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Abstract. Occurrences of devastating wildfires have been increasing in the United States for the past decades. While some 

environmental controls, including weather, climate, and fuels, are known to play important roles in controlling wildfires, the 

interrelationships between these factors and wildfires are highly complex and may not be well represented by traditional 

parametric regressions. Here we develop a model consisting of multiple machine learning algorithms to predict 0.5ox0.5o-10 

gridded monthly wildfire burned area over the South Central United States during 2002-2015 and then use this model to 

identify the relative importance of the environmental drivers on the burned area for both the winter-spring and summer fire 

seasons of that region. The developed model alleviates the issue of unevenly-distributed burned area data, predicts burned 

grids with Area Under the Curve (AUC) of 0.82 and 0.83 for the two seasons, and achieves temporal correlations larger than 

0.5 for more than 70% of the grids and spatial correlations larger than 0.5 (p<0.01) for more than 60% of the months. For the 15 

total burned area over the study domain, the model can explain 50% and 79% of the observed interannual variability for the 

winter-spring and summer fire season, respectively. Variable importance measures indicate that relative humidity (RH) 

anomalies and preceding months’ drought severity are the two most important predictor variables controlling the spatial and 

temporal variation of gridded burned area for both fire seasons. The model represents the effect of climate variability by 

climate-anomaly variables and these variables are found to contribute the most to the magnitude of the total burned area across 20 

the whole domain for both fire seasons. In addition, antecedent fuel amounts and conditions are found to outweigh the weather 

effects on the amount of total burned area in the winter-spring fire season, while fire weather is more important for the summer 

fire season likely due to relatively-sufficient vegetation in this season. 

1. Introduction 

Wildfire is an important process maintaining the balance of terrestrial ecosystems. Wildfire occurrence is controlled 25 

by a complex interaction among fuel, weather, and climate (Bowman et al., 2009; Pausas and Keeley, 2009). In recent decades, 

many regions of the world have experienced an increase in frequency and intensity of wildfires, which may be possibly 

connected to changes in regional climate (Balshi et al., 2009; Barbero et al., 2015; Carvalho et al., 2008; Flannigan et al., 2009; 

Westerling et al., 2006; Westerling, 2016). More intense and more frequent wildfire activities not only heighten ecosystem 



2 
 

vulnerability but also cause poor air quality (Jaffe et al., 2008; Pellegrini et al., 2017; Wang et al., 2018; Yue et al., 2015). 30 

Thus, it is imperative to understand how wildfires would respond to changes in environmental factors in a warming climate. 

Previous studies revealed the importance of several environmental factors on wildfires. Fuel availability and 

composition across regions can affect fire developments such as fire likelihood and spread efficiency (Nunes et al., 2005; Parks 

et al., 2012). Weather influences fuel moisture by changing precipitation and humidity and controls fire spread through winds. 

Long-term climate change can alter both fuel and weather conditions, for example by adjusting vegetation distributions and 35 

the frequency of fire-favorable atmospheric conditions (Heyerdahl et al., 2008; Keyser and Westerling, 2017; Morgan et al., 

2008; Zubkova et al., 2019), therefore changing fire regimes. Past studies also highlighted that the complex interplay between 

fuel, weather, climate, and wildfires can vary depending on spatial scale, fire size, region, and season. For instance, the 

relationships between fire activity and the environmental controls can exhibit complex nonlinearities across the spatial scale 

gradient (Peters et al., 2004). Fuel and topography mainly regulate fires at a local scale, while weather and climate control fires 40 

at a broad spatial scale (Parks et al., 2012). In terms of fire size, it was found that the major controlling factors could shift from 

fuel and topography to weather as fire size increases in boreal forests (Liu et al., 2013; Fang et al., 2015). In the western 

Mediterranean Basin where land heterogeneity is large, influences of fuel can outweigh influences of climate and weather on 

large fires (Fernandes et al., 2016). Therefore, it is challenging to examine the relative importance of the environmental drivers 

on wildfires due to the complex interrelationships among them.  45 

One common method to explain the relationships between fire regimes (e.g. fire sizes or fire occurrences) and 

environmental factors is regression. This method is also used to evaluate the relative importance of different environmental 

controls (Littell et al., 2009; Slocum et al., 2010; Parisien et al., 2011; Yue et al., 2013; Liu & Wimberly, 2015; Fernandes et 

al., 2016). Among a wide range of regression techniques used, non-parametric machine learning algorithms have emerged as 

an important tool to predict wildfires because they rely on fewer pre-assumptions about the data. Bedia et al. (2014) used non-50 

parametric multivariate adaptive regression splines (MARS) to model the monthly burned area for the phytoclimatic zones in 

