 229 

representations. Therefore, all the results shown below are from the simulations of the inner 230 

domain at 4 km resolution with different topography if not otherwise stated.  231 

The simulations are conducted for March 29th-April 20 of 2016 for the reason as discussed 232 

in the introduction. The results of April 1th-20th are analyzed for the observed pollution episode 233 

to allow a few days spin-up for chemical initial condition. The meteorological initial and lateral 234 
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boundary conditions are derived from the European Centre for Medium-Range Weather 235 

Forecasts (ECMWF) reanalysis data at 0.5°0.66° horizontal resolution and 6 h temporal 236 

intervals (ERA-Interim dataset). The modeled u and v component wind, atmospheric 237 

temperature, and geopotential height over the outer domain are nudged towards the reanalysis 238 

data with a nudging timescale of 6 h following previous studies (e.g., Stauffer and Seaman, 239 

1990; Seaman et al., 1995; Liu et al., 2012; Zhao et al., 2014; Karki et al., 2017; Hu et al., 2016, 240 

2020). Spectral nudging method is applied to balance the performance of simulation at the large 241 

and small scales (Liu et al., 2012), and only to the layers above the planetary boundary layer 242 

(PBL) with nudging coefficients of 310-4 s-1. A wave number of three is selected for both 243 

south-north and west-east directions. Please note that the choices of nudging coefficients and 244 

wave numbers for spectral nudging in this study are empirical. The purpose of nudging is to 245 

simulate reasonably large-scale feature so that small-scale impacts from the complex 246 

topography can be focused. Therefore, the modeling sensitivity to these choices is not tested in 247 

this study. The results show that the simulations with nudging method can reproduce the large-248 

scale circulation at 700 hPa and higher over the outer domain compared to the reanalysis dataset 249 

with the spatial correlation coefficient of 0.96-0.98.  250 

The Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary layer scheme 251 

(Nakanishi and Niino, 2006), Community Land Model (CLM) land surface scheme (Oleson et 252 

al., 2010), Morrison 2-moment microphysics scheme (Morrison et al., 2009), Kain-Fritsch 253 

cumulus scheme (Kain, 2004), and Rapid Radiative Transfer Model (RRTMG) longwave and 254 

shortwave radiation schemes (Iacono et al., 2000) are used in this study. The chemical initial 255 

and boundary conditions are provided by a quasi-global WRF-Chem simulation for the same 256 

time period to include long-range transported chemical species. The quasi-global WRF-Chem 257 

simulation is performed at 1°1° horizontal resolution using a quasi-global channel 258 

configuration with 360130 grid cells (180°W-180°E, 60°S-70°N). More details about the 259 

general configuration of quasi-global WRF-Chem simulation can be found in Zhao et al. 260 

(2013b) and Hu et al. (2016). The detailed configuration of WRF-Chem experiments is 261 

summarized in Table 1. Due to the lack of publicly available in-situ observations, this study 262 

does not tend to evaluate systematically the simulated meteorological fields over the Himalayas 263 

region. However, as shown in Table 1, the choice of physical parameterizations in this study 264 

follows that of one previous study (Karki et al., 2017) that evaluated systematically the WRF 265 

simulation for one entire year over the Himalayas region. Their results showed that the WRF 266 

simulation at convection-permitting scale could generally capture the essential features of 267 
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meteorological fields such as precipitation, temperature, and wind over the Himalayas region. 268 

Therefore, the WRF-Chem simulations in this study are reliable to investigate the impacts of 269 

topography over the Himalayas region.  270 

2.1.3 Emissions  271 

Anthropogenic emissions for outer and inner simulation domains are obtained from the 272 

Hemispheric Transport of Air Pollution version-2 (HTAPv2) at 0.1°0.1° horizontal resolution 273 

and a monthly temporal resolution for year 2010 (Janssens-Maenhout et al., 2015), except that 274 

emissions of East Asia are from the MIX Asian anthropogenic emission inventory at 0.1°0.1° 275 

horizontal resolution for 2015 (Li et al., 2017). Biomass burning emissions are obtained from 276 

the Fire Inventory from National Center for Atmospheric Research (FINN) with hourly 277 

temporal resolution and 1 km horizontal resolution (Wiedinmyer et al., 2011) for the simulation 278 

period, and are vertically distributed following the injection heights suggested by Dentener et 279 

al. (2006) from the Aerosol Comparison between Observations and Models (AeroCom) project. 280 

Sea-salt emission follows Zhao et al. (2013b), which includes correction of particles with 281 

radius less than 0.2 μm (Gong, 2003) and dependence of sea-salt emission on sea surface 282 

temperature (Jaeglé et al., 2011). The vertical dust fluxes are calculated with the Georgia 283 

Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) dust 284 

emission scheme (Ginoux et al., 2001), and the emitted dust particles are distributed into the 285 

MOSAIC aerosol size bins following a theoretical expression based on the physics of scale-286 

invariant fragmentation of brittle materials derived by Kok (2011). More details about the dust 287 

emission scheme coupled with MOSAIC aerosol scheme in WRF-Chem can be found in Zhao 288 

et al. (2010, 2013b).  289 

As shown in Fig. 1, anthropogenic fossil fuel emissions of BC are high over Northeast 290 

India. The fossil fuel BC emissions over Nepal, the country nearby the southern Himalayas, 291 

are relatively low. Instead, biomass burning emissions of BC are extremely high in Nepal and 292 

Northwest India (South Himalayas, 26°N-29°N). Averaged over the South Himalayas of inner 293 

domain that may significantly affect the pollutant transport into the TP, the biomass burning 294 

emissions of BC are much higher than its anthropogenic fossil fuel emissions, particularly for 295 

the pollution episode (Fig. 4). The anthropogenic BC emissions are set constant through April, 296 

while biomass burning emissions show a strong fire event in April 5-16. During the event, the 297 

biomass burning BC emissions can be close to a factor of 2 of the anthropogenic fossil fuel BC 298 

emissions over South Himalayas.  299 

 300 

2.2 Dataset 301 
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 Three datasets are used to compare with the modeling results to demonstrate the pollutant 302 

episode and spatial distribution. One is from the Moderate Resolution Imaging 303 

Spectroradiometer (MODIS) instruments on Aqua and Terra satellites. The MODIS Aerosol 304 

Product monitors the ambient aerosol optical thickness over the oceans globally and over the 305 

continents. Daily Level 2 Aerosol Optical Depth (AOD) at 550 nm products with the spatial 306 

resolution of 10 km10 km (at nadir) from both Aqua and Terra are applied. When compared 307 

with the modeling results, the simulations are sampled at the satellite overpass time and 308 

location. The second one is from the Aerosol Robotic Network (AERONET) (Holben et al., 309 

1998) that has ~100 similar globally distributed sun and sky scanning ground-based automated 310 

radiometers, which provide measurements of aerosol optical properties throughout the world 311 

(Dubovik and King, 2000; Dubovik et al., 2002). In this study, AERONET measured AOD at 312 

675 nm and 440 nm from two sites over the TP, Qomolangma site (QOMS, 86.94°E, 28.36°N) 313 

and Namco site (NAM, 90.96°E, 30.77°N) are used to derive the AOD at 550 nm (using the 314 

Angström exponent) for comparison with modeling results at 550 nm. All of the retrievals of 315 

AOD are at quality level 2, and the uncertainty of AOD measurements is about 0.01 (Holben 316 

et al., 2001). In this study, the available data in April 2016 are used to evaluate the modeling 317 

results during the same period.  318 

The third one is the measurement of surface BC mass concentration collected during the 319 

simulation period for April 4-20 of 2016 at the Qomolangma (Mt. Everest) Station for 320 

Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences 321 

(QOMS, 86.94°E, 28.36°N) which is located at the northern slope of the Himalayas, about 322 

4276 meters above sea level. The BC mass concentration is measured with the widely-used 323 

instrument Aethalometer (AE-33) that can provide real-time BC mass concentration 324 

measurements. The calibration of air flow is routinely conducted to maintain the data quality. 325 

The instrument estimates the BC mass concentration based on the optical method through 326 

measuring the reduction in light intensity induced by BC. The method assumes that the 327 

relationship between attenuation and BC surface loading is linear for low attenuation values. 328 

However, this relationship becomes nonlinear when the attenuation values are high due to a 329 

filter saturation effect, which may lead to underestimation of the high BC concentration. The 330 

detection limit of AE-33 instrument is 5 ng/m3, and the uncertainty is estimated to be within 331 

10% (e.g., Chen et al., 2018; Bansal et al., 2019; Kant et al., 2019). The dataset of BC mass 332 

concentration used in this study was reported by Chen et al., (2018), where more details about 333 

the measurements can be found. 334 



 11 

3. Results 335 

3.1 Spatial distribution of BC around the TP 336 

 Figure 5 shows the spatial distributions of column integrated BC mass within the inner 337 

domain from the simulations at 4 km resolution with complex and smooth topography averaged 338 

for April 1-20, 2016, and the difference between the two is also shown. For both experiments, 339 

the southern Himalayas is an apparent boundary line for the distribution of BC with a sharp 340 

gradient across the Himalayas. The high BC mass loading exists near the southern Himalayas 341 

reaching over 10 mg/m2, which is largely contributed by the biomass burning emissions during 342 

the period (Fig. 4), while the value reduces significantly to less than 0.4 mg/m2 over the TP. In 343 

general, the column BC mass loading from the simulation with complex topography is higher 344 

over the TP and lower over the region to the south of Himalayas compared with the smooth 345 

topography. Figure 6 displays the spatial distributions of AOD from the MODIS retrievals and 346 

the simulations at 4 km with two different topography averaged for April 1-20, 2016. In general, 347 

both simulations reproduce the overall spatial distribution of AOD, with the large values near 348 

the southern Himalayas, consistent with the BC mass loading. The difference between the 349 

simulations and retrievals may be partly related to the uncertainties in emissions particularly 350 

for biomass burning emissions. Other than intense emissions, the wind circulation around the 351 

