

Editor's Comments:

- *Though the referee viewed the difference between the real topography and the 4 km-resolution case as a minor issue, I am not fully convinced because of the steep terrain condition. It has been suggested that really high resolution in the vertical and in the horizontal are both needed to accurately represent the complex topography (Seaman et al. 2009; Saide et al. 2011). Could you further justify if the 4-km resolution can represent the real transport in comparison to even higher resolution simulations (e.g., 2 km).*

Reference:

Seaman, N., Gaudet, B., Zielonka, J., Stauffer, D., 2009. Sensitivity of Vertical Structure in the Stable Boundary Layer to Variations of the WRF Model's MELLORYAMADA-JANJIC Turbulence Scheme. 9th WRF Users' Workshop, Boulder, 23e27 June, pp. 7

Saide et al. (2011) Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRFeChem CO tracer model, doi:10.1016/j.atmosenv.2011.02.001

Thanks for this comment. It is a very important point. It is for sure that 4-km resolution still cannot fully resolve the complex topography of Himalayas. Previous studies have found that ~4 km and ~1 km simulations can produce generally consistent features over the Himalayas, but the simulation at ~1 km with better representation of topography can produce a little better meteorological fields compared to the observations (e.g., Karki et al., 2017). We also conducted the sensitivity experiment at 1.5 km resolution and found the difference between 1.5 km resolution and 4 km resolution is relatively smaller. However, it should be noted that the 1.5 km resolution simulation is only conducted over a much smaller region for a shorter period due to the computational cost. All the previous studies with the simulations at the resolutions higher than 4 km (~1 km or ~2 km) around the study region can only conduct the simulations covering a small part of the Himalayas. We select 4 km instead of 1.5 km resolutions to conduct the final experiments and analysis due to the balance of the reasonable results and computational cost. Please note, this study conducted the simulations with full chemistry at 4 km resolution covering the entire Himalayas (first time as far as we are aware) that is much more computationally expensive than the meteorology-only simulation with WRF. In fact, it may need even sub-1 km resolution to fully resolve the complex topography of Himalayas. However, at this moment, it is not computationally affordable to conduct the simulation at such high resolution covering the entire Himalayas with full chemistry for even a month simulation.

Therefore, the purpose of this study is to examine the potential impact of complex topography on pollutant transport and hence the aerosol forcing over the TP instead of producing a so-called “realistic” simulation (in fact, none of modeling studies can produce a “realistic” simulation without any assumption and simplification). We selected the 4-km

resolution as it is also considered as the convection-permitting scale that can be used for future studies to investigate the impact of aerosols on regional climate of TP and is also proved to better resolve convection system and its interaction with aerosols without convective parameterization. This study can be considered as the one-step forward investigation in this field, because most of previous studies about modeling aerosol climatic impacts over the TP applied the horizontal resolutions of tens of kilometers. In future, if computational resource allows, higher resolution than 4-km is definitely needed in a region with such complex topography.

Now we discuss the limit of 4-km resolution for the complex topography of Himalayas in the revised manuscript as “**In addition, although the topography at 4-km resolution resolves much better topography of Himalayas than that at 20-km resolution, it still cannot fully resolve the complexity of topography of Himalayas. The higher resolution (e.g., 1 km or sub-1 km) may be needed.** Previous studies have found that the simulations at the resolutions between 1 km and 4 km can produce generally consistent features, but the simulation at 1 km with better representation of topography can produce a little better meteorological field compared to the observations (e.g., Karki et al., 2017). One sensitivity experiment at 1.5-km resolution is also conducted in this study and found the difference between the simulations at 1.5-km and 4-km resolutions is relatively small. However, it should be noted that the simulation at 1.5-km resolution is only conducted covering a much smaller region for a shorter period due to the computational cost. The experiment at 4-km instead of 1.5-km resolution is conducted finally for the study region and period due to the balance of resolving the complex topography to some extent and affordable computational cost.”

Anonymous Referee #1

We thank the reviewer again for keeping helping to improve the quality of manuscript. The comments suggest that there are still some unclear discussion in the manuscript. We feel sorry not to explain our methodology more clearly. We further clarify them in this revision. For Methodology, we add more explanation to justify its validity and include the discussion about wet deposition. For results to conclusion, we revise part of conclusion to include more discussion about the comparison with previous studies and add more convincing results. Please see our detailed response below.

Specific comments:

- **1, METHODOLOGY:**
i) The authors replaced the 20-km simulation by a 4-km simulation but with ‘smooth’ topography to be compared with. As I argued in the last round of review, the such topography (identically over 5 by 5 grid cells) cannot represent the smooth one of 20-km resolution. Taking the slope between neighboring grid cells as example, the values will be 0, 0, 0, 0, $dz/4$, which definitely defer from those of 20-km resolution ($dz/20$). Thus, we cannot say that the such topography is smoothed, but stepped. In fact, it is rather unrealistic. The authors did not provide any reasonable explanation but argued that some other studies applied such a method. Following others but without a respect to the truth cannot be acceptable in the science. Moreover, it is not appropriate that the 4-km topography refers to as ‘original’ topography. But this is a minor issue.

To explain the smoothing effect, let's follow the example provided by the reviewer to figure out what we miss and what we get in below. To simplify the example of a mountain case as reviewer suggested in one dimension, if there are 15 grid cells at 4 km resolution that represent 3 grid cells at 20 km resolution, their terrain heights are (0, 0, 0, 0, 0), (0, 0, 1 km, 0, 0), (0, 0, 0, 0, 0) at 4 km and 0, 0.2 km, 0 at 20 km. In this case, the slopes between neighboring grid cells will be (0, 0, 0, 0), (0, 0, 1/4, 1/4, 0, 0), (0, 0, 0, 0) (14 slopes within 15 grids) at 4 km and 0.2/20 and 0.2/20 at 20 km. After applying the terrain heights at 20-km resolution for the 4-km resolution simulation, the terrain heights of these 15 grid cells will be (0, 0, 0, 0, 0), (0.2 km, 0.2 km, 0.2 km, 0.2 km, 0.2 km), (0, 0, 0, 0, 0). The slopes will become (0, 0, 0, 0), (0.2/4, 0, 0, 0, 0.2/4), (0, 0, 0, 0). It is evident that after applying the 20-km resolution topography, the 4-km simulation has smoother terrain and slope (smaller values) compared to the original 4-km simulation. The terrain height distributions within the same distance between the two simulations are same, although the slopes between neighboring grids at the 20-km resolution and the smooth 4-km resolution simulations are still different.

Therefore, we agree that the sensitivity (or idealized) experiment at 4-km resolution with smooth topography does not exactly represent the simulation at 20-km resolution. Since they are two experiments at different resolutions, there is no way to create identical impact from the topography between the two experiments. That's why we revised our manuscript to focus on the impact of smoothing topography on simulated results instead of comparing the simulations at two resolutions. In the revised manuscript, we did not focus on using the difference between the two experiments at 4-km resolution to explain the difference between the simulations at resolutions of 4 km and 20 km. The focus of this study has switched to understand the impact of complex topography resolved by 4 km. In our designed experiments, we believe that the difference between the two 4-km experiments with different topography can reflects the impact of complex topography against the smooth topography, at least to some extent. Using 20-km resolution topography is just one example to smooth the topography. We can also smooth the topography to 50 km or 100 km resolution if necessary. In fact, we also conducted the sensitivity experiment at 4-km resolution with the topography from one-degree resolution. The result is consistent that the complex topography will increase the transport of BC over the TP although the magnitudes are different. We selected 20-km topography as the smooth topography for the 4-km simulation, because a majority of climate and air quality modeling studies around this region used the horizontal resolutions of tens of kilometers. Therefore, the results found in this study can provide some evidence that the modeling at relatively coarse resolutions may underestimate the transport due to the smooth topography of Himalayas during our study period.

Now, we add the clarification in the methodology part of the revised manuscript as “**It is noteworthy that this study focuses on understanding the impact of complex topography resolved by 4 km instead of the difference between 4-km and 20-km simulations. Prescribing the topography at 4 km following the 20-km resolution distribution is just one way to smooth the topography. In fact, the sensitivity experiment at 4-km resolution with the topography from the one-degree resolution dataset is also conducted, and the result is consistent.**”

In terms of reality, we never call a sensitivity experiment as the “realistic” simulation. It is generally designed to compare with the control simulation that can be considered as a “realistic” simulation, at least relatively if we don't argue that models are never perfect. We cited others' studies with the similar methodology is not meant to say that we just followed previous studies. Instead, we would like to say that this kind of methodology through comparing the control and sensitivity (idealized) numerical experiment to isolate the impact of one factor out of many influential factors is reasonable and acceptable in modeling community. In fact, this is one of the unique features of modeling studies compared to observational studies that is normally hard to isolate different influential

factors. Therefore, definitely, the results from this study will contribute to the community. Now, we specifically highlight that the sensitivity experiment is idealized in the revised manuscript as “Therefore, besides this control experiment, one sensitivity (idealized) experiment is also conducted with the same configuration as the control one

Finally, in the revised manuscript, we have replaced “original topography” to “complex topography” in the main text and figures. We are not sure why the reviewer still has this concern. Please provide more specific places so that we can further revise.

- *ii) The authors intended to investigate the impact of topography (particularly valley-representation on the BC transport and further the local climate (precipitation) via radiative forcing. However, the precipitation can also influence the BC concentration via wet deposition, which is totally ignored in the MS.*

First of all, we agree that aerosol (including BC) and precipitation have two-way feedback. They can affect each other in the atmosphere. In our study, we did include this feedback in the experiment. We described it in the methodology part as

“Aerosol-cloud interactions were included in the model by Gustafson et al. (2007) for calculating the activation and re-suspension between dry aerosols and cloud droplets. The wet removal of grid-resolved stratiform clouds/precipitation includes two aspects, namely in-cloud removal (rainout) and below-cloud removal (washout) by Easter et al. (2004) and Chapman et al. (2009), respectively.”

Although the wet deposition is included in the simulations, we didn’t emphasize this process because its impact is quite small during our simulation period. During the pre-monsoon season, precipitation over the region to the south of Himalayas is quite small (Fig. S9). Along the Himalayas and over the TP, the precipitation is relatively large. We have discussed in our last revised manuscript that, based on our analysis of the contribution of each model process (transport, dry-deposition, emission, PBL mixing, and wet deposition) to the increase of BC column mass averaged over the TP during the simulation period, the two main processes affecting the BC column mass over the TP during the period are transport and dry deposition. The impact of wet deposition between the two experiments with different topography is different, however, the difference is much smaller than that of transport (source) and dry deposition (sink). That’s why we didn’t emphasize the analysis of wet deposition impacts. Now, we further clarify this in the revised manuscript as

“Although the impacts of PBL mixing and wet deposition on the BC column mass over the TP are also different between the simulations with different topography, their impacts are much smaller than those of transport and dry deposition during the study period.”

One reason of relatively small impact of wet deposition may be because of inactive convection during the pre-monsoon season. We have discussed in the revised manuscript

that the aerosol-climate interaction with the consideration of complex topography during the monsoon season deserves further investigation, as following:

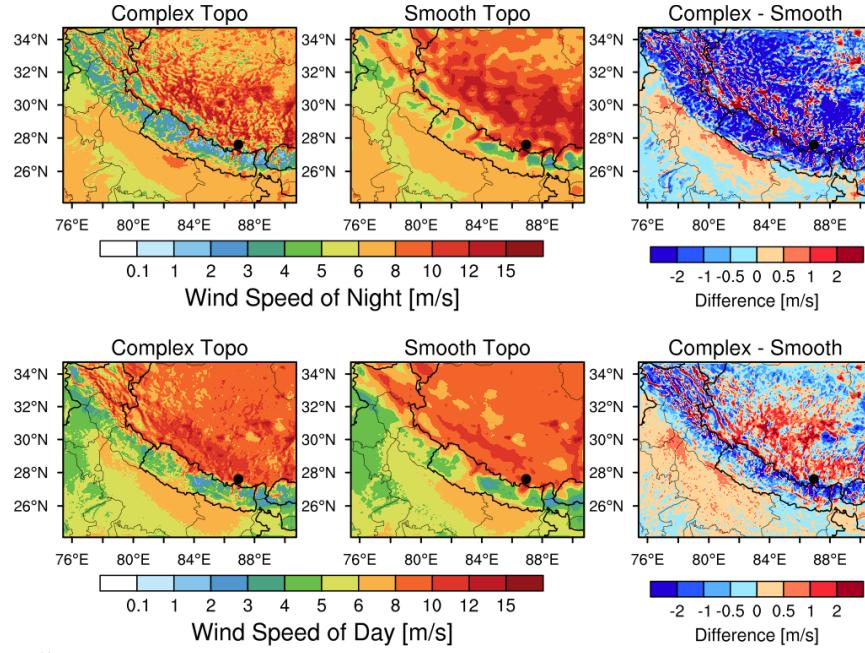
“In addition, the active convection during the monsoon season may also play an important role on pollutant transport across the Himalayas, which deserves further investigation. Furthermore, aerosol impact on cloud and precipitation, particularly during the monsoon season, and thus on the latent heat in the atmosphere and the associated responses may also depend on the complex topography.”

- **2. RESULTS to CONCLUSIONS:**

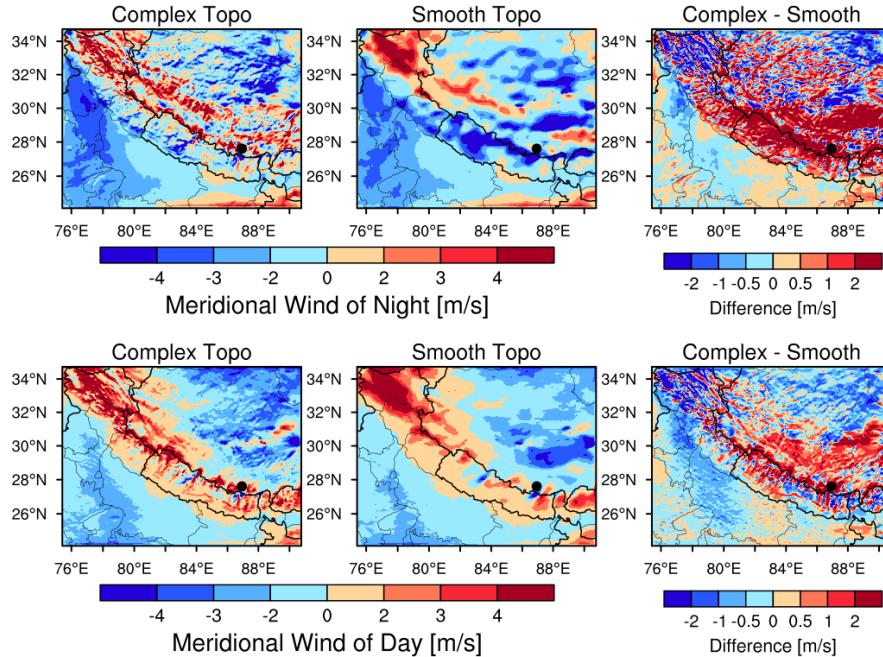
i), Their results obviously show that the BC transport difference between two simulations is due to the higher BC concentration simulated by the 4-km resolution rather than wind speed (fig 11, 14, s4, s5a,b, s6, s7), although I was confused by their bi-yaxis (do not know which, pressure or height, the plots relate to and whether they made interpolation. Do they mean that pressure level can be certainly converted to height?) of their cross-section plots and wind directions (do they take vertical wind into consideration?).

Sorry for the confusion. In last revision, the figures used two Y-axis to show both pressure and height coordinates, however the modeling results were only interpolated to the pressure levels. The heights of the figures were estimated based on the pressure-height relationship in the situation of Standard Atmosphere. This method is suggested by the official website of NCL plotting program (https://www.ncl.ucar.edu/Applications/height_lat.shtml) for demonstration. We agree that this includes a few assumptions. Therefore, according to your comment, now, we revise all figures to have one single coordinate of height to be more straightforward. Now the modeling results are interpolated into the height coordinate and then plot. In the revised manuscript, the vertical wind is included in the cross-section plots of Fig. 10-11.

We would like to kindly remind the reviewer again that both simulations in the revised manuscript are at 4 km resolution. The only influential factor leading to the difference is topography. It is not quite appropriate to conclude that the transport difference is due to the BC concentration difference based on the results along the Himalayas or over the TP. This is like the question of “which come first, chicken or egg?”. The Himalayas and TP are not the source of BC. The BC there comes from the transport. The higher concentration along the Himalayas and over the TP in the simulation with the complex topography is due to the stronger transport from the source region instead of causing the stronger transport. The higher BC concentration over the TP from the simulation with complex topography is the main point of this study, which is resulted from the stronger transport. It can be partly reflected from Fig. 5. It shows that the BC column mass loading is actually lower over the source region from the simulation with the complex topography but higher over the Himalayas and TP areas. This indicates that the stronger transport reduces the mass loading


over the source region and increases the mass loading over the relatively clean region. Now we add the clarification in the revised manuscript as “**In general, the column BC mass loading from the simulation with complex topography is higher over the TP and lower over the region to the south of Himalayas compared with the smooth topography, reflecting the stronger transport of BC from the source region to the Himalayas and TP due to the complex topography (see the discussion in Section 3.2).**”

In terms of wind speed, we agree that the wind speed can be reduced overall except along some valley channels. With the new analysis added in this revised manuscript, we found the stronger transport is not necessarily linked with overall stronger wind speed but with stronger southerly wind towards the TP, which also depends on the wind direction. Now we add more discussion about the impacts on wind speed and transport in the revised manuscript. See our response to your comments below about the details.


- *Again, weaker wind speeds are expected from finer-resolution simulation according to previous study considering that gravity-wave-drag and turbulence-orographic-form-drag to be explicitly resolved. The authors intended to emphasize the more valleys represented by finer-resolution, but they ignored the blocking effect of more and higher mountains. They discussed only one paper (Lin et al. 2018), but there are more studies addressing the weaker near-surface (and lower-model-level) including ones focusing on a broader domain.*

Yes, we agree that the complex topography could weaken the near-surface wind speed. Now, we clarify it in the revised manuscript and add our analysis of near-surface wind in the revised manuscript. More comparison with previous related studies and the discussion about the difference are added as well.

In the revised manuscript, one new figure (Fig. S4) is added into the supporting material about the changes of near-surface wind speed (no direction), and another new figure (Fig. 13) is added into the main text about the changes of near-surface meridional wind (with direction), during our simulation period due to the impacts of complex topography. As shown in Fig. S4, what we found is that the overall near-surface wind speed is reduced over the mountainous regions with the complex topography compared to with the smooth topography, which is consistent with previous studies. However, the near-surface southerly wind during the daytime of simulation period is increased with the complex topography over the Himalayas (Fig. 13), which indicates that the transport towards the TP is strengthened with the complex topography in the study period, particularly over the central and eastern Himalayas where the BC mass loading is higher. Therefore, although the complex topography weakens the overall near-surface wind speed around the Himalayas, it favors the BC transport across the Himalayas in the study period.

Figure S4. Spatial distributions of wind speed averaged within 500 m above the ground for daytime and nighttime of April 1-20, 2016 from the simulations with complex and smooth topography. The difference between the two is also shown. Nighttime is local time 21:00-6:00, and daytime is 9:00-18:00.

Figure 13. Spatial distributions of meridional wind speed averaged within 500 m above the ground for day and night during April 1-20, 2016 from the simulations with complex and smooth topography. The difference between the two is also shown. Nighttime is defined as local time 21:00-6:00, and daytime is defined as 9:00-18:00. Positive value denotes southerly, and negative value denotes northerly.

Since some previous studies showed the overall moisture transported across the Himalayas towards the TP should be weaker with the complex topography due to the orographic drags, we further investigate the difference between this study and previous ones, although this study focuses on air pollutants instead of moisture. We found most of previous studies focused on monsoon season instead of pre-monsoon season. Therefore, we also conducted the meteorological simulations (WRF instead of WRF-Chem to reduce significantly the computational cost) for monsoon season (June-July-August) at different resolutions (4 km versus 20 km). We found that the moisture transport and precipitation in monsoon season are reduced at the higher resolution with complex topography and the meridional wind is overall weakened particularly over the central and eastern Himalayas and TP, which is consistent with previous studies. This may indicate that the different large-scale circulations between the two seasons may also lead to different impacts of complex topography on meridional winds and hence cross-Himalayas transport. This further indicates a longer-term study should be conducted to examine the impacts of topography on aerosol climatic effect over the TP in both pre-monsoon and monsoon seasons as we acknowledged in the discussion part.

Now we clarify this in the Section 3.2 of revised manuscript as

“However, it is noteworthy that previous studies have found that the orographic drag (including gravity wave drag and turbulence orographic form drag) over the region with complex topography, such as the Himalayas and other mountainous areas, would weaken the overall near-surface wind speed (e.g., Beljaars et al., 2004; Horvath et al., 2012; Jiménez and Dudhia, 2012; Zhou et al., 2017, 2018; Lin et al., 2018; Wang et al., 2020). Therefore, the near-surface wind speed is also examined. The complex topography does lead to the overall reduction of near-surface wind speed over the Himalayas area (Fig. S4 in the supporting material), which is consistent with previous studies. However, it is interesting to note that the near-surface southerly wind during the daytime of the simulation period is overall increased over the Himalayas area with the complex topography (Fig. 13), which indicates that the transport towards the TP is strengthened with the complex topography in the daytime, particularly over the central and eastern Himalayas where the BC mass loading is higher (Fig. 5). During the night, the meridional wind is dominated by northerly over the Himalayas region in the simulation with the smooth topography. The complex topography weakens the transport away from the TP or change the wind direction from northerly to southerly over some areas of Himalayas. Both effects enhance the overall transport efficiency across the Himalayas towards the TP. Therefore, although the complex topography weakens the overall near-surface wind speed around the Himalayas, it induces more realistic small-scale mountain-valley circulation that favors the BC transport across the Himalayas towards TP during the study period.”

In the conclusion part of revised manuscript as

“Previous studies also found the induced change of circulation and transport due to the complex topography at convection-permitting scales with the focus on the meteorological fields over the Himalayas and TP regions (e.g., Karki et al., 2017; Zhou et al., 2017, 2018; Lin et al., 2018; Wang et al., 2020). Most of them either conducted the sub-10 km simulations covering a relatively smaller region (e.g., 101×96 grids at 5 km in Karki et al., 2017; 181×121 grids at 2 km in Lin et al., 2018; ~330×230 grids at 3 km in Wang et al., 2020) compared to this study (400×300 grids at 4 km) or conducted the simulations covering the entire Himalayas but at the resolutions above 10 km and with the sub-grid orographic drag parameterization to consider the impact of complex topography. Although some of previous studies also showed that the resolved complex topography yielded more realistic small-scale mountain-valley circulations and enhanced valley winds over the Himalayas region compared to the smoother topography, the overall moisture transport across the Himalayas towards the TP was weaker with the complex topography due to the orographic drags.

The difference between previous studies and this study can be due to several factors. First, previous studies focused on moisture instead of air pollutants. The spatial (horizontal and vertical) distributions between air pollutants and moisture are different and may contribute to the different impacts of topography on the overall transport flux across the Himalayas. However, the analysis of the moisture from the simulations in this study shows the increase of moisture transport (not shown) and hence the increase of precipitation over the TP with the complex topography (Fig. S9). Second, most of previous studies focused on monsoon season instead of pre-monsoon season. Therefore, the meteorological simulations for monsoon season (June-July-August) at different resolutions are also conducted in this study. The results show that the moisture transport and precipitation are reduced at the higher resolution with complex topography and the meridional wind is overall weakened particularly over the central and eastern Himalayas and TP (not shown), which is consistent with previous studies. This may indicate that the different large-scale circulations between the two seasons (much stronger southerly during the monsoon season) may also lead to different impacts of complex topography on meridional winds and hence cross-Himalayas transport.”

- *ii) The author revised their conclusions as the enhanced BC transport in their finer resolution simulation is due to deeper-valleys plus PBL height and small-scale circulations. I did not find in any part of their results they have investigated the quantified difference in PBL height or circulations between the simulations. It can be agreed that the PBL height can somehow influence the BC transport but this study cannot lead to this conclusion. The case for resolved small-scale circulations is likewise. To diagnose the BC transport, the BC transport and wind are direct (and sufficient) factors. The resolved small-scale circulations may only mean the more realistically-simulated local winds but not stronger wind speeds.*

We did mention the effects of deeper-valleys and small-scale circulation, however, we found the PBL effect is relatively small. We discussed about its impact only for daytime and nighttime difference that is not the focus of this study. Now we clarify it in the revised manuscript as “**The strong transport is primarily within the PBL during the daytime, and the deeper PBL during the daytime allows BC over the source region mixed to higher altitude, which also leads to stronger import transport during the day than the night. The relatively small difference in simulated PBL heights and structure between the two experiments can be due to their different surface heating resulted from different topography complexity (e.g., Wagner et al., 2014).**”

We agree that the eventual factors influencing the BC transport should be BC mass and wind. In terms of favorable small-scale circulation, now we demonstrate it more clearly in the revised manuscript as we respond to your comment above. The results show that the near-surface southerly wind is increased during the daytime of the simulation period over the Himalayas with the complex topography, which indicates that the transport towards the TP is strengthened with the complex topography in the study period, particularly over the central and eastern Himalayas where the BC mass loading is higher.

In terms of BC mass, we mentioned deeper valley in the manuscript that does not mean deeper PBL. What we mean is that the resolved deeper valleys lead to the higher volume of relatively-high-concentration BC, which can also result in stronger transport towards the TP even with similar near-surface wind speed. For example, the altitude (above the ground) below which the BC mass concentration is larger than 0.3 ug/m^3 is much higher along the valleys with the complex topography than with the smooth topography. We add a figure (Fig. S6) in the supporting material to demonstrate this. The correlation coefficient between the difference of terrain heights of valleys and of volumes of relatively high-concentration BC can reach -0.76, indicating the lower the valleys are, the higher the volumes of BC mass can be transported across the Himalayas. This is clarified in the revised manuscript as “**Another effect of resolving valleys is that the volume of relatively-high-concentration BC could be higher with deeper valleys (Fig. S5 in the support material), which can also result in stronger transport towards the TP even if the wind condition is similar. For example, the altitude (above the ground) below which the BC mass concentration is larger than 0.3 ug/m^3 is much higher along the valleys with the complex topography than with the smooth topography (Fig. S6 in the support material). The correlation coefficient between the difference of terrain heights of valleys and of volumes of relatively-high-concentration BC can reach -0.76, indicating that the lower the valleys are, the higher the volumes of BC mass can be transported across the Himalayas. The combined influence of these factors results in significantly enhanced BC transport towards the TP with the complex topography (Fig. 12), which can also be demonstrated by the distributions of wind**

and BC mass concentration along the longitudinal cross section (Fig. S7a, b in the support material).”

Now we further clarify this part of our conclusions in the Highlight, Abstract, and Conclusion as

“The complex topography results in stronger overall crossing-Himalayas transport during the study period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys, and deeper valley channels associated with larger transported BC mass volume.”

“The complex topography results in stronger overall crossing-Himalayas transport during the simulation period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys, and deeper valley channels associated with larger transported BC mass volume.”

“The complex topography results in 50% higher overall transport flux across the Himalayas during the simulation period than that with the smooth topography, primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys, and deeper valley channels associated with larger BC mass volume that can be transported into the TP, although the overall wind speed is weakened due to the orographic drags with the complex topography.”

Editor's Comments:

- *Though the referee viewed the difference between the real topography and the 4 km-resolution case as a minor issue, I am not fully convinced because of the steep terrain condition. It has been suggested that really high resolution in the vertical and in the horizontal are both needed to accurately represent the complex topography (Seaman et al. 2009; Saide et al. 2011). Could you further justify if the 4-km resolution can represent the real transport in comparison to even higher resolution simulations (e.g., 2 km).*

Reference:

Seaman, N., Gaudet, B., Zielonka, J., Stauffer, D., 2009. Sensitivity of Vertical Structure in the Stable Boundary Layer to Variations of the WRF Model's MELLORYAMADA-JANJIC Turbulence Scheme. 9th WRF Users' Workshop, Boulder, 23e27 June, pp. 7

Saide et al. (2011) Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRFeChem CO tracer model, doi:10.1016/j.atmosenv.2011.02.001

Thanks for this comment. It is a very important point. It is for sure that 4-km resolution still cannot fully resolve the complex topography of Himalayas. Previous studies have found that ~4 km and ~1 km simulations can produce generally consistent features over the Himalayas, but the simulation at ~1 km with better representation of topography can produce a little better meteorological fields compared to the observations (e.g., Karki et al., 2017). We also conducted the sensitivity experiment at 1.5 km resolution and found the difference between 1.5 km resolution and 4 km resolution is relatively smaller. However, it should be noted that the 1.5 km resolution simulation is only conducted over a much smaller region for a shorter period due to the computational cost. All the previous studies with the simulations at the resolutions higher than 4 km (~1 km or ~2 km) around the study region can only conduct the simulations covering a small part of the Himalayas. We select 4 km instead of 1.5 km resolutions to conduct the final experiments and analysis due to the balance of the reasonable results and computational cost. Please note, this study conducted the simulations with full chemistry at 4 km resolution covering the entire Himalayas (first time as far as we are aware) that is much more computationally expensive than the meteorology-only simulation with WRF. In fact, it may need even sub-1 km resolution to fully resolve the complex topography of Himalayas. However, at this moment, it is not computationally affordable to conduct the simulation at such high resolution covering the entire Himalayas with full chemistry for even a month simulation.

Therefore, the purpose of this study is to examine the potential impact of complex topography on pollutant transport and hence the aerosol forcing over the TP instead of producing a so-called “realistic” simulation (in fact, none of modeling studies can produce a “realistic” simulation without any assumption and simplification). We selected the 4-km resolution as it is also considered as the convection-permitting scale that can be used for future studies to investigate the impact of aerosols on regional

climate of TP and is also proved to better resolve convection system and its interaction with aerosols without convective parameterization. This study can be considered as the one-step forward investigation in this field, because most of previous studies about modeling aerosol climatic impacts over the TP applied the horizontal resolutions of tens of kilometers. In future, if computational resource allows, higher resolution than 4-km is definitely needed in a region with such complex topography.

Now we discuss the limit of 4-km resolution for the complex topography of Himalayas in the revised manuscript as “**In addition, although the topography at 4-km resolution resolves much better topography of Himalayas than that at 20-km resolution, it still cannot fully resolve the complexity of topography of Himalayas. The higher resolution (e.g., 1 km or sub-1 km) may be needed. Previous studies have found that the simulations at the resolutions between 1 km and 4 km can produce generally consistent features, but the simulation at 1 km with better representation of topography can produce a little better meteorological field compared to the observations (e.g., Karki et al., 2017). One sensitivity experiment at 1.5-km resolution is also conducted in this study and found the difference between the simulations at 1.5-km and 4-km resolutions is relatively small. However, it should be noted that the simulation at 1.5-km resolution is only conducted covering a much smaller region for a shorter period due to the computational cost. The experiment at 4-km instead of 1.5-km resolution is conducted finally for the study region and period due to the balance of resolving the complex topography to some extent and affordable computational cost.”**

Anonymous Referee #1

We thank the reviewer again for keeping helping to improve the quality of manuscript. The comments suggest that there are still some unclear discussion in the manuscript. We feel sorry not to explain our methodology more clearly. We further clarify them in this revision. For Methodology, we add more explanation to justify its validity and include the discussion about wet deposition. For results to conclusion, we revise part of conclusion to include more discussion about the comparison with previous studies and add more convincing results. Please see our detailed response below.

