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Abstract 25 

Atmospheric aerosols are a significant public health hazard and have substantial impacts on 26 

the climate. Secondary organic aerosols (SOA) have been shown to phase separate into a highly 27 

viscous organic outer layer surrounding an aqueous core. This phase separation can decrease the 28 

partitioning of semi-volatile and low-volatile species to the organic phase and alter the extent of 29 

acid-catalyzed reactions in the aqueous core. A new algorithm that can determine SOA phase 30 

separation based on their: glass transition temperature (Tg), Oxygen to Carbon (O:C) ratio, 31 

concentrations relative to sulfate concentrations; and meteorological conditions were implemented 32 

into the Community Multiscale Air Quality Modeling (CMAQ) System version 5.2.1 and was used 33 

to simulate the conditions in the continental United States for the summer of 2013. SOA formed 34 

at the ground/surface level was predicted to be phase separated with core-shell morphology i.e. 35 

aqueous inorganic core surrounded by organic coating, 68.5% of the time for continental United 36 

States. The phase states of organic coatings switched between semi-solid and liquid states, 37 

depending on the environmental conditions. The semi-solid shell occurring with lower aerosol 38 

liquid water content (western United States and at higher altitudes) has a viscosity that was 39 

predicted to be 102-1012 Pa•s which resulted in organic mass being decreased due to diffusion 40 

limitation. The organic phase was primarily liquid where aerosol liquid water was dominant 41 

(eastern United States and at surface), with a viscosity < 102 Pa•s. Phase separation while in a 42 

liquid phase state, i.e. Liquid-Liquid Phase Separation (LLPS), also reduces reactive uptake rates 43 

relative to homogenous internally mixed liquid morphology, but was lower than aerosols with 44 

thick viscous organic shell. The implementation of phase separation parameters in CMAQ led to 45 

a reduction of fine particulate matter (PM2.5) organic mass, with a marginal change in bias and 46 

error (< 0.1 μg/m3) compared to field data collected during the 2013 Southern Oxidant and Aerosol 47 
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Study. Sensitivity simulations assuming higher dissolution rate of isoprene epoxydiol (IEPOX) 48 

into the particle phase and the treatment of aerosol water content mitigated this worsening in model 49 

performance, pointing out the need to better constrain the parameters that govern phase state and 50 

morphology of SOA. 51 

1 Introduction 52 

Particulate matter (PM) is one of six criteria pollutants regulated by the United States 53 

Environmental Protection Agency’s (EPA) National Ambient Air Quality Standards (NAAQS), 54 

established by the 1970 Clean Air Act. There are two categories of PM regulated by NAAQS: Fine 55 

PM (PM2.5), with particle diameter less than 2.5 µm, and coarse PM (PM10), with particle diameter 56 

up to 10 µm. PM has adverse effects on the global climate (Carslaw et al., 2013; Grandey et al., 57 

2018; Lee et al., 2016; Regayre et al., 2015). PM2.5 also represents a substantial public health risk 58 

due to its association with increased overall mortality, due to cardiorespiratory diseases (Hwang 59 

et al., 2017; Jaques and Kim, 2000; Zanobetti and Schwartz, 2009). It has been estimated that 20-60 

60% of PM2.5 are comprised of organic aerosols (OA) (Docherty et al., 2008). These pollutant 61 

species are either directly-emitted primary organic aerosols (POA), or secondary organic aerosols 62 

(SOA), which form when volatile organic compounds (VOCs) undergo chemical reactions that 63 

reduce their volatility to the point that they either partition into the aerosol phase (Zhang et al., 64 

2007) or react heterogeneously with the existing particles (Riva et al., 2019). Studies have found 65 

that SOA tends to form the bulk of observed OA around the world (Nozière et al., 2015). The 66 

VOCs that form SOA may be either from biogenic or anthropogenic sources and can vary both 67 

spatially and temporally to areas as confined as the community level (Yu et al., 2014).  68 

Recent studies have shown that SOA may phase-separate under certain atmospherically 69 

relevant conditions into different morphologies. These observations have included a “partially-70 
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engulfed” organic-inorganic morphology; an “island” morphology, where discrete pockets of SOA 71 

dot a larger inorganic particle; and a “core-shell” morphology, characterized by an organic rich 72 

outer “shell” and aqueous inorganic “core” (Freedman, 2017; O’Brien et al., 2015; Price et al., 73 

2015; Renbaum-Wolff et al., 2016; Song et al., 2015, 2016; You et al., 2012; Zhang et al., 2015, 74 

2018a). Pye et al. (2018) applied the Aerosol Inorganic-Organic Mixtures Functional groups 75 

Activity Coefficients (AIOMFAC) model (Zuend et al., 2008) to predict the thermodynamic 76 

favorability of phase separation in SOA using a box model and found that aerosols over the 77 

southeastern United States may be phase separated as frequently as 70% of the time. In other work, 78 

Pye et al. (2017) used the ratio of organic matter to organic carbon (OM:OC) and the ambient 79 

relative humidity (RH) to predict phase separation frequencies exhibiting a complex behavior, 80 

being more common in urban areas with low OM:OC at low RH, but higher phase separation 81 

frequencies in rural areas attributed to increasing OM:OC at low RH.  82 

 83 

When aerosols form a core-shell morphology, experimentally observed viscosities of the outer 84 

organic-rich shell and inner electrolyte-rich core have been shown to differ by up to three orders 85 

of magnitude resulting in possible diffusion limitations on reactive uptake (Ullmann et al., 2019). 86 

It has also been shown that the viscosity and subsequently diffusivity of the organic phase (Dorg) 87 

may vary as a function of SOA composition (Grayson et al., 2017). Laboratory experiments have 88 

been conducted to measure the viscosity of SOA using poke-flow and bead mobility techniques 89 

(Reid et al., 2018; Renbaum-Wolff et al., 2013; Song et al., 2015, 2016). These studies have found 90 

that SOA formed from anthropogenic precursors, such as benzene, toluene, and xylene, have 91 

similar Dorg values in the realm of 10-14-10-16 m2/s (Grayson et al., 2016; Song et al., 2015, 2016, 92 

2018). Similar studies on biogenic SOA comprised of α-pinene oxidation products, however found 93 
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that its measured viscosities and calculated diffusion coefficients are lower than those of 94 

anthropogenic SOA by as much as 2 orders of magnitude at comparable conditions (Song et al., 95 

2016, 2018; Zhang et al., 2015).  96 

 97 

The most abundantly emitted biogenic VOC is isoprene  (2-methyl-1,3-butadiene) with 98 

average annual global emissions totaling to approximately 500-750 Tg-C yr-1 (Guenther et al., 99 

2006; Liao et al., 2015). Isoprene is known to react with hydroxyl (OH) radicals under low-NOx 100 

(=NO+NO2) conditions to form isoprene hydroxyhydroperoxides (ISOPOOH) (Jacobs et al., 2014; 101 

Krechmer et al., 2015). If the reaction pathway continues with OH, ISOPOOH will react again to 102 

form isoprene epoxydiol (IEPOX) (Bates et al., 2014; Paulot et al., 2009; Surratt et al., 2010). It is 103 

possible for IEPOX to form products with sufficiently low volatility to form SOA via a reactive 104 

uptake pathway onto acidified sulfate seed particles (Bondy et al., 2018; Surratt et al., 2006, 2007, 105 

2010). IEPOX-derived SOA have been observed to account for up to 36% of biogenic SOA in the 106 

southeastern United States during the summer (Budisulistiorini et al., 2016). Given the importance 107 

of this pathway there has been increased focus on the phase state of particles and its impact on 108 

reactive uptake (Budisulistiorini et al., 2017).  109 

 110 

Prior measurements of isoprene-derived SOA suggested that it would not be viscous enough 111 

to exhibit diffusion limitations; however, there is much uncertainty with these measurements as 112 

those particles mainly formed through nucleation of semi-volatile species (Song et al., 2015). 113 

IEPOX-derived SOA that specifically account for up to one-third or more of total organic aerosol 114 

mass in southeastern United States has shown to exhibit higher volatility than the remaining bulk, 115 

but IEPOX-derived SOA does have a low volatility (Lopez-Hilfiker et al., 2016). However, IEPOX 116 
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heterogeneous reaction pathways that typically happen in the ambient conditions lead to formation 117 

of organosulfates that have potentially higher viscosities (Riva et al., 2019). Furthermore, RH 118 

(Huang et al., 2018; Pajunoja et al., 2014; Song et al., 2015, 2016; Zhang et al., 2015, 2018a), 119 

temperature (Maclean et al., 2017), degree of oligomerization , and mass loading (Grayson et al., 120 

2016) also impact particle viscosity. Higher RHs may result in more water to partition into the 121 

particle and act as a plasticizer which decreases its viscosity (Song et al., 2015, 2016, 2018; Zhang 122 

et al., 2011). Higher temperatures also increase the diffusion coefficient (Chenyakin, 2015). 123 

Degree of oligomerization increases the viscosity of SOA and therefore reduce its Dorg. as well 124 

(Grayson et al., 2017). The competing sinks between heterogeneous reactions and losses of semi-125 

volatile gas species also amplify the effects of phase state on aerosol formation (Zhang et al., 126 

2018a). The experimental data provided from previous studies highlight the urgency of 127 

incorporating those results into regional and global models to predict the effects of phase states in 128 

aerosol formation in the ambient environment accurately. A recent study by Schmedding et al. 129 

(2019) used a dimensionless (0D) box model for phase-separated SOA formation at the Look Rock 130 

Site during the 2013 Southern Oxidant and Aerosol Study (SOAS). Our prior work found that the 131 

inclusion of a phase-separation parameter could either inhibit SOA due to diffusion limitations in 132 

the separated organic phase or increase it by concentrating the electrolytes into the aqueous core 133 

leading to faster acid-catalyzed reactions. This resulted in decreasing normalized mean error 134 

(NME) of the model from 83.4% to 77.9% and the normalized mean bias (NMB) from -66.2% to 135 