Spain of sizes ranging from 25 km x 25 km to 100 km x 100 km. Amatulli et al. (2013) used two machine learning approaches, 

Random Forest (RF) and MARS, to estimate monthly burned area in five countries in Europe with a spatial resolution ranging 

from 300 km x 300 km to 1000 km x 1000 km. In these studies, the machine learning methods were used to estimate total 

burned area aggregated over a large-scale domain, e.g. on an ecoregion or a country scale (Table S1). However, fewer studies 55 

have explored the utility of machine-learning methods in resolving the within-domain and grid-level relationships between 

fires and the environmental drivers. A particular challenge in predicting burned area of fires at the grid level across a broad 

region relates to the uneven distribution of burned area both spatially and temporally, where the number of grids of large 

burned area is much smaller than the number of those with small or zero burned areas. For example, Steel et al. (2015) showed 

that for fires in California, small fires (< 25 ha each) contributed to 87% of the total number of grids burned but only 17% of 60 

the total burned area, whereas large fires (> 150 ha each) accounted for only 3% of the total number of burned grids but made 

up 64% of the total burned area. Thus, at the grid level the majority class is non-burn wildlands or small fires, while the 
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minority class is large fires. As most data-driven regression algorithms, parametric or non-parametric, would favor the majority 

class, large fires will be underpredicted for grid-level predictions. 

In this study, we develop a model consisting of multiple machine learning techniques to predict wildfire burned area 65 

at the grid level over the vegetation-rich and thus fire-prone region of the South Central United States (US), which encompasses 

four states -Texas, Oklahoma, Louisiana, and Arkansas – as shown in Figure 1.  The study region is chosen for several reasons. 

First, this region is composed of similar vegetations which are plains and oak-hickory forests. Second, the vegetation-rich 

region of the South Central US is fire-prone and has experienced periodically large wildfires in recent years, such as the 2011 

Texas fires (Long et al., 2013; Nielsen-Gammon, 2012), but the region as a whole has been much less studied compared to the 70 

western US.  Third, this region is projected to have the highest risk of wildfires in 2031-2050 across the continental US (An et 

al., 2015; Fann et al., 2018). In terms of the prediction method, the integrated machine learning model aims at mitigating the 

problem of uneven burned area and improving the accuracy of predicting wildfire burned area at a grid-scale of 0.5° x 0.5°. 

Using the prediction model developed here, the goal of this paper is to estimate the relative importance of different 

environmental factors on wildfire burned area in the study region which would be useful for future fire prediction as well as 75 

understanding the linkage between wildfires and climate change.  

The study period is from 2002 to 2015. For each year, we predict gridded wildfire burned area at the monthly scale 

for the typical bimodal wildfire seasons over the region (Figure S1): the winter-spring fire season from January to April and 

summer fire season from July to September (Zhang et al., 2014). Wildfires during the winter-spring wildfire season are 

typically associated with dry and strong winds resulting from the large-scale low-pressure systems (Heilman et al., 1998; Jones 80 

et al., 2013), while wildfires in the summer are mostly driven by the abundance of dry or dead vegetations produced from the 

dry season (Jones et al., 2013). These two seasons contribute 76% of the annual total burned area, indicating that natural 

environmental conditions in these months are most conducive for wildfires. While wildfires do occur outside the fire seasons, 

their lower frequency implies that non-natural factors (e.g. human actions) can be relatively more important. As our study does 

not focus on human factors, we choose to exclude other months of the year. 85 

The rest of the paper is organized as follows: Section 2 introduces data incorporated into the model. Section 3 

describes the developed model and validation method. Section 4 presents the results of model validation and evaluation. In 

section 5, we analyze the relative importance of individual variables and the environmental controls at different spatial scales. 

Discussion and conclusion are given in section 6. 