Specific comments:

- **1, METHODOLOGY:**
i) The authors replaced the 20-km simulation by a 4-km simulation but with 'smooth' topography to be compared with. As I argued in the last round of review, the such topography (identically over 5 by 5 grid cells) cannot represent the smooth one of 20-km resolution. Taking the slope between neighboring grid cells as example, the values will be 0, 0, 0, 0, $dz/4$, which definitely defer from those of 20-km resolution ($dz/20$). Thus, we cannot say that the such topography is smoothed, but stepped. In fact, it is rather unrealistic. The authors did not provide any reasonable explanation but argued that some other studies applied such a method. Following others but without a respect to the truth cannot be acceptable in the science. Moreover, it is not appropriate that the 4-km topography refers to as 'original' topography. But this is a minor issue.

To explain the smoothing effect, let's follow the example provided by the reviewer to figure out what we miss and what we get in below. To simplify the example of a mountain case as reviewer suggested in one dimension, if there are 15 grid cells at 4 km resolution that represent 3 grid cells at 20 km resolution, their terrain heights are (0, 0, 0, 0), (0, 0, 1 km, 0, 0), (0, 0, 0, 0, 0) at 4 km and 0, 0.2 km, 0 at 20 km. In this case, the slopes between neighboring grid cells will be (0, 0, 0, 0), (0, 0, 1/4, 1/4, 0, 0), (0, 0, 0, 0) (14 slopes within 15 grids) at 4 km and 0.2/20 and 0.2/20 at 20 km. After applying the terrain heights at 20-km resolution for the 4-km resolution simulation, the terrain heights of these 15 grid cells will be (0, 0, 0, 0, 0), (0.2 km, 0.2 km, 0.2 km, 0.2 km, 0.2 km), (0, 0, 0, 0, 0). The slopes will become (0, 0, 0, 0), (0.2/4, 0, 0, 0, 0.2/4), (0, 0, 0, 0). It is evident that after applying the 20-km resolution topography, the 4-km simulation has smoother terrain and slope (smaller values) compared to the original 4-km simulation. The terrain height distributions within the same distance between the two simulations are same, although the slopes between neighboring grids at the 20-km resolution and the smooth 4-km resolution simulations are still different.

Therefore, we agree that the sensitivity (or idealized) experiment at 4-km resolution with smooth topography does not exactly represent the simulation at 20-km resolution. Since they are two experiments at different resolutions, there is no way to create identical impact from the topography between the two experiments. That's why we

revised our manuscript to focus on the impact of smoothing topography on simulated results instead of comparing the simulations at two resolutions. In the revised manuscript, we did not focus on using the difference between the two experiments at 4-km resolution to explain the difference between the simulations at resolutions of 4 km and 20 km. The focus of this study has switched to understand the impact of complex topography resolved by 4 km. In our designed experiments, we believe that the difference between the two 4-km experiments with different topography can reflects the impact of complex topography against the smooth topography, at least to some extent. Using 20-km resolution topography is just one example to smooth the topography. We can also smooth the topography to 50 km or 100 km resolution if necessary. In fact, we also conducted the sensitivity experiment at 4-km resolution with the topography from one-degree resolution. The result is consistent that the complex topography will increase the transport of BC over the TP although the magnitudes are different. We selected 20-km topography as the smooth topography for the 4-km simulation, because a majority of climate and air quality modeling studies around this region used the horizontal resolutions of tens of kilometers. Therefore, the results found in this study can provide some evidence that the modeling at relatively coarse resolutions may underestimate the transport due to the smooth topography of Himalayas during our study period.

Now, we add the clarification in the methodology part of the revised manuscript as “**It is noteworthy that this study focuses on understanding the impact of complex topography resolved by 4 km instead of the difference between 4-km and 20-km simulations. Prescribing the topography at 4 km following the 20-km resolution distribution is just one way to smooth the topography. In fact, the sensitivity experiment at 4-km resolution with the topography from the one-degree resolution dataset is also conducted, and the result is consistent.**”

In terms of reality, we never call a sensitivity experiment as the “realistic” simulation. It is generally designed to compare with the control simulation that can be considered as a “realistic” simulation, at least relatively if we don’t argue that models are never perfect. We cited others’ studies with the similar methodology is not meant to say that we just followed previous studies. Instead, we would like to say that this kind of methodology through comparing the control and sensitivity (idealized) numerical experiment to isolate the impact of one factor out of many influential factors is reasonable and acceptable in modeling community. In fact, this is one of the unique features of modeling studies compared to observational studies that is normally hard to isolate different influential factors. Therefore, definitely, the results from this study will contribute to the community. Now, we specifically highlight that the sensitivity experiment is idealized in the revised manuscript as “**Therefore, besides this control experiment, one sensitivity (idealized) experiment is also conducted with the same configuration as the control one**”

Finally, in the revised manuscript, we have replaced “original topography” to “complex topography” in the main text and figures. We are not sure why the reviewer still has this concern. Please provide more specific places so that we can further revise.

- *ii) The authors intended to investigate the impact of topography (particularly valley) -representation on the BC transport and further the local climate (precipitation) via radiative forcing. However, the precipitation can also influence the BC concentration via wet deposition, which is totally ignored in the MS.*

First of all, we agree that aerosol (including BC) and precipitation have two-way feedback. They can affect each other in the atmosphere. In our study, we did include this feedback in the experiment. We described it in the methodology part as

“Aerosol-cloud interactions were included in the model by Gustafson et al. (2007) for calculating the activation and re-suspension between dry aerosols and cloud droplets. The wet removal of grid-resolved stratiform clouds/precipitation includes two aspects, namely in-cloud removal (rainout) and below-cloud removal (washout) by Easter et al. (2004) and Chapman et al. (2009), respectively.”

Although the wet deposition is included in the simulations, we didn’t emphasize this process because its impact is quite small during our simulation period. During the pre-monsoon season, precipitation over the region to the south of Himalayas is quite small (Fig. S9). Along the Himalayas and over the TP, the precipitation is relatively large. We have discussed in our last revised manuscript that, based on our analysis of the contribution of each model process (transport, dry-deposition, emission, PBL mixing, and wet deposition) to the increase of BC column mass averaged over the TP during the simulation period, the two main processes affecting the BC column mass over the TP during the period are transport and dry deposition. The impact of wet deposition between the two experiments with different topography is different, however, the difference is much smaller than that of transport (source) and dry deposition (sink). That’s why we didn’t emphasize the analysis of wet deposition impacts. Now, we further clarify this in the revised manuscript as

“Although the impacts of PBL mixing and wet deposition on the BC column mass over the TP are also different between the simulations with different topography, their impacts are much smaller than those of transport and dry deposition during the study period.”

One reason of relatively small impact of wet deposition may be because of inactive convection during the pre-monsoon season. We have discussed in the revised manuscript that the aerosol-climate interaction with the consideration of complex topography during the monsoon season deserves further investigation, as following:

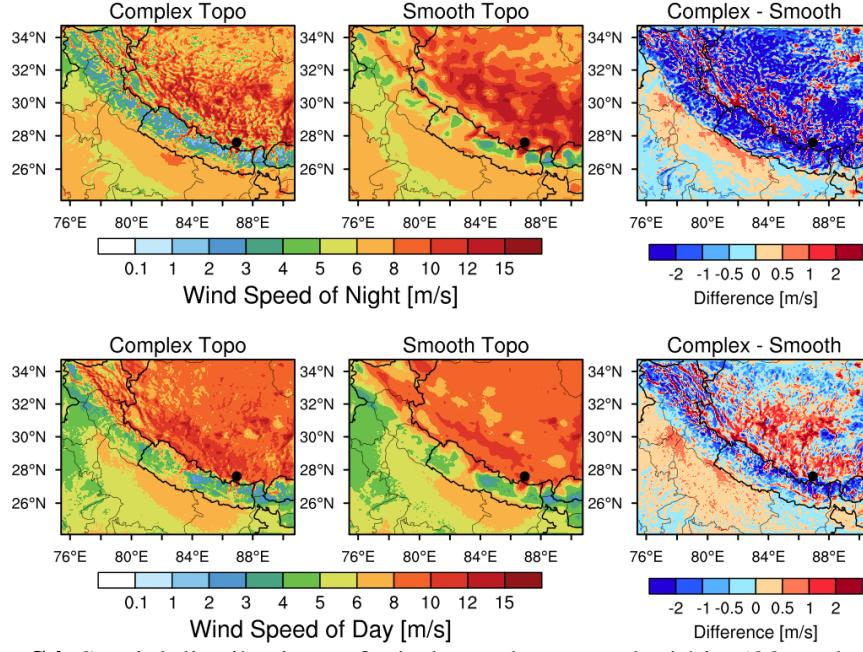
“In addition, the active convection during the monsoon season may also play an important role on pollutant transport across the Himalayas, which deserves further investigation. Furthermore, aerosol impact on cloud and precipitation, particularly

“during the monsoon season, and thus on the latent heat in the atmosphere and the associated responses may also depend on the complex topography.”

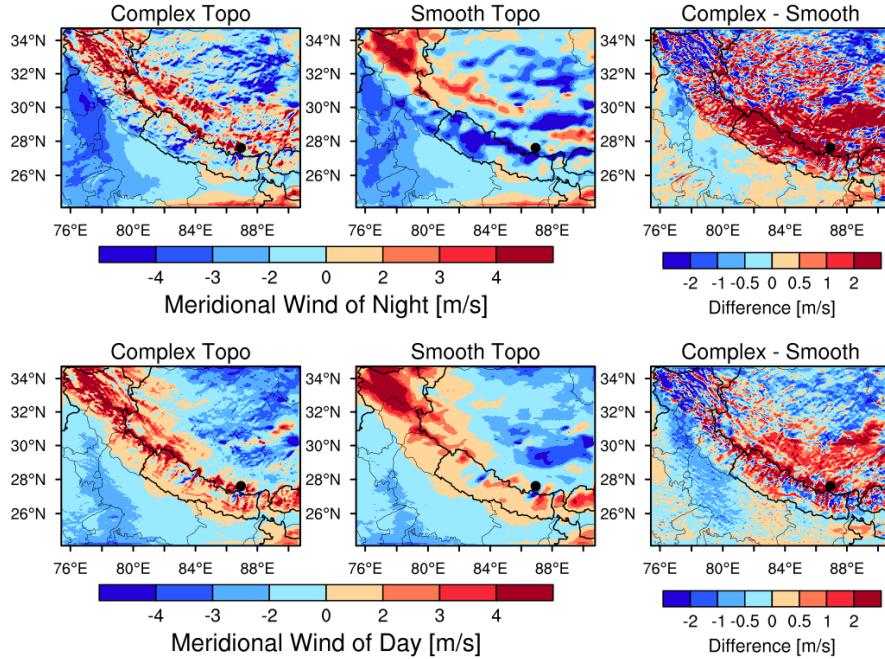
- **2. RESULTS to CONCLUSIONS:**

i), Their results obviously show that the BC transport difference between two simulations is due to the higher BC concentration simulated by the 4-km resolution rather than wind speed (fig 11, 14, s4, s5a,b, s6, s7), although I was confused by their bi-yaxis (do not know which, pressure or height, the plots relate to and whether they made interpolation. Do they mean that pressure level can be certainly converted to height?) of their cross-section plots and wind directions (do they take vertical wind into consideration?).

Sorry for the confusion. In last revision, the figures used two Y-axis to show both pressure and height coordinates, however the modeling results were only interpolated to the pressure levels. The heights of the figures were estimated based on the pressure-height relationship in the situation of Standard Atmosphere. This method is suggested by the official website of NCL plotting program (https://www.ncl.ucar.edu/Applications/height_lat.shtml) for demonstration. We agree that this includes a few assumptions. Therefore, according to your comment, now, we revise all figures to have one single coordinate of height to be more straightforward. Now the modeling results are interpolated into the height coordinate and then plot. In the revised manuscript, the vertical wind is included in the cross-section plots of Fig. 10-11.


We would like to kindly remind the reviewer again that both simulations in the revised manuscript are at 4 km resolution. The only influential factor leading to the difference is topography. It is not quite appropriate to conclude that the transport difference is due to the BC concentration difference based on the results along the Himalayas or over the TP. This is like the question of “which come first, chicken or egg?”. The Himalayas and TP are not the source of BC. The BC there comes from the transport. The higher concentration along the Himalayas and over the TP in the simulation with the complex topography is due to the stronger transport from the source region instead of causing the stronger transport. The higher BC concentration over the TP from the simulation with complex topography is the main point of this study, which is resulted from the stronger transport. It can be partly reflected from Fig. 5. It shows that the BC column mass loading is actually lower over the source region from the simulation with the complex topography but higher over the Himalayas and TP areas. This indicates that the stronger transport reduces the mass loading over the source region and increases the mass loading over the relatively clean region. Now we add the clarification in the revised manuscript as “In general, the column BC mass loading from the simulation with complex topography is higher over the TP and lower over the region to the south of Himalayas compared with the smooth topography, reflecting the stronger transport of BC from the source region to the Himalayas and TP due to the complex topography (see the discussion in Section 3.2).”

In terms of wind speed, we agree that the wind speed can be reduced overall except along some valley channels. With the new analysis added in this revised manuscript, we found the stronger transport is not necessarily linked with overall stronger wind speed but with stronger southerly wind towards the TP, which also depends on the wind direction. Now we add more discussion about the impacts on wind speed and transport in the revised manuscript. See our response to your comments below about the details.


- *Again, weaker wind speeds are expected from finer-resolution simulation according to previous study considering that gravity-wave-drag and turbulence-orographic-form-drag to be explicitly resolved. The authors intended to emphasize the more valleys represented by finer-resolution, but they ignored the blocking effect of more and higher mountains. They discussed only one paper (Lin et al. 2018), but there are more studies addressing the weaker near-surface (and lower-model-level) including ones focusing on a broader domain.*

Yes, we agree that the complex topography could weaken the near-surface wind speed. Now, we clarify it in the revised manuscript and add our analysis of near-surface wind in the revised manuscript. More comparison with previous related studies and the discussion about the difference are added as well.

In the revised manuscript, one new figure (Fig. S4) is added into the supporting material about the changes of near-surface wind speed (no direction), and another new figure (Fig. 13) is added into the main text about the changes of near-surface meridional wind (with direction), during our simulation period due to the impacts of complex topography. As shown in Fig. S4, what we found is that the overall near-surface wind speed is reduced over the mountainous regions with the complex topography compared to with the smooth topography, which is consistent with previous studies. However, the near-surface southerly wind during the daytime of simulation period is increased with the complex topography over the Himalayas (Fig. 13), which indicates that the transport towards the TP is strengthened with the complex topography in the study period, particularly over the central and eastern Himalayas where the BC mass loading is higher. Therefore, although the complex topography weakens the overall near-surface wind speed around the Himalayas, it favors the BC transport across the Himalayas in the study period.

Figure S4. Spatial distributions of wind speed averaged within 500 m above the ground for daytime and nighttime of April 1-20, 2016 from the simulations with complex and smooth topography. The difference between the two is also shown. Nighttime is local time 21:00-6:00, and daytime is 9:00-18:00.

Figure 13. Spatial distributions of meridional wind speed averaged within 500 m above the ground for day and night during April 1-20, 2016 from the simulations with complex and smooth topography. The difference between the two is also shown. Nighttime is defined as local time 21:00-6:00, and daytime is defined as 9:00-18:00. Positive value denotes southerly, and negative value denotes northerly.

Since some previous studies showed the overall moisture transported across the Himalayas towards the TP should be weaker with the complex topography due to the orographic drags, we further investigate the difference between this study and previous ones, although this study focuses on air pollutants instead of moisture. We found most

of previous studies focused on monsoon season instead of pre-monsoon season. Therefore, we also conducted the meteorological simulations (WRF instead of WRF-Chem to reduce significantly the computational cost) for monsoon season (June-July-August) at different resolutions (4 km versus 20 km). We found that the moisture transport and precipitation in monsoon season are reduced at the higher resolution with complex topography and the meridional wind is overall weakened particularly over the central and eastern Himalayas and TP, which is consistent with previous studies. This may indicate that the different large-scale circulations between the two seasons may also lead to different impacts of complex topography on meridional winds and hence cross-Himalayas transport. This further indicates a longer-term study should be conducted to examine the impacts of topography on aerosol climatic effect over the TP in both pre-monsoon and monsoon seasons as we acknowledged in the discussion part.

Now we clarify this in the Section 3.2 of revised manuscript as

“However, it is noteworthy that previous studies have found that the orographic drag (including gravity wave drag and turbulence orographic form drag) over the region with complex topography, such as the Himalayas and other mountainous areas, would weaken the overall near-surface wind speed (e.g., Beljaars et al., 2004; Horvath et al., 2012; Jiménez and Dudhia, 2012; Zhou et al., 2017, 2018; Lin et al., 2018; Wang et al., 2020). Therefore, the near-surface wind speed is also examined. The complex topography does lead to the overall reduction of near-surface wind speed over the Himalayas area (Fig. S4 in the supporting material), which is consistent with previous studies. However, it is interesting to note that the near-surface southerly wind during the daytime of the simulation period is overall increased over the Himalayas area with the complex topography (Fig. 13), which indicates that the transport towards the TP is strengthened with the complex topography in the daytime, particularly over the central and eastern Himalayas where the BC mass loading is higher (Fig. 5). During the night, the meridional wind is dominated by northerly over the Himalayas region in the simulation with the smooth topography. The complex topography weakens the transport away from the TP or change the wind direction from northerly to southerly over some areas of Himalayas. Both effects enhance the overall transport efficiency across the Himalayas towards the TP. Therefore, although the complex topography weakens the overall near-surface wind speed around the Himalayas, it induces more realistic small-scale mountain-valley circulation that favors the BC transport across the Himalayas towards TP during the study period.”

In the conclusion part of revised manuscript as

“Previous studies also found the induced change of circulation and transport due to the complex topography at convection-permitting scales with the focus on the meteorological fields over the Himalayas and TP regions (e.g., Karki et al., 2017; Zhou et al., 2017, 2018; Lin et al., 2018; Wang et al., 2020). Most of them either conducted the sub-10 km simulations covering a relatively smaller region (e.g., 101×96 grids at 5 km in Karki et al., 2017; 181×121 grids at 2 km in Lin et al., 2018; ~330×230 grids at

3 km in Wang et al., 2020) compared to this study (400×300 grids at 4 km) or conducted the simulations covering the entire Himalayas but at the resolutions above 10 km and with the sub-grid orographic drag parameterization to consider the impact of complex topography. Although some of previous studies also showed that the resolved complex topography yielded more realistic small-scale mountain-valley circulations and enhanced valley winds over the Himalayas region compared to the smoother topography, the overall moisture transport across the Himalayas towards the TP was weaker with the complex topography due to the orographic drags.

The difference between previous studies and this study can be due to several factors. First, previous studies focused on moisture instead of air pollutants. The spatial (horizontal and vertical) distributions between air pollutants and moisture are different and may contribute to the different impacts of topography on the overall transport flux across the Himalayas. However, the analysis of the moisture from the simulations in this study shows the increase of moisture transport (not shown) and hence the increase of precipitation over the TP with the complex topography (Fig. S9). Second, most of previous studies focused on monsoon season instead of pre-monsoon season. Therefore, the meteorological simulations for monsoon season (June-July-August) at different resolutions are also conducted in this study. The results show that the moisture transport and precipitation are reduced at the higher resolution with complex topography and the meridional wind is overall weakened particularly over the central and eastern Himalayas and TP (not shown), which is consistent with previous studies. This may indicate that the different large-scale circulations between the two seasons (much stronger southerly during the monsoon season) may also lead to different impacts of complex topography on meridional winds and hence cross-Himalayas transport.”

- *ii) The author revised their conclusions as the enhanced BC transport in their finer resolution simulation is due to deeper-valleys plus PBL height and small-scale circulations. I did not find in any part of their results they have investigated the quantified difference in PBL height or circulations between the simulations. It can be agreed that the PBL height can somehow influence the BC transport but this study cannot lead to this conclusion. The case for resolved small-scale circulations is likewise. To diagnose the BC transport, the BC transport and wind are direct (and sufficient) factors. The resolved small-scale circulations may only mean the more realistically-simulated local winds but not stronger wind speeds.*

We did mention the effects of deeper-valleys and small-scale circulation, however, we found the PBL effect is relatively small. We discussed about its impact only for daytime and nighttime difference that is not the focus of this study. Now we clarify it in the revised manuscript as “The strong transport is primarily within the PBL during the daytime, and the deeper PBL during the daytime allows BC over the source region mixed to higher altitude, which also leads to stronger import transport during the day than the night. The relatively small difference in simulated PBL heights and structure between the two experiments can be due to their different surface heating resulted from different topography complexity (e.g., Wagner et al., 2014).”

We agree that the eventual factors influencing the BC transport should be BC mass and wind. In terms of favorable small-scale circulation, now we demonstrate it more clearly in the revised manuscript as we respond to your comment above. The results show that the near-surface southerly wind is increased during the daytime of the simulation period over the Himalayas with the complex topography, which indicates that the transport towards the TP is strengthened with the complex topography in the study period, particularly over the central and eastern Himalayas where the BC mass loading is higher.

In terms of BC mass, we mentioned deeper valley in the manuscript that does not mean deeper PBL. What we mean is that the resolved deeper valleys lead to the higher volume of relatively-high-concentration BC, which can also result in stronger transport towards the TP even with similar near-surface wind speed. For example, the altitude (above the ground) below which the BC mass concentration is larger than 0.3 ug/m^3 is much higher along the valleys with the complex topography than with the smooth topography. We add a figure (Fig. S6) in the supporting material to demonstrate this. The correlation coefficient between the difference of terrain heights of valleys and of volumes of relatively high-concentration BC can reach -0.76, indicating the lower the valleys are, the higher the volumes of BC mass can be transported across the Himalayas. This is clarified in the revised manuscript as “**Another effect of resolving valleys is that the volume of relatively-high-concentration BC could be higher with deeper valleys (Fig. S5 in the support material), which can also result in stronger transport towards the TP even if the wind condition is similar. For example, the altitude (above the ground) below which the BC mass concentration is larger than 0.3 ug/m^3 is much higher along the valleys with the complex topography than with the smooth topography (Fig. S6 in the support material). The correlation coefficient between the difference of terrain heights of valleys and of volumes of relatively-high-concentration BC can reach -0.76, indicating that the lower the valleys are, the higher the volumes of BC mass can be transported across the Himalayas. The combined influence of these factors results in significantly enhanced BC transport towards the TP with the complex topography (Fig. 12), which can also be demonstrated by the distributions of wind and BC mass concentration along the longitudinal cross section (Fig. S7a, b in the support material).**”

Now we further clarify this part of our conclusions in the Highlight, Abstract, and Conclusion as

“**The complex topography results in stronger overall crossing-Himalayas transport during the study period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys, and deeper valley channels associated with larger transported BC mass volume.**”

“**The complex topography results in stronger overall crossing-Himalayas transport during the simulation period primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys, and deeper valley channels associated with larger transported BC mass volume.**”

“The complex topography results in 50% higher overall transport flux across the Himalayas during the simulation period than that with the smooth topography, primarily due to the strengthened efficiency of near-surface meridional transport towards the TP, enhanced wind speed at some valleys, and deeper valley channels associated with larger BC mass volume that can be transported into the TP, although the overall wind speed is weakened due to the orographic drags with the complex topography.”

1 **Impact of topography on black carbon transport to the southern Tibetan**
2 **Plateau during pre-monsoon season and its climatic implication**

3 ¹Meixin Zhang, ¹Chun Zhao*, ^{2,3}Zhiyuan Cong, ¹Qiuyan Du, ¹Mingyue Xu, ¹Yu Chen, ⁴Ming
4 Chen, ¹Rui Li, ¹Yunfei Fu, ¹Lei Zhong, ^{3,5}Shichang Kang, ⁶Delong Zhao, ⁶Yan Yang

5

6

7 ¹School of Earth and Space Sciences, University of Science and Technology of China, Hefei,
8 China

9 ²Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of
10 Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China

11 ³CAS Center for Excellence in Tibetan Plateau Earth Sciences, Institute of Tibetan Plateau
12 Research, CAS, Beijing 100101, China

13 ⁴National Center for Atmospheric Research, Boulder, CO, USA

14 ⁵State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and
15 Resources, CAS, Lanzhou 730000, China

16 ⁶Beijing Weather Modification Office, Beijing 100101, China

17

18 Manuscript for submission to Atmos. Chem. Phys.

19

20

21 *Corresponding author: Chun Zhao (chunzhao@ustc.edu.cn)

22

23

24 **Key points:**

25 1. The black carbon (BC) transport across the Himalayas can overcome a majority of mountain
26 ridges, but the valley transport is much more efficient during the pre-monsoon season.

27 2. The complex topography results in stronger overall crossing-Himalayas transport during the
28 study period primarily due to the strengthened efficiency of near-surface meridional transport
29 towards the TP, enhanced valley wind, speed at some valleys, and deeper valley channels,
30 and induced small scale favorable circulation associated with larger transported BC mass
31 volume.

32 3. The complex topography generates 50% higher transport flux of BC across the Himalayas
33 and 30-50% stronger BC radiative heating in the atmosphere up to 10 km over the Tibetan
34 Plateau (TP) than that with the smoother topography, which implies that global climate models
35 with relatively coarse resolution may introduce significant negative biases in estimating BC
36 radiative forcing over the TP due to smooth topography.

37 4. The different topography also leads to different distributions of snow cover and BC forcing
38 in snow over the TP.

39

40 **Abstract**

41 Most of previous modeling studies about black carbon (BC) transport and impact over the
42 Tibetan Plateau (TP) conducted simulations with horizontal resolutions coarser than 10 km that
43 may not be able to resolve well the complex topography of the Himalayas. In this study, the
44 two experiments covering entire Himalayas with the Weather Research and Forecasting Model
45 coupled with chemistry (WRF-Chem) at the horizontal resolution of 4 km but with two
46 different topography datasets (4-km complex topography and 20-km smooth topography) are
47 conducted for pre-monsoon season (April, 2016) to investigate the impacts of topography on
48 modeling the transport and distribution of BC over the TP. Both experiments show evident
49 accumulation of aerosols near the southern Himalayas during the pre-monsoon season,
50 consistent with the satellite retrievals. The observed episode of high near-surface BC
51 concentration at the station near the Mt. Everest due to heavy biomass burning near the
52 southern Himalayas is well captured by the simulations. The simulations indicate that the
53 prevailing up-flow across the Himalayas driven by the large-scale circulationwesterly and
54 small-scale southerly circulations during the daytime is the dominant transport mechanism of
55 South Asian BC into the TP, and is much stronger than that during the nighttime. The
56 simulation with 4-km topography resolves more valleys and mountain ridges, and shows that
57 the BC transport across the Himalayas can overcome a majority of mountain ridges but the
58 valley transport is more efficient. The complex topography results in stronger overall crossing-
59 Himalayas transport during the simulation period primarily due to the strengthened efficiency
60 of near-surface meridional transport towards the TP, enhanced valley wind, speed at some
61 valleys, and deeper valley channelsand induced small scale favorable circulation associated
62 with larger transported BC mass volume. This results in 50% higher transport flux of BC across
63 the Himalayas and 30-50% stronger BC radiative heating in the atmosphere up to 10 km over
64 the TP from the simulation with 4-km complex topography than that with 20-km smoother
65 topography. The different topography also leads to different distributions of snow cover and
66 BC forcing in snow. This study implies that global climate models generally with even coarser
67 resolutions than 20 km and therefore relatively smoother topography may introduce significant
68 negative biases in estimating light absorbing aerosol radiative forcing over the TP.

69

70

71

72

73

74 **1. Introduction**

75 The Tibetan Plateau (TP) is the highest plateau in the world with an average elevation
76 over 4 km and an area of approximately $2.5 \times 10^6 \text{ km}^2$, known as the world's third pole (Qiu,
77 2008), and its enormous dynamic and thermal effects have a huge impact on large-scale
78 atmospheric circulation through the energy exchange with the atmosphere especially the
79 troposphere, such as Asian monsoon (e.g., Ye and Wu, 1998; Duan and Wu, 2005; Wu et al.,
80 2007, 2012a; Boos and Kuang, 2013; Chen and Bordoni, 2014; He et al., 2019; Zhao et al.,
81 2019). In addition, the glacial melting water of TP is one of the important sources of water
82 resources of the Indus River, Ganges River, Yangtze River, and Yellow River in Asia (e.g.,
83 Singh and Bengtsson, 2004; Barnett et al., 2005; Immerzeel et al., 2010; Lutz et al., 2014).
84 Previous studies found aerosols in the atmosphere over/around the TP could change the
85 regional climate of Asia (e.g., Qian et al., 2011, 2015; Lau et al., 2017, 2018). Model
86 simulations showed that the absorptive aerosols changed the surface radiative flux over the TP
87 by $5\text{-}25 \text{ W m}^{-2}$ during the pre-monsoon season in April and May and led to the changes in
88 summer monsoon circulations (Qian et al., 2011). Meanwhile, aerosol may affect the
89 atmosphere by modulating the vertical structure of cloud and precipitation around the TP, and
90 thus change the distribution of atmospheric latent heat around the TP, which is the main driving
91 force of regional atmosphere circulations (e.g., Li et al., 2010, 2017, 2019). Moreover, when
92 absorbing aerosols settle on the snow-covered areas, they will blacken the surface of snow
93 cover and glacier to a large extent (e.g., Hansen and Nazarenko, 2004; Ramanathan and
94 Carmichael, 2008; Lau et al., 2010, 2018; Lee et al., 2013; Zhang et al., 2017, 2018), reduce
95 the snow albedo so as to absorb more solar radiation and cause the consequences of accelerated
96 melting (e.g., Ramanathan et al., 2007; Ming et al., 2009; Yasunari et al., 2010; Ji et al., 2015;
97 Zhang et al., 2015). According to the Intergovernmental Panel on Climate Change Fifth
98 Assessment Report (IPCC AR5), the radiative forcing caused by the important component of
99 absorbing aerosols, black carbon (BC), on the surface snow is 0.04 W m^{-2} ($0.02\text{-}0.09 \text{ W m}^{-2}$)
100 on global average, and the regional forcing (such as over the Arctic and the Himalayas) can be
101 considerably large.