-36.3% compared to a previous work simulating the same dataset that assumed homogenous 136 

aerosol (Budisulistiorini et al., 2016). Our previous model study (Schmedding et al., 2019) 137 

highlighted the significant impact of an organic coating layer on IEPOX-derived SOA formation, 138 
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but lacked any quantification of conditions that result in phase separation creating such organic 139 

coating and its phase state.   140 

 141 

The inclusion of an explicit reaction pathway for the reactive uptake of acid-catalyzed IEPOX- 142 

derived SOA in both regional and global scale chemical transport models (CTMs), such as the 143 

Community Multi-Scale Air Quality Model (CMAQv5.2.1) and the Goddard Earth Observing 144 

System (GEOS-Chemv11-02-rc), have substantially improved the performance of predicted SOA 145 

yields (Marais et al., 2016; Pye et al., 2013; Pye et al., 2017). These models do not include 146 

parameters in their aerosol algorithms that account for aerosol phase separation and its impact on 147 

SOA formation (Marais et al., 2016; Pye et al., 2017, 2018), which can lead to potential deviations 148 

of aerosol quantification. This work systematically examines when coatings comprised of OA 149 

derived from a mixture of biogenic and anthropogenic compounds are formed (i.e. predicting phase 150 

separation frequencies and how coatings impacts SOA formation from acid-catalyzed multiphase 151 

reactions of IEPOX) by implementing parameterizations to determine the viscosity and phase-state 152 

of particles (liquid or glassy) in CMAQ and simulating for the continental United States. 153 

 154 

 155 

2 Methods 156 

2.1 Phase state and its impact on reactive uptake: overview 157 

Organic constituents of an aerosol exhibit a solid-like glassy phase when the ambient 158 

temperature is below the glass transition temperature (Tg), which is a function of RH and the 159 

aerosol composition (DeRieux et al., 2018). A liquid phase occurs when the Tg is lower than 160 

ambient temperature. The difference in viscosity (𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜) of organic-rich phase of aerosol, below 161 
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and above the Tg, may be as high as 8 orders of magnitude (Marsh et al., 2018). The Tg can 162 

determine when aerosols are in a highly viscous glassy state (𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 1012 𝑃𝑃𝑃𝑃 • 𝑠𝑠), a semisolid 163 

state (100 ≤  𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 < 1012 𝑃𝑃𝑃𝑃 • 𝑠𝑠), or in a liquid state (𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 < 100 𝑃𝑃𝑃𝑃 • 𝑠𝑠) (Marcolli et al., 2004; 164 

Martin, 2000). Aerosols in a highly viscous or a semisolid state are assumed to be phase separated 165 

as a model simplification (refer to Section 2.3). This simplification is based on recent observations 166 

showing higher than anticipated rebound fractions (i.e., almost full resistance to reactive uptake) 167 

attributed to organic aerosol constituents with viscosities > 102 𝑃𝑃𝑃𝑃 • 𝑠𝑠. These aerosols were phase 168 

separated having an amorphous solid coating, which, unlike liquid particles, can only dissipate 169 

energy by rebounding (Bateman et al., 2015a, 2015b, 2017; Reid et al., 2018; Virtanen et al., 2010). 170 

Aerosols that are in a liquid state may either be an internal homogenous mixture, or they can also 171 

be phase separated known as liquid-liquid phase separation (LLPS). The occurrence of LLPS 172 

depends on the average O:C ratio, organic mass to sulfate ratio, ambient temperature and ambient 173 

RH (Song et al., 2018; Zuend and Seinfeld, 2012). In addition, a sensitivity case was completed 174 

where it was not assumed that a semisolid state is always phase-separated, and instead the LLPS 175 

criteria was applied for conditions that produce a low aerosol water content (refer to Section 2.6).   176 

 177 

Phase state of an organic shell impacts reactive uptake by affecting the diffusivity of a 178 

species through this outer organic phase (Dorg). Dorg can be related to the viscosity of the organic 179 

phase (𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜) using the Stokes-Einstein Equation, as shown in Eq. (1) (Ullmann et al., 2019): 180 

𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑘𝑘𝑏𝑏𝑇𝑇

6𝜋𝜋𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
                                                                                                                           (1) 181 
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Where kb is the Boltzmann constant, T is the ambient temperature, 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 is the organic phase 182 

viscosity, and 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the hydrodynamic radius of the molecule diffusing through the 183 

viscous organic phase. 184 

 185 

2.2 Determining the Glass Transition Temperature (Torg) 186 

The combined Torg for anthropogenic and biogenic species and aerosol water associated with 187 

them was found using a modified version of the Gordon-Taylor Mixing Rule, as represented in 188 

Eq. (2) (DeRieux et al., 2018; Gordon and Taylor, 1952): 189 

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 =
�𝑤𝑤𝑑𝑑𝑇𝑇𝑜𝑜,𝑤𝑤 + 1

𝑘𝑘𝐺𝐺𝐺𝐺
�𝑤𝑤𝑎𝑎𝑇𝑇𝑜𝑜,𝑎𝑎 + 𝑤𝑤𝑏𝑏𝑇𝑇𝑜𝑜,𝑏𝑏��

𝑤𝑤𝑑𝑑(𝑅𝑅𝑅𝑅) + 1
𝑘𝑘𝐺𝐺𝐺𝐺

(𝑤𝑤𝑎𝑎 + 𝑤𝑤𝑏𝑏)
                                                                                 (2) 190 

where Tg,w is the glass transition temperature of water (137 K) (Koop et al., 2011). Tg,a and 191 

Tg,b are the respective glass transition temperatures (K) for the anthropogenic (also includes all 192 

combustion-generated POA in addition to VOC-derived SOA, see Table 1) and biogenic (only 193 

includes VOC-derived SOA, see Table 1) fractions of OA.  KGT is the Gordon-Taylor constant, 194 

which is assumed to be 2.5 based off of Koop et al., (2011). wa and wb are the mass fractions of 195 

anthropogenic and biogenic OA species, respectively. ws(RH) or simply ws  is the mass fraction of 196 

organic aerosol water. 197 

 198 

For this work, it was assumed that 10% of the aerosol water was present in the organic 199 

phase, within the range of organic water reported by Pye et al. (2017). In CMAQv5.2.1, the total 200 

aerosol water, 10% of which is directed to the organic phase, is predicted by ISORROPIA and 201 

only associated with inorganic electrolytes such as, ammonium bisulfate (Pye et al., 2017). As 202 
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represented in Eq. (3), the ws along with the wa and wb make up the organic-water component of 203 

the aerosol and adds up to 1:  204 

𝑤𝑤𝑑𝑑 = 1 − (𝑤𝑤𝑎𝑎 − 𝑤𝑤𝑏𝑏)                                                                                                                          (3)  205 

 206 

Shiraiwa et al. (2017) used 179 organic species to fit a relationship between Tg, the molar 207 

mass (M), and O:C ratio (Shiraiwa et al., 2017) . Following the same relationship as in Eq. (4), the 208 

respective glass transition temperatures for the anthropogenic and biogenic fractions (Tg,a and Tg,b, 209 

also referred as, Tbiog and Tanth) were calculated using the weighted average molar mass (Mx) and 210 

O:C ratio ((O:C)x) for all individual anthropogenic and biogenic species addressed in CMAQ (see 211 

Table 1). Where, 𝑥𝑥 refers to a - anthropogenic OA (anth) or b- biogenic OA (biog); 𝑖𝑖 refers to 212 

individual species: 213 

𝑇𝑇𝑜𝑜,𝑥𝑥 𝑜𝑜𝑟𝑟 𝑇𝑇𝑥𝑥 =  −21.57 + 1.51𝑀𝑀𝑥𝑥 − 0.0017𝑀𝑀𝑥𝑥
2 + 131.4(𝑂𝑂:𝐶𝐶)𝑥𝑥 − 0.25𝑀𝑀𝑥𝑥(𝑂𝑂:𝐶𝐶)𝑥𝑥                (4) 214 

𝑊𝑊ℎ𝑒𝑒𝑟𝑟𝑒𝑒,𝑀𝑀𝑥𝑥 =     ∑(𝑤𝑤𝑑𝑑, 𝑥𝑥 ∗ 𝑀𝑀𝑑𝑑,𝑥𝑥)   ; 𝑂𝑂:𝐶𝐶 𝑥𝑥 =  ∑�𝑤𝑤𝑑𝑑, 𝑥𝑥 ∗ 𝑂𝑂:𝐶𝐶𝑑𝑑,𝑥𝑥� ; 𝑤𝑤𝑑𝑑, 𝑥𝑥 =  𝑀𝑀𝑎𝑎𝑑𝑑𝑑𝑑 𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝐶𝐶𝑜𝑜𝑎𝑎𝐶𝐶𝑑𝑑𝑜𝑜𝐶𝐶 𝑖𝑖,𝑥𝑥
𝐺𝐺𝑜𝑜𝐶𝐶𝑎𝑎𝑇𝑇 𝑀𝑀𝑎𝑎𝑑𝑑𝑑𝑑 𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝐶𝐶𝑜𝑜𝑎𝑎𝑑𝑑𝑜𝑜𝐶𝐶𝑥𝑥

 215 

  216 

When the ambient temperature is below the Torg, the viscosity of the coating (𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜) is 217 

assumed to remain constant at 1012 𝑃𝑃𝑃𝑃 • 𝑠𝑠. When the ambient temperature is greater than or equal 218 

to the calculated Torg, the viscosity of the organic phase is calculated using a modified Vogel-219 

Tamman-Fulcher Equation (DeRieux et al., 2018; Fulcher, 1925; Tamman and Hesse, 1926; 220 

Vogel, 1921) as shown in Eq. (5) with experimentally fitted parameters as shown in Eqs. (6) and 221 

(7): 222 

      𝑙𝑙𝑜𝑜𝑙𝑙10( 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 ) = −5 + 0.434 𝐺𝐺0𝐷𝐷
𝐺𝐺−𝐺𝐺0

