Supplementary Material for the ACP manuscript "Predicting Secondary Organic Aerosol Phase State and Viscosity and its Effect on Multiphase Chemistry in a Regional Scale Air Quality Model"

Ryan Schmedding^{1*}, Quazi Z. Rasool^{1*}, Yue Zhang^{1,4}, Havala O. T. Pye^{1,2}, Haofei Zhang³,

Yuzhi Chen¹, Jason D. Surratt¹, Ben H. Lee⁵, Claudia Mohr^{5,8}, Felipe D. Lopez-Hilfiker^{5,9}, Joel A. Thornton⁵, Allen H. Goldstein^{6,7} and William Vizuete^{1€}

- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27516
- National Exposure Research Laboratory, Office of Research and Development, Environmental Protection Agency, Research Triangle Park, Durham, North Carolina, 27709
- 3. Department of Chemistry, University of California at Riverside, Riverside, California, 92521

4. Aerodyne Research, Inc., Billerica, Massachusetts, 01821

- 5. Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195
- 6. Department of Environmental Science, Policy, and Management, University of California,

Berkeley, CA 94720

7. Department of Civil and Environmental Engineering, University of California, Berkeley, CA

94720

 Present address: Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.

9. Present address: Tofwerk AG, CH-3600 Thun, Switzerland.

* Shared lead authorship

[€]Corresponding author: e-mail: vizuete@unc.edu; Telephone: +1 919-966-0693; Fax: +1 919-966-7911

Figure S1 – Diurnal pattern for SOAS (June 1- July 15) 2013 of the contributions of aerosol liquid water (green) to Organic glass transition temperature (T_{org}) (gray) at the (**A**) Centreville, AL site and the (**B**) Jefferson Street, Atlanta site. Bars/shading indicate 25th to 75th percentiles. Lines indicate means.

Figure S2 – For Southeastern United States, Probability distribution of γ_{IEPOX} at the surface level for the *NonPhaseSep* (red), *PhaseSep* (green) for SOAS 2013 simulation period.

Figure S3 – Average organic coating thickness (*l*_{org} in nm) at the surface level for *PhaseSep* case for SOAS 2013 simulation period.

Figure S4 – Average fraction of IEPOX-derived SOA in biogenic SOA mass at the surface level for: **(A)** *NonPhaseSep and* **(B)** *PhaseSep* case for SOAS 2013 simulation period.

Figure S5 – Spatial map of the mean percent relative change of PM_{2.5} organic carbon (OC) mass in *PhaseSep* case relative to the *NonPhaseSep* Simulation.

Figure S6 – PM_{2.5} organic carbon (OC) mass (μ g/m³) as a function of hour of the day. Nonaggregated performance statistics- Mean Bias (μ g/m³), % Normalized Mean Bias (NMB) and Spearman's Correlation coefficient (r²) of *NonPhaseSep* (green) and *HighHorg* (blue) relative to

observed (grey) PM_{2.5} OC mass: **A-** for Rural Centreville, Alabama site and, **C-** for Urban Jefferson Street, Atlanta, Georgia site. Non-aggregated performance statistics *NonPhaseSep* (green) and *PhaseSep2* (blue) cases relative to observed (grey) PM_{2.5} OC mass: **B-** for Rural Centreville, Alabama site and, **D-** for Urban Jefferson Street, Atlanta, Georgia site). Bars/shading indicate 25th to 75th percentiles. Lines indicate means. n= number of observation points.

Figure S7 – Spatial map of the mean percent relative change of PM_{2.5} sulfate mass in *Emission Reduction* sensitivity case relative to the *PhaseSep* Simulation.