TP may also play an important role in accumulating BC near the southern Himalayas. Because 352 

of the block of Himalayas, the wind circulation at 500 hPa is divided into two branches as 353 

westerly and northwesterly. Both of them are relatively dry airflows with little effect on 354 

pollutant removal, favor the accumulation of pollutants near the southern Himalayas, and carry 355 

the pollutants to the TP (e.g., Dumka et al., 2010; Kang et al., 2015; Cong et al., 2015a).  356 

The AOD retrieved at two AERONET sites over the TP are compared with the two 357 

simulations for April 1-20, 2016 (Fig. 7). The AOD at the QOMS site near the northern 358 

Himalayas is higher than that at the NAM site inside of the TP. Both simulations can capture 359 

this gradient. The simulation with complex topography produces higher AOD than does the 360 

one with smooth topography at both sites. The modeling biases (normalized mean bias, NMB) 361 

reduce from -46% (smooth topography) to 9% (complex topography) at the QOMS site and 362 

from -26% (smooth topography) to -10% (complex topography) at the NAM site. Although the 363 

correlation coefficient between the simulations and observation increases from 0.37 (smooth 364 

topography) to 0.53 (complex topography) at the QOMS site, it is similar (~0.2) between the 365 

two simulations at the NAM site. The correlation coefficient is higher at the QOMS site near 366 

the source region than the NAM site farther away, which may indicate the model processes 367 
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affecting the transport over the TP still need examination with more observations. The NAM 368 

site over the eastern TP may also be affected by other sources that are not counted in this study. 369 

The modeling of temporal variations of pollutants over the TP deserves further investigation 370 

with more observations.       371 

 There is one in-situ observational station (QOMS) near the Mt. Everest (black dot shown 372 

in Fig. 1) to collect the surface BC concentration. The observed surface BC concentration at 373 

this station is compared with the corresponding simulations for this period as shown in Figure 374 

8. Without local emission source, the surface BC concentration at QOMS is primarily 375 

contributed by the transport. The temporal variation of observed surface BC concentration 376 

correlates highly with the biomass burning emissions as shown in Fig. 4, with the peak value 377 

on April 11 reaching ~3 ug/m3. One sensitivity experiment without biomass burning emissions 378 

shows that the simulated BC concentration at QOMS will be significantly reduced without the 379 

peak (not shown), which further proves that the BC concentration over the northern Himalayas 380 

can be largely influenced by the pollution episode near the southern Himalayas. It is noteworthy 381 

that both simulations can reproduce the episode in time and magnitude, and the difference at 382 

this station is small. The spatial distribution of difference in surface BC concentration between 383 

the two simulations (Fig. S2) is more heterogeneous than that of column BC mass (Fig. 5), 384 

reflecting the impact of topography on transport (see the discussion in Section 3.2).  385 

 386 

3.2 Transport flux into the TP  387 

 To further understand the difference in BC surface concentration and column mass loading 388 

over the TP between the two simulations with different topography, Figure 9 shows the 389 

longitude-height cross section of BC transport flux along the cross line (shown as the black 390 

dash line in Fig. 3) from the two simulations at local time (LT) 03:00 and 15:00 averaged for 391 

April 1-20 to represent nighttime and daytime transport, respectively. The PBL height along 392 

the cross line is also shown as the black dash line. The transport flux is calculated by projecting 393 

the wind field perpendicularly to the cross line and then multiplying the BC mass concentration 394 

along the cross line. More specifically, the transport flux is calculated as following:             395 

TF = 𝐶 ∗ (𝑢 ∗ sin 𝛼 + 𝑣 ∗ sin 𝛽)    (1) 396 

Where 𝛼 is the angle between east-west wind component and the cross line, 𝛽 is the angle 397 

between south-north wind component and the cross line, and 𝐶 is the BC mass concentration 398 

at the grid along the cross line. The flux is estimated at each model level. Positive values 399 

represent the transport towards the TP, while negative values represent the transport away from 400 
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the TP. It is evident that BC is imported into the TP during the day and night on the west of 401 