                                                                                                (5) 223 

 𝑇𝑇0 =
39.17𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
𝐷𝐷 + 39.17

                                                                                                                              (6)  224 
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𝐷𝐷 = 14.4 − 2.3(𝑂𝑂:𝐶𝐶)𝑎𝑎𝑑𝑑𝑜𝑜                                                                                                             (7) 225 

 226 

T is the ambient temperature (K), T0 is an experimentally fitted parameter of Eq. (5) that 227 

varies as a function of Torg and the fragility parameter D, which is a function of the O:C ratio 228 

(DeRieux et al., 2018; Zhang et al., In Prep). 𝑂𝑂:𝐶𝐶𝑎𝑎𝑑𝑑𝑜𝑜 refers to the overall OA (including both POA- 229 

all anthropogenic and SOA- anthropogenic and biogenic, see Table 1) O:C ratio given by CMAQ. 230 

 231 

The effective diffusion coefficient for IEPOX through the organic coating (Dorg) was then 232 

calculated using the Stokes- Einstein Equation (refer to Eq. (1)), assuming that 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 nm 233 

(Evoy et al., 2019; Ullmann et al., 2019).  234 

 235 

2.3 Phase Separation  236 

SOA phase state was determined by multiple criteria. As a model simplification, any SOA 237 

was considered to be semisolid –phase separated (SSPS) when 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 > 100 Pa•s (Torg:T ≥ 0.8) based 238 

on Shiraiwa et al., (2017) as shown in Figs. 1 and 4A. LLPS occurs for aerosols with 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 100 239 

Pa•s (Torg:T < 0.8) when RH ≤ separation relative humidity (SRHLLPS). Song et al. (2018) suggests 240 

that LLPS always happens when �𝑂𝑂:𝐶𝐶𝑎𝑎𝑑𝑑𝑜𝑜� ≤ 0.56, which we implemented to predict phase 241 

separation along with conditions specified for �𝑂𝑂:𝐶𝐶𝑎𝑎𝑑𝑑𝑜𝑜� > 0.56 in Eqs. (8) and (9). The SRHLLPS 242 

is dependent on OA composition as shown in Eqs. (8) and (9) based on Bertram et al. (2011), 243 

Zuend and Seinfeld (2012) and Song et al. (2018): 244 

𝑆𝑆𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 35.5 + 339.9�𝑂𝑂:𝐶𝐶𝑎𝑎𝑑𝑑𝑜𝑜� − 471.8 �𝑂𝑂:𝐶𝐶𝑎𝑎𝑑𝑑𝑜𝑜�
2

                                                     (8)  245 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 0.56 < (𝑂𝑂:𝐶𝐶𝑎𝑎𝑑𝑑𝑜𝑜) ≤ 0.73 𝑃𝑃𝑒𝑒𝑎𝑎 246 

 0.1 < (𝑂𝑂𝑀𝑀 ∶ 𝐼𝐼𝑒𝑒𝑜𝑜𝑟𝑟𝑙𝑙𝑃𝑃𝑒𝑒𝑖𝑖𝐼𝐼 𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑃𝑃𝑆𝑆𝑒𝑒) ≤ 15   247 
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 248 

𝑆𝑆𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0                𝑖𝑖. 𝑒𝑒.𝑒𝑒𝑜𝑜 𝐿𝐿𝐿𝐿𝑃𝑃𝑆𝑆                                                                                            (9) 249 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 �𝑂𝑂:𝐶𝐶𝑎𝑎𝑑𝑑𝑜𝑜� > 0.73 𝑃𝑃𝑒𝑒𝑎𝑎 250 

0.1 < (𝑂𝑂𝑀𝑀 ∶ 𝐼𝐼𝑒𝑒𝑜𝑜𝑟𝑟𝑙𝑙𝑃𝑃𝑒𝑒𝑖𝑖𝐼𝐼 𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑃𝑃𝑆𝑆𝑒𝑒) ≤ 15   251 

 252 

2.4 Model description and implementation 253 

All simulations were completed in CMAQv5.2.1 for the SOAS campaign from June 1 - 254 

July 15, 2013, with ten days of spin-up time starting on May 21, 2013. Model inputs are described 255 

in Xu et al. (2018).  The horizontal resolution of the simulation was 12km x 12km. Model vertical 256 

extent between the surface and 50 hPa (representing possible stratospheric influences) consisted 257 

of 35 layers of variable thickness. Weather Research and Forecasting model (WRF) Advanced 258 

Research WRF (ARW) version 3.8 with lightning assimilation was used to generate the 259 

meteorological inputs for the simulations (Appel et al., 2017; Heath et al., 2016). The National 260 

Emission Inventory (NEI) 2011 v2 produced by the EPA was used to generate anthropogenic 261 

emissions. Biogenic emissions were determined using the Biogenic Emission Inventory System 262 

(BEIS) v3.6.1 (Bash et al., 2016). BEIS predicts lower emissions amounts for isoprene than the 263 

Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Carlton and Baker, 2011). 264 

Therefore, emissions of isoprene were increased in this work to 1.5x their original levels based on 265 

Pye et al. (2017) who found that this increase led to better agreement with field measurements of 266 

isoprene and OH at the Centreville site during the 2013 SOAS. Carbon Bond v6.3 (CB6r3) was 267 

used for the gas-phase chemistry in the model (Emery et al., 2015; Hildebrant Ruiz and Yarwood, 268 

2013; Yarwood et al., 2010).  269 

 270 
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2.5 Reactive Uptake  271 

IEPOX-derived SOA is modeled with a first-order heterogeneous uptake reaction that 272 

includes a new term that accounts for diffusion limitations due to an organic coating when the 273 

aerosol phase state demands it, as described below in Eqs. (10)-(13) (Anttila et al., 2006; Gaston 274 

et al., 2014; Ryder et al., 2014; Budisulistiorini et al., 2017). The impact of organic coating was 275 

not considered in the original IEPOX reactive uptake algorithm in CMAQ (Pye et al., 2013): 276 

𝐼𝐼𝐼𝐼𝑃𝑃𝑂𝑂𝐼𝐼(𝑜𝑜) → 𝐼𝐼𝐼𝐼𝑃𝑃𝑂𝑂𝐼𝐼𝑆𝑆𝑂𝑂𝐼𝐼(𝑎𝑎𝑑𝑑𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑇𝑇)                  (10) 277 

This first-order heterogeneous-reaction rate constant (khet) is defined as: 278 

𝑘𝑘ℎ𝑑𝑑𝐶𝐶 = 𝐿𝐿𝑆𝑆
rp
𝐷𝐷𝑔𝑔

+ 4
𝜈𝜈𝜈𝜈

                              (11) 279 

Where 𝑆𝑆𝐼𝐼 is the aerosol surface area (µm2/m3), 𝜈𝜈 is the mean molecular speed (m/s) of gas phase 280 

IEPOX estimated by Eq. (12): 281 

𝑣𝑣 = � 8∗𝑅𝑅∗𝐺𝐺
𝜋𝜋∗𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

                                             (12) 282 

 𝑟𝑟𝑝𝑝 is the effective molecular particle radius including both the inorganic core and organic shell 283 

(m), 𝐷𝐷𝑜𝑜  is IEPOX diffusivity in the gas phase (1.9 ∗ (𝑀𝑀𝑊𝑊𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼)−
2
3  𝑚𝑚

2

𝑑𝑑
), 𝑀𝑀𝑊𝑊𝐼𝐼𝐼𝐼𝐿𝐿𝐼𝐼𝐼𝐼 = 118 g mol-1 is 284 

the molecular weight of IEPOX and 𝛾𝛾 is the reactive uptake coefficient: 285 

1
𝛾𝛾

= 1
𝛼𝛼

+ 𝑑𝑑∗𝑜𝑜𝑝𝑝2

4𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔∗𝑅𝑅∗𝐺𝐺∗𝐷𝐷𝑎𝑎∗𝑜𝑜𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐

1
𝑞𝑞∗𝐶𝐶𝑜𝑜𝐶𝐶ℎ(𝑞𝑞)−1𝑞𝑞

+ 𝑑𝑑∗𝑇𝑇𝑖𝑖𝑖𝑖𝑔𝑔∗𝑜𝑜𝑝𝑝
4∗𝐻𝐻𝑖𝑖𝑖𝑖𝑔𝑔∗𝑅𝑅∗𝐺𝐺∗𝐷𝐷𝑖𝑖𝑖𝑖𝑔𝑔,𝑐𝑐𝑒𝑒𝑒𝑒∗𝑜𝑜𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐

                                     (13) 286 

 287 

𝛼𝛼 is the accommodation coefficient (0.02). 𝑅𝑅𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 is the Henry’s Law coefficient into the 288 

inorganic phase (3 ∗ 107 𝑀𝑀
𝑎𝑎𝐶𝐶𝑚𝑚

). 𝑅𝑅 is the gas constant (0.08026 𝐿𝐿∗𝑎𝑎𝐶𝐶𝑚𝑚
𝐾𝐾∗𝑚𝑚𝑜𝑜𝑇𝑇

), 𝑇𝑇 is the ambient temperature 289 

(𝐾𝐾).  290 
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 𝐷𝐷𝑎𝑎 is the IEPOX diffusivity in the aerosol core (10−9 𝑚𝑚
2