102 The TP is surrounded by various sources of pollutants. Over the South of TP, previous
103 studies have suggested that South Asia was the main source of pollutants transported to the
104 plateau (e.g., Cong et al., 2009, 2015a, b; Kopacz et al., 2011; Lu et al., 2012; Zhao et al., 2013;
105 Wang et al., 2015; Zhang et al., 2015; Kang et al., 2016, 2019; Li et al., 2016; Chen et al.,
106 2018). A huge blanket or layer of "haze" composes of light-absorbing carbonaceous aerosol

107 particles that often erupts in the pre-monsoon season over South Asia and has a significant
108 influence on the plateau (e.g., Prasad and Singh, 2007; Engling and Gelencser, 2010). Among
109 them, biomass burning emission reaching the maximum in pre-monsoon season over South
110 Asia is one of the dominant sources (e.g., Cong et al., 2015b). Many studies investigated the
111 transport mechanisms of South Asian pollutants to the TP and found that the pollutants
112 transported across the Himalayas were mainly due to the combination of large-scale circulation
113 and regional wind (e.g., Hindman and Upadhyay, 2002; Cao et al., 2010; Dumka et al., 2010;
114 Marinoni et al., 2010; Cong et al., 2015a; Kang et al., 2016; Lüthi et al., 2015; Zhang et al.,
115 2017). Cong et al. (2015a) ~~conducted seven-day backward air mass trajectories experiment and~~
116 ~~found~~ 2015b) suggested that strong large-scale westerly and local small-scale mountain-valley
117 wind passed through western Nepal, northwest India and Pakistan (i.e., southern Himalayas)
118 in the pre-monsoon season. Dumka et al. (2010) and Kang et al. (2016) inferred from the
119 trajectory analysis that long-distance transport from Africa and Europe may also affect the BC
120 concentration of Himalayas in addition to the influence of regional pollution. The synoptic
121 troughs and ridges were also found favoring the transport of pollutants into the TP from South
122 Asia (Lüthi et al., 2015).

123 Although previous studies have confirmed the transport of pollutants across the Himalayas,
124 the complex topography of Himalayas complicates transport mechanisms. On one hand, Cao
125 et al. (2010) revealed that the Himalayas acted as a huge barrier to the transport of a large
126 amount of BC over the plateau based on model simulations. On the other hand, some studies
127 found that the valleys across the Himalayas served as channels for efficient transport of
128 pollutants (e.g., Hindman and Upadhyay, 2002; Marinoni et al., 2010). Marinoni et al. (2010)
129 analyzed the observation of wind at a station of the southern Himalayas and found that a distinct
130 valley wind system with the prominent southerly continuously transported pollutants to the
131 plateau. Most of these studies used observations and back-trajectory models to demonstrate the
132 transport pathways of pollutants to the TP, which cannot explicitly reveal the transport
133 mechanisms underneath, in particular quantifying the impacts of complex topography.

134 A few of modeling studies investigated the pollutant transport mechanisms using 3-D
135 chemical transport models (e.g., Kopacz et al., 2011; Liu et al., 2015; Zhang et al., 2017; Yang
136 et al., 2018). However, most of them simulated transport processes at relatively coarse
137 horizontal resolutions (e.g., 20-100 km), which cannot resolve well the complex topography of
138 Himalayas. It is noteworthy that studies about the aerosol climatic impact over the TP also used
139 climate models at relatively coarse horizontal resolutions (e.g., Flanner and Zender, 2005;
140 Menon et al., 2010; Kopacz et al., 2011; Qian et al., 2011, 2015; He et al., 2014; Zhang et al.,

141 2015; Ji et al., 2016). So far, there is only one study that used a chemical transport model at a
142 horizontal resolution of sub-10 km to investigate pollutant transport mechanisms over the
143 eastern Himalayas (Cao et al., 2010). Furthermore, none of studies assessed quantitatively the
144 impacts of topography on modeling the pollutant transport across the Himalayas and hence on
145 estimating aerosol distribution and radiative forcing over the TP.

146 In order to examine the potential impacts of complex topography on pollutant transport
147 across the Himalayas over the TP, this study conducts multiple experiments with the Weather
148 Research and Forecasting Model coupled with chemistry (WRF-Chem, Grell et al., 2005;
149 Skamarock et al., 2008). The WRF-Chem model is selected because it includes the interaction
150 between meteorology and aerosol and is widely used for regional modeling of aerosol and its
151 climatic impact (e.g., Cao et al., 2010; Zhao et al., 2010, 2011, 2012, 2014; Wu et al., 2013;
152 Gao et al., 2014; Huang et al., 2015; Fan et al., 2015; Feng et al., 2016; Zhong et al., 2017;
153 Sarangi et al., 2019; Liu et al., 2020). The model has also been used to investigate the aerosol
154 transport and climatic impact over the Himalayas region (e.g., Feng et al., 2016; Cao et al.,
155 2010; Sarangi et al., 2019). The model is suitable for simulations at hydrostatic and non-
156 hydrostatic scales and thus can be used for investigating the impacts of resolution-dependent
157 feature, such as topography, on modeling results. In particular, the meteorological part of the
158 model (WRF) has been systematically evaluated and used to investigate the impacts of
159 resolutions on simulations of moisture transport and climate over the Himalayas region (e.g.,
160 Shi et al., 2008; Karki et al., 2017; Lin et al., 2018); Zhou et al., 2017, 2018; Wang et al.,
161 2020). All of these previous studies with the model lay the foundation for this modeling study.

162 Two experiments with different topography representations are conducted to investigate
163 the impacts of topography complexity on the pollutant transport across the Himalayas and the
164 resulting radiative forcing over the TP. The simulations are conducted for April 2016 in pre-
165 monsoon season, because South Asia is seriously polluted during this period and the pollutants
166 transported to the TP during the period may have significant impacts on Asian monsoon system
167 (e.g., Lau et al., 2006a, b; Ding et al., 2009; Kuhlmann and Quaas, 2010; Qian et al., 2011,
168 2015). In addition, the observed concentration of BC at the observation station besides Mt.
169 Everest shows an evident pollution episode from April 5th to 16th of 2016, deserving the
170 investigation of the transport mechanisms. The rest of the paper is organized as follows. Section
171 2 describes briefly the WRF-Chem model, the physics parameterizations, and the model
172 configuration for this study, followed by a description of data for evaluation. The series of
173 numerical experiments at different resolutions are analyzed in Section 3. The findings are then
174 summarized and discussed in Section 4 and 5.

175

176 **2. Methodology**

177 **2.1 Model and experiments**

178 **2.1.1 WRF-Chem model**

179 In this study, the version of WRF-Chem updated by University of Science and Technology
180 of China (USTC version of WRF-Chem) is used. This USTC version of WRF-Chem includes
181 some additional capabilities such as the diagnosis of radiative forcing of aerosol species, land
182 surface coupled biogenic volatile organic compound (VOC) emission, aerosol-snow
183 interaction compared with the publicly released version (Zhao et al., 2013a, b, 2014, 2016; Hu
184 et al., 2019; Du et al., 2020). The Model for Simulating Aerosol Interactions and Chemistry
185 (MOSIAC) (Zaveri et al., 2008) and the Carbon Bond Mechanism-Z (CBM-Z) gas phase
186 mechanisms (Zaveri and Peters, 1999) are selected. The MOSIAC aerosol scheme uses an
187 approach of segmentation to represent aerosol size distribution with four or eight discrete size
188 bins (Fast et al., 2006). It consists of a range of physical and chemical processes such as
189 nucleation, condensation, coagulation, aqueous phase chemistry, and water uptake by aerosol.
190 The parameterization of dry deposition of aerosol mass and number is according to the method
191 of Binkowski and Shankar (1995), including particle diffusion and gravitational effects.
192 Aerosol-cloud interactions were included in the model by Gustafson et al. (2007) for
193 calculating the activation and re-suspension between dry aerosols and cloud droplets. The wet
194 removal of grid-resolved stratiform clouds/precipitation includes two aspects, namely in-cloud
195 removal (rainout) and below-cloud removal (washout) by Easter et al. (2004) and Chapman et
196 al. (2009), respectively. Aerosol optical properties such as single scattering albedo (SSA) and
197 scattering asymmetry and so on are calculated at each model grid through the function of
198 wavelength. The shortwave (SW) and longwave (LW) refractive indices of aerosols use the
199 Optical Properties of Aerosols and Clouds (OPAC) data set (Hess et al., 1998), with a detailed
200 description of the computation of aerosol optical properties can be found in Barnard et al. (2010)
201 and Zhao et al. (2013a). For both short wave and long wave radiation, aerosol radiation
202 feedback combined with the Rapid Radiative Transfer Model (RRTMG) (Mlawer et al., 1997;
203 Iacono et al., 2000) was implemented by Zhao et al. (2011). For the diagnosis of the optical
204 properties and direct radiative forcing of various aerosol species in the atmosphere, the method
205 described by Zhao et al (2013a) is adopted. The radiative forcing of light absorbing aerosol in
206 surface snow is estimated with the Snow, Ice, and Aerosol Radiative model (SNICAR)
207 (Flanner and Zender, 2005) in the land surface scheme as introduced by Zhao et al. (2014).

208 More details about the coupling between the WRF-Chem and SNICAR models can be found
209 in Zhao et al. (2014).

210

211 2.1.2 Numerical experiments

212 In this study, the WRF-Chem simulations are performed with two nested domains (one-
213 way nesting), one outer domain at 20-km horizontal resolution with 350×250 grid cells (62°E
214 - 112°E , 1°N - 38°N) and one inner domain at 4-km horizontal resolution with 400×300 grid
215 cells (75°E - 92°E , 23°N - 35°N) (Fig. 1). The inner domain roughly covers the entire Himalayas.
216 The WRF-Chem simulations conducted in this study use the terrain following coordinate
217 (Skamarock et al., 2008). To resolve the vertical structure of transport across the Himalayas,
218 the simulations are configured with 54 vertical layers and denser layers near the surface. For
219 example, averaged over a region (26°N - 28°N , 76°E - 80°E) near the southern Himalayas, there
220 are about 17 layers below 2 km above the ground (Fig. 2). The goal of this study is to investigate
221 the impacts of different representations of topography on the transport of BC across the
222 Himalayas. Therefore, besides this control experiment, one sensitivity [\(idealized\)](#) experiment
223 is also conducted with the same configuration as the control one except that the
224 [topography](#)[terrain height](#) of the inner domain at 4-km resolution is prescribed to follow that at
225 20-km resolution similar as previous studies (e.g., Shi et al., 2008; Wu et al., 2012b; Lin et al.,
226 2018). More specifically, the sensitivity experiment applies a single value for each nested 5×5
227 grids over the inner domain as the corresponding grid of 20 km over the outer domain. The two
228 experiments are referred to the simulations with complex and smooth topography, respectively,
229 hereafter.

230 Fig. 3 shows the spatial distribution of terrain height over the inner domain with complex
231 (4-km dataset) and smooth (20-km dataset) topography. It is evident that the terrain is much
232 smoother from the 20-km dataset than from the 4-km dataset. The mountain ridges and valleys
233 can be resolved to some extent in the 4-km dataset but mostly missed or underestimated at 20-
234 km. The probability distributions of terrain height from the 20-km and 4-km datasets (Fig. S1
235 in the supporting material) show that the difference between the two datasets is small for the
236 terrain height lower than ~ 4.5 km but is significant for the terrain height above ~ 4.5 km. The
237 difference of results from the two experiments over the inner domain is analyzed as the impacts
238 of topography representations. Therefore, all the results shown below are from the simulations
239 of the inner domain at 4-[km resolution with different topography if not otherwise stated. It is](#)
240 [noteworthy that this study focuses on understanding the impact of complex topography](#)

241 resolved by 4 km instead of the difference between 4-km and 20-km simulations. Prescribing
242 the topography at 4 km following the 20-km resolution distribution is just one way to smooth
243 the topography. In fact, the sensitivity experiment at 4-km resolution with the topography from
244 the one-degree resolution dataset is also conducted, and the result is consistent. In addition,
245 although the topography at 4-km resolution resolves much better topography of Himalayas than
246 that at 20-km resolution, it still cannot fully resolve the complexity of topography of Himalayas.
247 The higher resolution (e.g., 1 km or sub-1 km) may be needed. Previous studies have found
248 that the simulations at the resolutions between 1 km and 4 km can produce generally consistent
249 features, but the simulation at 1 km with better representation of topography can produce a
250 little better meteorological field compared to the observations (e.g., Karki et al., 2017).
251 km resolution with different topography if not otherwise stated.). One sensitivity experiment at
252 1.5-km resolution is also conducted in this study and found the difference between the
253 simulations at 1.5-km and 4-km resolutions is relatively small. However, it should be noted
254 that the simulation at 1.5-km resolution is only conducted covering a much smaller region for
255 a shorter period due to the computational cost. The experiment at 4-km instead of 1.5-km
256 resolution is conducted finally for the study region and period due to the balance of resolving
257 the complex topography to some extent and affordable computational cost.

258 The simulations are conducted for March 29th-April 20 of 2016 for the reason as discussed
259 in the introduction. The results of April 1th-20th are analyzed for the observed pollution episode
260 to allow a few days spin-up for chemical initial condition. The meteorological initial and lateral
261 boundary conditions are derived from the European Centre for Medium-Range Weather
262 Forecasts (ECMWF) reanalysis data at $0.5^\circ \times 0.66^\circ$ horizontal resolution and 6 h temporal
263 intervals (ERA-Interim dataset). The modeled u and v component wind, atmospheric
264 temperature, and geopotential height over the outer domain are nudged towards the reanalysis
265 data with a nudging timescale of 6 h following previous studies (e.g., Stauffer and Seaman,
266 1990; Seaman et al., 1995; Liu et al., 2012; Zhao et al., 2014; Karki et al., 2017; Hu et al., 2016,
267 2020). Spectral nudging method is applied to balance the performance of simulation at the large
268 and small scales (Liu et al., 2012), and only to the layers above the planetary boundary layer
269 (PBL) with nudging coefficients of $3 \times 10^{-4} \text{ s}^{-1}$. A wave number of three is selected for both
270 south-north and west-east directions. Please note that the choices of nudging coefficients and
271 wave numbers for spectral nudging in this study are empirical. The purpose of nudging is to
272 simulate reasonably large-scale feature so that small-scale impacts from the complex
273 topography can be focused. Therefore, the modeling sensitivity to these choices is not tested in

274 this study. The results show that the simulations with nudging method can reproduce the large-
275 scale circulation at 700 hPa and higher over the outer domain compared to the reanalysis dataset
276 with the spatial correlation coefficient of 0.96-0.98.

277 The Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary layer scheme
278 (Nakanishi and Niino, 2006), Community Land Model (CLM) land surface scheme (Oleson et
279 al., 2010), Morrison 2-moment microphysics scheme (Morrison et al., 2009), Kain-Fritsch
280 cumulus scheme (Kain, 2004), and Rapid Radiative Transfer Model (RRTMG) longwave and
281 shortwave radiation schemes (Iacono et al., 2000) are used in this study. The chemical initial
282 and boundary conditions are provided by a quasi-global WRF-Chem simulation for the same
283 time period to include long-range transported chemical species. The quasi-global WRF-Chem
284 simulation is performed at $1^\circ \times 1^\circ$ horizontal resolution using a quasi-global channel
285 configuration with 360×130 grid cells ($180^\circ\text{W}-180^\circ\text{E}$, $60^\circ\text{S}-70^\circ\text{N}$). More details about the
286 general configuration of quasi-global WRF-Chem simulation can be found in Zhao et al.
287 (2013b) and Hu et al. (2016). The detailed configuration of WRF-Chem experiments is
288 summarized in Table 1. Due to the lack of publicly available in-situ observations, this study
289 does not tend to evaluate systematically the simulated meteorological fields over the Himalayas
290 region. However, as shown in Table 1, the choice of physical parameterizations in this study
291 follows that of one previous study (Karki et al., 2017) that evaluated systematically the WRF
292 simulation for one entire year over the Himalayas region. Their results showed that the WRF
293 simulation at convection-permitting scale could generally capture the essential features of
294 meteorological fields such as precipitation, temperature, and wind over the Himalayas region.
295 Therefore, the WRF-Chem simulations in this study are reliable to investigate the impacts of
296 topography over the Himalayas region.

297

298 2.1.3 Emissions

299 Anthropogenic emissions for outer and inner simulation domains are obtained from the
300 Hemispheric Transport of Air Pollution version-2 (HTAPv2) at $0.1^\circ \times 0.1^\circ$ horizontal resolution
301 and a monthly temporal resolution for year 2010 (Janssens-Maenhout et al., 2015), except that
302 emissions of East Asia are from the MIX Asian anthropogenic emission inventory at $0.1^\circ \times 0.1^\circ$
303 horizontal resolution for 2015 (Li et al., 2017). Biomass burning emissions are obtained from
304 the Fire Inventory from National Center for Atmospheric Research (FINN) with hourly
305 temporal resolution and 1-km horizontal resolution (Wiedinmyer et al., 2011) for the
306 simulation period, and are vertically distributed following the injection heights suggested by

307 Dentener et al. (2006) from the Aerosol Comparison between Observations and Models
308 (AeroCom) project. Sea-salt emission follows Zhao et al. (2013b), which includes correction
309 of particles with radius less than 0.2 μm (Gong, 2003) and dependence of sea-salt emission on
310 sea surface temperature (Jaeglé et al., 2011). The vertical dust fluxes are calculated with the
311 Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART)
312 dust emission scheme (Ginoux et al., 2001), and the emitted dust particles are distributed into
313 the MOSAIC aerosol size bins following a theoretical expression based on the physics of scale-
314 invariant fragmentation of brittle materials derived by Kok (2011). More details about the dust
315 emission scheme coupled with MOSAIC aerosol scheme in WRF-Chem can be found in Zhao
316 et al. (2010, 2013b).

317 As shown in Fig. 1, anthropogenic fossil fuel emissions of BC are high over Northeast
318 India. The fossil fuel BC emissions over Nepal, the country nearby the southern Himalayas,
319 are relatively low. Instead, biomass burning emissions of BC are extremely high in Nepal and
320 Northwest India (South Himalayas, 26°N-29°N). Averaged over the South Himalayas of inner
321 domain that may significantly affect the pollutant transport into the TP, the biomass burning
322 emissions of BC are much higher than its anthropogenic fossil fuel emissions, particularly for
323 the pollution episode (Fig. 4). The anthropogenic BC emissions are set constant through April,
324 while biomass burning emissions show a strong fire event in April 5-16. During the event, the
325 biomass burning BC emissions can be ~~close to~~ a factor of 2 of the anthropogenic fossil fuel BC
326 emissions over South Himalayas.

327

328 **2.2 Dataset**

329 Three datasets are used to compare with the modeling results to demonstrate the pollutant
330 episode and spatial distribution. One is from the Moderate Resolution Imaging
331 Spectroradiometer (MODIS) instruments on Aqua and Terra satellites. The MODIS Aerosol
332 Product monitors the ambient aerosol optical thickness over the oceans globally and over the
333 continents. Daily Level 2 Aerosol Optical Depth (AOD) at 550 nm products with the spatial
334 resolution of 10 km \times 10 km (at nadir) from both Aqua and Terra are applied. When compared
335 with the modeling results, the simulations are sampled at the satellite overpass time and
336 location. The second one is from the Aerosol Robotic Network (AERONET) (Holben et al.,
337 1998) that has \sim 100 similar globally distributed sun and sky scanning ground-based automated
338 radiometers, which provide measurements of aerosol optical properties throughout the world
339 (Dubovik and King, 2000; Dubovik et al., 2002). In this study, AERONET measured AOD at
340 675 nm and 440 nm from two sites over the TP, QOMS CAS site (86.95°E, 28.36°N) and

341 NAM_CO site (90.96°E, 30.77°N) are used to derive the AOD at 550 nm (using the Angström
342 exponent) for comparison with modeling results at 550 nm. All of the retrievals of AOD are at
343 quality level 2, and the uncertainty of AOD measurements is about 0.01 (Holben et al., 2001).
344 In this study, the available data in April 2016 are used to evaluate the modeling results during
345 the same period.

346 The third one is the measurement of near-surface BC mass concentration collected during
347 the simulation period for April 4-20 of 2016 at the Qomolangma (Mt. Everest)-Station for
348 Atmospheric and Environmental Observation and Research (QOMS, 86.95°E, 28.36°N) which
349 is located at the northern slope of the HimalayasMt. Everest, about 4276 meters above sea level.
350 The BC mass concentration is measured with the widely-used instrument Aethalometer (AE-
351 33) that can provide real-time BC mass concentration measurements. The calibration of air
352 flow is routinely conducted to maintain the data quality. The instrument estimates the BC mass
353 concentration based on the optical method through measuring the reduction in light intensity
354 induced by BC. The method assumes that the relationship between attenuation and BC surface
355 loading is linear for low attenuation values. However, this relationship becomes nonlinear
356 when the attenuation values are high due to a filter saturation effect, which may lead to
357 underestimation of the high BC concentration. The detection limit of AE-33 instrument is 5
358 ng/m³, and the uncertainty is estimated to be within 10% (e.g., Chen et al., 2018; Bansal et al.,
359 2019; Kant et al., 2019). The dataset of BC mass concentration used in this study was reported
360 by Chen et al., (2018), where more details about the measurements can be found.

361

362 **3. Results**

363 **3.1 Spatial distribution of BC around the TP**

364 Figure 5 shows the spatial distributions of column integrated BC mass within the inner
365 domain from the simulations at 4km resolution with complex and smooth topography
366 averaged for April 1-20, 2016, and the difference between the two is also shown. For both
367 experiments, thesouthern Himalayas is an apparent boundary line for the distribution of BC
368 with a sharp gradient across the Himalayas. The high BC mass loading exists near the southern
369 Himalayas reaching over 10 mg/m², which is largely contributed by the biomass burning
370 emissions during the period (Fig. 4), while the value reduces significantly to less than 0.4
371 mg/m² over the TP. The BC mass loading near the central and eastern Himalayas is higher than
372 that near the western Himalayas. In general, the column BC mass loading from the simulation
373 with complex topography is higher over the TP and lower over the region to the south of

374 Himalayas compared with the smooth topography, reflecting the stronger transport of BC from
375 the source region to the Himalayas and TP due to the complex topography (see the discussion
376 in Section 3.2). Figure 6 displays the spatial distributions of AOD from the MODIS retrievals
377 and the simulations at 4 km with two different topography averaged for April 1-20, 2016. In
378 general, both simulations reproduce the overall spatial distribution of AOD, with the large
379 values near the southern Himalayas, consistent with the BC mass loading. In addition, both the
380 simulations and satellite retrievals show higher AOD near the central and eastern Himalayas
381 than that near the western Himalayas during the study period. The difference between the
382 simulations and retrievals may be partly related to the uncertainties in emissions particularly
383 for biomass burning emissions. Other than intense emissions, the wind circulation around the
384 TP may also play an important role in accumulating BC near the southern Himalayas. Because
385 of the block of Himalayas, the wind circulation at 500 hPa is divided into two branches as
386 westerly and northwesterly. Both of them are relatively dry airflows with little effect on
387 pollutant removal, favor the accumulation of pollutants near the southern Himalayas, and carry
388 the pollutants to the TP (e.g., Dumka et al., 2010; Kang et al., 2016; Cong et al., 2015a).

389 The AOD retrieved at two AERONET sites over the TP are compared with the two
390 simulations for April 1-20, 2016 (Fig. 7). The AOD at the QOMS CAS site near the northern
391 Himalayas is higher than that at the NAM_CO site inside of the TP. Both simulations can
392 capture this gradient. The simulation with complex topography produces higher AOD than
393 does the one with smooth topography at both sites. The modeling biases (normalized mean bias,
394 NMB) reduce from -46% (smooth topography) to 9% (complex topography) at the
395 QOMS CAS site and from -26% (smooth topography) to -10% (complex topography) at the
396 NAM_CO site. Although the correlation coefficient between the simulations and observation
397 increases from 0.37 (smooth topography) to 0.53 (complex topography) at the QOMS CAS
398 site, it is similar (~0.2) between the two simulations at the NAM_CO site. The correlation
399 coefficient is higher at the QOMS CAS site near the source region than the NAM_CO site
400 farther away, which may indicate the model processes affecting the transport over the TP still
401 need examination with more observations. The NAM_CO site over the eastern TP may also be
402 affected by other sources that are not counted in this study. The modeling of temporal variations
403 of pollutants over the TP deserves further investigation with more observations.

404 There is one in-situ observational station (QOMS) near the Mt. Everest (black dot shown
405 in Fig. 1) to collect the near-surface BC concentration. The observed near-surface BC
406 concentration at this station is compared with the corresponding simulations for this period as
407 shown in Figure 8. Without local emission source, the near-surface BC concentration at QOMS

408 is primarily contributed by the transport. The temporal variation of observed near-surface BC
409 concentration correlates highly with the biomass burning emissions as shown in Fig. 4, with
410 the peak value on April 11 reaching ~ 3 $\mu\text{g}/\text{m}^3$. One sensitivity experiment without biomass
411 burning emissions shows that the simulated BC concentration at QOMS will be significantly
412 reduced without the peak (not shown), which further proves that the BC concentration over the
413 northern Himalayas can be largely influenced by the pollution episode near the southern
414 Himalayas. It is noteworthy that both simulations can reproduce the episode in time and
415 magnitude, and the difference at this station is small. The spatial distribution of difference in
416 near-surface BC concentration between the two simulations (Fig. S2) is more heterogeneous
417 than that of column BC mass (Fig. 5), reflecting the impact of topography on near-surface
418 transport (see the discussion in Section 3.2).

419

420 3.2 Transport flux into the TP

421 To further understand the difference in BC near-surface concentration and column mass
422 loading over the TP between the two simulations with different topography, Figure 9 shows
423 the longitude-height cross section of BC transport flux along the cross line (shown as the black
424 dash line in Fig. 3) from the two simulations at local time (LT) 03:00 and 15:00 averaged for
425 April 1-20 to represent nighttime and daytime transport, respectively. The PBL height along
426 the cross line is also shown as the black dash line. The transport flux is calculated by projecting
427 the wind field perpendicularly to the cross line and then multiplying the BC mass concentration
428 along the cross line. More specifically, the transport flux is calculated as following:

$$429 \quad \text{TF} = C * (u * \sin \alpha + v * \sin \beta) \quad (1)$$

430 Where α is the angle between east-west wind component and the cross line, β is the angle
431 between south-north wind component and the cross line, and C is the BC mass concentration
432 at the grid along the cross line. The flux is estimated at each model level. Positive values
433 represent the transport towards the TP, while negative values represent the transport away from
434 the TP. It is evident that BC is imported into the TP during the day and night on the west of
435 $\sim 85^\circ\text{E}$, although the transport flux is much larger during the daytime than nighttime. On the
436 east of $\sim 85^\circ\text{E}$, BC is imported into the TP during the day but exported slightly from the TP
437 during the night. The difference of transport flux between ~~on the western and east of $\sim 85^\circ\text{E}$~~
438 eastern Himalayas is primarily due to the influence of large-scale westerly that is ~~relatively~~
439 ~~weak on over the east of $\sim 85^\circ\text{E}$ compared with the western Himalayas~~ (Fig. 5). ~~If removing~~
440 ~~the mean flux during the simulation period, the~~ ~~The~~ transport flux anomalies show evident

441 ~~diurnal variation between the day and night (Fig. across the western Himalayas is controlled~~
442 ~~by S3 in the supporting material). This suggests that on average, the large-scale westerly is one~~
443 ~~of the key mechanisms transporting BC across the Himalayas into the TP, while the circulation~~
444 ~~anomalies strengthen the prevailing import local southerly dominates the transport across the~~
445 ~~eastern Himalayas and also influences the transport across the central Himalayas (Fig. S3 in~~
446 ~~the supporting material). during the The stronger diurnal variation of local southerly (towards~~
447 ~~the TP in the daytime to away from the TP in the nighttime) than that of westerly near the~~
448 ~~surface (Fig. S3) leads to the large difference in diurnal variation of transport between the~~
449 ~~western and weaken the import during the night, particularly in the west of 85°E.eastern~~
450 ~~Himalayas. The strong transport is primarily within the PBL during the daytime, and the deeper~~
451 ~~PBL during the daytime allows BC over the source region mixed to higher altitude, which also~~
452 ~~leads to stronger import transport during the day than the night. The relatively small difference~~
453 ~~in simulated PBL heights and structure between the two experiments can be due to their~~
454 ~~different surface heating resulted from different topography complexity (e.g., Wagner et al.,~~
455 ~~2014).~~

456 The difference between the simulations with two different topography is evident. The
457 mountain ridges are much higher and valleys are much deeper with the complex topography
458 than with the smooth topography. The simulation with smooth topography produces
459 overwhelming crossing-Himalayas transport towards the TP within the PBL, in particular
460 during the daytime. Although, in the simulation with complex topography, the mountain ridges
461 resolved weaken the crossing-Himalayas transport compared to the simulation with smooth
462 topography, the overall positive values near the surface indicate that the transport can overcome
463 most mountain ridges along the Himalayas. The transport fluxes near the surface from the
464 simulation with complex topography become close-to-zero only at a few mountain ridges that
465 are 6.5 km or higher. To better demonstrate the transport pathway across mountain ridges, one
466 cross-section across the mountain ridge as shown as one black solid line in Fig. 3 is taken as
467 one example. Figure 10 shows the latitude-height cross section of BC mass concentration and
468 transport flux across one mountain ridge from the simulations with complex and smooth
469 topography at local time (LT) 03:00 and 15:00 averaged for April 1-20, 2016. Near the southern
470 part of mountain, the elevated concentration of BC mass accumulates and can mix up reaching
471 as high as 5 km with the much stronger transport during the daytime. It is obvious that the
472 mountain ridge in the simulation with smooth topography is quite low. With the high mountain
473 ridge resolved by the complex topography, the simulated BC transport flux can still cross the
474 mountain. Analysis of transport flux across a few more mountain ridges indicates similar

475 results (not shown). The results above indicate that the transport of pollutants can cross a
476 majority of mountain ridges of Himalayas, which is consistent with the observation-based
477 estimate by Gong et al. (2019) that also found pollutants could overcome the blocking effect
478 of mountain ridges of Himalayas as a transport pathway. On the other hand, the resolved deeper
479 valleys in the simulation with complex topography enhance the transport flux compared to the
480 one with the smooth topography. Similarly, Figure 11 shows one example of latitude-height
481 cross section of BC mass concentration and transport flux across one valley from the
482 simulations with complex and smooth topography at local time (LT) 03:00 and 15:00 averaged
483 for April 1-20, 2016. The transport is much stronger and deeper along the valley from the
484 simulation with complex topography than the one with smooth topography. Again, analysis of
485 transport flux across a few more valleys does not show different results (not shown).