~85°E, although the transport flux is much larger during the daytime than nighttime. On the 402 

east of ~85°E, BC is imported into the TP during the day but exported slightly from the TP 403 

during the night. The difference of transport flux between on the west and east of ~85°E is 404 

primarily due to the influence of large-scale westerly that is relatively weak on the east of 405 

~85°E compared with the west (Fig. 5). If removing the mean flux during the simulation period, 406 

the transport flux anomalies show evident diurnal variation between the day and night (Fig. S3 407 

in the supporting material). This suggests that on average, the large-scale westerly is one of the 408 

key mechanisms transporting BC across the Himalayas into the TP, while the circulation 409 

anomalies strengthen the prevailing import transport during the daytime and weaken the import 410 

during the night, particularly in the west of ~85°E. The strong transport is primarily within the 411 

PBL during the daytime, and the deeper PBL during the daytime allows BC over the source 412 

region mixed to higher altitude, which also leads to stronger import transport during the day 413 

than the night.  414 

The difference between the simulations with two different topography is evident. The 415 

mountain ridges are much higher and valleys are much deeper with the complex topography 416 

than with the smooth topography. The simulation with smooth topography produces 417 

overwhelming crossing-Himalayas transport towards the TP within the PBL, in particular 418 

during the daytime. Although, in the simulation with complex topography, the mountain ridges 419 

resolved weaken the crossing-Himalayas transport compared to the simulation with smooth 420 

topography, the overall positive values near the surface indicate that the transport can overcome 421 

most mountain ridges along the Himalayas. The transport fluxes near the surface from the 422 

simulation with complex topography become close-to-zero only at a few mountain ridges that 423 

are 6.5 km or higher. To better demonstrate the transport pathway across mountain ridges, one 424 

cross-section across the mountain ridge as shown as one black solid line in Fig. 3 is taken as 425 

one example. Figure 10 shows the latitude-height cross section of BC mass concentration and 426 

transport flux across one mountain ridge from the simulations with complex and smooth 427 

topography at local time (LT) 03:00 and 15:00 averaged for April 1-20, 2016. Near the southern 428 

part of mountain, the elevated concentration of BC mass accumulates and can mix up reaching 429 

as high as 5 km with the much stronger transport during the daytime. It is obvious that the 430 

mountain ridge in the simulation with smooth topography is quite low. With the high mountain 431 

ridge resolved by the complex topography, the simulated BC transport flux can still cross the 432 

mountain. Analysis of transport flux across a few more mountain ridges indicates similar 433 

results (not shown). The results above indicate that the transport of pollutants can cross a 434 
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majority of mountain ridges of Himalayas, which is consistent with the observation-based 435 

estimate by Gong et al. (2019) that also found pollutants could overcome the blocking effect 436 

of mountain ridges of Himalayas as a transport pathway. On the other hand, the resolved deeper 437 

valleys in the simulation with complex topography enhance the transport flux compared to the 438 

one with the smooth topography. Similarly, Figure 11 shows one example of latitude-height 439 

cross section of BC mass concentration and transport flux across one valley from the 440 

simulations with complex and smooth topography at local time (LT) 03:00 and 15:00 averaged 441 

for April 1-20, 2016. The transport is much stronger and deeper along the valley from the 442 

simulation with complex topography than the one with smooth topography. Again, analysis of 443 

transport flux across a few more valleys does not show different results (not shown).   444 

In order to further demonstrate the overall inflow flux across the Himalayas, the vertically 445 

integrated BC mass flux along the longitudinal cross section (as shown in Fig. 9) from the 446 

simulations with different topography is shown in Figure 12. The terrain heights from the two 447 

simulations along the cross section are also shown as black lines. The total mass flux is 448 

calculated by integrating the right-hand term of equation (1) as following:  449 

ITF = ∫ 𝛿𝑧 ∗ 𝐶 ∗ (𝑢 ∗ sin 𝛼
𝑧=𝑧𝑡𝑜𝑝

𝑧=𝑧𝑠𝑓𝑐
+ 𝑣 ∗ sin 𝛽)     (2) 450 

Where  𝛿𝑧 is the thickness of each vertical model level. Similarly, positive values represent 451 

the transport towards the TP, while negative values represent the transport away from the TP. 452 

More evidently, the positive BC inflows towards the TP occur not only through the valleys but 453 

also across the mountain ridges with both topography. The negative values only exist to the 454 

east of 88°E. With complex topography, higher mountain ridges can reduce the transport flux 455 

to some extent compared to the smooth topography. The complex topography results in 456 

significantly larger BC inflow towards the TP compared to the smooth topography, particularly 457 

corresponding to the deep valleys, such as the Karnali River Valley around 82°E and the Kali 458 