𝑑𝑑
) and 𝑞𝑞 is the diffuso-reactive 291 

parameter as defined in Eq. (13):   292 

 𝑞𝑞 = rp�
kparticle

Da
                  (14) 293 

 294 

 𝑘𝑘𝑝𝑝𝑎𝑎𝑜𝑜𝐶𝐶𝑑𝑑𝐶𝐶𝑇𝑇𝑑𝑑 is the pseudo-first order rate constant (𝑠𝑠−1) defined in Eq. (14) (Pye et al., 2013), 295 

with parameters defined in Table 2:  296 

𝑘𝑘𝑝𝑝𝑎𝑎𝑜𝑜𝐶𝐶𝑑𝑑𝐶𝐶𝑇𝑇𝑑𝑑 =  ∑ ∑ 𝑘𝑘𝑑𝑑,𝑗𝑗 [𝑒𝑒𝑆𝑆𝐼𝐼𝑑𝑑]�𝑃𝑃𝐼𝐼𝑖𝑖𝑎𝑎𝑗𝑗� 𝑀𝑀
𝑗𝑗=1

𝑁𝑁
𝑑𝑑=1                (15) 297 

 298 

𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜,𝑑𝑑𝑑𝑑𝑑𝑑 (𝑚𝑚
2

𝑑𝑑
) is the effective diffusivity of IEPOX through an organic coating compromised of 299 

the species given in Table 1 and 10% of the total aerosol liquid water. 300 

 301 

The contribution of organic species to the volume of the core is assumed negligible and water 302 

moves freely between the inorganic core and the organic shell, leading to approximately 90% 303 

aerosol water in inorganic core and 10% in the organic shell for this work as described by Pye et 304 

al. (2017). An extension of this assumption is that the inorganic ion species are concentrated 305 

entirely within the aqueous core when calculating kparticle. Horg ( 2 ∗ 105 𝑀𝑀/𝑃𝑃𝑆𝑆𝑎𝑎) is the effective 306 

Henry’s Law constant for the organic coating and lorg is the organic phase thickness given by Eq. 307 

(16) calculated at each time step based off of Riemer et al. (2009). rp is the surface-area weighted 308 

median particle radius based on surface area distribution of different species and 𝛽𝛽 is the ratio of 309 

inorganic particle volume (90% of the particle water and inorganic species) to the total particle 310 

volume (all organic species, water, and inorganic species):  311 

𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑟𝑟𝑝𝑝(1 − 𝛽𝛽
1
3)                                                                                                                            (16) 312 
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 313 

𝑟𝑟𝑝𝑝 is the effective aerosol radius (m) same as in Eqs. (11), (13) and (14), and 𝑟𝑟𝐶𝐶𝑜𝑜𝑜𝑜𝑑𝑑  is the aerosol 314 

inorganic core radius (𝑎𝑎). 𝑟𝑟𝐶𝐶𝑜𝑜𝑜𝑜𝑑𝑑 is defined based off of Riemer et al. (2009) below: 315 

𝑟𝑟𝐶𝐶𝑜𝑜𝑜𝑜𝑑𝑑 = 𝑟𝑟𝑝𝑝𝛽𝛽
1
3                                                                                                                                         (17)                       316 

 317 

Particles that did not have LLPS or SSPS morphology were assumed to form a homogenous 318 

mixture of organics and inorganics (i.e. 𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 = 0), reducing Eq. (13) to the standard CMAQ 319 

treatment.  320 

 321 

2.6 Sensitivity simulations 322 

A sensitivity simulation (Emission Reduction) was conducted using the EPA's emission 323 

reductions estimates of 34% and 48% for NOx and SO2, respectively, from 2013 to 2025 (Marais 324 

et al., 2016; Eyth et al., 2014). A second sensitivity (HighHorg) was conducted that used the same 325 

upper bound of Horg as reported by Schmedding et al. (2019) increasing the value from 2*105 326 

M/atm to 3*108 M/atm. To better understand the effects of viscosity on particle morphology and 327 

phase separation, a third sensitivity simulation (PhaseSep2) was conducted where the phase 328 

separation of particles was determined solely by Eqs. (8) and (9). This simulation excluded the 329 

erstwhile criteria that particles with 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 > 100 Pa•s were automatically phase separated with a 330 

semi-solid outer core, also referred as SSPS morphology. Table 3 gives a brief description of the 331 

NonPhaseSep simulation (base CMAQ without phase state and organic coating impacts), the new 332 

PhaseSep proposed in this work, and the three sensitivity simulations: Emissions Reductions, 333 

HighHorg, and PhaseSep2. 334 

 335 
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2.7 Measurement Comparisons 336 

Field data were collected using a high-resolution time-of-flight chemical ion mass-spectrometer 337 

(HTOF-CIMS) coupled with a filter inlet for gases and aerosols (FIGAERO) and a two-338 

dimensional gas chromatogram time-of-flight mass spectrometer (GC×GC-TOFMS) at the 339 

Centreville, AL site during the 2013 SOAS campaign (Zhang et al., 2018b). The combined 340 

measurements provide comprehensive and quantitative molecular compositions of over 800 OA 341 

species with a time resolution of 4 hours. Chemical formulas were assigned to all the species based 342 

on high-resolution peak fitting and hence their O:C ratios and molecular weights are known, which 343 

were then used to empirically calculate the average Torg of the OA at the site for the duration of 344 

the entire SOAS campaign (June 1- July 15, 2013). The speciated OA were estimated to account 345 

for 74% of total fine OA mass during SOAS. The uncharacterized fraction of fine OA (e.g., 346 

organosulfur compounds) will likely have some influence on the estimated Torg. Also note that 347 

both techniques use thermal desorption approach to analyze OA composition which was recently 348 

shown to cause thermal decomposition for certain species (Lopez-Hilfiker et al., 2016; Cui et al., 349 

2018). Thus, some interferences in Torg estimation could be expected by thermal decomposition; 350 

however, at this time it remains unclear how substantial these interferences could be due to lack 351 

of understanding of the degree of decomposition that occurs in these analytical methods.  352 

Nevertheless, to our knowledge, this is the most comprehensive molecular-level OA speciation 353 

data set, and thus, is appropriate to use for comparison with modeled Torg in this work.  354 

 355 

Model simulation results (PhaseSep, HighHorg and PhaseSep2) were compared to recorded 356 

values for PM2.5 organic carbon mass concentration at monitoring stations that are a part of the 357 

https://doi.org/10.5194/acp-2019-900
Preprint. Discussion started: 7 November 2019
c© Author(s) 2019. CC BY 4.0 License.



17 
 

South Eastern Aerosol Research Characterization study (SEARCH) (Hansen et al., 2003) to better 358 

constrain the parameters used in the calculation  γIEPOX.  359 

 360 

 361 

3 Results  362 

3.1 Predicted Aerosol Phase State  363 

The ratio of Torg to the ambient T is the strongest indicator of the phase state of the aerosol. The 364 

mean value for Torg for all grid cells on the surface level and for all time steps was 207 K with a 365 

maximum value of 284 K, a minimum value of 137 K, and a median of 223 K. The values of Tbiog 366 

and Tanth ranged from 160-301 K and 230-311 K, respectively. This indicates that anthropogenic 367 

species have a higher range of glass transition temperatures than biogenic species; however, the 368 

maximum values of Tbiog and Tanth are relatively closer than their minimum values. This is 369 

attributed to the abundant biogenic acid-catalyzed IEPOX-derived SOA species, such as 370 

organosulfates and 2-methyltetrols, having a high Tg of 301 K and a viscosity of 1012 as shown in 371 

Table 1. An Analysis of variance (ANOVA) test was completed to determine if Torg, Tbiog, and Tanth 372 

were significantly different (p < 2*10-16). It was found that the aforementioned three categories of 373 

glass transition temperatures were statistically different from each other. 374 

 375 

For the simulation period, the diurnal variability (i.e., between day and night) in the ambient T 376 

at any site was ~10 K, while Torg varied by as much as 75 K within a 24-hour period. This indicates 377 

that changes in the Torg:T ratio (i.e. Phase state) were driven by Torg (i.e., composition of the 378 

organics-water system) rather than T. 379 

 380 
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Figure 1 gives the predicted probability density distribution of the Torg:T ratio at the surface level 381 

of CMAQ for all grid cells and time steps.  At the surface the range of Torg:T ratios was from 0.455  382 

to 0.987 with a median value of 0.763 and a mean value of 0.703. In the surface layer over 63.5% 383 

of the Torg:T ratios were less than 0.8, a value which is given as the transition point from a semi-384 

solid viscosity to a liquid-like viscosity (Shiraiwa et al., 2017), while the other 36.5% of the 385 

condition that the Torg:T were more than 0.8, indicating the aerosols were in semi-solid phase state. 386 

Also shown in Figure 1 are the Torg :T ratio at the 18th layer (~ 1.8 km above ground level), 28th 387 

layer (~ 8 km above ground level) and the 35th layer (~ 17 km above ground level). For 18th layer 388 

(i.e., lower troposphere), Torg:T ratios  ranged from 0.464 to 1.022 with a median value of 0.807 389 

and mean value of 0.772. For 28th layer (i.e., upper troposphere), Torg:T ratios ranged from 0.523 390 

to 1.201, with a median value of 0.890 and mean value of 0.892. For 35th layer (i.e., stratosphere), 391 

Torg:T ratios ranged from 0.901 to 1.37, with a median value of 1.114 and mean value of 1.131. 392 

The frequency of liquid-like viscosity based on the Torg:T < 0.8 cut-off reduced to 47.31% for 18th 393 

and 0% for 35th layer eventually. Similarly, frequency of semi-solid or glassy particles based on 394 

the Torg:T ≥ 0.8 cut-off increased to 52.69% for 18th, 84.38% for 28th and 100%  for 35th layers 395 

eventually. 396 

 397 

Figure 2A shows a map of the average surface layer Torg:T ratio across the Continental United 398 

States for the duration of the simulation.  The Torg:T ratios exhibited a bimodal distribution both at 399 

the surface (Fig. 1 and Fig. 2A) and in the lower troposphere (Fig. 2B), where particles over the 400 

oceans had substantially higher ws, driving down their Torg:T ratio. Semi-solid particles with a 401 

higher range of Tg values (Fig 2A) were concentrated over areas associated with higher 402 

anthropogenic SOA (including anthropogenic POA listed in Table 1) and a low RH, aerosol liquid 403 
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water content, and biogenic SOA (i.e., the American southwest and Rocky Mountains). These 404 

higher Tg values pulled the net Torg value up closer to the ambient temperature, and thus, brought 405 

the Torg:T ratio closer to 1. The particles with the lowest Torg :T ratios were located over the Atlantic 406 

and Pacific oceans, due to the substantially higher aerosol water content and low levels, or even 407 

lack of anthropogenic and biogenic organics in these environments.  408 

 409 

Figures 2B, 2C and 2D show the spatial profiles of the mean Torg:T ratio for each grid cell at the 410 