 90 

2. Data 

2.1 Wildfire burned area  

The model predicts wildfire burned area at a grid-scale of 0.5°×0.5° over the study region. Wildfire burned area is 

chosen as the target variable because it is a widely-used parameter for quantitative assessment of fire danger and fire impact 
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(Amatulli et al., 2013; Balshi et al., 2009; Yue et al., 2013). Wildfire information over the study period (2002-2015) is obtained 95 

from the Fire Program Analysis Fire-Occurrence Database (FPA-FOD). The FPA-FOD collects daily wildfire reports from 

federal, state, tribal, and local governments. The dataset includes wildfire burned area, fire location in longitude and latitude, 

and fire discovery date from 1992 to 2015 (Short, 2017). The FPA-FOD fire data excludes prescribed fires except for the 

prescribed fires that escape their planned perimeters and become wildfires. A known caveat of this database is that it does not 

include some small fires that occur on private lands. Short (2014) reported that for the period of 1992-1997 the national total 100 

number of wildfires from the FPA-FOD is about 30% lower compared to that from the US Department of Agriculture Forest 

Service (USFS) Wildfire Statistics, although the national total burned area is consistent between the two datasets. Thus, our 

model will not be able to predict those small fires missing from the FDA-FOD as such information is not in the training dataset. 

The FPA-FOD wildfire data is point data at a daily time step. As the prediction model deals with the monthly total 

burned area at a spatial resolution of 0.5°×0.5°, we aggregate the daily point burned area into 0.5°×0.5° grid cells based on fire 105 

longitude and latitude and sum the burned area in each grid by month. The resulting dataset of monthly burned area has nearly 

70% of the grids with burned area less than 10 ha or non-burned. To reduce skewness and improve data symmetry, we apply 

the log transformation function ln(x+1), where x is the gridded monthly total burned area. The log-transformed burned area is 

the target variable of the model. 

2.2 Predictor variables 110 

Based on previously published studies, we collect a number of predictor variables that are thought to influence 

wildfire burned area (Fang et al., 2015; Keyser and Westerling, 2017; Liu and Wimberly, 2015; Riley et al., 2013; Yue et al., 

2013) and group them into four categories of environmental controls (Table 1): weather, climate, fuel, and fixed-geospatial 

variables. These predictor variables are listed in Table 1 and described below. All the variables, including continuous and 

discrete thematic variables, are resampled to a spatial resolution of 0.5°× 0.5° by the nearest neighbor resampling method 115 

(Baboo and Devi, 2010). The nearest neighbor resampling method assigns a value to the new grid according to the value of 

the original grid closest to the center of the new grid. The resampling method has the advantages of being efficient and not 

changing any value from the original dataset. 

 

2.2.1 Weather variables  120 

The meteorological data are obtained from the North American Regional Reanalysis (NARR) with a spatial resolution 

of 32 km x 32 km (Mesinger et al., 2006). The weather variables include the monthly total accumulated precipitation and the 

monthly means of the following variables: daily precipitation, daily average and maximum temperature, zonal (U) and 

meridional (V) components of wind at 10 m, and daily average and minimum relative humidity (RH). In order to select extreme 

conditions that are likely to induce wildfires on a sub-monthly time scale, we also include the number of consecutive days 125 

without rainfall within a month, which is based on daily precipitation from the NARR data. Another extreme weather pattern 
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conducive for wildfires is drought (Gudmundsson et al., 2014; Riley et al., 2013; Turco et al., 2017). Drought depicts the 

extreme condition of water deficit in the coupled land-atmosphere system that can be driven not only by lack of precipitation 

but also by excessive evaporation. We use the Standard Precipitation and Evaporation Index (SPEI) to represent drought 

intensity (Vicente-Serrano et al., 2009). The SPEI incorporates both precipitation and potential evapotranspiration to estimate 130 

climatic water balance at different time scales (1 to 48 months). In this study, we use the 1-month SPEI from the global SPEI 

database (http://spei.csic.es/database.html) with a spatial resolution of 0.5°× 0.5°. Positive values of SPEI represent wetter 

than normal conditions and negative values indicate conditions that are drier than normal. 