Gandaki Valley around 84°E.  459 

One reason for the enhanced transport across the Himalayas with the complex topography 460 

is the resolved deeper valleys that lead to the increased valley wind. The wind across the valleys 461 

can be significantly larger with the complex topography than the smooth one (Fig. S4). The 462 

enhanced valley wind across the Himalayas has also been found by previous studies with 463 

observations and numerical simulations (Egger et al., 2000; Zängl et al., 2001; Carrera et al., 464 

2009; Karki et al., 2017; Lin et al., 2018). The second impact of resolved complex topography 465 

on the BC transport is that more BC masses can be transported with the deeper valley channels 466 

(Fig. S5a, b). With deeper valley, the column of high-concentration BC is deeper. Even with 467 
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similar wind velocity, the transport flux can be larger. The third impact is through changing 468 

the small-scale circulation around the Himalayas due to the increase of topography complexity 469 

of Himalayas. The simulation with complex topography produces more near-surface winds 470 

following the direction towards the TP compared to the one with smooth topography (Fig. S6), 471 

which favors the BC transport across the Himalayas. Lastly, the simulated PBL heights from 472 

the two experiments are a little different (Fig. 9), which may also contribute partly to the 473 

different transport flux. The sensitivity of PBL height and structure to topography complexity 474 

that can result in different surface heat has been studied before (e.g., Wagner et al., 2014).  475 

This turns out that the overall BC inflow with the complex topography is much stronger 476 

than that with the smooth topography. Figure 13 shows the accumulated integrated total 477 

transport flux of BC across the Himalayas estimated from the simulations with complex and 478 

smooth topography for April 1-20, 2016. The accumulated import flux of BC increases during 479 

the period in both experiments, and the difference between the two experiments gradually 480 

increases with the time. At the end of period, the simulation with complex topography estimates 481 

a total import flux of BC of ~1.5104 Ton that is ~50% higher than ~1.0104 Ton estimated 482 

based on the simulation with smooth topography. The sensitivity analysis by moving the cross 483 

line (cross-section of the analysis in Fig. 9, 12, 13) towards or away from the TP within a 484 

certain distance and re-calculating the flux indicates that the impacts of topography on the 485 

simulated results do not change significantly.    486 

All the analysis above focuses on investigating the BC transport flux across the Himalayas. 487 

Although the inflow can reflect the impact of transport on the BC mass over the TP to some 488 

extent, the change of BC mass concentration is eventually determined by the convergence of 489 

transport. Therefore, the contribution of each model process (transport, dry-deposition, 490 

emission, PBL mixing, and wet deposition) to the increase of BC column mass averaged over 491 

the TP (with elevation > 4 km) during this episode is analyzed for both simulations following 492 

the methodology introduced by Du et al. (2020). The results show that the two main processes 493 

affecting the BC column mass over the TP during the period are transport and dry deposition. 494 

The transport is the dominant process that increases the BC column mass over the TP, while 495 

the dry deposition reduces it. The contribution of transport to the increase of BC column mass 496 

over the TP during the episode from the simulation with complex topography is significantly 497 

larger than that with the smooth topography, which is consistent with the results shown by 498 

analyzing the transport flux across the Himalayas.       499 

 500 
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3.3 Radiative forcing of BC over the TP 501 

The BC transported over the TP could significantly influence the regional climate and 502 

water resources over Asia through heating the atmosphere and accelerating the melting of snow 503 

and glacier (e.g., Qian et al., 2011, 2015; Lau et al., 2017). Therefore, the impact of the complex 504 

topography on estimating the BC radiative heating profile in the atmosphere and radiative 505 

forcing in surface snow deserves investigation. Figure 14 shows the vertical profiles of BC 506 

induced radiative heating rate in the atmosphere averaged over the TP (with elevation > 4 km) 507 

within the inner domain shown in Fig.1 for April 1-20, 2016 from the simulations with complex 508 

and smooth topography. Both simulations generate higher BC heating rate near the surface and 509 

the rate gradually decreases with altitude, which is consistent with the vertical profiles of BC 510 

mass concentration averaged over the TP (Fig. S7 in the supporting material). The BC heating 511 

rate over the TP from the simulation with complex topography is ~0.17 K/day near the surface 512 

and reduces to ~0.08 K/day at 8 km, which is ~50% and ~30%, respectively, higher than that 513 

from the simulation with smooth topography at the corresponding altitudes. The higher BC 514 

heating rate over the TP estimated by the simulation with complex topography is consistent 515 

with its higher BC column mass (Fig. 5) and concentration profile (Fig. S7).  516 