18th layer of CMAQ (lower troposphere), 28th layer of CMAQ (upper troposphere) and the 35th 411 

layer of CMAQ (stratosphere). The value of T drops with the decreasing pressure. The O:C ratio 412 

of the particles are predicted to increase when compared to the surface due to atmospheric 413 

oxidation. The mean O:C ratio at the surface was 0.73, while across the troposphere (at layers 18 414 

and 28) it was 0.75, and at layer 35 it was 0.77. The mean value of Torg also increased from 207 K 415 

at the surface to 219 K at layer 18, 223.5 K at layer 28 and 239 K at layer 35. This change in Torg 416 

was primarily driven by decreases in organic water in the aerosol. The mean concentration of water 417 

associated with organics (ws) at the surface was 29%. At layer 18, this concentration was 17%, at 418 

layer 28 it was 11.5% and at layer 35 it was 1.4%. The removal of water from the organic phase 419 

led to the disappearance of the bimodal Torg :T ratio beyond the 28th layer (upper troposphere).  The 420 

mean Torg :T ratio was less than 1 for all grid cells at the 18th layer (lower troposphere), and 59.7% 421 

of particles were likely to be liquid based on the Torg:T ratio < 0.8. The remaining 40.3% of 422 

particles were semi-solid because their Torg :T values were between 0.8 and 1. Semi-solid particles 423 

were still concentrated over the American southwest and Rocky Mountains. At the 18th layer 424 

(upper troposphere), 69.35% of the particles were semi-solid with Torg:T ratio between 0.8 and 1, 425 

with 15.61% and 15.03% of particles likely to be liquid (Torg:T ratio < 0.8) and solid (Torg:T ratio 426 
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> 1). At the 35th layer of CMAQ, all particles had a Torg :T ratio > 1, indicating that the organic 427 

phases of all of the particles had glassy viscosities. By layer 35 (stratosphere), the particles mostly 428 

exhibit a solid-like behavior across the Continental United States. Particles with the highest Torg :T 429 

ratio at this altitude were located over the southern half of the simulation area, with Torg :T ratios 430 

approaching 1 in the northern half of the simulation. Particles in the Northern half of the 431 

Continental United States domain had higher concentrations of biogenic and anthropogenic SOA 432 

in comparison to those in the southern half of the domain and therefore had higher Torg values than 433 

their southern counterparts had.  434 

 435 

Figure 3 is an illustrative example through model data extracted for June 1 - June 15, 2013, at 436 

two SEARCH monitoring sites. Figure 3 shows the diurnal profile and relative contributions of 437 

the model predicted anthropogenic, biogenic and water fractions to Torg for a rural site in 438 

Centreville, Alabama (Fig. 3A) and at an urban site at the Jefferson Street, Atlanta, Georgia (Fig. 439 

3B). Both Centreville and Atlanta sites (Fig. 3) had Torg values that ranged from 175-250 K (Fig. 440 

S1). The Centreville site, however, is rural and the Torg is more dominated by biogenic emissions 441 

(Fig. 3A). Whereas, the Jefferson Street site has a significant contribution by both anthropogenic 442 

and biogenic emissions, but anthropogenic dominating slightly (Fig. 3B). Fig. S1 gives the diurnal 443 

pattern of relative contribution of aerosol liquid water to Torg. The peaks in Torg coincided with the 444 

daytime period of high emissions of VOCs and lower contribution of aerosol liquid water (Figs. 3 445 

and S1). At night, due to higher contribution of aerosol liquid water, Torg is lower than daytime for 446 

both the sites (Fig. S1). Figure 3B shows that Torg at the Jefferson Street, Atlanta, Georgia has 447 

similar peaks, but a higher minimum value during the night, due to the higher budgets of 448 

anthropogenic VOCs or combustion-generated anthropogenic POA as compared to biogenic. Both 449 
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sites have a relatively high contribution of aerosol water (generally true for eastern United States, 450 

see Fig. 2A) to the organic phase, especially at night for 18:00-8:00 local day hours (Fig. S1).  451 

 452 

3.1.1 Predicted Viscosity 453 

The abundance of water relative to organics (Fig. 4F) drives the model predicted variability in 454 

viscosity and phase separation. Whether a particle is semi-solid, or liquid, and whether it is in a 455 

LLPS state is influenced by the proportion of SOA constituents, including uptake of water by them 456 

and has implications for the organic-phase viscosity. Figures 4D-F show that, ws (i.e., water related 457 

to organic phase) had the strongest correlation with 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 (r = 0.919) followed by wb (r = 0.736) 458 

and wa (r = 0.620) (i.e., biogenic and anthropogenic constituents in the organic phase, respectively). 459 

Figure 4A gives the probability density distribution of 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 at the surface level for all grid cells 460 

and time steps. The predicted viscosity for PhaseSep simulation ranged from 5.94*10-3 Pa•s to 461 

5.31*1011 Pa•s with a mean value of 8.45*105 Pa•s (median of 343 Pa•s). As shown in Figure 4A, 462 

the overall phase separation frequency was 68.5%, where 54.8% of predicted viscosities were 463 

greater than 100 Pa•s, indicating that they exhibited SSPS morphology.  The mean of 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 of SSPS 464 

particles was 1.54*106 Pa•s, and the median was 7.79*103 Pa•s. The remaining 13.7% of the phase-465 

separated particles exhibited a LLPS morphology. The median viscosity of LLPS particles was 466 

1.14 Pa•s with a mean of 14.2 Pa•s with a range of 7.86*10-3 to 99.99 Pa•s. Ambient RH was also 467 

more strongly correlated with 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 (r = 0.677) than O:C ratio (r = 0.62) (Fig. 4B-C). Dorg,eff , which 468 

is inversely related to 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 as derived from Eq. (1), had a range 1.20 *10-24 m2/s to 3.58*10-11 m2/s 469 

and a mean and median of 3.40*10-12  m2/s and 3.94*10-11 m2/s, respectively. The mean O:C ratio 470 

was 0.678, with a range of 0.101 to 0.730. The mean fraction of the organic phase composed of 471 

water (ws) was 42.4% with a range of 1.04 *10-4 to 99.9%. The mean values of wb and wa in LLPS 472 
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were 19.8% and 37.7%, respectively, with ranges of 1.76*10-5 to 82.1% and 2.15*10-5 to 96.9%. 473 

This suggests that anthropogenic aerosol components are likely more water soluble than biogenic 474 

components. 475 

 476 

3.1.2 Comparison to Observed data 477 

Figure 5 shows the Torg:T ratio calculated from speciated organic aerosol composition field 478 

data at the Centreville, Alabama field site (Zhang et al., 2018b) during the 2013 SOAS period. 479 

Torg:T ratio derived from data collected by Zhang et al. (2018b) ranged from 0.630 to 0.881. Also 480 

shown in Fig. 5 are the predicted Torg:T ratios using the phase separation (PhaseSep) 481 

parameterization. CMAQ modeled Torg:T ratio using PhaseSep simulation ranged from 0.531 to 482 

0.902, slightly exceeding the range predicted from observations. It should be noted that the Zhang 483 

et al. (2018b) observations were recorded every four hours for ~ 60% of the 2013 SOAS time 484 

period. Modeled Torg:T mostly captures the peaks and drops, which the observation derived Torg:T 485 

shows (Fig. 5). Some mismatch can be attributed to the lack of an explicit mechanism to compute 486 

organic aerosol water uptake and some unaccounted SOA formation mechanisms. Further, Zhang 487 

et al. (2018b) only accounted for ~ 70% of SOA species listed in Table 1. During this time period 488 

the model had a normalized mean bias (NMB) of 2.37% when compared to observationally 489 

calculated values. Median and mean Torg:T ratios predicted from the 2013 SOAS field observations 490 

of 0.799 and 0.773, respectively, were quite close to the corresponding values of 0.784 and 0.769 491 

predicted by PhaseSep simulation in CMAQ. The difference in observed and model estimated 492 

Torg:T range was statistically significant with a P-Value = 0.001, and a correlation coefficient of ~ 493 

0.66 between them. There is also a discernable consistent diurnal trend across the 2013 SOAS 494 
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period for Torg:T, such as stronger contribution of aerosol liquid water for 18:00-08:00 hours and 495 

a lowering of the Torg:T during those hours (Fig. 3A and S1).  496 

 497 

Figure 6 shows the predicted viscosity of our phase separation implementation for all days, 498 

grid cells and layers sorted into 10% RH bins. The trends in range of modeled ηorg are the same as 499 

in Fig. 4B, with narrower ranges at lower RH and wider ranges with increasing RH. Wider ηorg 500 

ranges at higher RH can be explained by increased diffusivity with higher aerosol liquid water in 501 

SOA causing quick mixing times often accompanied with drastic differences in composition. Also, 502 

shown in Fig. 6 are viscosities of aerosols made in the laboratory. The red dots represent the 503 

viscosities of α-pinene SOA measured by Zhang et al. (2018a), and the blue box plots represent 504 

the range of viscosities of toluene SOA measured by Song et al. (2016). Both laboratory-based 505 

experimental studies show good agreement at atmospherically-relevant RH ranges with the 506 

viscosities predicted by our implementation. At lower RH ranges (~ 30%), the experimentally 507 

measured viscosities are slightly higher than those predicted by our study. This can be attributed 508 

to shattering of highly viscous SOA (ηorg ≥ 106 Pa•s) for RH ≤ 30% that inhibits their flow in 509 

laboratory measurements of ηorg (Renbaum-Wolff et al., 2013; Zhang et al., 2015; Zhang et al., 510 

2018a). 511 

 512 

3.2 Impact on Model predictions 513 

3.2.1 Reactive uptake coefficient of IEPOX (γIEPOX) 514 

Previous experimental studies show that phase separation forming semi-solid organic 515 

aerosol coatings is expected to decrease IEPOX reactive uptake (γIEPOX), and thus, the resulting 516 