486 In order to further demonstrate the overall inflow flux across the Himalayas, the vertically
487 integrated BC mass flux along the longitudinal cross section (as shown in Fig. 9) from the
488 simulations with different topography is shown in Figure 12. The terrain heights from the two
489 simulations along the cross section are also shown as black lines. The total mass flux is
490 calculated by integrating the right-hand term of equation (1) as following:

$$491 \quad \text{ITF} = \int_{z=z_{sfc}}^{z=z_{top}} \delta z * C * (u * \sin \alpha + v * \sin \beta) \quad (2)$$

492 Where δz is the thickness of each vertical model level. Similarly, positive values represent
493 the transport towards the TP, while negative values represent the transport away from the TP.
494 More evidently, the positive BC inflows towards the TP occur not only through the valleys but
495 also across the mountain ridges with both topography. The negative values only exist to the
496 east of 88°E. With complex topography, higher mountain ridges can reduce the transport flux
497 to some extent compared to the smooth topography. The complex topography results in
498 significantly larger BC inflow towards the TP compared to the smooth topography, particularly
499 corresponding to the deep valleys, such as the Karnali River Valley around 82°E and the Kali
500 Gandaki Valley around 84°E.

501 One reason for the enhanced transport across the Himalayas with the complex topography
502 is the resolved deeper valleys that lead to the increased valley wind. ~~The wind across the valleys
503 can be significantly larger with the complex topography than the smooth one (Fig. S4). The
504 enhanced valley wind across the Himalayas has also been found by previous studies with
505 observations and numerical simulations (Egger et al., 2000; Zängl et al., 2001; Carrera et al.,
506 2009; Karki et al., 2017; Lin et al., 2018). The second impact of resolved complex topography
507 on the BC transport is that more BC masses can be transported with the deeper valley channels~~

508 (Fig. S5a, b). With deeper valley, the column of high concentration BC is deeper. Even with
509 similar wind velocity, the transport flux can be larger. The third impact is through changing
510 the small scale circulation around the Himalayas due to the increase of topography complexity
511 of Himalayas. The simulation with complex topography produces more near surface winds
512 following the direction towards the TP compared to the one with smooth topography (Fig. S6),
513 which favors the BC transport across the Himalayas. Lastly, the simulated PBL heights from
514 the two experiments are a little different (Fig. 9), which may also contribute partly to the
515 different transport flux. The sensitivity of PBL height and structure to topography complexity
516 that can result in different surface heat has been studied before (e.g., Wagner et al., 2014). The
517 wind across some valleys can be significantly larger with the complex topography than the
518 smooth one (Fig. S3). The enhanced valley wind across the Himalayas has also been found by
519 previous studies with observations and numerical simulations (e.g., Egger et al., 2000; Zängl
520 et al., 2001; Carrera et al., 2009; Karki et al., 2017; Lin et al., 2018). However, it is noteworthy
521 that previous studies have found that the orographic drag (including gravity wave drag and
522 turbulence orographic form drag) over the region with complex topography, such as the
523 Himalayas and other mountainous areas, would weaken the overall near-surface wind speed
524 (e.g., Beljaars et al., 2004; Horvath et al., 2012; Jiménez and Dudhia, 2012; Zhou et al., 2017,
525 2018; Lin et al., 2018; Wang et al., 2020). Therefore, the near-surface wind speed is also
526 examined. The complex topography does lead to the overall reduction of near-surface wind
527 speed over the Himalayas area (Fig. S4 in the supporting material), which is consistent with
528 previous studies. However, it is interesting to note that the near-surface southerly wind during
529 the daytime of the simulation period is overall increased over the Himalayas area with the
530 complex topography (Fig. 13), which indicates that the transport towards the TP is strengthened
531 with the complex topography in the daytime, particularly over the central and eastern
532 Himalayas where the BC mass loading is higher (Fig. 5). During the night, the meridional wind
533 is dominated by northerly over the Himalayas region in the simulation with the smooth
534 topography. The complex topography weakens the transport away from the TP or change the
535 wind direction from northerly to southerly over some areas of Himalayas. Both effects enhance
536 the overall transport efficiency across the Himalayas towards the TP. Therefore, although the
537 complex topography weakens the overall near-surface wind speed around the Himalayas, it
538 induces more realistic small-scale mountain-valley circulation that favors the BC transport
539 across the Himalayas towards TP during the study period. Another effect of resolving valleys
540 is that the volume of relatively-high-concentration BC could be higher with deeper valleys (Fig.
541 S5 in the support material), which can also result in stronger transport towards the TP even if

542 the wind condition is similar. For example, the altitude (above the ground) below which the
543 BC mass concentration is larger than 0.3 ug/m³ is much higher along the valleys with the
544 complex topography than with the smooth topography (Fig. S6 in the support material). The
545 correlation coefficient between the difference of terrain heights of valleys and of volumes of
546 relatively-high-concentration BC can reach -0.76, indicating that the lower the valleys are, the
547 higher the volumes of BC mass can be transported across the Himalayas. The combined
548 influence of these factors results in significantly enhanced BC transport towards the TP with
549 the complex topography (Fig. 12), which can also be demonstrated by the distributions of wind
550 and BC mass concentration along the longitudinal cross section (Fig. S7a, b in the support
551 material).

552 ThisThe enhanced transport across the Himalayas turns out that the overall BC inflow with
553 the complex topography is much stronger than that with the smooth topography. Figure 1314
554 shows the accumulated integrated total transport flux of BC across the Himalayas estimated
555 from the simulations with complex and smooth topography for April 1-20, 2016. The
556 accumulated import flux of BC increases during the period in both experiments, and the
557 difference between the two experiments gradually increases with the time. At the end of period,
558 the simulation with complex topography estimates a total import flux of BC of $\sim 1.5 \times 10^4$ Ton
559 that is $\sim 50\%$ higher than $\sim 1.0 \times 10^4$ Ton estimated based on the simulation with smooth
560 topography. The sensitivity analysis by moving the cross line (cross-section of the analysis in
561 Fig. 9, 12, 1314) towards or away from the TP within a certain distance and re-calculating the
562 flux indicates that the impacts of topography on the simulated results do not change
563 significantly.

564 All the analysis above focuses on investigating the BC transport flux across the Himalayas.
565 Although the inflow can reflect the impact of transport on the BC mass over the TP to some
566 extent, the change of BC mass concentration is eventually determined by the convergence of
567 transport. Therefore, the contribution of each model process (transport, dry-deposition,
568 emission, PBL mixing, and wet deposition) to the increase of BC column mass averaged over
569 the TP (with elevation > 4 km) during this episode is analyzed for both simulations following
570 the methodology introduced by Du et al. (2020). The results show that the two main processes
571 affecting the BC column mass over the TP during the period are transport and dry deposition.
572 The transport is the dominant process that increases the BC column mass over the TP, while
573 the dry deposition reduces it. The contribution of transport to the increase of BC column mass
574 over the TP during the episode from the simulation with complex topography is significantly

575 larger than that with the smooth topography, which is consistent with the results shown by
576 analyzing the transport flux across the Himalayas. Although the impacts of PBL mixing and
577 wet deposition on the BC column mass over the TP are also different between the simulations
578 with different topography, their impacts are much smaller than those of transport and dry
579 deposition during the study period.

580

581 3.3 Radiative forcing of BC over the TP

582 The BC transported over the TP could significantly influence the regional climate and
583 water resources over Asia through heating the atmosphere and accelerating the melting of snow
584 and glacier (e.g., Qian et al., 2011, 2015; Lau et al., 2017). Therefore, the impact of the complex
585 topography on estimating the BC radiative heating profile in the atmosphere and radiative
586 forcing in surface snow deserves investigation. Figure 4415 shows the vertical profiles of BC
587 induced radiative heating rate in the atmosphere averaged over the TP (with elevation > 4 km)
588 within the inner domain shown in Fig.1 for April 1-20, 2016 from the simulations with complex
589 and smooth topography. Both simulations generate higher BC heating rate near the surface and
590 the rate gradually decreases with altitude, which is consistent with the vertical profiles of BC
591 mass concentration averaged over the TP (Fig. S7S8 in the supporting material). The BC
592 heating rate over the TP from the simulation with complex topography is ~0.17 K/day near the
593 surface and reduces to ~0.08 K/day at 8 km, which is ~50% and ~30%, respectively, higher
594 than that from the simulation with smooth topography at the corresponding altitudes. The
595 higher BC heating rate over the TP estimated by the simulation with complex topography is
596 consistent with its higher BC column mass (Fig. 5) and concentration profile (Fig. S7S8).

597 The BC radiative forcing in surface snow is controlled by both the distributions of BC
598 mass concentration and snow coverage (e.g., Zhao et al., 2014). Figure 4516 shows the spatial
599 distributions of snow water equivalent (SWE) averaged for April 1-20, 2016 from the
600 simulations with two topography. The difference between the two is also shown. It shows that
601 the simulation with complex topography generates more areas with higher SWE compared to
602 that with the smooth topography over the TP. Along the Himalayas, the simulated SWE is
603 higher over the mountain ridges with the complex topography, particularly for the East
604 Himalayas, while the smooth topography leads to broader snow coverage over the West
605 Himalayas. The difference in SWE between the two simulations is highly correlated with their
606 difference in precipitation (Fig. S8S9 in the supporting material). Along the Himalayas, the
607 simulated precipitation with the complex topography is larger than that with the smooth
608 topography at the mountain ridges and smaller at the valleys. Over the TP, the overall

609 precipitation is larger with the complex topography than that with the smooth topography (Fig.
610 [S8S9](#)). Previous studies have found that the topography could significantly affect the
611 precipitation over the Himalayas region (e.g., Bookhagen and Burbank, 2010; Wulf et al., 2016;
612 Cannon et al., 2017; Karki et al., 2017).

613 Figure [4617](#) shows the spatial distributions of BC radiative forcing in the surface snow
614 over the TP averaged for April 1-20, 2016 from the simulations with two topography, and the
615 difference between the two is also shown. The BC radiative forcing in surface snow is largely
616 coincident with the spatial distributions of SWE as shown in Fig. [4516](#), mainly due to the
617 heterogeneous distributions of snow cover over the TP. The BC radiative forcing in surface
618 snow over the TP from the simulation with complex topography reaches 5 W/m^2 where the
619 snow exists, larger than that with the smooth topography. Along the Himalayas, the simulation
620 with complex topography produces higher BC snow forcing over the mountain ridges,
621 particularly over the eastern Himalayas, while the one with the smooth topography simulates
622 higher BC snow forcing over most areas of western Himalayas due to its broader snow
623 coverage there. Overall, the complex topography leads to higher BC forcing in snow over the
624 TP and the eastern Himalayas and lower BC forcing in snow over the western Himalayas, and
625 therefore results in the different distribution of BC forcing in snow over the TP and Himalayas,
626 compared to that with the smooth topography.

627

628 **4. Summary-and-discussion**

629 In this study, the model experiments with different topography are conducted to illustrate
630 the impacts of complexity of topography of Himalayas on BC transport from South Asia to the
631 TP. The observed pollution episode at the QOMS station besides the Mt. Everest during the
632 pre-monsoon season is simulated. The observed [near](#)-surface BC concentration shows a peak
633 of $\sim 3 \text{ ug/m}^3$ much larger than the background value of $< 0.4 \text{ ug/m}^3$ over the TP. The observed
634 temporal variation of [near](#)-surface BC concentrations correlates highly with that of biomass
635 burning emissions near the southern Himalayas, indicating the significant impacts of biomass
636 burning on the pollutants over the TP. The simulations can reproduce the episode in time and
637 magnitude, and are used to investigate the BC transport mechanisms and the impacts of
638 topography.

639 The high BC mass loading during the simulation period accumulates near the southern
640 Himalayas driven by the large-scale [circulation](#)[westerly](#) and [small-scale](#) [southerly](#) [circulations](#),
641 which is also observed by satellites. The modeling results demonstrate that the [westerly](#)

642 ~~favors circulations favor~~ the accumulation of pollutants near the ~~southern~~ Himalayas,
643 ~~particularly over the central and eastern parts,~~ and can carry the pollutants to the TP during the
644 ~~day and night~~study period, which is consistent with previous modeling studies (e.g., Kopacz et
645 al., 2011). ~~The transport is stronger across the West Himalayas than that across the East. The~~
646 ~~deeper PBL during the daytime allows BC over the source region mixed to higher altitude,~~
647 ~~which also leads to stronger import transport during the day than the night.~~ It is noteworthy
648 that the BC accumulated near the southern Himalayas can be transported across the Himalayas
649 overcoming a majority of mountain ridges, which is consistent with the observation-based
650 estimate by Gong et al. (2019) that also found pollutants could overcome the blocking effect
651 of the mountain ridges of Himalayas. However, the transport through the valleys is found much
652 stronger and more efficient than across the mountain ridges and the enhancement effect cannot
653 be ignored. The complex topography results in 50% higher overall transport flux across the
654 Himalayas during the simulation period than that with the smooth topography, primarily due
655 to the ~~enhanced valley wind, deeper valley channels, and induced small-scale favorable~~
656 ~~circulation strengthened efficiency of near-surface meridional transport towards the TP,~~
657 ~~enhanced wind speed at some valleys, and deeper valley channels associated with larger BC~~
658 ~~mass volume that can be transported into the TP, although the overall wind speed is weakened~~
659 ~~due to the orographic drags with the complex topography.~~ This turns out that the simulation
660 with complex topography produces 30-50% higher BC radiative heating rate in the atmosphere
661 up to 10 km averaged over the TP than does the simulation with smooth topography.

662 ~~Previous studies also found the induced change of circulation and transport due to the~~
663 ~~complex topography at convection permitting scales with the focus on the meteorological~~
664 ~~fields (e.g., Karki et al., 2017; Lin et al., 2018). However, most of them conducted the sub-10~~
665 ~~km simulations over a much smaller region (e.g., 101×96 grids at 5 km in Karki et al., 2017,~~
666 ~~and 181×121 grids at 2 km in Lin et al., 2018) compared to this study (400×300 grids at 4 km).~~
667 ~~Karki et al. (2017) found that the complex topography resolving more valleys and mountain~~
668 ~~ridges yielded more realistic strong and narrower winds and also small-scale mountain valley~~
669 ~~circulations over the Himalayas region compared to the smoother topography. Lin et al. (2018)~~
670 ~~analyzed the simulations over the region situated in the central Himalayas (87°E 89°E) with~~
671 ~~very complex terrain including several high mountains and low valleys, e.g., Mt. Everest, Mt.~~
672 ~~Kanchenjunga, and the Yadong Valley. Although Lin et al. (2018) simulated enhanced~~
673 ~~moisture flux along the valley, the overall moisture transported was lower with the complex~~
674 ~~topography (10 km resolution) compared to that with the smooth topography (30 km~~

675 ~~resolution). The difference between their study and this study can be due to several factors.~~
676 ~~First, Lin et al. (2018) focused on a relatively small region of Himalayas (87°E–89°E) compared~~
677 ~~to that in this study (75°E–92°E). The lower lever transport flux simulated in this study also~~
678 ~~exhibits weaker wind with complex topography between 87°E and 89°E (Fig. 9 and 12), maybe~~
679 ~~due to several very high mountains such as Mt. Everest and Mt. Kanchenjunga over this area.~~
680 ~~Second, the spatial (horizontal and vertical) distributions between air pollutants and moisture~~
681 ~~are also different and may contribute partly to the different impacts of topography on the overall~~
682 ~~transport flux across the Himalayas.~~

683 For the BC radiative forcing in surface snow, the simulation with complex topography
684 produces stronger forcing over the TP than that with the smooth one. The complex topography
685 makes the distribution of BC forcing in surface snow quite different from the simulation with
686 smooth topography, partly due to its different distribution of surface snow. The simulated BC
687 radiative forcing in snow is distributed more heterogeneously than those in previous studies
688 using global models at relatively coarse resolutions (e.g., Qian et al., 2011). He et al. (2014)
689 used a global chemical transport model to simulate the BC forcing in snow at the horizontal
690 resolution of $\sim 0.2^\circ$ and obtained the similar distribution as the simulation with smooth
691 topography in this study with the high values over the western Himalayas. However, their
692 simulated values near the Himalayas are higher than the simulated results of this study, which
693 may be due to their estimation are averaged for November–April.

694 This study highlights the importance of resolving complex topography of the Himalayas
695 in modeling the aerosol transport across the Himalayas and radiative impact over the TP.
696 Although this study focuses on the impacts of topography on the simulated results, the
697 additional analysis (Fig. [S9–11S10–12](#) in the supporting material) of the outer domain
698 simulation at 20–km resolution and the inner domain simulation at 4 km with different
699 topography indicates that the resolution-dependent difference between 20 km and 4 km is
700 largely contributed by their different representations of topography over the Himalayas region,
701 consistent with previous studies (e.g., Karki et al., 2017; Lin et al., 2018). Climate models at
702 coarser horizontal resolutions than 20 km and thus with relatively smooth topography may
703 underestimate the aerosol transport from South Asia to the TP during the pre-monsoon season
704 and represent inappropriately the aerosol radiative forcing in the atmosphere and surface snow
705 over the TP.

706

707 **5. Discussion**

708 Previous studies also found the induced change of circulation and transport due to the
709 complex topography at convection-permitting scales with the focus on the meteorological
710 fields over the Himalayas and TP regions (e.g., Karki et al., 2017; Zhou et al., 2017, 2018; Lin
711 et al., 2018; Wang et al., 2020). Most of them either conducted the sub-10 km simulations
712 covering a relatively smaller region (e.g., 101×96 grids at 5 km in Karki et al., 2017; 181×121
713 grids at 2 km in Lin et al., 2018; ~330×230 grids at 3 km in Wang et al., 2020) compared to
714 this study (400×300 grids at 4 km) or conducted the simulations covering the entire Himalayas
715 but at the resolutions above 10 km and with the sub-grid orographic drag parameterization to
716 consider the impact of complex topography. Although some of previous studies also showed
717 that the resolved complex topography yielded more realistic small-scale mountain-valley
718 circulations and enhanced valley winds over the Himalayas region compared to the smoother
719 topography, the overall moisture transport across the Himalayas towards the TP was weaker
720 with the complex topography due to the orographic drags.

721 The difference between previous studies and this study can be due to several factors. First,
722 previous studies focused on moisture instead of air pollutants. The spatial (horizontal and
723 vertical) distributions between air pollutants and moisture are different and may contribute to
724 the different impacts of topography on the overall transport flux across the Himalayas.
725 However, the analysis of the moisture from the simulations in this study shows the increase of
726 moisture transport (not shown) and hence the increase of precipitation over the TP with the
727 complex topography (Fig. S9). Second, most of previous studies focused on monsoon season
728 instead of pre-monsoon season. Therefore, the meteorological simulations for monsoon season
729 (June-July-August) at different resolutions are also conducted in this study. The results show
730 that the moisture transport and precipitation are reduced at the higher resolution with complex
731 topography and the meridional wind is overall weakened particularly over the central and
732 eastern Himalayas and TP (not shown), which is consistent with previous studies. This may
733 indicate that the different large-scale circulations between the two seasons (much stronger
734 southerly during the monsoon season) may also lead to different impacts of complex
735 topography on meridional winds and hence cross-Himalayas transport.

736 Since this study only demonstrates the potential impacts for a relatively short period, a
737 longer-term study should be conducted to examine the impacts of topography on aerosol
738 climatic effect over the TP, in both pre-monsoon and monsoon seasons. In addition, the active
739 convection during the monsoon season may also play an important role on pollutant transport
740 across the Himalayas, which deserves further investigation. Furthermore, aerosol impact on

741 cloud and precipitation, particularly during the monsoon season, and thus on the latent heat in
742 the atmosphere and the associated responses may also depend on the complex topography.
743 Previous studies based on observations found that the rain frequency and intensity reached the
744 highest and the cloud thickness reached the deepest at the foothill of Himalayas and decreased
745 as the elevation increased up to the TP (e.g., Chen et al., 2017; Fu et al., 2018; Zhang et al.,
746 2018), which was explained by Fu et al. (2018) due to the blocking of the air flow by the steep
747 slope of southern Himalayas. However, the large amount of transported aerosol along the slope
748 from the foothill up to the TP may also play a role. These potential impacts of aerosols on
749 regional hydro-climate around the TP and over Asia using high-resolution model that can
750 resolve the complex topography of Himalayas and TP deserve further investigation.

751

752 **Data availability**

753 The released version of WRF-Chem can be downloaded from
754 http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The updated USTC
755 version of WRF-Chem can be downloaded from <http://aemol.ustc.edu.cn/product/list/> or
756 contact chunzhao@ustc.edu.cn. Also, the code modifications will be incorporated the release
757 version of WRF-Chem in future.

758

759 **Author contributions**

760 Meixin Zhang and Chun Zhao designed the experiments, conducted and analyzed the
761 simulations. All authors contributed to the discussion and final version of the paper.

762

763 **Acknowledgements**

764 This research was supported by the National Key Research and Development Program of
765 China (2016YFA0602001), the National Natural Science Foundation of China NSFC (Grant
766 No. 91837310), the second Tibetan Plateau Scientific Expedition and Research Program (STEP)
767 (2019QZKK0605), and the Fundamental Research Funds for the Central Universities. The
768 study used computing resources from the High-Performance Computing Center of University
769 of Science and Technology of China (USTC) and the TH-2 of National Supercomputer Center
770 in Guangzhou (NSCC-GZ).

771

772 **Reference**

777 Bansal, O., Singh, A., and Singh, D.: Characteristics of Black Carbon aerosols over Patiala
778 Northwestern part of the IGP: Source apportionment using cluster and CWT analysis,
779 Atmospheric Pollution Research, 10, 244–256, doi:10.1016/j.apr.2018.08.001, 2019.

780 Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical Note:
781 Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module
782 using data from the MILAGRO campaign, Atmos. Chem. Phys., 10, 7325–7340,
783 doi:10.5194/acp-10-7325-2010, 2010.

784 Beljaars, A. C., Brown, A. R., and Wood, N.: A new parametrization of turbulent orographic
785 form drag, QJ Roy. Meteorol. Soc., 130, 1327-1347, doi: 10.1256/qj.03.73, 2004.

786 Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on
787 water availability in snow-dominated regions, Nature, 438, 303–309,
788 doi:10.1038/nature04141, 2005.

789 Binkowski, F. S. and Shankar, U.: The Regional Particulate Matter Model: 1. Model
790 description and preliminary results, J. Geophys. Res., 100, 26191, doi:10.1029/95JD02093,
791 1995.

792 Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget:
793 Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J.
794 Geophys. Res., 115, 39, doi:10.1029/2009JF001426, 2010.

795 Boos, W. R. and Kuang, Z.: Sensitivity of the South Asian monsoon to elevated and non-
796 elevated heating, Scientific reports, 3, 1192, doi:10.1038/srep01192, 2013.

797 Cannon, F., Carvalho, L. M. V., Jones, C., Norris, J., Bookhagen, B., and Kiladis, G. N.: Effects
798 of topographic smoothing on the simulation of winter precipitation in High Mountain Asia,
799 J. Geophys. Res. Atmos., 122, 1456–1474, doi:10.1002/2016JD026038, 2017.

800 Cao, J., Tie, X., Xu, B., Zhao, Z., Zhu, C., Li, G., and Liu, S.: Measuring and modeling black
801 carbon (BC) contamination in the SE Tibetan Plateau, Journal of Atmospheric Chemistry,
802 67, 45-60, doi:10.1007/s10874-011-9202-5, 2010.

803 Carrera, M. L., Gyakum, J. R., and Lin, C. A.: Observational Study of Wind Channeling within
804 the St. Lawrence River Valley, J. Appl. Meteor. ClimatolMeteorol. Clim., 48, 2341–2361,
805 doi:10.1175/2009JAMC2061.1, 2009.

806 Chapman, E. G., Gustafson, W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and
807 Fast, J. D.: Coupling aerosol-cloud-radiative processes in the WRF-Chem model:

808 Investigating the radiative impact of elevated point sources, *Atmos. Chem. Phys.*, 9, 945–
809 964, doi:10.5194/acp-9-945-2009, 2009.

810 Chen, J. and Bordoni, S.: Orographic Effects of the Tibetan Plateau on the East Asian Summer
811 Monsoon: An Energetic Perspective, *J. Climate*, 27, 3052–3072, doi:10.1175/JCLI-D-13-
812 00479.1, 2014.

813 Chen, X., Kang, S., Cong, Z., Yang, J., and Ma, Y.: Concentration, temporal variation, and
814 sources of black carbon in the Mt. Everest region retrieved by real-time observation and
815 simulation, *Atmos. Chem. Phys.*, 18, 12859–12875, doi:10.5194/acp-18-12859-2018, 2018.

816 Chen, Y., Fu, Y., Xian, T., and Pan, X.: Characteristics of cloud cluster over the steep southern
817 slopes of the Himalayas observed by CloudSat, *Int. J. Climatol.*, 37, 4043–4052,
818 doi:10.1002/joc.4992, 2017.

819 Cong, Z., Kang, S., and Qin, D.: Seasonal features of aerosol particles recorded in snow from
820 Mt. Qomolangma (Everest) and their environmental implications, *Journal of environmental
821 sciences (China)*, 21, 914–919, doi:10.1016/S1001-0742(08)62361-X, 2009.

822 Cong, Z., Kang, S., Kawamura, K., Liu, B., Wan, X., Wang, Z., Gao, S., and Fu, P.:
823 Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality
824 and sources, *Atmos. Chem. Phys.*, 15, 1573–1584, doi:10.5194/acp-15-1573-2015, 2015a.

825 Cong, Z., Kawamura, K., Kang, S., and Fu, P.: Penetration of biomass-burning emissions from
826 South Asia through the Himalayas: new insights from atmospheric organic acids, *Scientific
827 reports*, 5, 9580, doi:10.1038/srep09580, 2015b.

828 Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S.,
829 Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J. P., Textor, C., Schulz, M.,
830 van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the
831 years 2000 and 1750, prescribed data-sets for AeroCom, *Atmos. Chem. Phys.*, 6, 4321–4344,
832 doi:10.5194/acp-6-4321-2006, 2006.

833 Ding, Y., Sun, Y., Wang, Z., Zhu, Y., and Song, Y.: Inter-decadal variation of the summer
834 precipitation in China and its association with decreasing Asian summer monsoon Part II:
835 Possible causes, *Int. J. Climatol.*, 29, 1926–1944, doi:10.1002/joc.1759, 2009.

836 Du, Q., Zhao, C., Zhang, M., Dong, X., Chen, Y., Liu, Z., Hu, Z., Zhang, Q., Li, Y., Yuan, R.,
837 , and Miao, S.: Modelling diurnal variation of surface PM2.5 concentration over East China
838 with WRF-Chem: Impacts from boundary layer mixing and anthropogenic
839 emission, *Atmos. Chem. Phys. Discuss.*, [https://doi.org/10.5194/acp-2019-
840 739](https://doi.org/10.5194/acp-2019-739), in review, 2020.

841 Duan, A. M. and Wu, G. X.: Role of the Tibetan Plateau thermal forcing in the summer climate
842 patterns over subtropical Asia, *Climate Dynamics*, 24, 793–807, doi:10.1007/s00382-004-
843 0488-8, 2005.

844 Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical
845 properties from Sun and sky radiance measurements, *J. Geophys. Res.*, 105, 20673–20696,
846 doi:10.1029/2000JD900282, 2000.

847 Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and
848 Slutsker, I.: Variability of Absorption and Optical Properties of Key Aerosol Types
849 Observed in Worldwide Locations, *J. Atmos. Sci.*, 59, 590–608, doi:10.1175/1520-
850 0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002.

851 Dumka, U. C., Moorthy, K. K., Kumar, R., Hegde, P., Sagar, R., Pant, P., Singh, N., and Babu,
852 S. S.: Characteristics of aerosol black carbon mass concentration over a high altitude location
853 in the Central Himalayas from multi-year measurements, *Atmospheric Research*, 96, 510–
854 521, doi:10.1016/j.atmosres.2009.12.010, 2010.

855 Easter, R. C., Ghan, S. J., Zhang, Y., Saylor, R. D., Chapman, E. G., Laulainen, N. S., Abdul-
856 Razzak, H., Leung, L. R., Bian, X., and Zaveri, R. A.: MIRAGE: Model Description and
857 Evaluation of Aerosols and Trace Gases, *J. Geophys. Res.*, 109, D20210,
858 doi:10.1029/2004JD004571, 2004.

859 Egger, J., Bajracharya, S., Egger, U., Heinrich, R., Reuder, J., Shakya, P., Wendt, H., and Wirth,
860 V.: Diurnal winds in the Himalayan Kali Gandaki Valley. Part I: Observations, *Mon. Weather Rev.*, 128, 1106–1122, 2000.

862 Engling, G. and Gelencser, A.: Atmospheric Brown Clouds: From Local Air Pollution to
863 Climate Change, *Elements*, 6, 223–228, doi:10.2113/gselements.6.4.223, 2010.

864 Fan, J., Rosenfeld, D., Yang, Y., Zhao, C., Leung, L. R., and Li, Z.: Substantial contribution
865 of anthropogenic air pollution to catastrophic floods in Southwest China, *Geophys. Res. Lett.*,
866 42, 6066–6075, doi:10.1002/2015GL064479, 2015.

867 Fast, J. D., Gustafson Jr, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G.,
868 Grell, G. A., and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct
869 radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-
870 aerosol model, *J. Geophys. Res.*, 111, D21305, doi:10.1029/2005JD006721, 2006.

871 Feng, Y., Kotamarthi, V. R., Coulter, R., Zhao, C., and Cadeddu, M.: Radiative and
872 thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over
873 South Asia, *Atmos. Chem. Phys.*, 16, 247–264, doi:10.5194/acp-16-247-2016, 2016.

874 Flanner, M. G. and Zender, C. S.: Snowpack radiative heating: Influence on Tibetan Plateau
875 climate, *Geophys. Res. Lett.*, 32, L06501, doi:10.1029/2004GL022076, 2005.

876 Fu, Y., Pan, X., Xian, T., Liu, G., Zhong, L., Liu, Q., Li, R., Wang, Y., and Ma, M.:
877 Precipitation characteristics over the steep slope of the Himalayas in rainy season observed
878 by TRMM PR and VIRS, *Climate dynamics*, 51, 1971-1989, doi: 10.1007/s00382-017-
879 3992-3, 2018.

880 Gao, Y., Zhao, C., Liu, X., Zhang, M., and Leung, L. R.: WRF-Chem simulations of aerosols
881 and anthropogenic aerosol radiative forcing in East Asia, *Atmospheric Environment*, 92,
882 250–266, doi:10.1016/j.atmosenv.2014.04.038, 2014.

883 Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.-J.:
884 Sources and distributions of dust aerosols simulated with the GOCART model, *J. Geophys.
885 Res.*, 106, 20255–20273, doi:10.1029/2000JD000053, 2001.

886 Gong, P., Wang, X., Pokhrel, B., Wang, H., Liu, X., Liu, X., and Wania, F.: Trans-Himalayan
887 Transport of Organochlorine Compounds: Three-Year Observations and Model-Based Flux
888 Estimation, *Environ. Sci. Technol.*, 53, 6773–6783, doi:10.1021/acs.est.9b01223, 2019.