The BC radiative forcing in surface snow is controlled by both the distributions of BC 517 

mass concentration and snow coverage (e.g., Zhao et al., 2014). Figure 15 shows the spatial 518 

distributions of snow water equivalent (SWE) averaged for April 1-20, 2016 from the 519 

simulations with two topography. The difference between the two is also shown. It shows that 520 

the simulation with complex topography generates more areas with higher SWE compared to 521 

that with the smooth topography over the TP. Along the Himalayas, the simulated SWE is 522 

higher over the mountain ridges with the complex topography, particularly for the East 523 

Himalayas, while the smooth topography leads to broader snow coverage over the West 524 

Himalayas. The difference in SWE between the two simulations is highly correlated with their 525 

difference in precipitation (Fig. S8 in the supporting material). Along the Himalayas, the 526 

simulated precipitation with the complex topography is larger than that with the smooth 527 

topography at the mountain ridges and smaller at the valleys. Over the TP, the overall 528 

precipitation is larger with the complex topography than that with the smooth topography (Fig. 529 

S8). Previous studies have found that the topography could significantly affect the precipitation 530 

over the Himalayas region (e.g., Bookhagen and Burbank, 2010; Wulf et al., 2016; Cannon et 531 

al., 2017; Karki et al., 2017).  532 

Figure 16 shows the spatial distributions of BC radiative forcing in the surface snow over 533 

the TP averaged for April 1-20, 2016 from the simulations with two topography, and the 534 
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difference between the two is also shown. The BC radiative forcing in surface snow is largely 535 

coincident with the spatial distributions of SWE as shown in Fig. 15, mainly due to the 536 

heterogeneous distributions of snow cover over the TP. The BC radiative forcing in surface 537 

snow over the TP from the simulation with complex topography reaches 5 W/m2 where the 538 

snow exists, larger than that with the smooth topography. Along the Himalayas, the simulation 539 

with complex topography produces higher BC snow forcing over the mountain ridges, 540 

particularly over the eastern Himalayas, while the one with the smooth topography simulates 541 

higher BC snow forcing over most areas of western Himalayas due to its broader snow 542 

coverage there. Overall, the complex topography leads to higher BC forcing in snow over the 543 

TP and the eastern Himalayas and lower BC forcing in snow over the western Himalayas, and 544 

therefore results in the different distribution of BC forcing in snow over the TP and Himalayas, 545 

compared to that with the smooth topography.       546 

 547 

4. Summary and discussion 548 

In this study, the model experiments with different topography are conducted to illustrate 549 

the impacts of complexity of topography of Himalayas on BC transport from South Asia to the 550 

TP. The observed pollution episode at the QOMS station besides the Mt. Everest during the 551 

pre-monsoon season is simulated. The observed surface BC concentration shows a peak of ~3 552 

ug/m3 much larger than the background value of < 0.4 ug/m3 over the TP. The observed 553 

temporal variation of surface BC concentrations correlates highly with that of biomass burning 554 

emissions near the southern Himalayas, indicating the significant impacts of biomass burning 555 

on the pollutants over the TP. The simulations can reproduce the episode in time and magnitude, 556 

and are used to investigate the BC transport mechanisms and the impacts of topography. 557 

The high BC mass loading during the simulation period accumulates near the southern 558 

Himalayas driven by the large-scale circulation, which is also observed by satellites. The 559 

modeling results demonstrate that the westerly favors the accumulation of pollutants near the 560 

southern Himalayas and can carry the pollutants to the TP during the day and night, which is 561 

consistent with previous modeling studies (e.g., Kopacz et al., 2011). The transport is stronger 562 

across the West Himalayas than that across the East. The deeper PBL during the daytime allows 563 

BC over the source region mixed to higher altitude, which also leads to stronger import 564 

transport during the day than the night. It is noteworthy that the BC accumulated near the 565 

southern Himalayas can be transported across the Himalayas overcoming a majority of 566 

mountain ridges, which is consistent with the observation-based estimate by Gong et al. (2019) 567 
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that also found pollutants could overcome the blocking effect of the mountain ridges of 568 

Himalayas. However, the transport through the valleys is found much stronger and more 569 

efficient than across the mountain ridges and the enhancement effect cannot be ignored. The 570 

complex topography results in 50% higher overall transport flux across the Himalayas during 571 

the simulation period than that with the smooth topography, primarily due to the enhanced 572 

valley wind, deeper valley channels, and induced small-scale favorable circulation. This turns 573 

out that the simulation with complex topography produces 30-50% higher BC radiative heating 574 

rate in the atmosphere up to 10 km averaged over the TP than does the simulation with smooth 575 

topography.  576 

Previous studies also found the induced change of circulation and transport due to the 577 

complex topography at convection-permitting scales with the focus on the meteorological 578 

fields (e.g., Karki et al., 2017; Lin et al., 2018). However, most of them conducted the sub-10 579 

km simulations over a much smaller region (e.g., 10196 grids at 5 km in Karki et al., 2017, 580 

and 181121 grids at 2 km in Lin et al., 2018) compared to this study (400300 grids at 4 km). 581 