SOA (Zhang et al., 2018a). Figure 7A shows reductions in γIEPOX with Emission Reduction 517 
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sensitivity case subsequently reducing SOA (Fig. 10A), in agreement with recent modeling 518 

predictions that show emission reductions expected by 2025 lead to reductions in IEPOX SOA 519 

(Marais et al., 2016). This study implemented the phase separation and the phase separation 520 

parameters into CMAQ (PhaseSep), showing agreement with the previous experimental work 521 

(Zhang et al., 2018a), with the mean value of γIEPOX decreasing to 1.141*10-3 or a 18.3% decrease 522 

at the surface level, compared to 1.397*10-3 in original CMAQ with no phase separation considered 523 

(NonPhaseSep) (Fig. 7A). Similarly, the median value of γIEPOX for the PhaseSep case reduced to 524 

4.454*10-5 from 1.479*10-4 for NonPhaseSep simulation. For southeastern United States, it is clear 525 

that an overall shift of higher γIEPOX values > 10-3 to lower values ranging between 10-4 to 10-6 526 

occurs with introduction of phase separation and phase state parameters in CMAQ (Fig. S2). For 527 

continental United States, there is a similar trend with the shift in highest peak of the probability 528 

distribution of γIEPOX with PhaseSep case relative to NonPhaseSep case (Fig. 7A). 529 

 530 

Figures 7B and 7C show the mean value of γIEPOX for each grid cell across the continental 531 

United States during the PhaseSep and NonPhaseSep simulations, respectively, for the 2013 SOAS 532 

period. The plot shows an overall reduction in γIEPOX when phase separation was introduced. There 533 

was high variability in the value of γIEPOX between regions; specifically, between the eastern and 534 

western United States. To understand the drivers that influence changes in γIEPOX with the new 535 

PhaseSep simulation, grid cells that exhibited the maximum increase and decrease relative to the 536 

NonPhaseSep were analyzed. When phase separation was included, particles in grid cell and time-537 

step with maximum reduction in γIEPOX were the result of a low Dorg,eff  of 5.83*10-19 m2/s and an 538 

lorg as high as 100 nm resulting in a relatively thick organic coating with diffusion limitations. 539 

Particles in the grid cell and time-step with the highest increases in γIEPOX had a Dorg,eff  value of 540 
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7.34*10-16 m2/s and lorg of 0.668 nm, and were located over oceans with an abundant amount of 541 

aerosol liquid water that were in close proximity to biogenic isoprene emission sources (Fig. S3). 542 

These large increases in γIEPOX were primarily caused by increases in kparticle due to added 543 

nucleophiles (i.e. abundant aerosol liquid water) and a lack of diffusive limitations through the 544 

organic shell. Mean γIEPOX for the 2013 SOAS period across the continental United States shows a 545 

higher reduction in the PhaseSep (Fig. 7B) relative to NonPhaseSep (Fig. 7C), in regions such as 546 

the southwest US and southern Canada, with higher lorg (Fig. S3). To summarize, phase (which 547 

influences Dorg,eff) and thickness (lorg) of the organic coating are the main drivers of change in 548 

γIEPOX. A recent study by Riva et al. (2019) demonstrated that the formation of organosulfates 549 

during the IEPOX reactive uptake process leads to an organic coating, and thus, a reduced γIEPOX. 550 

This manifests as a self-limiting effect during the IEPOX-derived SOA formation. Atmospheric 551 

models, including this work, do not consider this recently observed self-limiting process yet, but 552 

accounting for it may lead to a further reduction of the γIEPOX..   553 

 554 

3.2.2 Predicted SOA mass 555 

Variability in the values of γIEPOX,  as calculated in the PhaseSep simulation (Fig. 7B) relative 556 

to the NonPhaseSep simulation (Fig. 7C), were also reflected in the large geospatial variations in 557 

the concentrations of IEPOX-derived SOA (i.e., organosulfates and tetrols (Fig. 8A)). Higher 558 

reduction in the IEPOX-derived SOA for PhaseSep relative to NonPhaseSep were also in regions 559 

such as the southwest United States and southern Canada (more pronounced near the Great Lakes), 560 

with higher reductions to γIEPOX owing to thick organic coatings (Fig. S3). Figure 8B shows the 561 

average relative change in predicted biogenic SOA mass. Although, the southwest United States 562 

shows high reduction in IEPOX-derived SOA (Fig. 8A), it is not reflected for changes in biogenic 563 
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SOA (Fig. 8B). While the high reduction in IEPOX-derived SOA (Fig. 8A) in southern Canada is 564 

reflected in reductions in biogenic SOA in that region (Fig. 8B).  This spatial variability can be 565 

explained by the lower fraction of IEPOX-derived SOA in total biogenic SOA on average in 566 

southwest United States compared to their higher fraction in southern Canada near Great Lakes 567 

(Fig. S4A), which are further reduced to be negligible in the southwest US in the PhaseSep case 568 

(Fig. S4B). Hence, magnitude of changes in biogenic SOA (Fig. 8B) and eventually PM2.5 organic 569 

carbon mass (Fig. S5) are dampened as compared to changes in IEPOX-derived SOA mass with 570 

introduction of phase separation parameters (Fig. 8A). On average, the largest reduction in 571 

biogenic SOA mass at any one grid cell was 40.9% and occurred over forested region in Ontario, 572 

Canada near Lake Superior (Fig. 8B) which also exhibits high IEPOX-derived SOA contribution 573 

to total biogenic SOA (Fig. S4). For southeastern United States, modeled average reductions for 574 

2013 SOAS period in IEPOX-derived SOA ranged between 25-30%, which translated to 10-15% 575 

reduction in total biogenic SOA (Fig. 8). Whereas, the highest average reduction in IEPOX-576 

derived SOA was 74.06% that occurred over Colorado (Fig. 8A), which eventually matters less in 577 

terms of overall biogenic SOA reduction (Fig. 8B) owing to negligible contribution of IEPOX-578 

derived SOA to total biogenic SOA in the American southwest (Fig. S4). In the southern Canadian 579 

region near the Great Lakes where the maximum biogenic SOA reduction in PhaseSep occurred, 580 

the average reductions in IEPOX-derived SOA ranged from 63% to 66%. The southern Canadian 581 

region with maximum biogenic SOA reduction had average particle viscosities in the range of 582 

1.3*103 to 8.36*105 Pa•s. The phase separation frequency of particles for southern Canada region 583 

was 86.3% of all time steps and was SSPS 62.04% of the time and LLPS 24.26% of the time. The 584 

combination of these factors led to a 52.64% average reduction in γIEPOX. 585 

3.2.2.1 Comparison to Observed Data 586 
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Figure 9 shows that consideration of phase state and separation in CMAQ slightly worsened 587 

the NMB based on comparison with hourly PM2.5 organic carbon mass SEARCH observations at 588 

both the Centreville rural site and Jefferson street, Atlanta urban site by ~ -4%. However, this 589 

change was marginal in terms of mean bias change in PhaseSep relative to NonPhaseSep case 590 

being < 0.1 μg/m3. The sensitivity cases that assumed a higher Horg (HighHorg) and considered 591 

LLPS in predicting SSPS (PhaseSep2) resulted in correcting the worsening of model performance 592 

observed with PhaseSep case (Figs. 9 and S6). This highlights the importance of poorly 593 

constrained parameters in models like Horg assumed as a constant and factors that might govern 594 

phase separation under low RH or low aerosol water at different O:C ratios. 595 

 596 

3.3 Sensitivities 597 

The reduction in emission sources of NOx and SO2 impacted aerosol composition, and thus, 598 

the Torg. The average Torg for the emissions reduction simulation predicted a statistically significant 599 

(p-value = 2*10-16) increase of 1.5 K from the PhaseSep simulation, indicating the future emission 600 

reductions could result in an increase in viscosity and frequency of phase separation. The overall 601 

phase separation frequency for this sensitivity was 70.5% (57.0% SSPS, 13.5% LLPS) with 602 

predicted viscosities ranging from 6.13*10-3 to 1.73*1011 Pa•s, which was narrower as compared 603 

to ηorg range from PhaseSep simulation (refer to section 3.1.1). With the implementation of the 604 

future NOx and SO2 emissions reductions, overall there was a mean 7.85% reduction in biogenic 605 

SOA at the surface level from the PhaseSep simulation for Continental United States. As shown 606 

in Figure 10A the areas with the largest reductions in SOA mass occurred in American southeast, 607 

while a marginal increase in SOA mass that occurred over the Atlantic Ocean and in some sparse 608 

areas in Northern Canada and Western United States. The American southeast was highly sensitive 609 
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to the Emissions Reductions sensitivity due to the high concentrations of SO2 from coal-fired 610 

power plants and the high concentrations of IEPOX-derived SOA, whose chemistry is driven by 611 

particulate sulfate. Fig. S7 shows that highest reductions in particulate sulfate occurs in the 612 

American southeast, which would be accompanied by the reduction in aerosol liquid water, driving 613 

the reductions in IEPOX-derived SOA as shown in recent literature (Pye et al., 2017), and hence 614 

the large reductions in biogenic SOA mass. Also, NOx reductions in the NOx-limited southeastern 615 

United States region essentially results in stronger decrease in biogenic SOA as shown by Fig. 616 

10A, which is consistent with findings from SENEX aircraft (Edwards et al., 2017) and SOAS 617 

ground measurements (Xu et al., 2015) in the southeastern United States. 618 

 619 

When increases in Horg were simulated in scenario HighHorg it had impacts in opposite 620 

directions compared to changes in the emission reduction scenario. This increase in biogenic SOA 621 

can simply be attributed to the increased dissolution of IEPOX into the particle phase through the 622 

organic coating with a three order of magnitude higher Horg relative to that in PhaseSep simulation. 623 