889 Gong, S. L.: A parameterization of sea-salt aerosol source function for sub- and super-micron
890 particles, *Global Biogeochem. Cycles*, 17, n/a-n/a, doi:10.1029/2003GB002079, 2003.

891 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and
892 Eder, B.: Fully coupled “online” chemistry within the WRF model, *Atmospheric
893 Environment*, 39, 6957–6975, doi:10.1016/j.atmosenv.2005.04.027, 2005.

894 Gustafson, W. I., E. G. Chapman, S. J. Ghan, R. C. Easter, and J. D. Fast: Impact on modeled
895 cloud characteristics due to simplified treatment of uniform cloud condensation nuclei
896 during NEAQS 2004, *Geophys. Res. Lett.*, 34, L19809, doi:10.1029/2007GL030021, 2007.

897 Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos, *Proceedings of
898 the National Academy of Sciences*, 101, 423–428, doi:10.1073/pnas.2237157100, 2004.

899 He, C., Li, Q., Liou, K. N., Takano, Y., Gu, Y., Qi, L., Mao, Y., and Leung, L. R.: Black carbon
900 radiative forcing over the Tibetan Plateau, *Geophys. Res. Lett.*, 41, 7806–7813,
901 doi:10.1002/2014GL062191, 2014.

902 He, C., Wang, Z., Zhou, T., and Li, T.: Enhanced Latent Heating over the Tibetan Plateau as a
903 Key to the Enhanced East Asian Summer Monsoon Circulation under a Warming Climate,
904 *J. Climate*, 32, 3373–3388, doi:10.1175/JCLI-D-18-0427.1, 2019.

905 Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and Clouds: The Software
906 Package OPAC, *Bull. Amer. Meteor. Soc.*, 79, 831–844, doi:10.1175/1520-
907 0477(1998)079<0831:OPOAAC>2.0.CO;2, 1998.

908 Hindman, E. E. and Upadhyay, B. P.: Air pollution transport in the Himalayas of Nepal and
909 Tibet during the 1995–1996 dry season, *Atmospheric Environment*, 36, 727–739,
910 doi:10.1016/S1352-2310(01)00495-2, 2002.

911 Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan,
912 J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.:
913 AERONET—A Federated Instrument Network and Data Archive for Aerosol
914 Characterization, *Remote Sensing of Environment*, 66, 1–16, doi:10.1016/S0034-
915 4257(98)00031-5, 1998.

916 Holben, B. N., Tanre, D., Smirnov, A., ECK T. F., Slutsker, I., Abuhassan, N., Newcomb, W.,
917 Schafer, J., Chatenet, B., Lavenu, F., Kaufman, Y., Vande Castle, J., Setzer, A., Markham,
918 B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O'Neill, N., Pietras, C., Pinker, R., Voss,
919 K., and Zibordi, G.: An emerging ground-based aerosol climatology: Aerosol optical depth
920 from AERONET, *J. Geophys. Res.*, 106, 12067-12097, doi:10.1029/2001JD900014, 2001.

923 Horvath, K., Koracin, D., Vellore, R., Jiang, J., and Belu, R.: Sub - kilometer dynamical
924 downscaling of near - surface winds in complex terrain using WRF and MM5 mesoscale
925 models, *J. Geophys. Res. Atmos.*, 117, D11111, doi:10.1029/2012JD017432, 2012

926 Hu, Z., Huang, J., Zhao, C., Bi, J., Jin, Q., Qian, Y., Leung, L. R., Feng, T., Chen, S., and Ma,
927 J.: Modeling the contributions of Northern Hemisphere dust sources to dust outflow from
928 East Asia, *Atmospheric Environment*, 202, 234–243, doi:10.1016/j.atmosenv.2019.01.022,
929 2019.

930 Hu, Z., Huang, J., Zhao, C., Jin, Q., Ma, Y., and Yang, B.: Modeling dust sources, transport,
931 and radiative effects at different altitudes over the Tibetan Plateau, *Atmos. Chem. Phys.*
932 *Discuss.*, <https://doi.org/10.5194/acp-2019-431>, in press, 2020.

933 Hu, Z., Zhao, C., Huang, J., Leung, L. R., Qian, Y., Yu, H., Huang, L., and Kalashnikova, O.V.:
934 Trans-pacific transport and evolution of aerosols: Evaluation of quasi global WRF-Chem
935 simulation with multiple observations, *Geosci. Model Dev.*, 9, 1725–1746, doi:10.5194/
936 gmd-9-1725-2016, 2016.

937 Huang, X., Song, Y., Zhao, C., Cai, X., Zhang, H., and Zhu, T.: Direct Radiative Effect by
938 Multicomponent Aerosol over China, *J. Climate*, 28, 3472–3495, doi:10.1175/JCLI-D-14-
939 00365.1, 2015.

940 Iacono, M. J., Mlawer, E. J., Clough, S. A., and Morcrette, J. J.: Impact of an improved
941 longwave radiation model, RRTM, on the energy budget and thermodynamic properties of

942 the NCAR community climate model, CCM3, *J. Geophys. Res.*, 105, 14873–14890,
943 doi:10.1029/2000JD900091, 2000.

944 Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate change will affect the
945 Asian water towers, *Science* (New York, N.Y.), 328, 1382–1385,
946 doi:10.1126/science.1183188, 2010.

947 Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J. T.: Global distribution of sea
948 salt aerosols: new constraints from in situ and remote sensing observations, *Atmos. Chem.*
949 *Phys.*, 11, 3137–3157, doi:10.5194/acp-11-3137-2011, 2011.

950 Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G.,
951 Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., van der Denier Gon, H., Kuenen, J.
952 J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of
953 regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of
954 air pollution, *Atmos. Chem. Phys.*, 15, 11411–11432, doi:10.5194/acp-15-11411-2015,
955 2015.

956 Ji, Z. M.: Modeling black carbon and its potential radiative effects over the Tibetan Plateau,
957 *Advances in Climate Change Research*, 7, 139–144, doi:10.1016/j.accre.2016.10.002, 2016.

958 Ji, Z., Kang, S., Cong, Z., Zhang, Q., and Yao, T.: Simulation of carbonaceous aerosols over
959 the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic
960 effects, *Clim Dyn*, 45, 2831–2846, doi:10.1007/s00382-015-2509-1, 2015.

961 Jiménez, P. A. and Dudhia, J.: Improving the representation of resolved and unresolved
962 topographic effects on surface wind in the WRF model, *J. Appl. Meteorol. Clim.*, 51, 300-
963 316, doi:10.1175/JAMC-D-11-084.1, 2012.

964 Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update, *J. Appl. Meteor.*, 43,
965 170–181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.

966 Kang, S, Chen P, Li C, Liu B, Cong Z: Atmospheric Aerosol Elements over the Inland Tibetan
967 Plateau: Concentration, Seasonality, and Transport, *Aerosol Air Qual. Res.*, 16, 789–800,
968 doi:10.4209/aaqr.2015.02.0307, 2016.

969 Kang, S., Q. Zhang, Y. Qian, Z. Ji, C. Li, Z. Cong, Y. Zhang, J. Guo, W. Du, J. Huang, Q. You,
970 A. K. Panday, M. Rupakheti, D. Chen, O. Gustafsson, M. H. Thiemens, and D. Qin: Linking
971 atmospheric pollution to cryospheric change in the Third Pole region: current progress and
972 future prospects, *National Science Review*, 6, 796–809, doi:10.1093/nsr/nwz031, 2019.

973 Kant, Y., Shaik, D. S., Mitra, D., Chandola, H. C., Babu, S. S., and Chauhan, P.: Black carbon
974 aerosol quantification over north-west Himalayas: Seasonal heterogeneity, source

975 apportionment and radiative forcing, Environmental pollution (Barking, Essex 1987),
976 113446, doi:10.1016/j.envpol.2019.113446, 2019.

977 Karki, R., ul Hasson, S., Gerlitz, L., Schickhoff, U., Scholten, T., and Böhner, J.: Quantifying
978 the added value of convection-permitting climate simulations in complex terrain: a
979 systematic evaluation of WRF over the Himalayas, *Earth Syst. Dynam.*, 8, 507–528,
980 doi:10.5194/esd-8-507-2017, 2017.

981 Kok, J. F.: A scaling theory for the size distribution of emitted dust aerosols suggests climate
982 models underestimate the size of the global dust cycle, *Proceedings of the National Academy*
983 *of Sciences of the United States of America*, 108, 1016–1021, doi:10.1073/pnas.1014798108,
984 2011.

985 Kopacz, M., Mauzerall, D. L., Wang, J., Leibensperger, E. M., Henze, D. K., and Singh, K.:
986 Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan
987 Plateau, *Atmos. Chem. Phys.*, 11, 2837–2852, doi:10.5194/acp-11-2837-2011, 2011.

988 Kuhlmann, J. and Quaas, J.: How can aerosols affect the Asian summer monsoon? Assessment
989 during three consecutive pre-monsoon seasons from CALIPSO satellite data, *Atmos. Chem.*
990 *Phys.*, 10, 4673–4688, doi:10.5194/acp-10-4673-2010, 2010.

991 Lau, K. M. and Kim, K. M.: Observational relationships between aerosol and Asian monsoon
992 rainfall, and circulation, *Geophys. Res. Lett.*, 33, D22101, doi: 10.1029/2006GL027546,
993 2006b.

994 Lau, K. M., Kim, M. K., and Kim, K. M.: Asian summer monsoon anomalies induced by
995 aerosol direct forcing: the role of the Tibetan Plateau, *Clim Dyn.*, 26, 855–864, doi:
996 10.1007/s00382-006-0114-z, 2006a.

997 Lau, W. K. and Kim, K. M.: Impact of Snow Darkening by Deposition of Light-Absorbing
998 Aerosols on Snow Cover in the Himalayas–Tibetan Plateau and Influence on the Asian
999 Summer Monsoon: A Possible Mechanism for the Blanford Hypothesis, *Atmosphere*, 9, 438,
1000 doi:10.3390/atmos9110438, 2018.

1001 Lau, W. K. M., Kim, K. M., Shi, J. J., Matsui, T., Chin, M., Tan, Q., Peters-Lidard, C., and
1002 Tao, W. K.: Impacts of aerosol–monsoon interaction on rainfall and circulation over
1003 Northern India and the Himalaya Foothills, *Clim Dyn.*, 49, 1945–1960, doi:10.1007/s00382-
1004 016-3430-y, 2017.

1005 Lau, W. K. M., Kim, M. K., Kim, K. M., and Lee, W. S.: Enhanced surface warming and
1006 accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols,
1007 *Environ. Res. Lett.*, 5, 25204, doi:10.1088/1748-9326/5/2/025204, 2010.

1008 Lee, W. S., Bhawar, R. L., Kim, M. K., and Sang, J.: Study of aerosol effect on accelerated
1009 snow melting over the Tibetan Plateau during boreal spring, *Atmospheric Environment*, 75,
1010 113–122, doi:10.1016/j.atmosenv.2013.04.004, 2013.

1011 Li, C., Bosch, C., Kang, S., Andersson, A., Chen, P., Zhang, Q., Cong, Z., Chen, B., Qin, D.,
1012 and Gustafsson, Ö.: Sources of black carbon to the Himalayan–Tibetan Plateau glaciers, *Nat
1013 Commun*, 7, 4825, doi:10.1038/ncomms12574, 2016.

1014 Li, M., Zhang, Q., Kurokawa, J. i., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.
1015 G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H.,
1016 and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the
1017 international collaboration framework of the MICS-Asia and HTAP, *Atmos. Chem. Phys.*,
1018 17, 935–963, doi:10.5194/acp-17-935-2017, 2017.

1019 Li, R. and Min, Q. L.: Impacts of mineral dust on the vertical structure of precipitation, *J.
1020 Geophys. Res.*, 115, 1337, doi:10.1029/2009JD011925, 2010.

1021 Li, R., Dong, X., Guo, J., Fu, Y., Zhao, C., Wang, Y., and Min, Q.: The implications of dust
1022 ice nuclei effect on cloud top temperature in a complex mesoscale convective system, *Sci
1023 Rep*, 7, 291, doi:10.1038/s41598-017-12681-0, 2017.

1024 Li, R., Shao, W., Guo, J., Fu, Y., Wang, Y., Liu, G., Zhou, R., and Li, W.: A Simplified
1025 Algorithm to Estimate Latent Heating Rate Using Vertical Rainfall Profiles Over the Tibetan
1026 Plateau, *J. Geophys. Res. Atmos.*, 124, 942–963, doi:10.1029/2018JD029297, 2019.

1027 Lin, C., Chen, D., Yang, K., and Ou, T.: Impact of model resolution on simulating the water
1028 vapor transport through the central Himalayas: implication for models' wet bias over the
1029 Tibetan Plateau, *Clim Dyn*, 51, 3195–3207, doi:10.1007/s00382-018-4074-x, 2018.

1030 Liu, P., Tsimpidi, A. P., Hu, Y., Stone, B., Russell, A. G., and Nenes, A.: Differences between
1031 downscaling with spectral and grid nudging using WRF, *Atmos. Chem. Phys.*, 12, 3601–
1032 3610, doi:10.5194/acp-12-3601-2012, 2012.

1033 Liu, Y., Sato, Y., Jia, R., Xie, Y., Huang, J., and Nakajima, T.: Modeling study on the transport
1034 of summer dust and anthropogenic aerosols over the Tibetan Plateau, *Atmos. Chem. Phys.*,
1035 15, 12581–12594, doi:10.5194/acp-15-12581-2015, 2015.

1036 Liu, Z., Ming, Y., Zhao, C., Lau, N. C., Guo, J., Bollasina, M., and Yim, S. H. L.: Contribution
1037 of local and remote anthropogenic aerosols to a record-breaking torrential rainfall event in
1038 Guangdong Province, China, *Atmos. Chem. Phys.*, 20, 223–241, doi:10.5194/acp-20-223-
1039 2020, 2020.

1040 Lu, Z., Streets, D. G., Zhang, Q., and Wang, S.: A novel back-trajectory analysis of the origin
1041 of black carbon transported to the Himalayas and Tibetan Plateau during 1996-2010,
1042 *Geophys. Res. Lett.*, 39, n/a-n/a, doi:10.1029/2011GL049903, 2012.

1043 Lüthi, Z. L., Škerlak, B., Kim, S. W., Lauer, A., Mues, A., Rupakheti, M., and Kang, S.:
1044 Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas, *Atmos.*
1045 *Chem. Phys.*, 15, 6007–6021, doi:10.5194/acp-15-6007-2015, 2015.

1046 Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.: Consistent increase in
1047 High Asia's runoff due to increasing glacier melt and precipitation, *Nature Clim Change*, 4,
1048 587–592, doi:10.1038/nclimate2237, 2014.

1049 Marinoni, A., Cristofanelli, P., Laj, P., Duchi, R., Calzolari, F., Decesari, S., Sellegri, K.,
1050 Vuillermoz, E., Verza, G. P., and Villani, P.: Aerosol mass and black carbon concentrations,
1051 a two year record at NCO-P (5079 m, Southern Himalayas), *Atmos. Chem. Phys.*, 10, 8551–
1052 8562, doi:10.5194/acp-10-8551-2010, 2010.

1053 Menon, S., Koch, D., Beig, G., Sahu, S., Fasullo, J., and Orlikowski, D.: Black carbon aerosols
1054 and the third polar ice cap, *Atmos. Chem. Phys.*, 10, 4559–4571, doi:10.5194/acp-10-4559-
1055 2010, 2010.

1056 Ming, J., Xiao, C., Cachier, H., Qin, D., Qin, X., Li, Z., and Pu, J.: Black Carbon (BC) in the
1057 snow of glaciers in west China and its potential effects on albedos, *Atmospheric Research*,
1058 92, 114–123, doi:10.1016/j.atmosres.2008.09.007, 2009.

1059 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative
1060 transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the
1061 longwave, *J. Geophys. Res.*, 102, 16663–16682, doi:10.1029/97JD00237, 1997.

1062 Morrison, H., Thompson, G., and Tatarki, V.: Impact of Cloud Microphysics on the
1063 Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison
1064 of One- and Two-Moment Schemes, *Mon. Wea. Rev.*, 137, 991–1007,
1065 doi:10.1175/2008MWR2556.1, 2009.

1066 Nakanishi, M. and Niino, H.: An Improved Mellor–Yamada Level-3 Model: Its Numerical
1067 Stability and Application to a Regional Prediction of Advection Fog, *Boundary-Layer*
1068 *Meteorol.*, 119, 397–407, doi:10.1007/s10546-005-9030-8, 2006.

1069 Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J.,
1070 Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J.,
1071 Heald, C. L., Hoffman, F., Lamarque, J. F., Mahowald, N., Niu, G. Y., Qian, T., Randerson,
1072 J., Running, S., Sakaguchi, K., Slater, A., Stockli, R., Wang, A., Yang, Z. L., Zeng, X., and
1073 Zeng, X.: Technical Description of version 4.0 of the Community Land Model (CLM), *Tech.*

1074 Rep. NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, Colorado,
1075 USA, 2010.

1076 Prasad, A. K. and Singh, R. P.: Comparison of MISR-MODIS aerosol optical depth over the
1077 Indo-Gangetic basin during the winter and summer seasons (2000–2005), *Remote Sensing*
1078 of Environment

1079 Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the impacts of
1080 Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate,
1081 *Atmos. Chem. Phys.*, 11, 1929–1948, doi:10.5194/acp-11-1929-2011, 2011.

1082 Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M., Ming, J., Wang, H.,
1083 Wang, M., Warren, S. G., and Zhang, R.: Light-absorbing particles in snow and ice:
1084 Measurement and modeling of climatic and hydrological impact, *Adv. Atmos. Sci.*, 32, 64–
1085 91, doi:10.1007/s00376-014-0010-0, 2015.

1086 Qiu, J.: China: The third pole, *Nature*, 454, 393–396, doi:10.1038/454393a, 2008.

1087 Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon,
1088 *Nature Geosci*, 1, 221–227, doi:10.1038/ngeo156, 2008.

1089 Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C., Chung, C., and Winker,
1090 D.: Warming trends in Asia amplified by brown cloud solar absorption, *Nature*, 448, 575–
1091 578, doi:10.1038/nature06019, 2007.

1092 Sarangi, C., Qian, Y., Rittger, K., Bormann, K. J., Liu, Y., Wang, H., Lin, G., and Painter, T.
1093 H.: Impact of light-absorbing particles on snow albedo darkening and associated radiative
1094 forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite
1095 observations. *Atmos. Chem. Phys.*, 19, 7105–7128, doi:10.5194/acp-19-7105-2019, 2019.

1096 Seaman, N. L., Stauffer, D. R., and Lario-Gibbs, A. M.: A Multiscale Four-Dimensional Data
1097 Assimilation System Applied in the San Joaquin Valley during SARMAP. Part I: Modeling
1098 Design and Basic Performance Characteristics, *J. Appl. Meteor.*, 34, 1739–1761,
1099 doi:10.1175/1520-0450(1995)034<1739:AMFDDA>2.0.CO;2, 1995.

1100 Shi, X., Wang, Y., and Xu, X.: Effect of mesoscale topography over the Tibetan Plateau on
1101 summer precipitation in China: A regional model study, *Geophys. Res. Lett.*, 35, 255,
1102 doi:10.1029/2008GL034740, 2008.

1103 Singh, P. and Bengtsson, L.: Hydrological sensitivity of a large Himalayan basin to climate
1104 change, *Hydrol. Process.*, 18, 2363–2385, doi:10.1002/hyp.1468, 2004.

1105 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M., Huang, X.
1106 Y., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 3,

1107 NCAR Technical Note, NCAR/TN-468+STR, available at: http://wrf-model.org/wrfadmin/docs/arw_v2.pdf, 2008.

1109 Stauffer, D. R. and Seaman, N. L.: Use of Four-Dimensional Data Assimilation in a Limited-
1110 Area Mesoscale Model. Part I: Experiments with Synoptic-Scale Data, *Mon. Wea. Rev.*, 118,
1111 1250–1277, doi:10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2, 1990.

1112 Wagner, J. S., Gohm, A., and Rotach, M. W.: The Impact of Horizontal Model Grid Resolution
1113 on the Boundary Layer Structure over an Idealized Valley, *Mon. Wea. Rev.*, 142, 3446–
1114 3465, doi:10.1175/MWR-D-14-00002.1, 2014.

1115 Wang, X., Gong, P., Sheng, J., Joswiak, D. R., and Yao, T.: Long-range atmospheric transport
1116 of particulate Polycyclic Aromatic Hydrocarbons and the incursion of aerosols to the
1117 southeast Tibetan Plateau, *Atmospheric Environment*, 115, 124–131,
1118 doi:10.1016/j.atmosenv.2015.04.050, 2015.

1119 Wang, Y., Yang, K., Zhou, X., Chen, D., Lu, H., Ouyang, L., Chen, Y., Lazhu., and Wang, B.:
1120 Synergy of orographic drag parameterization and high resolution greatly reduces biases of
1121 WRF-simulated precipitation in central Himalaya, Climate Dynamics, 54, 1729–1740,
1122 doi:10.1007/s00382-019-05080-w, 2020.

1123 Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J.,
1124 and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to
1125 estimate the emissions from open burning, *Geosci. Model Dev.*, 4, 625–641,
1126 doi:10.5194/gmd-4-625-2011, 2011.

1127 Wu, G., Liu, Y., Dong, B., Liang, X., Duan, A., Bao, Q., and Yu, J.: Revisiting Asian monsoon
1128 formation and change associated with Tibetan Plateau forcing: I. Formation, *Clim Dyn*, 39,
1129 1169–1181, doi:10.1007/s00382-012-1334-z, 2012a.

1130 Wu, G., Liu, Y., He, B., Bao, Q., Duan, A., and Jin, F. F.: Thermal controls on the Asian
1131 summer monsoon, *Scientific reports*, 2, 404, doi:10.1038/srep00404, 2012b.

1132 Wu, G., Liu, Y., Zhang, Q., Duan, A., Wang, T., Wan, R., Liu, X., Li, W., Wang, Z., and Liang,
1133 X.: The Influence of Mechanical and Thermal Forcing by the Tibetan Plateau on Asian
1134 Climate, *J. Hydrometeorol.*, 8, 770–789, doi:10.1175/JHM609.1, 2007.

1135 Wu, L., Su, H., and Jiang, J. H.: Regional simulation of aerosol impacts on precipitation during
1136 the East Asian summer monsoon, *J. Geophys. Res. Atmos.*, 118, 6454–6467,
1137 doi:10.1002/jgrd.50527, 2013.

1138 Wulf, H., Bookhagen, B., and Scherler, D.: Differentiating between rain, snow, and glacier
1139 contributions to river discharge in the western Himalaya using remote-sensing data and

1140 distributed hydrological modeling, *Advances in Water Resources*, 88, 152–169,
1141 doi:10.1016/j.advwatres.2015.12.004, 2016.

1142 Yang, J., Kang, S., Ji, Z., and Chen, D.: Modeling the Origin of Anthropogenic Black Carbon
1143 and Its Climatic Effect Over the Tibetan Plateau and Surrounding Regions, *J. Geophys. Res.*
1144 *Atmos.*, 123, 671–692, doi:10.1002/2017JD027282, 2018.

1145 Yasunari, T. J., Bonasoni, P., Laj, P., Fujita, K., Vuillermoz, E., Marinoni, A., Cristofanelli, P.,
1146 Duchi, R., Tartari, G., and Lau, K.-M.: Estimated impact of black carbon deposition during
1147 pre-monsoon season from Nepal Climate Observatory – Pyramid data and snow albedo
1148 changes over Himalayan glaciers, *Atmos. Chem. Phys.*, 10, 6603–6615, doi:10.5194/acp-
1149 10-6603-2010, 2010.

1150 Ye, D. Z. and Wu, G. X.: The role of the heat source of the Tibetan Plateau in the general
1151 circulation, *Meteorol. Atmos. Phys.*, 67, 181–198, doi:10.1007/BF01277509, 1998.

1152 Zängl, G., Egger, J., and Wirth, V.: Diurnal Winds in the Himalayan Kali Gandaki Valley. Part
1153 II: Modeling, *Mon. Wea. Rev.*, 129, 1062–1080, doi:10.1175/1520-
1154 0493(2001)129<1062:DWITHK>2.0.CO;2, 2001.

1155 Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-
1156 scale applications, *J. Geophys. Res.*, 104, 30387–30415, doi:10.1029/1999JD900876, 1999.

1157 Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol
1158 Interactions and Chemistry (MOSAIC), *J. Geophys. Res.*, 113, 1591,
1159 doi:10.1029/2007JD008782, 2008.

1160 Zhang, A., Fu, Y., Chen, Y., Liu, G., and Zhang, X.: Impact of the surface wind flow on
1161 precipitation characteristics over the southern Himalayas: GPM observations, *Atmospheric*
1162 *Research*, 202, 10–22, doi:10.1016/j.atmosres.2017.11.001, 2018.

1163 Zhang, R., Wang, H., Qian, Y., Rasch, P. J., Easter, R. C., Ma, P. L., Singh, B., Huang, J., and
1164 Fu, Q.: Quantifying sources, transport, deposition, and radiative forcing of black carbon over
1165 the Himalayas and Tibetan Plateau, *Atmos. Chem. Phys.*, 15, 6205–6223, doi:10.5194/acp-
1166 15-6205-2015, 2015.

1167 Zhang, R., Wang, Y., He, Q., Chen, L., Zhang, Y., Qu, H., Smeltzer, C., Li, J., Alvarado, L. M.
1168 A., Vrekoussis, M., Richter, A., Wittrock, F., and Burrows, J. P.: Enhanced trans-Himalaya
1169 pollution transport to the Tibetan Plateau by cut-off low systems, *Atmos. Chem. Phys.*, 17,
1170 3083–3095, doi:10.5194/acp-17-3083-2017, 2017.

1171 Zhang, Y., Kang, S., Cong, Z., Schmale, J., Sprenger, M., Li, C., Yang, W., Gao, T., Sillanpää,
1172 M., Li, X., Liu, Y., Chen, P., and Zhang, X.: Light-absorbing impurities enhance glacier

1173 albedo reduction in the southeastern Tibetan plateau, *J. Geophys. Res. Atmos.*, 122, 6915–
1174 6933, doi:10.1002/2016JD026397, 2017.

1175 Zhang, Y., Kang, S., Sprenger, M., Cong, Z., Gao, T., Li, C., Tao, S., Li, X., Zhong, X., Xu,
1176 M., Meng, W., Neupane, B., Qin, X., and Sillanpää, M.: Black carbon and mineral dust in
1177 snow cover on the Tibetan Plateau, *The Cryosphere*, 12, 413–431, doi:10.5194/tc-12-413-
1178 2018, 2018.

1179 Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J., Zaveri, R., and Huang, J.: Uncertainty in
1180 modeling dust mass balance and radiative forcing from size parameterization, *Atmos. Chem.*
1181 *Phys.*, 13, 10733–10753, doi:doi:10.5194/acp-13-10733-2013, 2013b.

1182 Zhao, C., Hu, Z., Qian, Y., Leung, L. R., Huang, J., Huang, M., Jin, J., Flanner, M., Zhang, R.,
1183 Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their
1184 radiative forcing in seasonal snow: a case study over North China with field campaign
1185 measurements, *Atmos. Chem. Phys.*, 14, 11475–11491, doi:10.5194/acp-14-11475-2014,
1186 2014.

1187 Zhao, C., Huang, M., Fast, J. D., Berg, L. K., Qian, Y., Guenther, A., Gu, D., Shrivastava, M.,
1188 Liu, Y., and Walters, S.: Sensitivity of biogenic volatile organic compounds to land surface
1189 parameterizations and vegetation distributions in California, *Geosci. Model Dev.*, 9, 1959–
1190 1976, doi:10.5194/gmd-9-1959-2016, 2016.

1191 Zhao, C., Liu, X., and Leung, L. R.: Impact of the Desert dust on the summer monsoon system
1192 over Southwestern North America, *Atmos. Chem. Phys.*, 12, 3717–3731, doi:10.5194/acp-
1193 12-3717-2012, 2012.

1194 Zhao, C., Liu, X., Leung, L. R., and Hagos, S.: Radiative impact of mineral dust on monsoon
1195 precipitation variability over West Africa, *Atmos. Chem. Phys.*, 11, 1879–1893,
1196 doi:10.5194/acp-11-1879-2011, 2011.

1197 Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson, W. I., Fast, J. D.,
1198 and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative forcing
1199 over North Africa: modeling sensitivities to dust emissions and aerosol size treatments,
1200 *Atmos. Chem. Phys.*, 10, 8821–8838, doi:10.5194/acp-10-8821-2010, 2010.

1201 Zhao, C., Ruby Leung, L., Easter, R., Hand, J., and Avise, J.: Characterization of speciated
1202 aerosol direct radiative forcing over California, *J. Geophys. Res. Atmos.*, 118, 2372–2388,
1203 doi:10.1029/2012JD018364, 2013a.

1204 Zhao, P., Zhou, X., Chen, J., Liu, G., and Nan, S.: Global climate effects of summer Tibetan
1205 Plateau, *Science Bulletin*, 64, 1–3, doi:10.1016/j.scib.2018.11.019, 2019.

1206 Zhou, X., Beljaars, A., Wang, Y., Huang, B., Lin, C., Chen, Y., and Wu, H.: Evaluation of
1207 WRF simulations with different selections of subgrid orographic drag over the Tibetan
1208 Plateau, *J. Geophys. Res. Atmos.*, 122, 9759–9772, doi:10.1002/2017JD027212, 2017.

1209 Zhou, X., Yang, K., and Wang, Y.: Implementation of a turbulent orographic form drag scheme
1210 in WRF and its application to the Tibetan Plateau, *Climate dynamics*, 50, 2443-2455, doi:
1211 10.1007/s00382-017-3677-y, 2018.

1212 Zhao, Z., Cao, J., Shen, Z., Xu, B., Zhu, C., Chen, L. W. A., Su, X., Liu, S., Han, Y., Wang,
1213 G., and Ho, K.: Aerosol particles at a high-altitude site on the Southeast Tibetan Plateau,
1214 China: Implications for pollution transport from South Asia, *J. Geophys. Res. Atmos.*, 118,
1215 11,360-11,375, doi:10.1002/jgrd.50599, 2013.

1216 Zhong, S., Qian, Y., Zhao, C., Leung, R., Wang, H., Yang, B., Fan, J., Yan, H., Yang, X., and
1217 Liu, D.: Urbanization-induced urban heat island and aerosol effects on climate extremes in
1218 the Yangtze River Delta region of China, *Atmos. Chem. Phys.*, 17, 5439–5457,
1219 doi:10.5194/acp-17-5439-2017, 2017.