Karki et al. (2017) found that the complex topography resolving more valleys and mountain 582 

ridges yielded more realistic strong and narrower winds and also small-scale mountain-valley 583 

circulations over the Himalayas region compared to the smoother topography. Lin et al. (2018) 584 

analyzed the simulations over the region situated in the central Himalayas (87°E-89°E) with 585 

very complex terrain including several high mountains and low valleys, e.g., Mt. Everest, Mt. 586 

Kanchenjunga, and the Yadong Valley. Although Lin et al. (2018) simulated enhanced 587 

moisture flux along the valley, the overall moisture transported was lower with the complex 588 

topography (10 km resolution) compared to that with the smooth topography (30 km 589 

resolution). The difference between their study and this study can be due to several factors. 590 

First, Lin et al. (2018) focused on a relatively small region of Himalayas (87°E-89°E) compared 591 

to that in this study (75°E-92°E). The lower-lever transport flux simulated in this study also 592 

exhibits weaker wind with complex topography between 87°E and 89°E (Fig. 9 and 12), maybe 593 

due to several very high mountains such as Mt. Everest and Mt. Kanchenjunga over this area. 594 

Second, the spatial (horizontal and vertical) distributions between air pollutants and moisture 595 

are also different and may contribute partly to the different impacts of topography on the overall 596 

transport flux across the Himalayas.    597 

For the BC radiative forcing in surface snow, the simulation with complex topography 598 

produces stronger forcing over the TP than that with the smooth one. The complex topography 599 

makes the distribution of BC forcing in surface snow quite different from the simulation with 600 



 19 

smooth topography, partly due to its different distribution of surface snow. The simulated BC 601 

radiative forcing in snow is distributed more heterogeneously than those in previous studies 602 

using global models at relatively coarse resolutions (e.g., Qian et al., 2011). He et al. (2014) 603 

used a global chemical transport model to simulate the BC forcing in snow at the horizontal 604 

resolution of ~0.2° and obtained the similar distribution as the simulation with smooth 605 

topography in this study with the high values over the western Himalayas. However, their 606 

simulated values near the Himalayas are higher than the simulated results of this study, which 607 

may be due to their estimation are averaged for November-April.  608 

This study highlights the importance of resolving complex topography of the Himalayas 609 

in modeling the aerosol transport across the Himalayas and radiative impact over the TP. 610 

Although this study focuses on the impacts of topography on the simulated results, the 611 

additional analysis (Fig. S9-11 in the supporting material) of the outer domain simulation at 20 612 

km resolution and the inner domain simulation at 4 km with different topography indicates that 613 

the resolution-dependent difference between 20 km and 4 km is largely contributed by their 614 

different representations of topography over the Himalayas region, consistent with previous 615 

studies (e.g., Karki et al., 2017; Lin et al., 2018). Climate models at coarser horizontal 616 

resolutions than 20 km and thus with relatively smooth topography may underestimate the 617 

aerosol transport from South Asia to the TP during the pre-monsoon season and represent 618 

inappropriately the aerosol radiative forcing in the atmosphere and surface snow over the TP. 619 

Since this study only demonstrates the potential impacts for a relatively short period, a longer-620 

term study should be conducted to examine the impacts of topography on aerosol climatic 621 

effect over the TP. In addition, the active convection during the monsoon season may also play 622 

an important role on pollutant transport across the Himalayas, which deserves further 623 

investigation. Furthermore, aerosol impact on cloud and precipitation, particularly during the 624 

monsoon season, and thus on the latent heat in the atmosphere and the associated responses 625 

may also depend on the complex topography. Previous studies based on observations found 626 

that the rain frequency and intensity reached the highest and the cloud thickness reached the 627 

deepest at the foothill of Himalayas and decreased as the elevation increased up to the TP (e.g., 628 

Chen et al., 2017; Fu et al., 2018; Zhang et al., 2018), which was explained by Fu et al. (2018) 629 

due to the blocking of the air flow by the steep slope of southern Himalayas. However, the 630 

large amount of transported aerosol along the slope from the foothill up to the TP may also 631 

play a role. These potential impacts of aerosols on regional hydro-climate around the TP and 632 

over Asia using high-resolution model that can resolve the complex topography of Himalayas 633 

and TP deserve further investigation.  634 
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Table 1. Summary of model configurations. 1098 
Description Selection References 

Horizontal grid spacing 20 km (D1),4 km (D2)  

Grid dimensions 250350, 300400  

Topography 30 arcsec (USGS)  

Vertical layers 54 (roughly 17 layers below 2 km)  