The average Torg in the HighHorg simulation had a statistically significant increase of 1.4 K, with 624 

particles being phase separated 68.3% of the time (55.8% SSPS, 12.5% LLPS). Predicted 625 

viscosities in this simulation ranged from 5.94*10-3 Pa•s to 6.1011 Pa•s. Overall, biogenic SOA 626 

mass increased by an average of 14.19% at the surface level for this simulation relative to 627 

PhaseSep for the Continental United States. As shown in Figure 10B, the regions with the largest 628 

increases in biogenic SOA mass were located over boreal forests in Ontario and Quebec, Canada 629 

that correspond to the regions with highest reactive uptake (Figs. 7B and 7C) forming more 630 

homogenous SOA with increased Horg.  631 

 632 
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The removal of the assumption that all particles with a semisolid viscosity were phase 633 

separated (PhaseSep2) decreased the overall phase separation frequency to 29.0% from 68.5% in 634 

the PhaseSep simulation. The entirety of this reduction was from reductions in SSPS. Figure 10C 635 

gives the changes in biogenic SOA mass yields in the PhaseSep2 case relative to the PhaseSep 636 

case, with largest increases in Canadian regions where SSPS regime is moving to either LLPS or 637 

homogenous liquid mixture. This causes SOA yield increases explained by high reactive uptake 638 

in these regions (Figs. 7B and 7C). The phase separation frequency at the Centreville, Alabama 639 

site decreased to 65.4% from 79.3%. The average Torg increased by 2.3 K with a range of 137 K to 640 

289 K and predicted viscosities ranged from 5.93*10-3 Pa•s- 9.99*1011 Pa•s.  Overall biogenic 641 

SOA mass yields increased by an average of 25.86% from the PhaseSep simulation for Continental 642 

United States. The initial assumption regarding phase separation at high viscosity seems to be 643 

similarly as important as the assumption regarding Horg in constraining the impact of phase state 644 

and morphology on reactive uptake of IEPOX. 645 

 646 

4 Discussion and Atmospheric Implications 647 

Current chemical transport models have not accurately accounted for the effects of aerosol 648 

composition on phase separation or viscosity. This work has updated the CMAQ model to include 649 

parameters to calculate the Torg based on the Gordon-Taylor equation for SOA. This 650 

implementation used molar mass and O:C ratio of the species, but other parameters could be used. 651 

For example, DeRieux et al., (2018) developed a calculation for Tg,i  based on the number of 652 

carbon-hydrogen and carbon-oxygen bonds in a molecule. DeRieux et al., (2018) showed their 653 

implementation to be in good agreement with implementation provided in this work (Eq. (4)) for 654 

species with molar masses in the range of those used by CMAQv5.2.1. This implementation also 655 
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included parameters to determine whether SOA was phase-separated based on its viscosity, O:C 656 

ratio, sulfate concentrations, and the ambient RH. Our model predicted that 68.5% of the time 657 

particles would exhibit phase separation at the surface layer, which is in proximity with the 70% 658 

predicted by Pye et al. (2017). This implementation predicts that most of the SOA in the middle 659 

and upper troposphere over the United States is phase separated with organics increasingly in a 660 

semi-solid or even glassy state with increasing altitude. This is in agreement with previous 661 

fieldwork and modeling studies which has found that SOA in the upper troposphere tends to be in 662 

a glassy state (Lienhard et al., 2015; Shiraiwa et al., 2017). This work also shows LLPS to be more 663 

dominant in the eastern US, while semi-solid phase state being more prevalent in western US. This 664 

is in agreement with the predominant role of aerosol liquid water driving the liquid phase state and 665 

LLPS across the eastern United States, as observed in previous studies (Pye et al., 2017, 2018). 666 

 667 

The model predicted that SOA dominated by anthropogenic constituents typically featured 668 

thick semi-solid organic phases surrounding aqueous cores, which caused the reactive uptake of 669 

IEPOX to become diffusion limited. Regions that were predicted to have larger fractions of 670 

biogenic SOA mass typically featured LLPS morphology that did not produce much of diffusion 671 

limitations. These aerosols also resulted in a smaller inorganic core volume increasing the 672 

concentrations of nucleophiles and acids, thus enhancing the rate of reaction in presence of 673 

abundant aerosol water over oceans, but exhibited reduction in SOA over land though not as much 674 

as solid-like particles exhibited. The phase separation parameters had the largest impact over the 675 

Ohio River valley, southern Canada (more pronounced near Great Lakes) and American southeast. 676 

These areas were also the most sensitive to future emission reductions of NOx and SO2.  677 

 678 
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Further experimental and modeling work is required to understand the effects of aerosol phase 679 

state on the viscosity of the inorganic core that cause variability in the value of Da and can 680 

subsequently alter the reactive uptake of IEPOX. The conditions under which highly viscous SOA 681 

will separate from inorganics in a particle or if the particle will remain homogenously mixed 682 

should be further explored as well. Particle morphology in case of phase-separated organic and 683 

inorganic species as ‘core-shell’ or ‘partially engulfed’ or ‘emulsified’ (smaller islands of organics 684 

in the aqueous inorganic core) is driven by the differences in the interfacial surface tensions 685 

(Gorkowski et al., 2017). Recent studies have also shown that at very high RH ranges (95-100%), 686 

some particles will return to a core-shell morphology (Ham et al., 2019; Renbaum-Wolff et al., 687 

2016). There is also little information on the criteria that drives this kind of phase separation as 688 

well. Such variability in particle morphologies may modify the value of kparticle by changing the 689 

core volume.  It is imperative that these parameters be better constrained in models.  Furthermore, 690 

there is much uncertainty in the organic phase Henry’s Law coefficient (Horg), where higher Horg 691 

increases the dissolution of IEPOX into the aerosol phase. Some of the newly proposed reaction 692 

mechanisms leading to the formation of extremely-low volatile organic compounds (ELVOCs) 693 

and organosulfates may also increase the viscosity of the particle phase, but have not been 694 

incorporated in this study. 695 

 696 

This work paves the way for implementing a more accurate representation of multiphase 697 

chemistry of different complex systems on the lines of explicit representation of IEPOX SOA. 698 

Multiphase chemistry of other dominant SOA apart from IEPOX SOA, such as monoterpene-699 

derived SOA, are not incorporated in CMAQv5.2.1 (Pye et al., 2018; Slade et al., 2019), and should 700 

be a focus of future work. This work showed that organic water fraction is the biggest driver of 701 
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viscosity, though the water abundance was set at 10% of the inorganic water content. Organic 702 

water uptake, even if increased, will still follow the diurnal trend of RH since it is diverted from 703 

the aqueous core that is derived from ISORRORPIA-based aerosol water in CMAQ v5.2.1. It does 704 

not, however, consider the hydrophobicity or abundance of various organic constituents. 705 

Constraining abundance of organic water uptake in terms of its association with different organic 706 

species and evaluating its reduction with future emission reductions of SOx (SO2 and sulfate) will 707 

be pertinent for future work. 708 

Performing sensitivity simulations over the PhaseSep parametrization as part of this work also 709 

show that any assumptions made on determining phase separation or morphology (PhaseSep2) is 710 

as important as constraining the Horg (HighHorg) factor in the regions with abundant IEPOX SOA 711 

such as, American and Canadian southeast. Incorporating explicit kinetics coupled with 712 

thermodynamic calculation of energies governing the mixing state of organic-inorganic aerosol 713 

mixtures under different aerosol phase states, as observed from recent and ongoing experimental 714 

findings, into atmospheric models such as CMAQ, would lead to more scientifically sound 715 

representations of the impact particle phase state and morphology have on SOA mass predictions. 716 

 717 

Code availability 718 

US EPA makes the source code of CMAQ version 5.2.1 model publicly available for download 719 

at: https://github.com/USEPA/CMAQ/tree/5.2.1 (last access: 6 November 2019). Corresponding 720 

author can make the modifications made to the CMAQ source code as part of this work available 721 

on request. 722 
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The emissions and meteorological inputs along with other miscellaneous inputs to run CMAQ 725 

model for the SOAS 2013 episode (1 June 2013 to 15 July 2015) across continental United States 726 

can be downloaded from: https://drive.google.com/open?id=1XR6Xp3bZzrZIzNBx-727 

AgjcNCtC_HLlCkZ, made available by US EPA and University of North Carolina-Institute of 728 

Environment (last access: 6 November 2019). 729 
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Tables 1142 

Table 1 - CMAQ defined aerosol phase species (Pye et al., 2017; Murphy et al., 2017) used in the 1143 

calculation of the predicted organic phase parameter (overall SOA viscosity- 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜) and their 1144 

respective organic-mass-to-organic-carbon ratio (OM:OC) (Pye et al., 2017), atomic oxygen-to-1145 

carbon ratio (O:C), molar weight (Pye et al., 2017), and predicted individual glass transition 1146 

temperature (Tg) and viscosity at standard temperature. 1147 

Species 
Name 

Description Source OM : 
OC 

ratio 

O : C 
ratio 

Molar 
weight 

(g/mole) 

Predicted 
Tg  
(K) 

Predicted 
𝜼𝜼𝒐𝒐𝒐𝒐𝒐𝒐 at 

T= 298K 
And 

ALW = 0 
(Pa•s) 

AALK1 SV alkane 
VOC SOA 

ANTH 1.56 0.3146 225 256 7.54*109 

AALK2 SV alkane 
VOC SOA 

ANTH 1.42 0.2026 205.1 233 5.34*107 

ABNZ1 SV High NOx 
SOA product 
from benzene 

ANTH 2.68 1.2106 161 289 1.67*1014 

ABNZ2 SV High NOx 
SOA product 
from benzene 

ANTH 2.23 0.8506 134 234 2.66*107 

ABNZ3 LV low NOx 
SOA product 
from Benzene 

ANTH 3.00 1.4666 180 322 1.00*1012 

AGLY Glyoxal / 
methylglyoxal 

SOA 

BIOG 2.13 0.7706 66.4 160 1.71*103 

AISO1 SV SOA 
product from 

isoprene 

BIOG 2.20 0.8266 132.0 230 1.20*107 

AISO2 HV SOA 
product from 

isoprene 

BIOG 2.23 0.8506 133.0 233 2.26*107 
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AISO3 Acid-catalyzed 
isoprene SOA 
compounds (2-
methyltetrols + 