1220

1221

1222

1223

1224

1225

1226

1227

1228

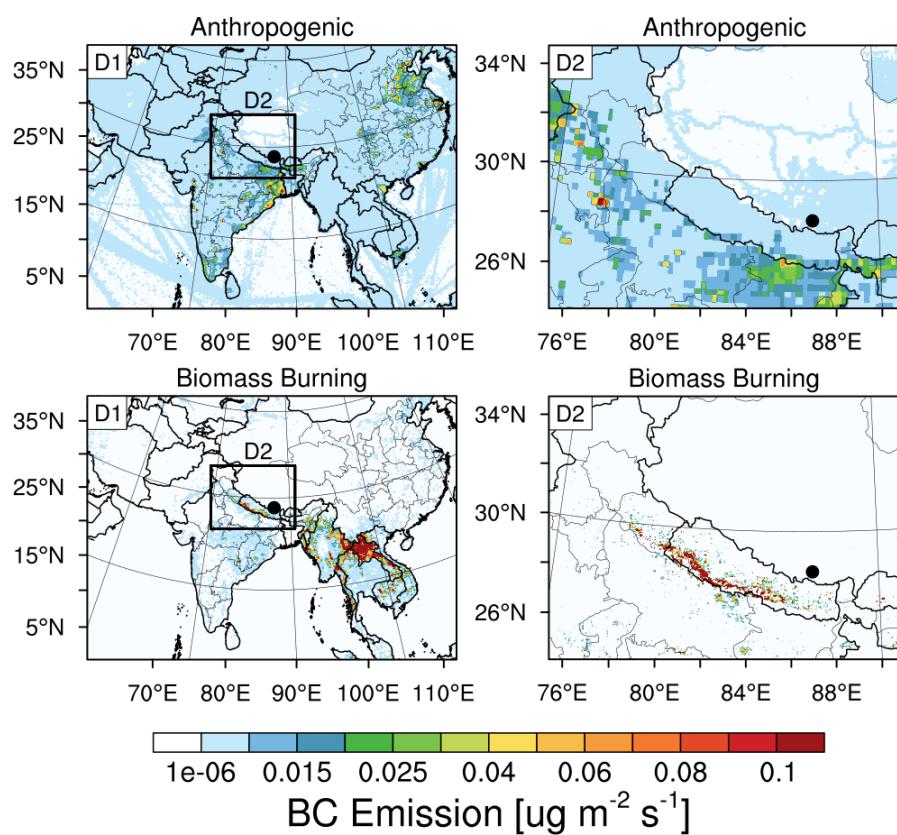
1229

1230

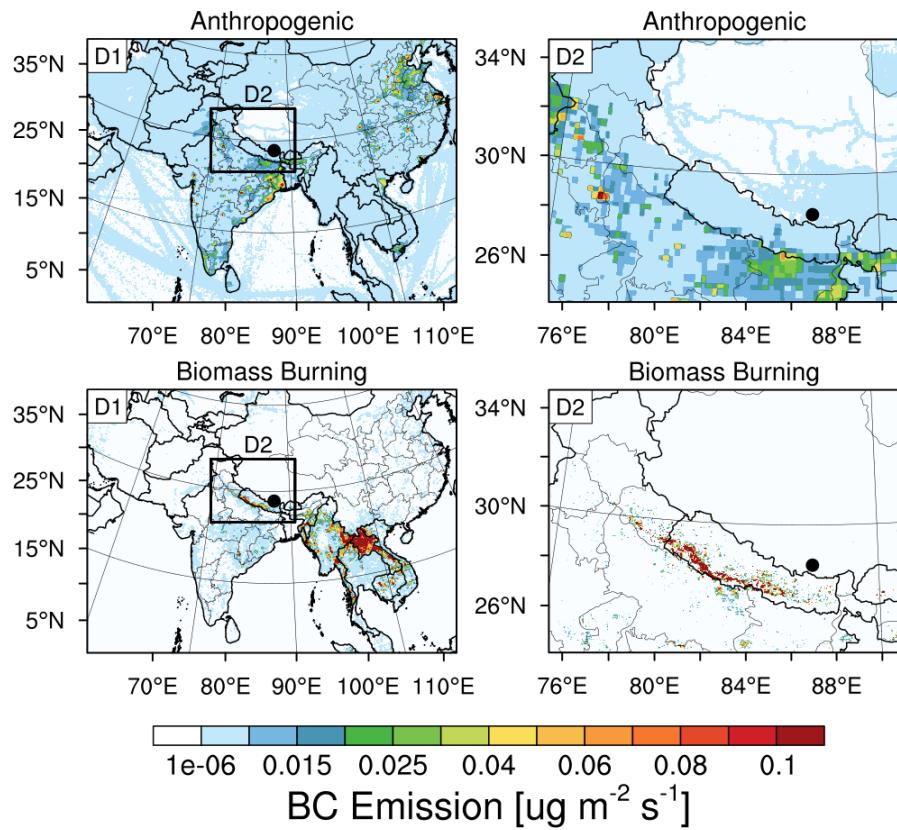
1231

1232

1233

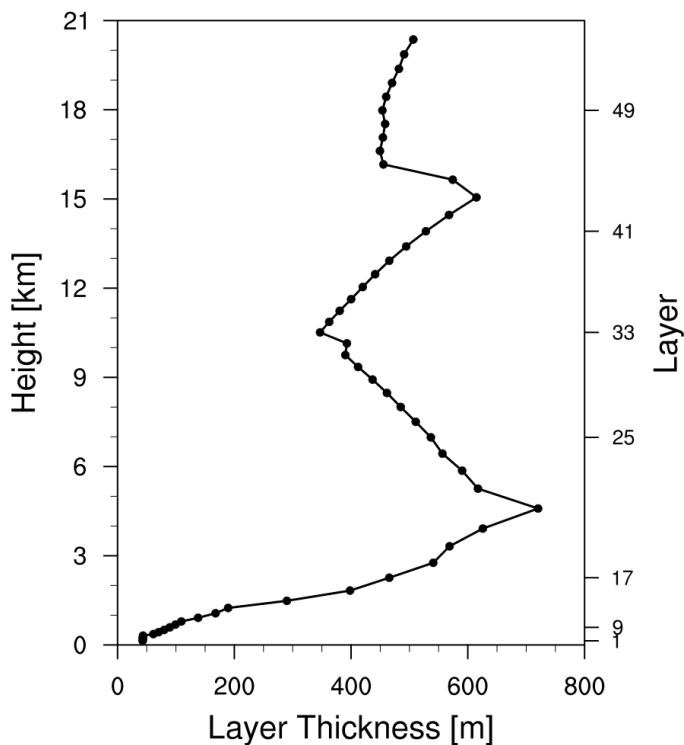

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243

1244 **Table 1.** Summary of model configurations.

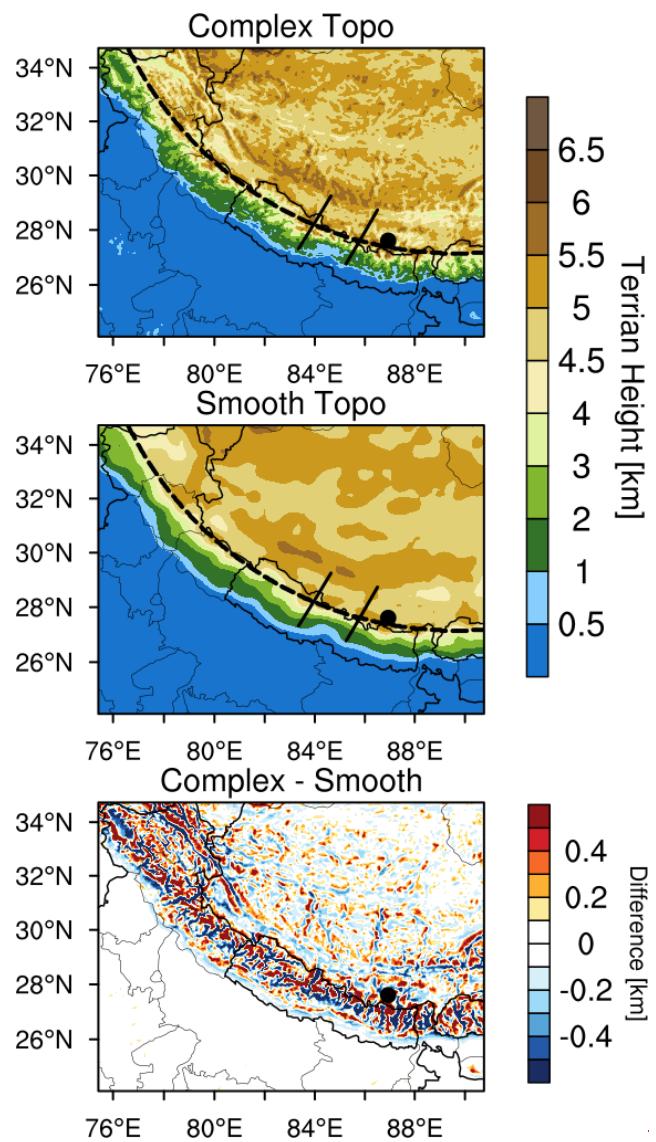

Description	Selection	References
Horizontal grid spacing	20 km (D1), 4 km (D2)	
Grid dimensions	250×350, 300×400	
Topography	30 arcsec (USGS)	
Vertical layers	54 (roughly 17 layers below 2 km)	
Model top pressure	50 hPa	
Nesting approach	One-way	
Aerosol scheme	MOSAIC 8 bin	Zaveri et al., 2008
Gas-phase chemistry	CBM-Z	Zaveri and Peters, 1999
Long wave Radiation	RRTMG	Iacono et al., 2000; Zhao et al., 2011, 2013a
Short-wave Radiation	RRTMG	
Cloud Microphysics	Morrison 2-moment	Morrison et al., 2009
Cumulus Cloud	Kain-Fritsch	Kain, 2004
Planetary boundary layer	MYNN level 2.5	Nakanishi and Niino, 2006
Land surface	CLM	Oleson et al., 2010
Meteorological Forcing	ERA-Interim, 0.5°×0.66°, 6 hourly	

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275



1276


Figure 1. Anthropogenic and fire emissions over the entire simulated regions of 20-km and 4-km resolutions, the black dot represents the Qomolangma Station (QOMS, 86.95°E, 28.36°N).

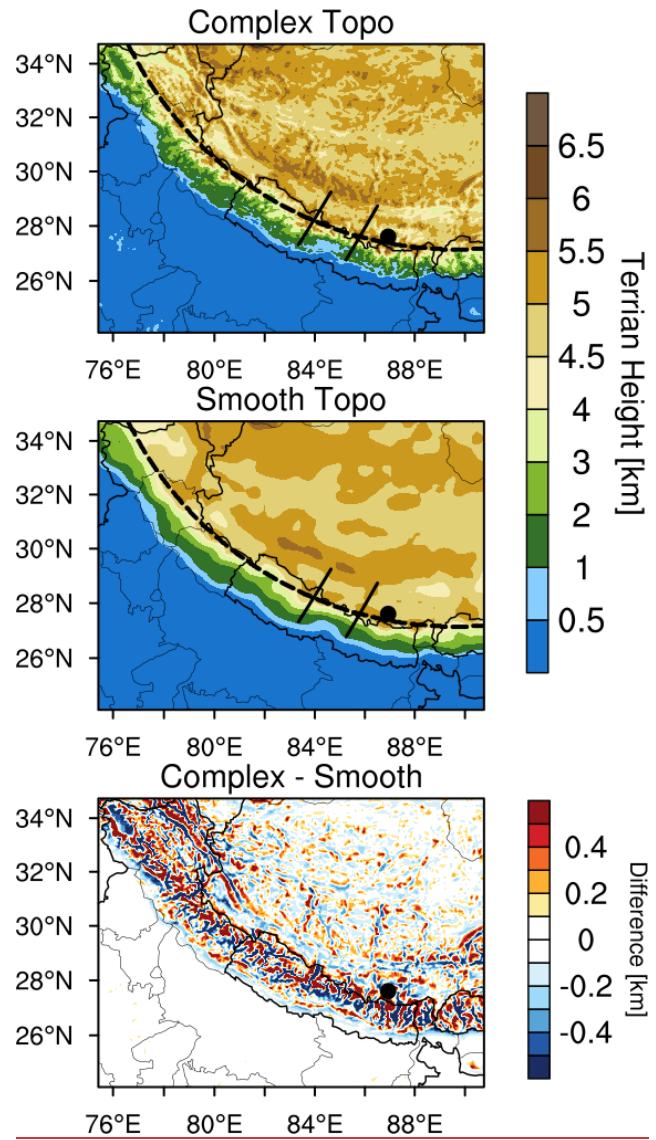
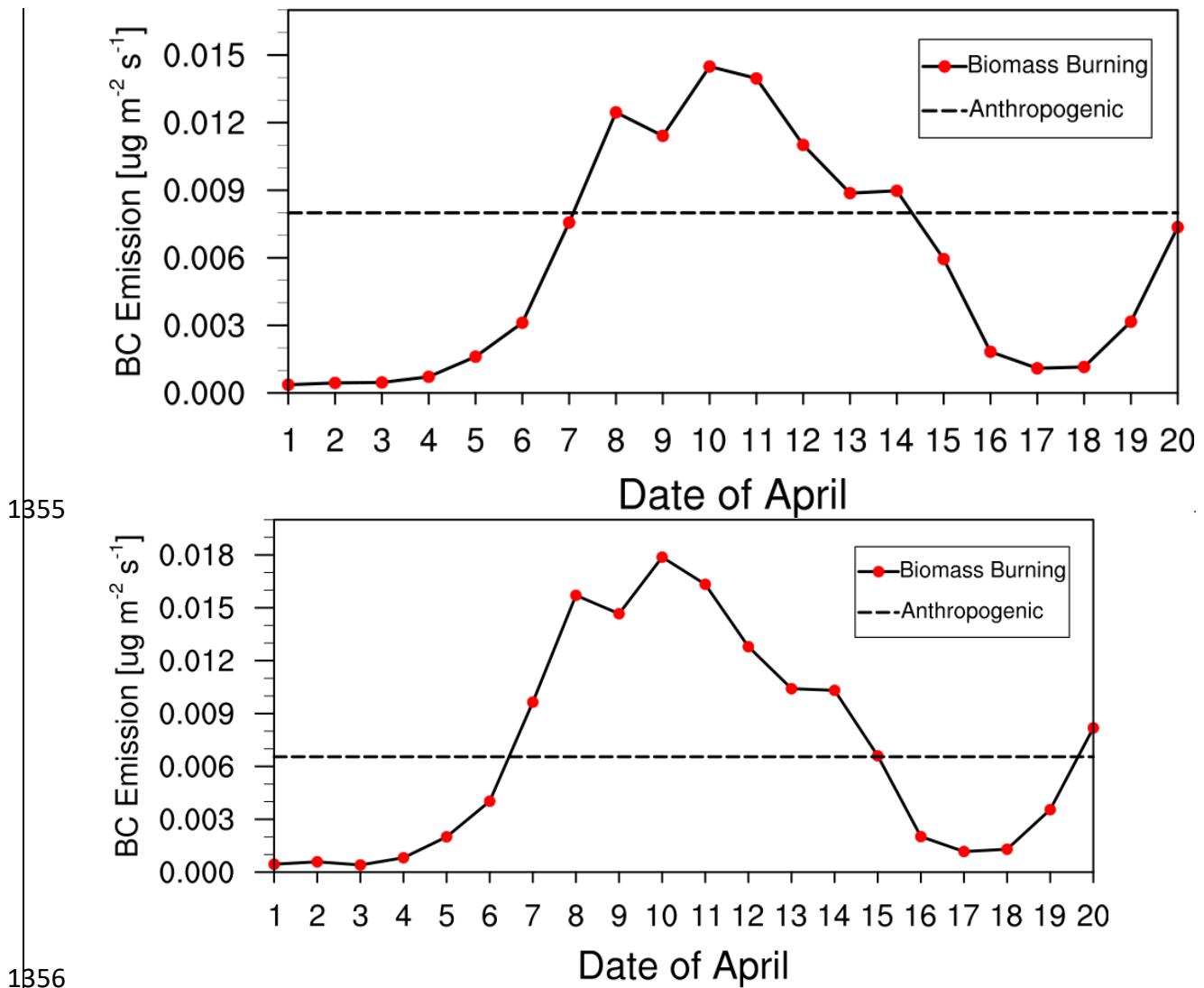

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302

Figure 2. The thickness of each vertical layer in the simulations (54 layers in total).

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333



1335
1336
1337
1338

Figure 3. Spatial distributions of terrain height from the dataset at 20 km (Smooth Topo) and 4 km (Complex Topo). The one dash line and two solid lines represent the cross sections for analysis in the following.

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354

1358 **Figure 4.** Time series of area-averaged daily fire emissions between 26°N and 29°N over the
1359 simulation domain at 4-km resolution (The dash line in the figure represents the anthropogenic
1360 emissions).

1361

1362

1363

1364

1365

1366

1367

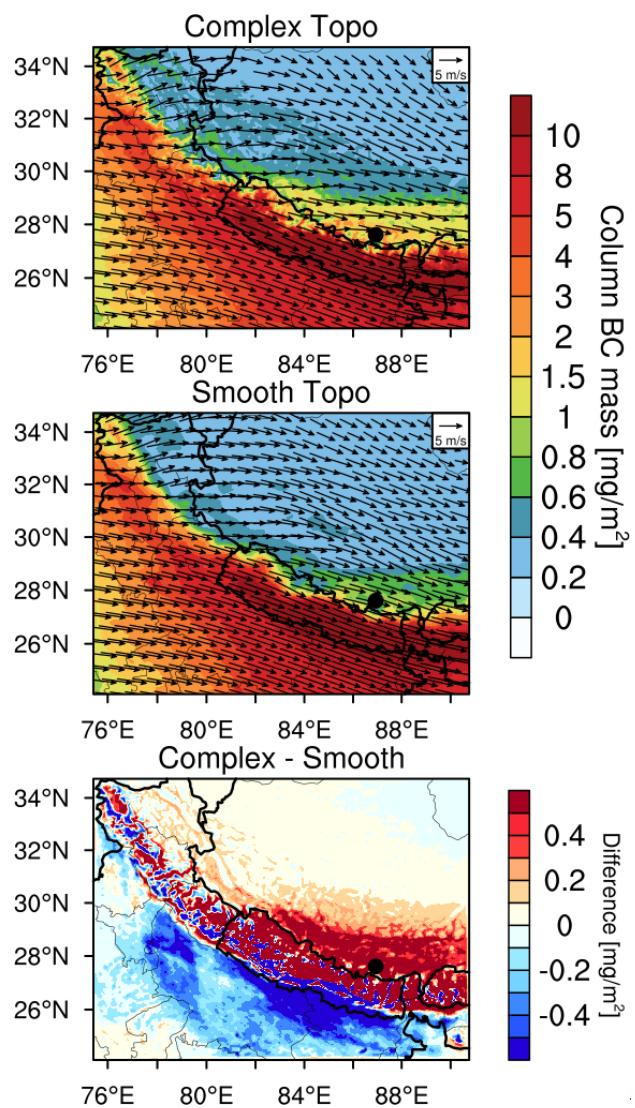
1368

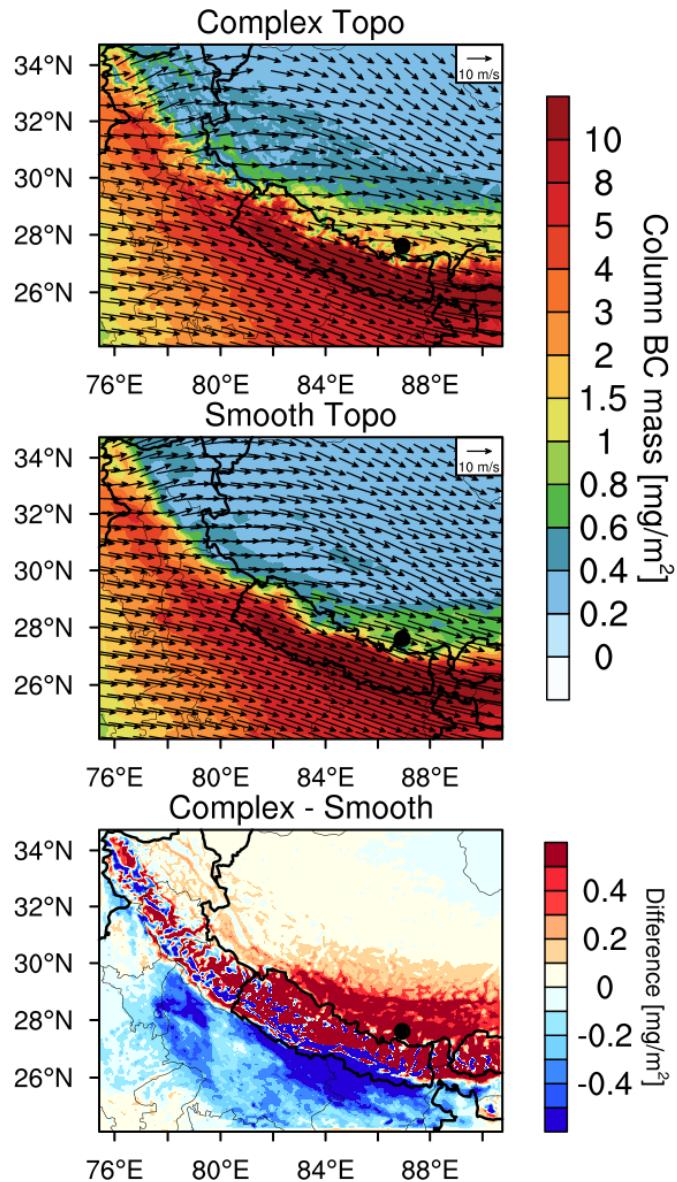
1369

1370

1371

1372


1373


1374

1375

1376

1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392

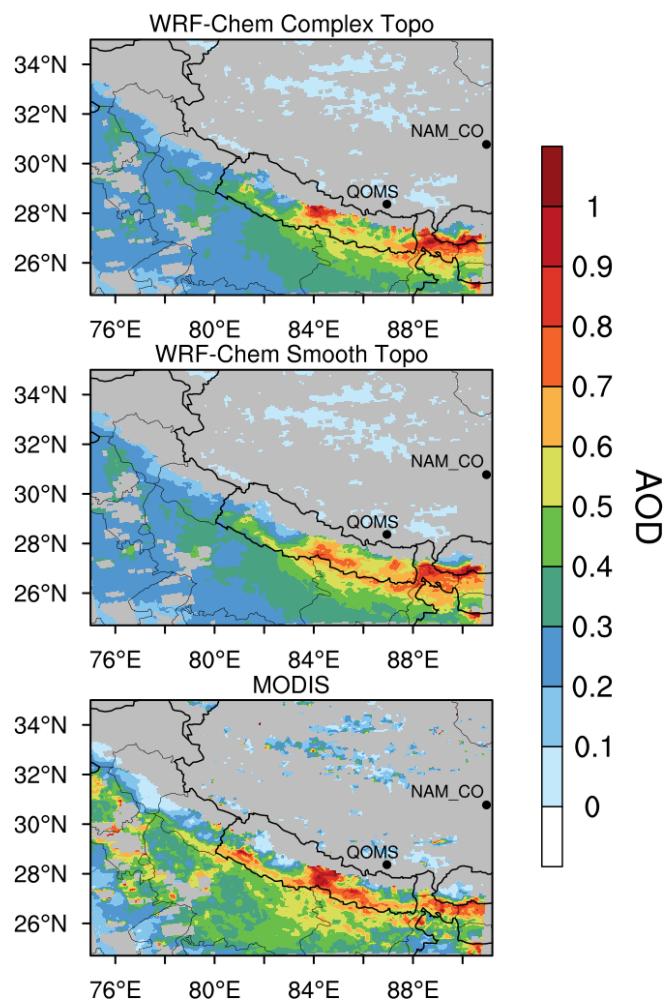
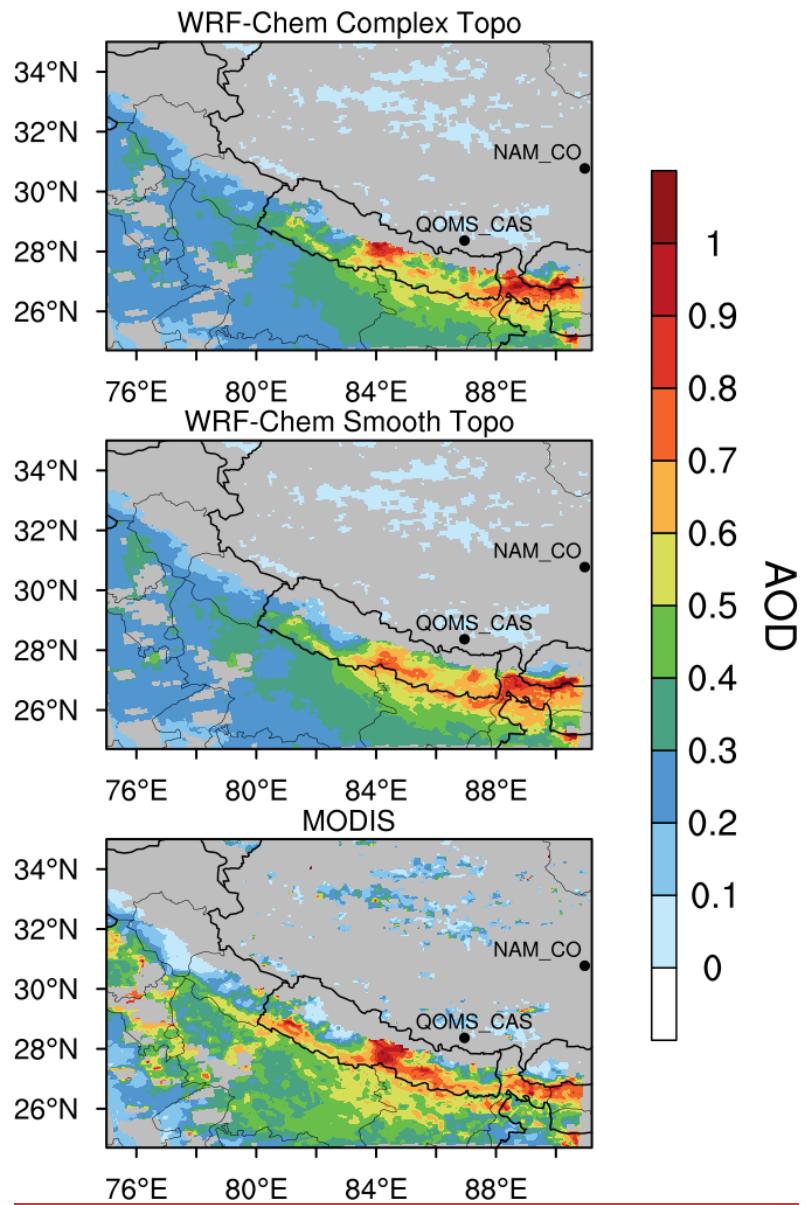


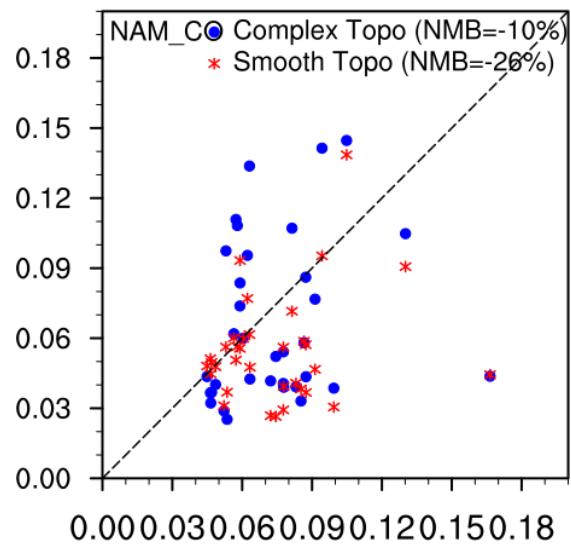
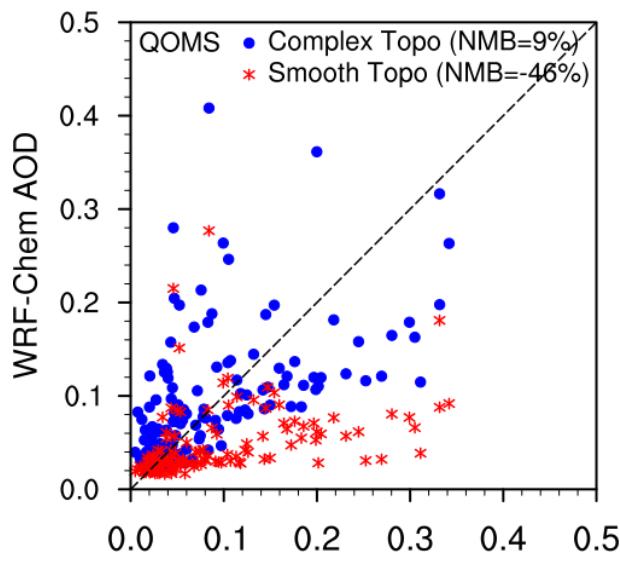
Figure 5. Spatial distributions of column integrated BC mass and the horizontal wind field at 500 hPa from the simulations with complex and smooth topography (Complex Topo and Smooth Topo) averaged for April 1-20, 2016. The difference between the two is also shown.


1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412

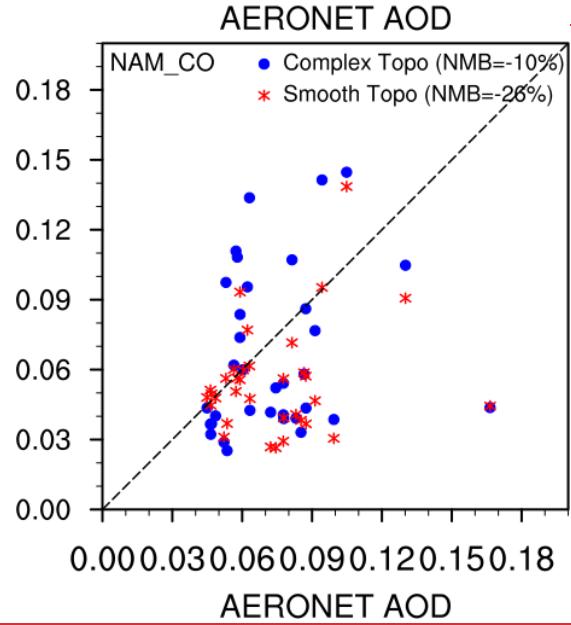
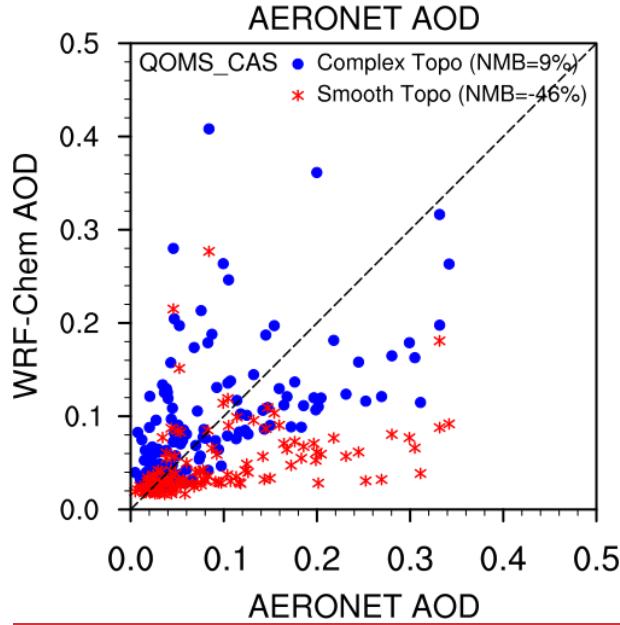
1413

1414

1415

1416
1417
1418
1419
1420



Figure 6. Spatial distributions of AOD from the MODIS retrievals and the simulations with complex and smooth topography averaged for April 1-20, 2016. The two black dots represent the two AERONET sites over the TP (QOMS_CAS, 86.95°E, 28.36°N; NAM_CO, 90.96°E, 30.77°N).