Model top pressure 50 hPa  

Nesting approach One-way  

Aerosol scheme MOSAIC 8 bin Zaveri et al., 2008 

Gas-phase chemistry CBM-Z Zaveri and Peters, 1999 

Long wave Radiation RRTMG Iacono et al., 2000; Zhao et 

al., 2011, 2013a Short-wave Radiation RRTMG 

Cloud Microphysics Morrison 2-moment Morrison et al., 2009 

Cumulus Cloud Kain-Fritsch Kain, 2004 

Planetary boundary layer MYNN level 2.5 Nakanishi and Niino, 2006 

Land surface CLM Oleson et al., 2010 

Meteorological Forcing ERA-Interim, 0.5°0.66°, 6 hourly  
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Figure 1. Anthropogenic and fire emissions over the entire simulated regions of 20 km and 4 1131 
km resolutions, the black dot represents the Qomolangma Station (QOMS). 1132 
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         1156 
Figure 2. The thickness of each vertical layer in the simulations (54 layers in total). 1157 
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 1179 
Figure 3. Spatial distributions of terrain height from the dataset at 20 km (Smooth Topo) and 1180 
4 km (Complex Topo) resolutions. The one dash line and two solid lines represent the cross 1181 
sections for analysis in the following. 1182 
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 1202 
Figure 4. Time series of area-averaged daily fire emissions between 26°N and 29°N over the 1203 
simulation domain at 4 km resolution (The dash line in the figure represents the anthropogenic 1204 
emissions). 1205 
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 1236 
Figure 5. Spatial distributions of column integrated BC mass and the wind field at 500 hPa 1237 
from the simulations with complex and smooth topography (Complex Topo and Smooth Topo) 1238 
averaged for April 1-20, 2016. The difference between the two is also shown. 1239 
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 1243 
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 1246 
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 1252 
Figure 6. Spatial distributions of AOD from the MODIS retrievals and the simulations with 1253 
complex and smooth topography averaged for April 1-20, 2016. The two black dots represent 1254 
the two AERONET sites over the TP (QOMS, 86.94°E, 28.36°N; NAM, 90.96°E, 30.77°N). 1255 
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 1276 
Figure 7. Hourly AOD from the measurements of AERONET and simulations by WRF-Chem 1277 
at the two sites over the TP (QOMS, 86.94°E, 28.36°N; NAM, 90.96°E, 30.77°N) for April 1-1278 
20, 2016. 1279 
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 1313 
Figure 8. The simulated (colored) and observed (black) temporal variability of surface BC 1314 
mass concentration at the measurement station during April 1-20 in 2016.  1315 
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 1343 
Figure 9. Longitude-height cross section of BC transport flux along the cross line (shown as 1344 
the black dash line in Fig. 3) from the simulations with complex and smooth topography at 1345 
local time (LT) 03:00 and 15:00 averaged for April 1-20. The PBL height along the cross 1346 
section is shown here as the black dash line. 1347 
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 1349 
 1350 
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 1352 
 1353 
 1354 
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 1366 
Figure 10. Latitude-height cross section of BC flux (vector) across the mountain (shown as the 1367 
East black solid line in Fig.3) from the simulations with complex and smooth topography at 1368 
local time (LT) 03:00 and 15:00 averaged for April 1-20, 2016. Contour represents the BC 1369 
concentration. 1370 
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 1372 
 1373 
 1374 
 1375 
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 1382 
Figure 11. Latitude-height cross section of BC flux (vector) along the valley (shown as the 1383 
West black solid line in Fig. 3) from the simulations with complex and smooth topography at 1384 
local time (LT) 03:00 and 15:00 averaged for April 1-20, 2016. Contour represents the BC 1385 
concentration. 1386 
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 1404 
Figure 12. Longitudinal distribution of integrated BC mass flux along the cross section in Fig. 1405 
3 from the simulations with complex and smooth topography. The black lines represent the 1406 
terrain heights with different topography.  1407 
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 1429 
Figure 13. Accumulated integrated total transport flux of BC across the Himalayas estimated 1430 
from the simulations with complex and smooth topography during April 1-20, 2016. 1431 
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 1460 
Figure 14. Vertical profiles of BC induced radiative heating rate in the atmosphere averaged 1461 
over the TP (with elevation > 4 km) from the simulations with complex and smooth topography 1462 
during April 1-20, 2016.  1463 
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 1480 
Figure 15. Spatial distributions of snow water equivalent averaged for April 1-20, 2016 from 1481 
the simulations with complex and smooth topography. The difference between the two is also 1482 
shown. 1483 
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 1498 
Figure 16. Spatial distributions of BC radiative forcing in the surface snow averaged for April 1499 
1-20, 2016 from the simulations with complex and smooth topography. The difference between 1500 
the two is also shown. 1501 
 1502 
 1503 
 1504 
 1505 