IEPOX 
organosulfate) 

BIOG 2.80 1.3066 168.2 301 1.00*1012 

ALVOO1 LV Oxidized 
combustion 

organic 
compounds 

ANTH 2.27 0.8826 136 238 6.59*107 

ALVOO2 LV Oxidized 
combustion 

organic 
compounds 

ANTH 2.06 0.7146 136 222 3.97*106 

AOLGA Oligomer 
products of 

anthropogenic 
SOA 

compounds 

ANTH 2.50 1.0666 206 303 1.00*1012 

AOLGB Oligomer 
products of 

biogenic SOA 
compounds 

BIOG 2.10 0.7466 248 300 1.00*1012 

AORGC Glyoxal and 
Methylglyoxal 

SOA 

BIOG 2.00 0.6666 177 251 1.33*109 

APAH1 SV High-NOx 
SOA product 
from PAHs 

ANTH 1.63 0.3706 195.6 239 1.58*108 

APAH2 SV High-NOx 
SOA product 
from PAHs 

ANTH 1.49 0.2586 178.7 216 2.80*106 

APAH3 LV low-NOx 
SOA product 
from PAHs 

ANTH 1.77 0.4826 212.2 260 1.97*1010 

APCSO Potential 
combustion 

SOA 

ANTH 2.00 0.6666 170 245 3.91*108 

ASQT SV SOA from 
sesquiterpenes 

BIOG 1.52 0.2826 135 179 1.87*104 
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ASVOO1 SV Oxidized 
combustion 

organic 
products 

ANTH 1.88 0.5706 135 207 4.69*105 

ASVOO2 SV Oxidized 
combustion 

organic 
products 

ANTH 1.73 0.4506 135 195 1.10*105 

ASVOO3 SV Oxidized 
Combustion 

organic 
compounds 

ANTH 1.60 0.3466 134 184 3.19*104 

AIVPO1 Intermediate 
Volatility 
Primary 
organic 

compounds 

ANTH 1.17 0.0026 266 260 3.22*1010 

ALVPO1 LV Primary 
organic 

compounds 

ANTH 1.39 0.1786 218 241 2.58*108 

ASVPO1 SV Primary 
organic 

compounds 

ANTH 1.32 0.1226 230 245 7.00*108 

ASVPO2 SV primary 
organic 

compounds 

ANTH 1.26 0.0746 241 249 1.86*109 

ASVPO3 SV primary 
organic 

compounds 

ANTH 1.21 0.0346 253 254 6.63*109 

ATOL1 SV high NOx 
Toluene SOA 

ANTH 2.26 0.8746 163 259 8.17*109 

ATOL2 SV High NOx 
Toluene SOA 

ANTH 1.82 0.5226 175 23 7.25*107 

ATOL3 LV low NOx 
Toluene SOA 

ANTH 2.70 1.2266 194 309 1.00*1012 

ATRP1 SV SOA 
product from 
monoterpenes 

BIOG 1.84 0.5386 177 239 1.30*108 
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ATRP2 HV SOA 
product from 
monoterpenes 

BIOG 1.83 0.5306 198 254 3.93*109 

AXYL1 SV High NOx 
SOA product 
from xylene 

ANTH 2.42 1.0026 174 278 3.16*1012 

AXYL2 SV High NOx 
SOA product 
from xylene 

ANTH 1.93 0.6106 185 252 1.85*109 

AXYL3 LV low-NOx 
SOA product 
from xylene 

ANTH 2.30 0.9066 218 297 1.43*1016 

 1148 

 1149 

Table 2 - Rate constants used to calculate the effective first order rate constant for aqueous phase 1150 

IEPOX SOA formation catalyzed by H+, HSO4
− with water and SO4

2- as nucleophiles  1151 

Rate Constant  Value 
(M-2 s-1) 

Reference 

𝑘𝑘𝐻𝐻+,𝑤𝑤𝑎𝑎𝐶𝐶𝑑𝑑𝑜𝑜
 9.00x10-4  Eddingsaas et al., 2010; 

Pye et al., 2013 
𝑘𝑘𝐻𝐻𝐿𝐿𝐼𝐼4−,𝑤𝑤𝑎𝑎𝐶𝐶𝑑𝑑𝑜𝑜

 1.31x10-5 Eddingsaas et al., 2010 
𝑘𝑘𝐻𝐻+,𝐿𝐿𝐼𝐼42−

 1.27x10-3 Riedel et al. 2016; 
Budisulistiorini et al., 
2017 

 1152 

 1153 

 1154 

 1155 

 1156 

 1157 

 1158 

 1159 
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Table 3 – Brief summary of different simulations conducted in this work in CMAQ v 5.2.1 1160 

Simulations  Details 

NonPhaseSep Base CMAQ v5.2.1 parameterization assuming homogeneous, 
internally mixed organic-inorganic fine aerosol, no phase 
separation  (Pye et al., 2017) 

PhaseSep CMAQ parametrization with additional term in reactive uptake 
calculation to capture the impact of phase separation and 
organic coating described in sections 2.1-2.3 and 2.5 

Emissions 
reduction 

PhaseSep with EPA recommended emissions reductions of 34% 
and 48% for NOx and SO2 from 2013 to 2025 (See Section 2.6) 

HighHorg PhaseSep with higher organic phase Henry’s law Coefficient (3 
orders of magnitude higher than in PhaseSep) (See Section 2.6) 

PhaseSep2 PhaseSep with the assumption that for solid or semi-solid phase 
Zuend and Seinfeld (2012) phase sepration criteria is followed 
(See Section 2.6) 

 1161 

 1162 

 1163 

 1164 

 1165 

 1166 
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Figures  1167 

     1168 

Figure 1-  Probability density distribution of glass transition temperature to ambient temperature 1169 

ratio (Torg:T) for all grid cells and time steps at the surface layer (red),  1.8 km above Surface layer 1170 

(green, layer 18-lower troposphere), 8 km above Surface layer (blue, layer 28-upper troposphere) 1171 

and 17 km above Surface layer (purple, layer 35-stratosphere). 1172 
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Figure 2- For all time steps and over the continental United States, the average glass transition 1174 

temperature to ambient temperature (Torg:T) ratio at the (A) surface level, (B) 1.8 km above Surface 1175 

layer (lower troposphere), (C) 8 km (upper troposphere) and (D)17 km above Surface layer 1176 

(stratosphere). 1177 

 1178 

 1179 

                                                        1180 

Figure 3 – From June 1 to June 15, 2013 the contributions of biogenic SOA (green), anthropogenic 1181 

SOA (red), and aerosol water (blue) to glass transition temperature (Torg) at the (A) Centreville, 1182 

AL site and the (B) Jefferson Street, Atlanta site. 1183 

 1184 

 1185 
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 1186 

 1187 

Figure 4- For all grid cells and time steps at the surface layer the (A) Probability distribution of 1188 

the organic phase viscosity , and correlations of particle viscosity (ηorg) with (B) relative humidity, 1189 

(C) atomic oxygen-to-carbon (O:C) ratio, (D) anthropogenic SOA weight fraction, (E) biogenic 1190 

SOA weight fraction and, (F) organic-phase water content (ws). 1191 
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 1201 

 1202 

Figure 5 – Predicted glass transition temperature to ambient temperature ratio (Torg:T) at the 1203 

Centreville, Alabama during the 2013 SOAS campaign based on OA composition reported by 1204 

Zhang et al. (2018b) (black). Predicted Torg:T from this work is shown in yellow.  1205 

 1206 

 1207 

 1208 

 1209 

https://doi.org/10.5194/acp-2019-900
Preprint. Discussion started: 7 November 2019
c© Author(s) 2019. CC BY 4.0 License.



55 
 

 1210 

Figure 6 – Model predicted SOA viscosity (ηorg) and experimental data for ηorg from Zhang et al. 1211 

(2018a) (red) and Song et al. (2016) (blue), at varying RH. 1212 
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Figure 7 – For all grid cells and time steps the predicted (A) probability distribution of γIEPOX at 1229 

the surface level for the NonPhaseSep (red), PhaseSep (green), and Emission reductions (blue) 1230 

simulations. For each grid cell the mean value of γIEPOX for the (B) PhaseSep simulation and (C) 1231 

NonPhaseSep simulation.     1232 

 1233 

                               1234 

Figure 8 – Spatial map of the mean percent relative change of (A) IEPOX-derived SOA and (B) 1235 

biogenic SOA mass (primarily driven by IEPOX SOA) in PhaseSep case relative to the 1236 

NonPhaseSep Simulation.  1237 
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 1240 

  1241 

Figure 9 – PM2.5 organic carbon (OC) mass (μg/m3) as a function of hour of the day. Non-1242 

aggregated performance statistics- Mean Bias (μg/m3), % Normalized Mean Bias (NMB) and 1243 

Spearman’s Correlation coefficient (r2) of NonPhaseSep (green) and PhaseSep (blue) cases 1244 

relative to observed (grey) PM2.5 OC mass for  (A) Rural Centreville, Alabama site and, (B) Urban 1245 
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B 

https://doi.org/10.5194/acp-2019-900
Preprint. Discussion started: 7 November 2019
c© Author(s) 2019. CC BY 4.0 License.



59 
 

Jefferson Street, Atlanta, Georgia site. Bars/shading indicate 25th to 75th percentiles. Lines indicate 1246 

means. n= number of observation points. 1247 

 1248 

 1249 

Figure 10 –Relative change (%) in biogenic SOA mass at the surface level from the PhaseSep 1250 

parameterization for the (A) NOx and SO2 emissions reduction sensitivity simulation, (B) 1251 

HighHorg sensitivity simulation, and (C) the PhaseSep2 simulation that did not assume semi-solid 1252 

particles were automatically phase separated. 1253 
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