1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434

1435

1436

1437

AERONET AOD

1438

Figure 7. Hourly AOD from the measurements of AERONET and simulations by WRF-Chem at the two sites over the TP (QOMS CAS, 86.95°E, 28.36°N; NAM_CO, 90.96°E, 30.77°N) for April 1-20, 2016.

1441

1442

1443

1444

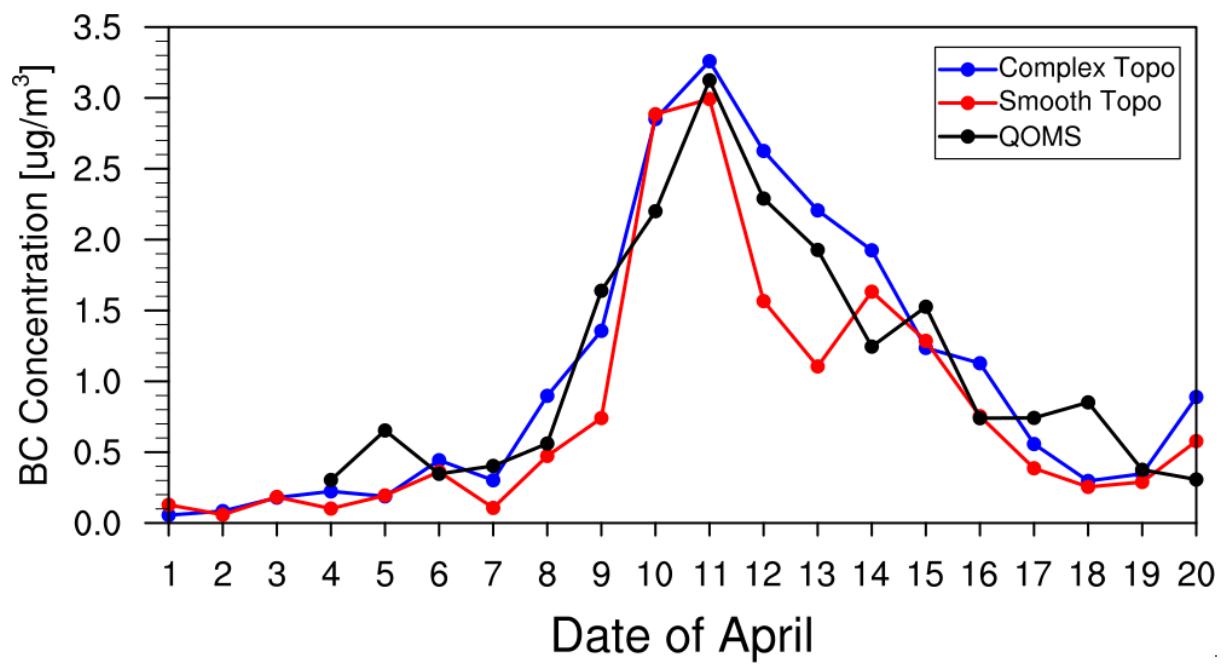
1445

1446

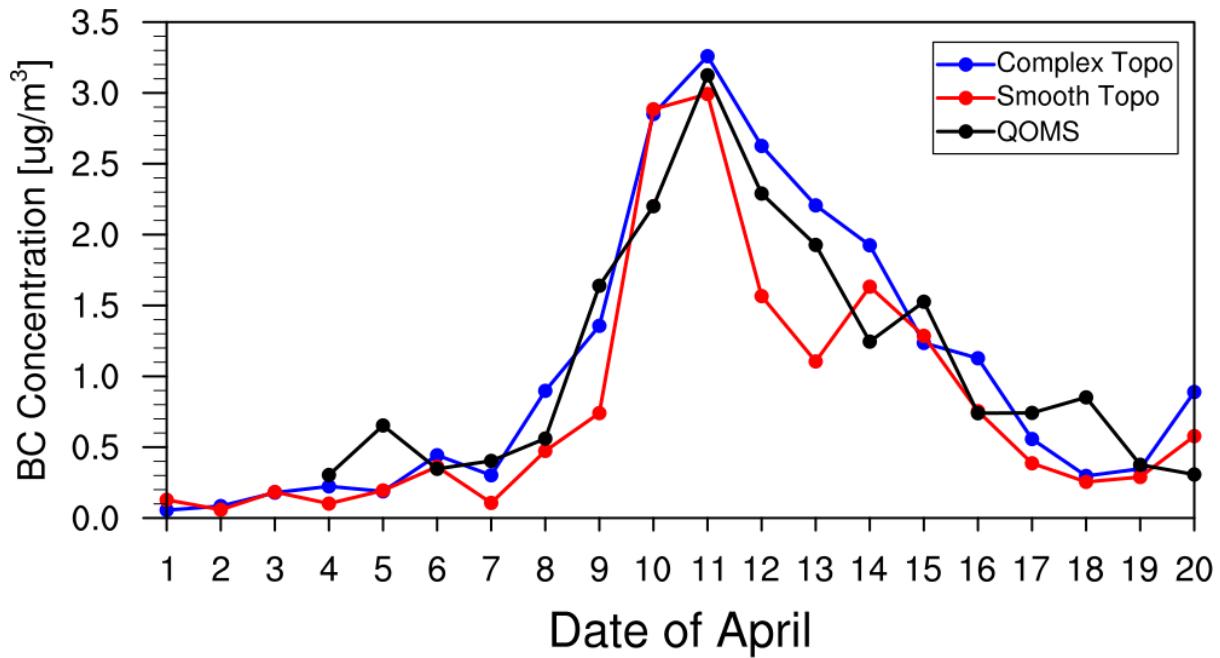
1447

1448

1449

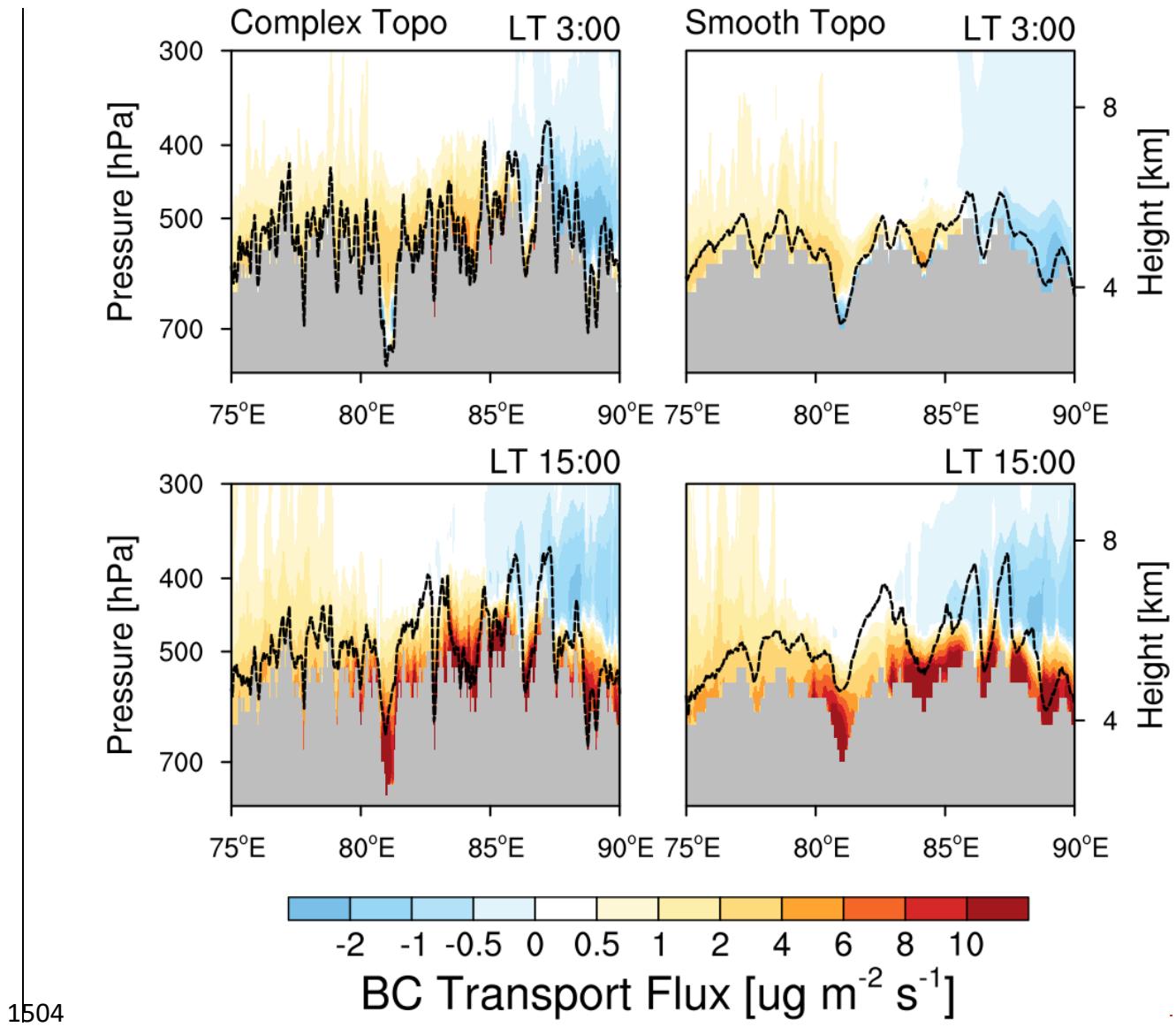

1450

1451


1452

1453

1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469



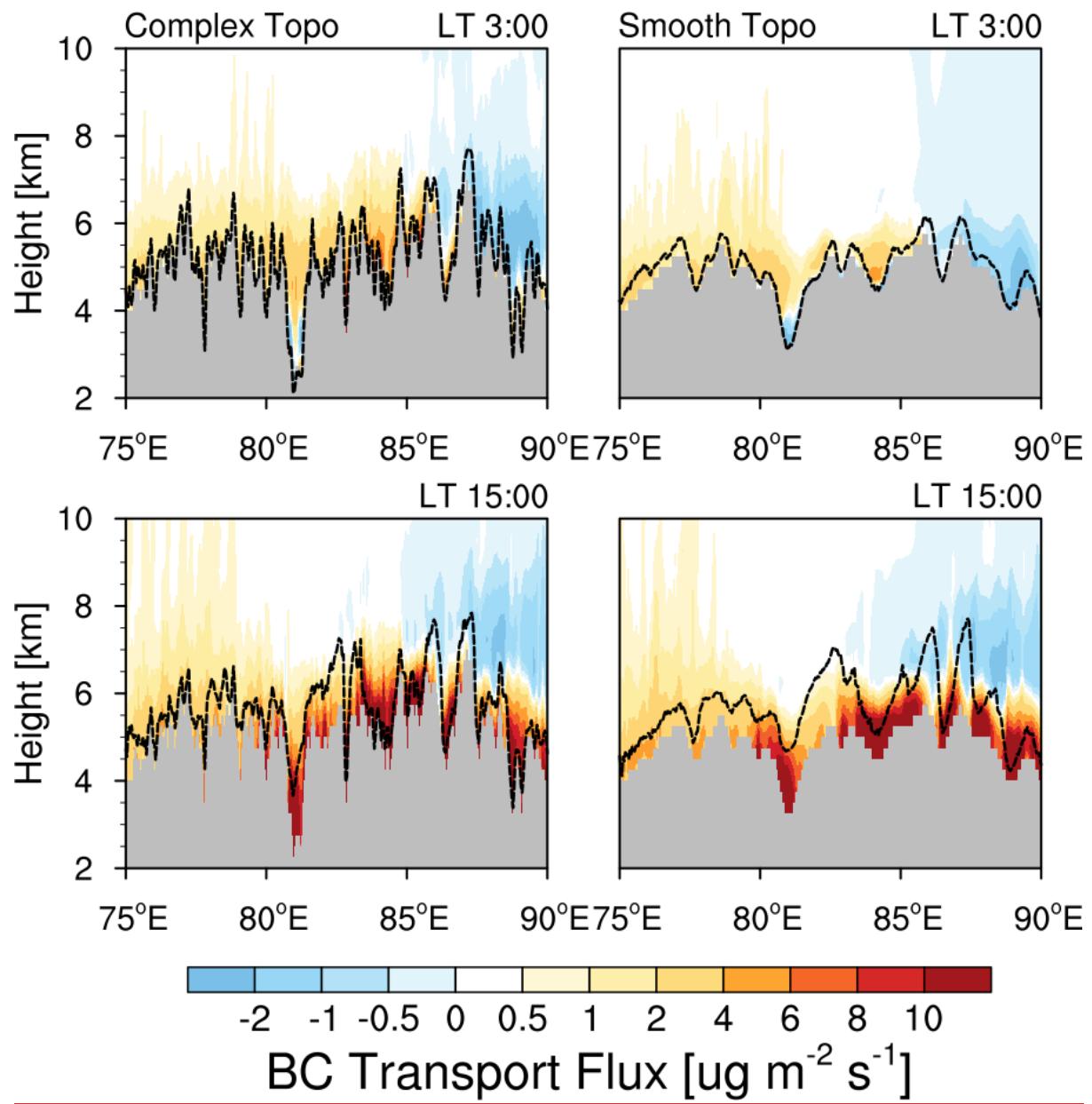
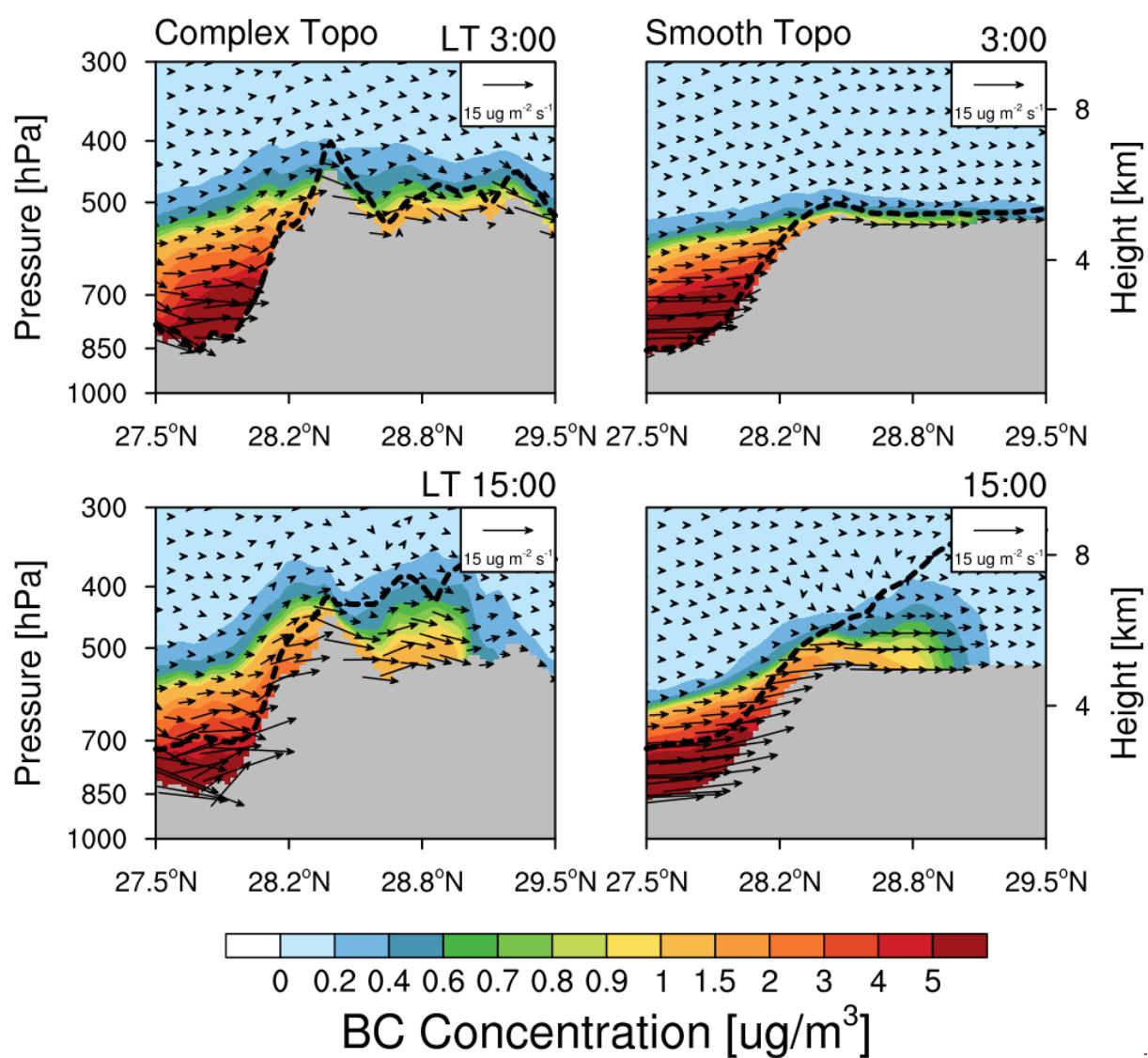
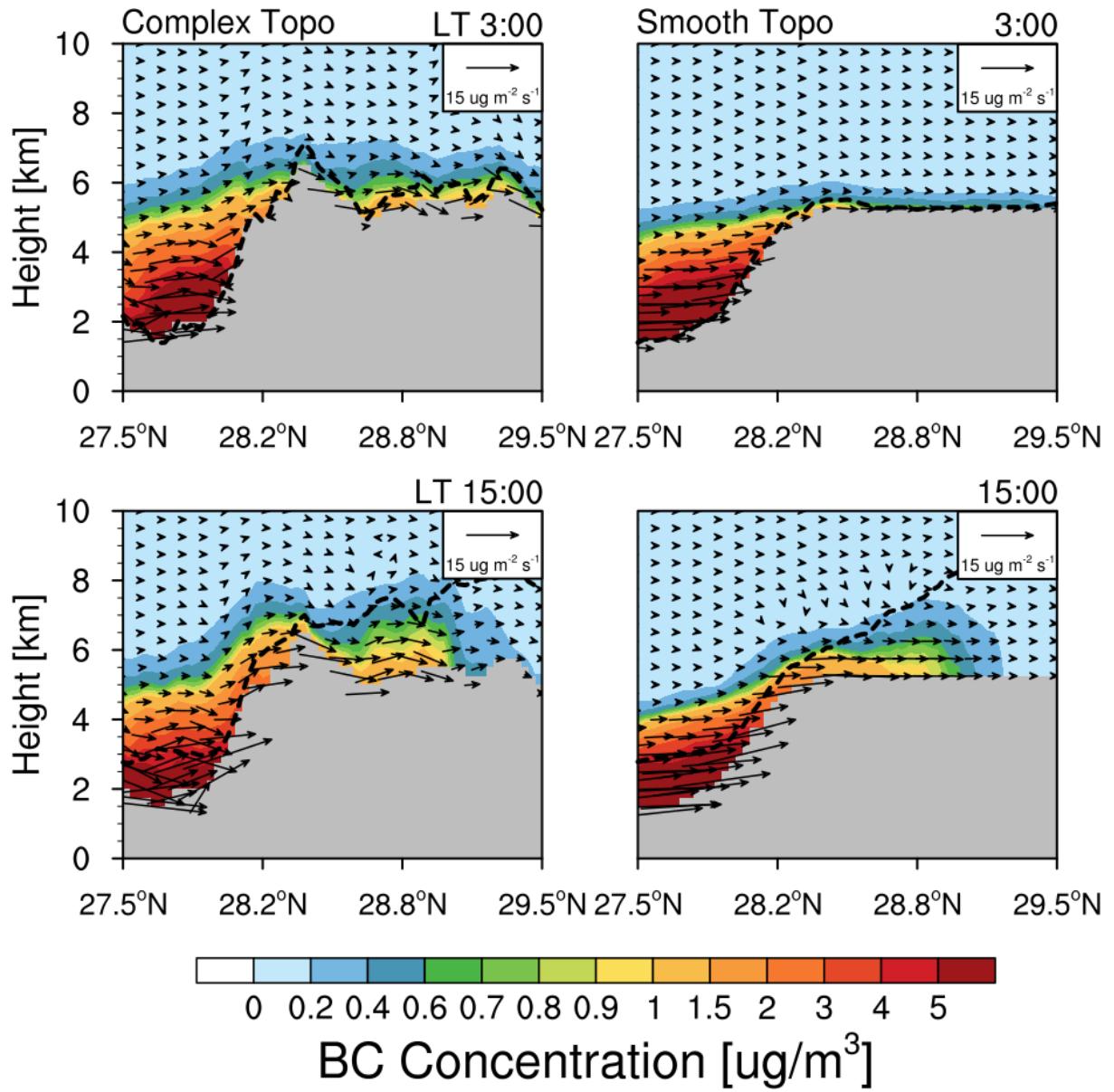

1470

Figure 8. The simulated (colored) and observed (black) temporal variability of near-surface BC mass concentration at the measurement station during April 1-20 in 2016.

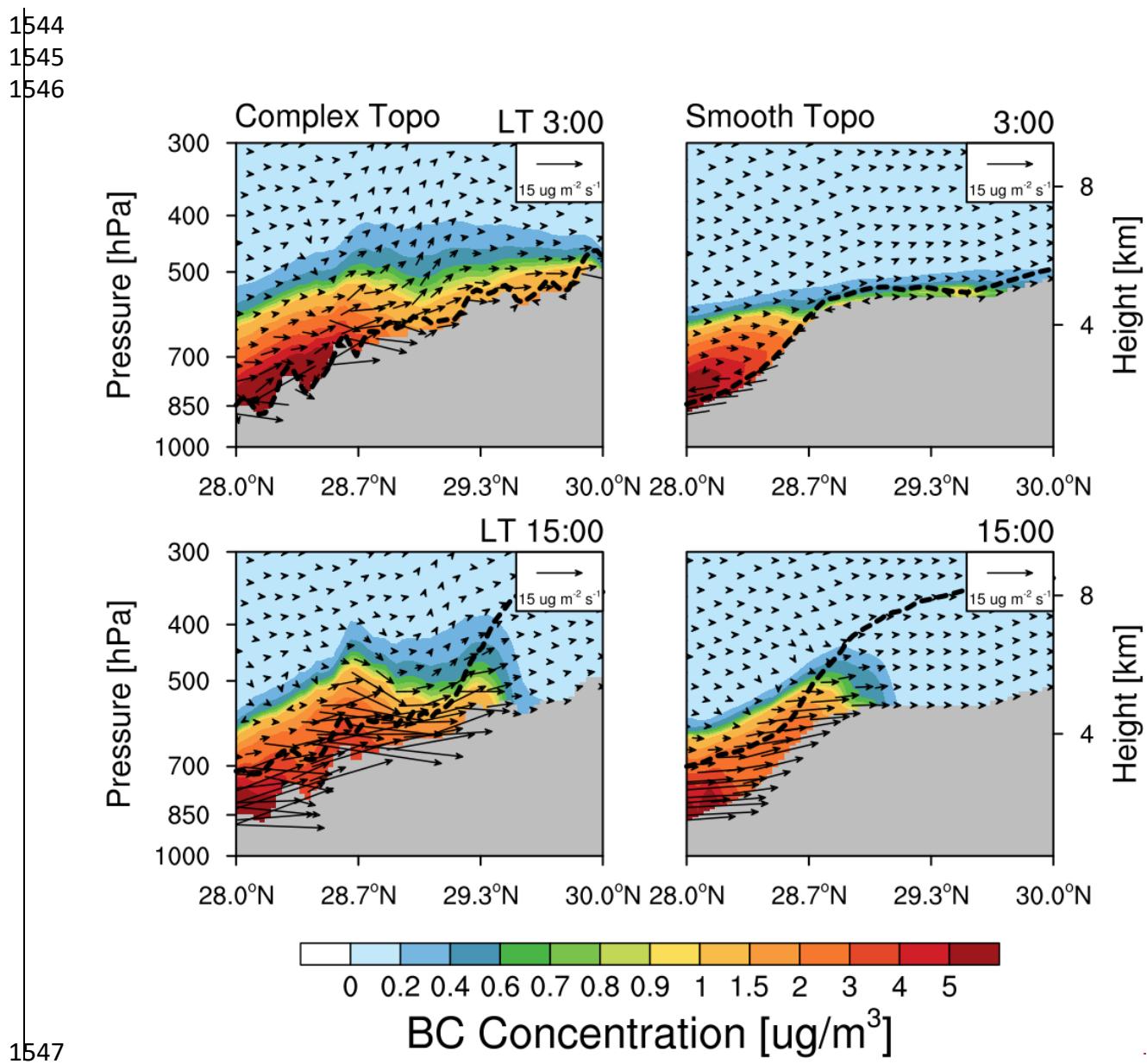
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

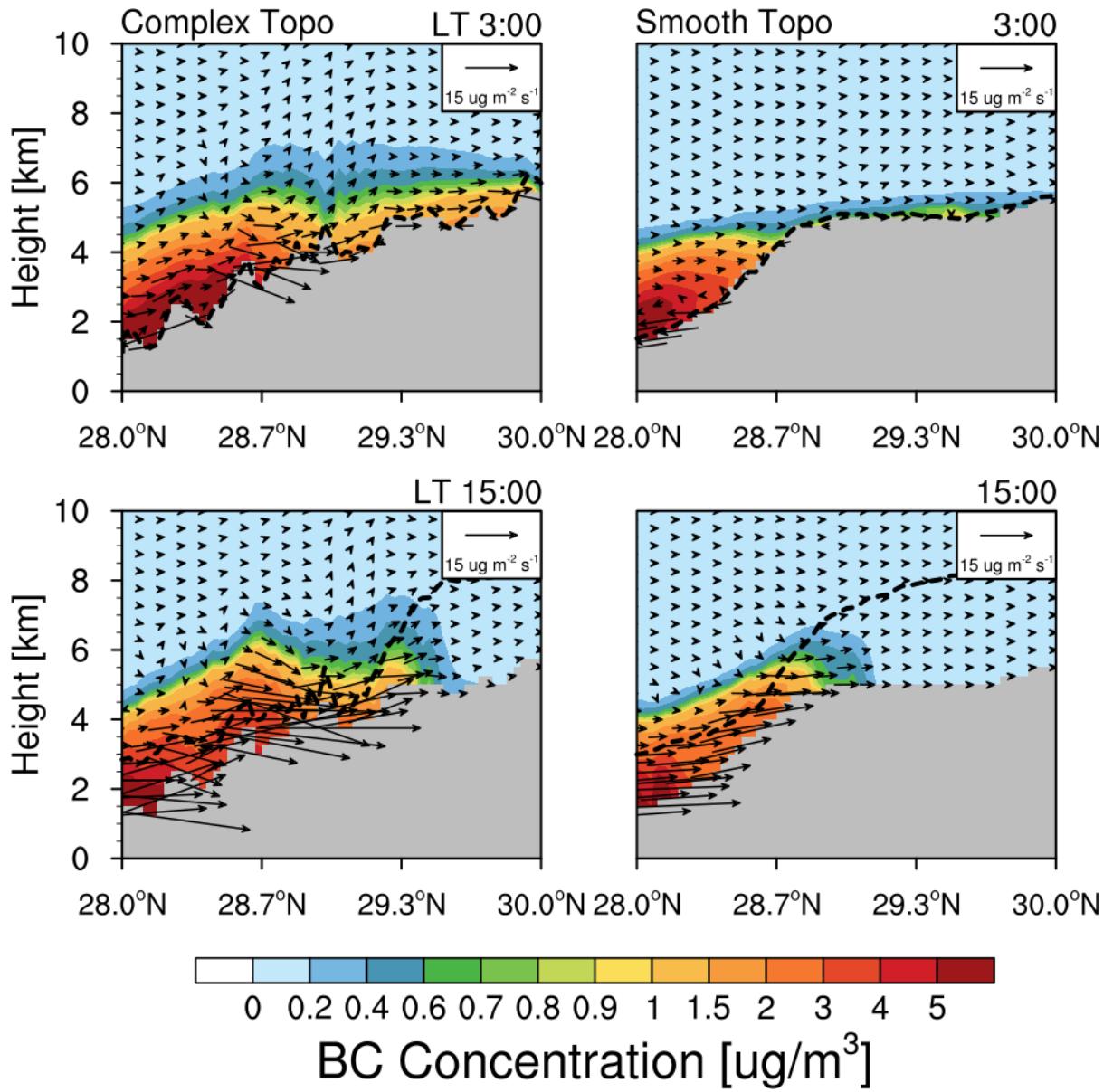


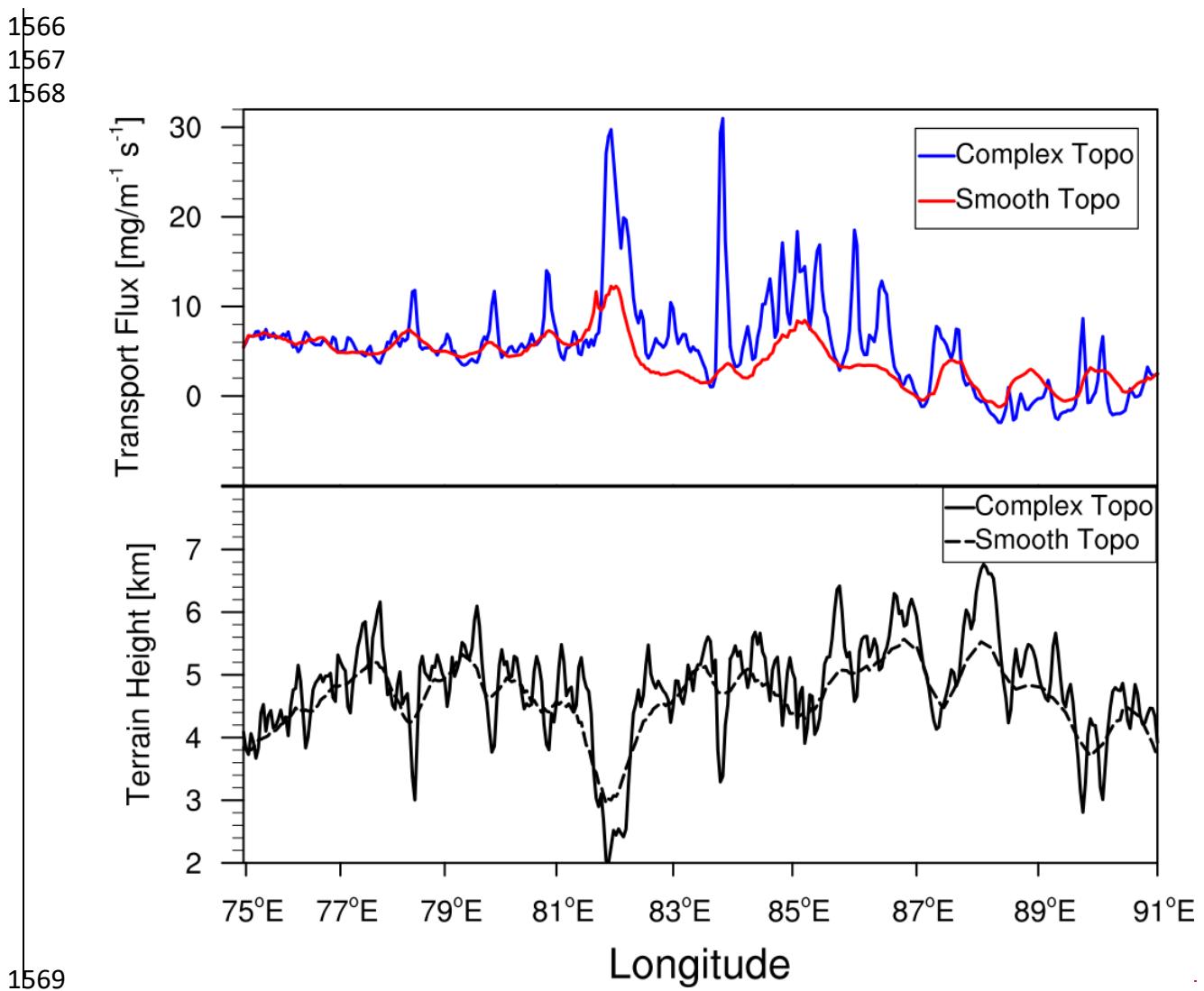

Figure 9. Longitude-height cross section of BC transport flux along the cross line (shown as the black dash line in Fig. 3) from the simulations with complex and smooth topography at local time (LT) 03:00 and 15:00 averaged for April 1-20. The PBL height along the cross section is shown here as the black dash line.

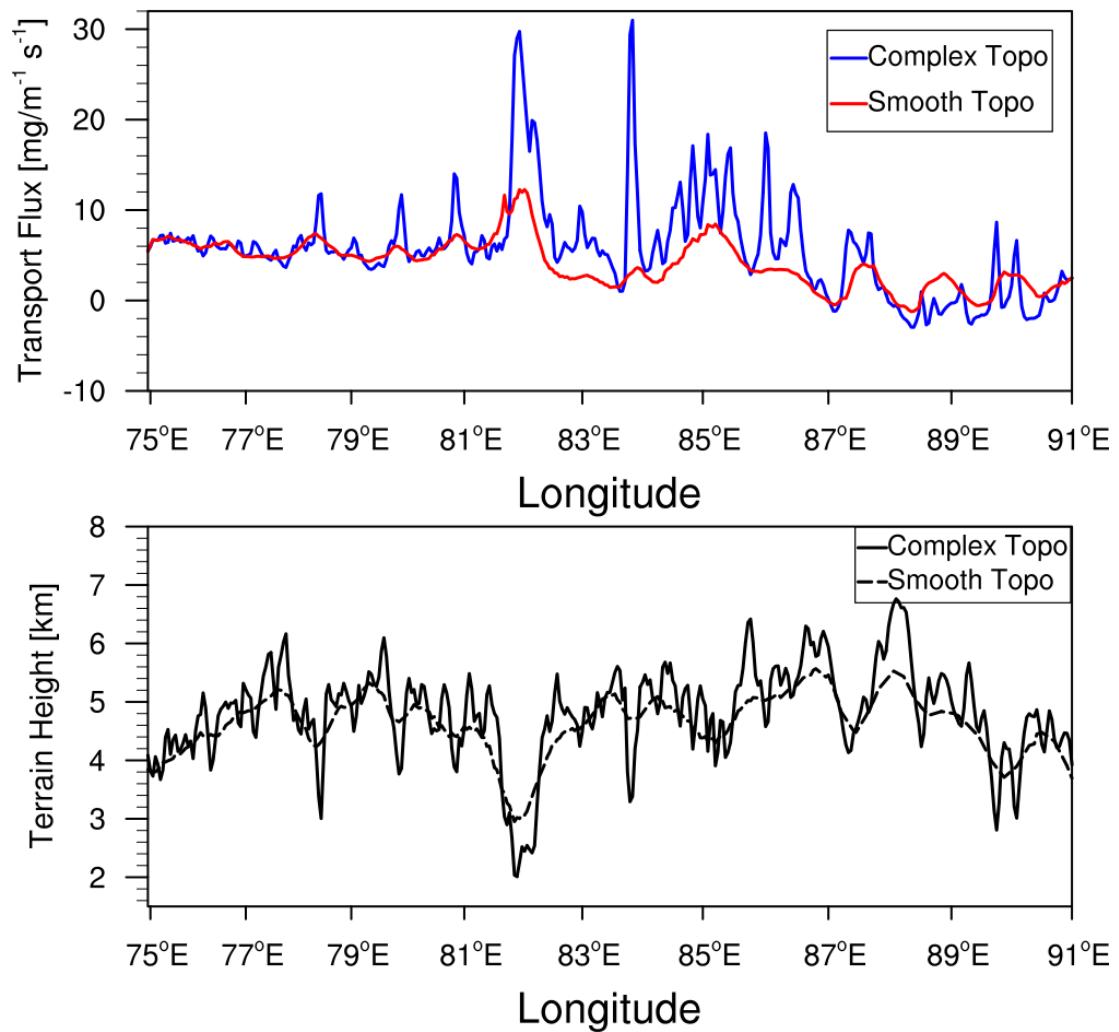
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522

1523
1524




1525


Figure 10. Latitude-height cross section of BC flux (vector) across the mountain (shown as the East black solid line in Fig.3) from the simulations with complex and smooth topography at local time (LT) 03:00 and 15:00 averaged for April 1-20, 2016. Contour represents the BC concentration.


1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543

1548
1549 **Figure 11.** Latitude-height cross section of BC flux (vector) along the valley (shown as the
1550 West black solid line in Fig. 3) from the simulations with complex and smooth topography at
1551 local time (LT) 03:00 and 15:00 averaged for April 1-20, 2016. Contour represents the BC
1552 concentration.
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 12. Longitudinal distribution of integrated BC mass flux along the cross section in Fig. 3 from the simulations with complex and smooth topography. The black lines represent the terrain heights with different topography.

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

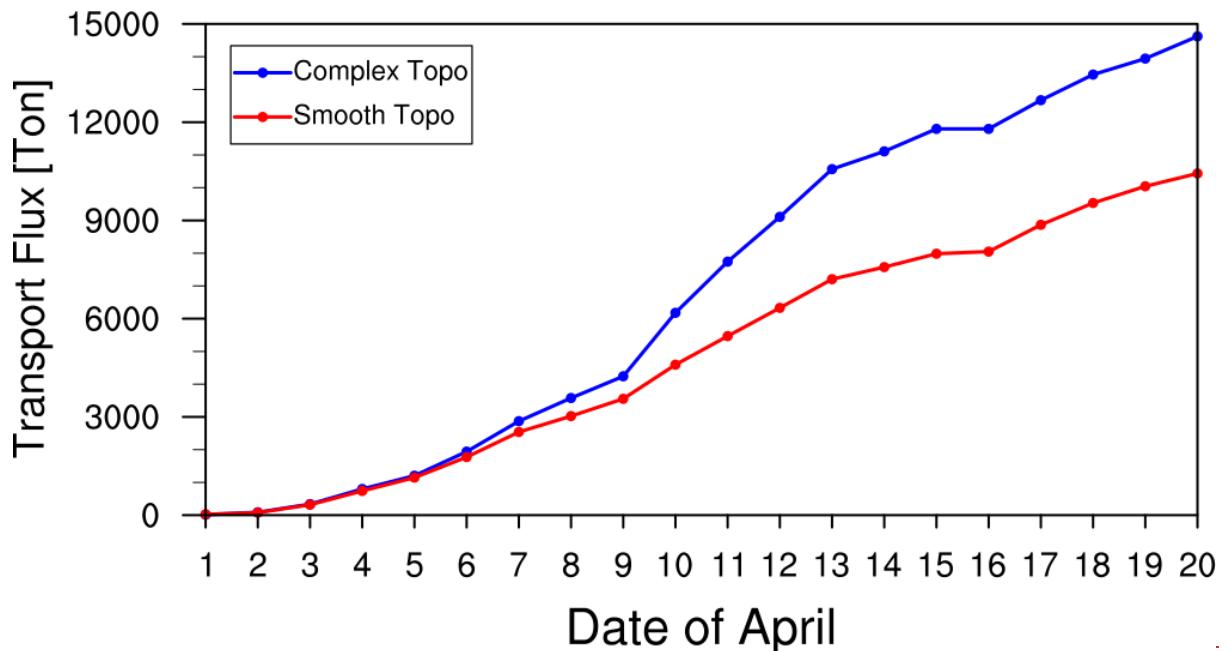
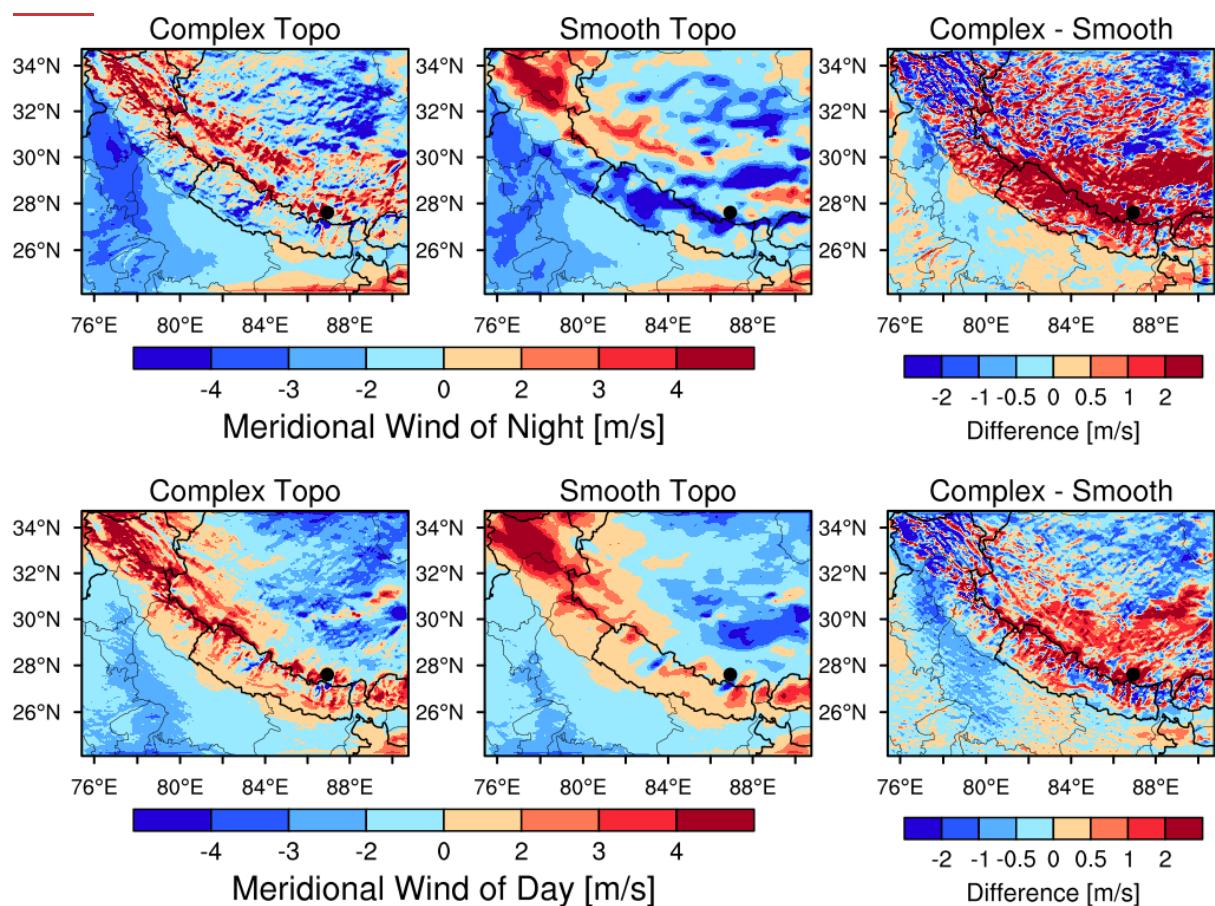
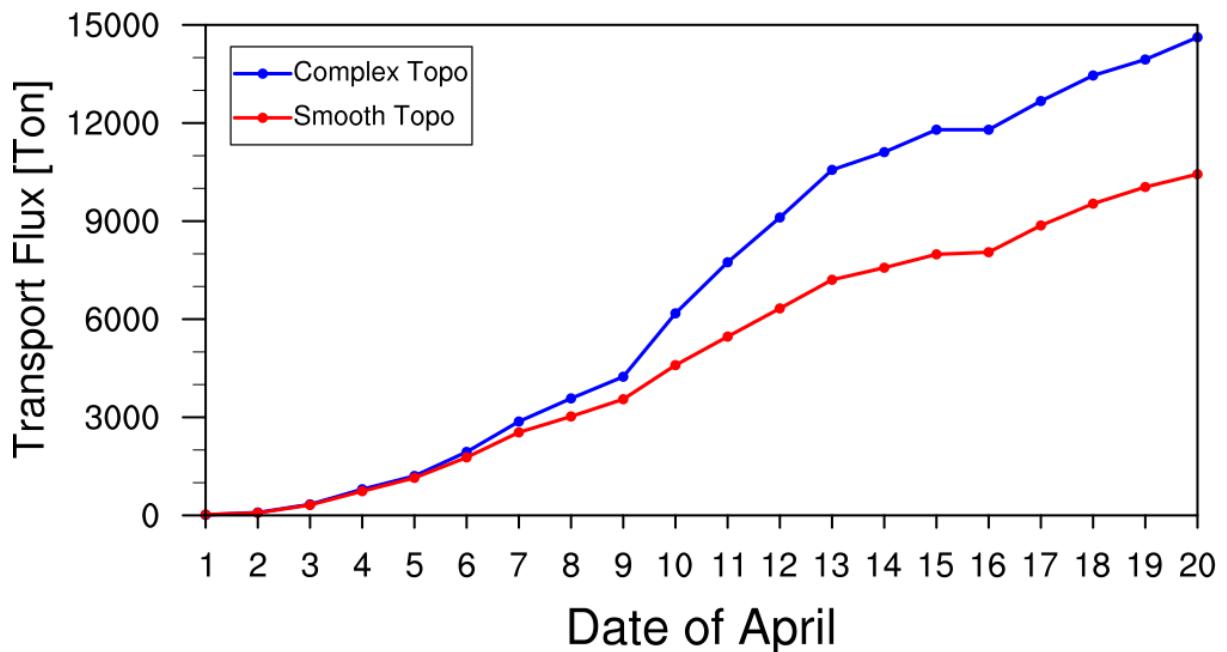
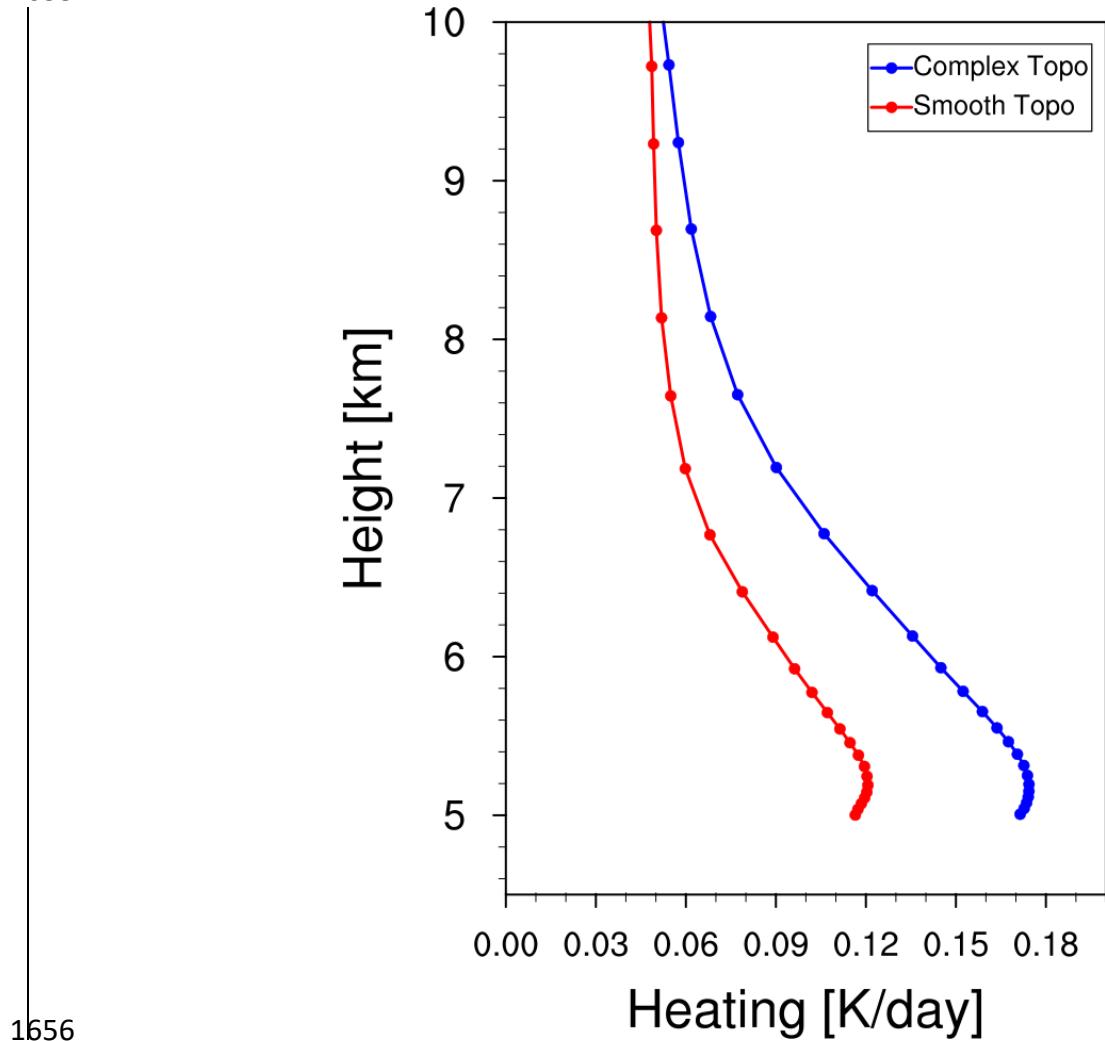


Figure 13.

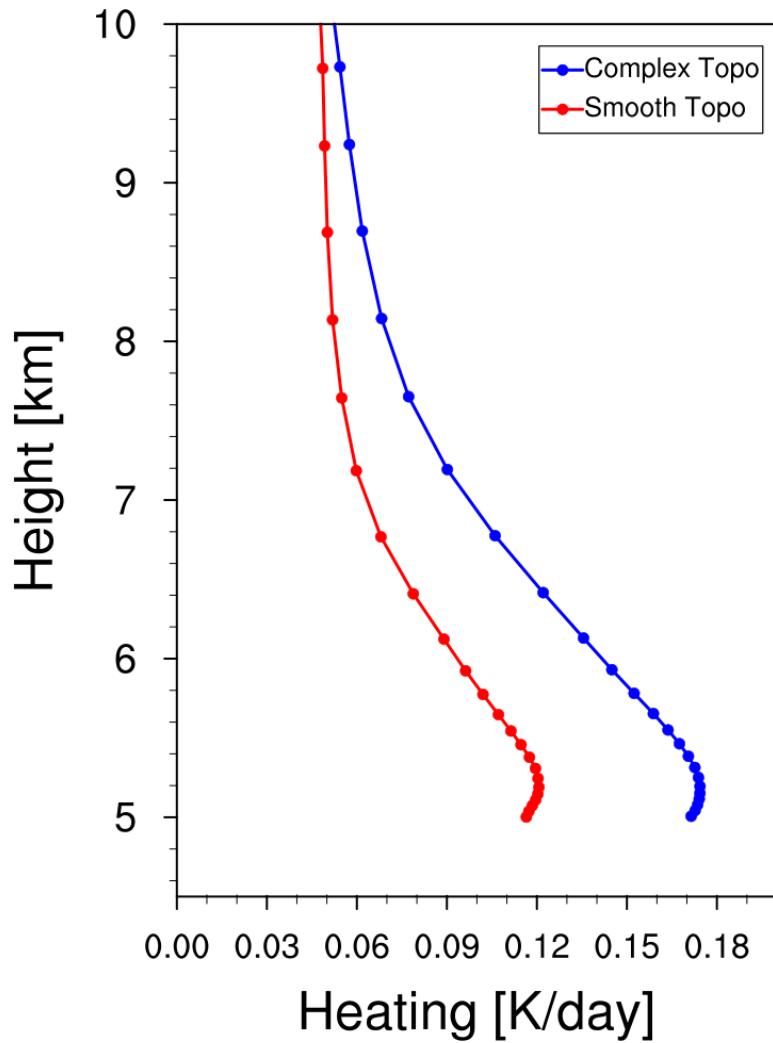
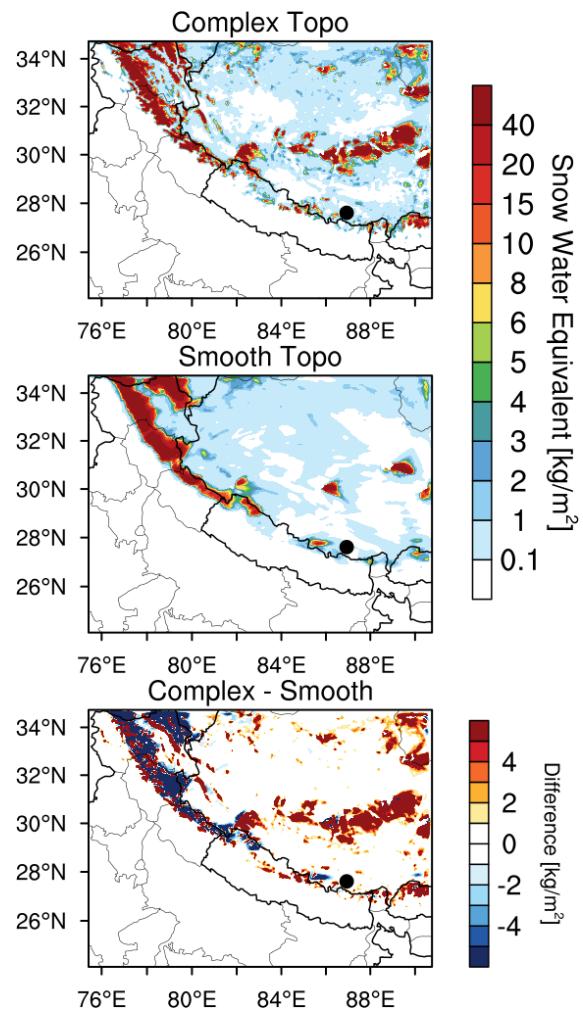

Figure 13. Spatial distributions of meridional wind speed averaged within 500 m above the ground for day and night during April 1-20, 2016 from the simulations with complex and smooth topography. The difference between the two is also shown. Nighttime is defined as local time 21:00-6:00, and daytime is defined as 9:00-18:00. Positive value denotes southerly, and negative value denotes northerly.

Figure 14. Accumulated integrated total transport flux of BC across the Himalayas estimated from the simulations with complex and smooth topography during April 1-20, 2016.


1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655

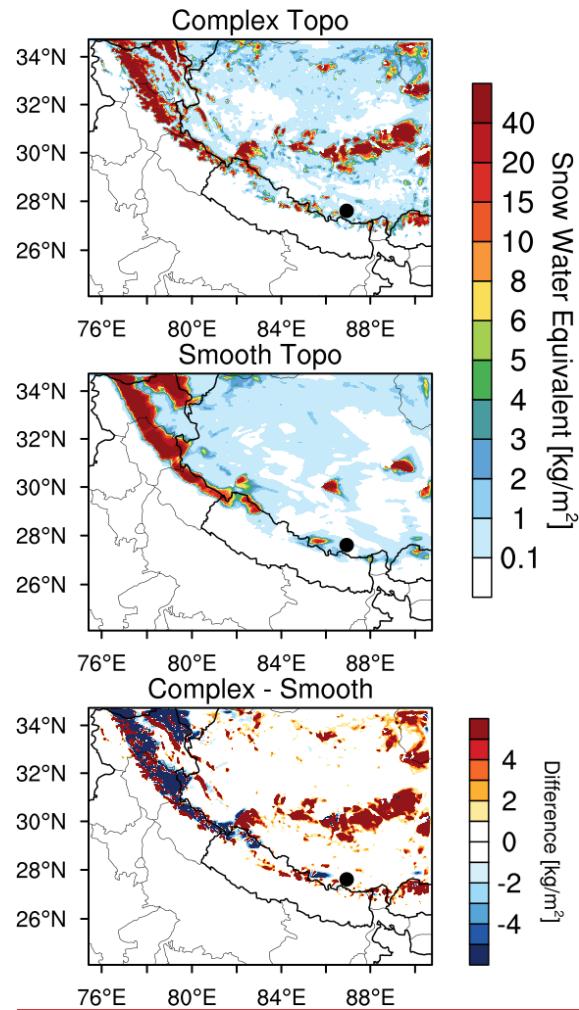
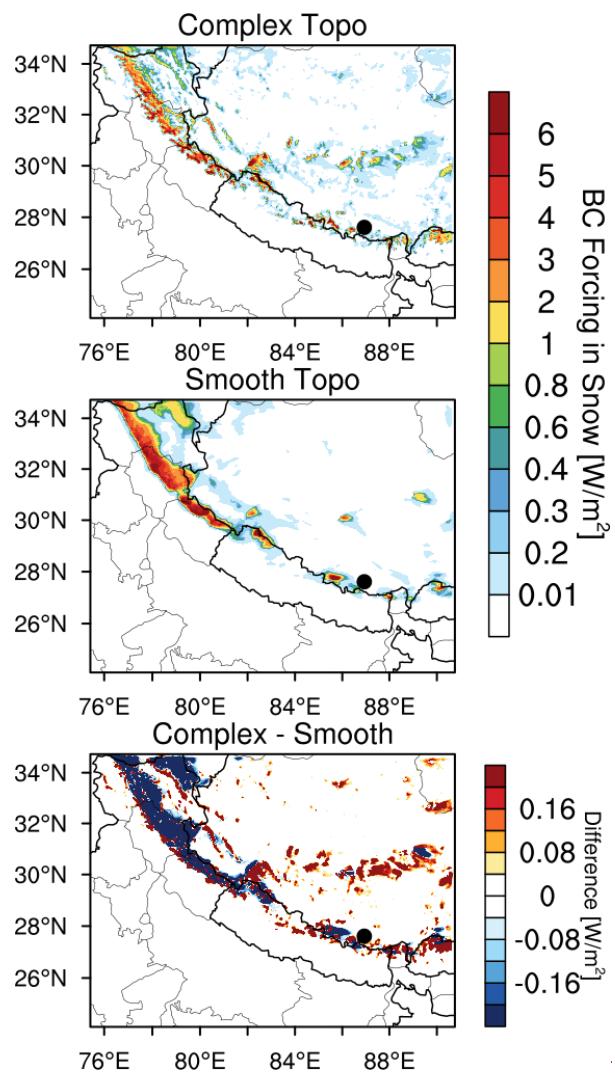


Figure 1415. Vertical profiles of BC induced radiative heating rate in the atmosphere averaged over the TP (with elevation > 4 km) from the simulations with complex and smooth topography during April 1-20, 2016.


1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679

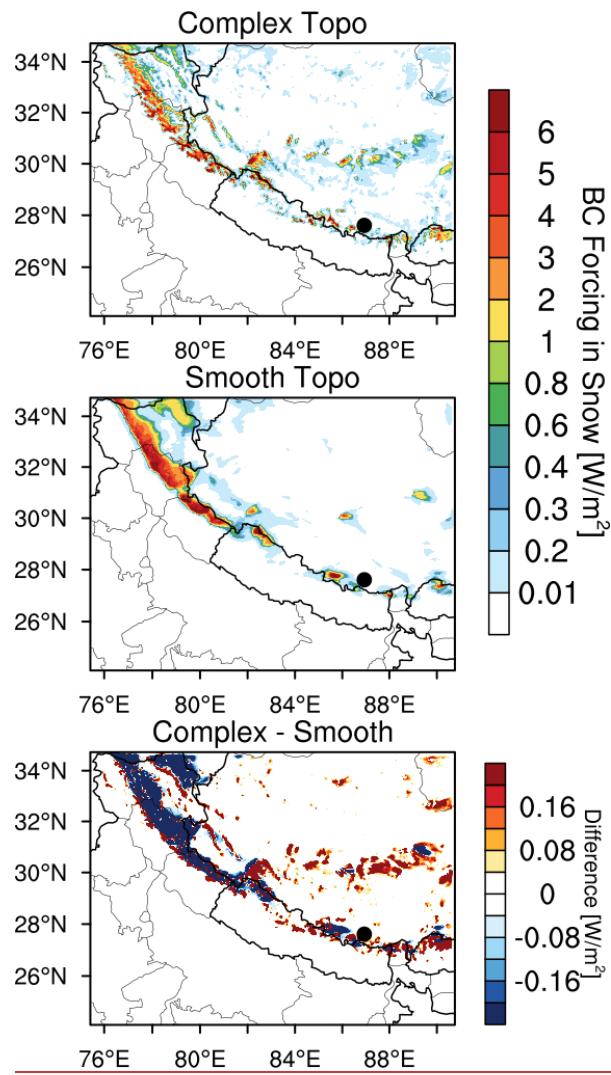


Figure 1516. Spatial distributions of snow water equivalent averaged for April 1-20, 2016 from the simulations with complex and smooth topography. The difference between the two is also shown.

1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

Figure 1617. Spatial distributions of BC radiative forcing in the surface snow averaged for April 1-20, 2016 from the simulations with complex and smooth topography. The difference between the two is also shown.

1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727