Weather conditions in the preceding months are also known to influence fire development. For example, an increase 

of precipitation in the preceding months can promote biomass growth and provide fuels for a widespread of larger wildfires in 135 

a later month (Fréjaville and Curt, 2017; Littell et al., 2009). To consider such lagged effects, for a given month t, we calculate 

the averages of the aforementioned weather variables from the months t-1 to t-12. We then include those lagged variables that 

have correlation coefficients (r) larger than 0.5 with wildfire burned area of month t but are not strongly correlated with the 

same variables of month t (r < 0.5). For the winter-spring fire season, the antecedent variables that pass this criterion are the 

monthly mean of daily precipitation of months t-1 and the average SPEI of the months t-1, t-1 to t-2, t-1 to t-3, t-1 to t-4, t-1 140 

to t-5, and t-1 to t-6. For the summer fire season, the selected antecedent variables are the average of monthly mean temperature 

for months t-1 and t-1 to t-2, monthly mean of daily precipitation for months t-1, t-1 to t-2 and t-1 to t-3, and mean SPEI of 

months t-1, t-1 to t-2, and t-1 to t-3. 

 

2.2.2 Climate variables 145 

Inputs of climate variables to the model include both climate anomalies and 22-year (1979-2000) means and standard 

deviations of selected meteorological variables from the NARR data. Here climate anomalies refer to the departure of monthly 

mean meteorological variables from their long-term averages over 1979-2000, thereby representing the effects of climate on 

meteorological conditions. The climate anomalies are calculated for the monthly total precipitation and monthly means of daily 

average precipitation, daily average and maximum temperature, average and minimum RH. The long-term average and 150 

standard deviation of meteorological variables characterize the spatial and temporal patterns of the mean climate conditions, 

which can determine the typical vegetation of the study region and hence influence fire occurrence and size (Keyser and 

Westerling, 2017). We use the 22-year means and standard deviations of monthly total accumulated precipitation and monthly 

means of daily average and maximum temperature, and daily average precipitation. As climatological means and standard 

deviations do not vary with time, they are grouped with the geospatial variables later in the study as the category of fixed 155 

variables. 
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2.2.3 Fuel variables 

Fuel variables are selected to estimate the fuel effect on burned area and these variables include monthly mean of 

Leaf Area Index (LAI), sum of neighboring LAI, and soil moisture. The LAI is the ratio of the total one-sided area of green 160 

leaf area per unit ground surface area, which has been widely used to describe the structural property of a plant canopy (Watson, 

1947; Chen and Black, 1992). Additionally, LAI is correlated with important metrics of canopy fuel loads, such as canopy 

bulk density (Keane et al., 2005; Steele-Feldman et al., 2006). The monthly mean LAI at a spatial resolution of 500 m is 

obtained from MODerate resolution Imaging Spectroradiometer (MODIS) instruments (Myneni et al., 2015). Besides local 

LAI values, to capture the effects of spatial autocorrelations, we consider each grid cell as the center of a 3-by-3 grid matrix 165 

and compute the summation of the LAI from the center grid’s eight neighboring grids. This summation is referred to as the 

‘sum of neighboring LAI’ and included as a predictor variable. The lagged effects of fuel buildup in the preceding months are 

expected to influence wildfire occurrence and size. Using the same criteria to select antecedent weather variables (section 

2.2.1), the averages of LAI and sum of neighboring LAI for the months t-1 to t-6 are selected as antecedent fuel variables for 

the winter-spring fire season, but no such variables are included for the summer fire season because none passes the selection 170 

criteria. 

Fuel moisture is a critical property for evaluating fire danger. As fuel moisture data is limited, soil moisture is often 

used as an indicator of fuel moisture because of the strong correlation between the two (Krueger et al., 2016). Here, we use 

the monthly surface soil moisture (0-10 cm) from the Noah land-surface model for Phase 2 of the North American Land Data 

Assimilation System (NLDAS-2) with a spatial resolution of 0.125°× 0.125° to represent the influence of fuel moisture 175 

(Mocko., 2013; Xia et al., 2012).  

 

2.2.4 Geospatial variables and population 

Lastly, population and two geospatial variables are used as predictors, including ecoregions and land cover types 

which are chosen to capture the effects of land use and ecosystem similarity on wildfire burned area. Land cover mainly 180 

describes the physical material at the surface of the earth. The land cover data at the spatial resolution of 30 m is obtained from 

the 2011 Landsat-derived land cover map from the National Land Cover Database (NLCD) (https://www.mrlc.gov) (Homer 

et al., 2020). The ecoregion data is obtained from the United States Environmental Protection Agency (US EPA) 

(https://www.epa.gov/eco-research/ecoregions) (Omernik, 1995; Omernik and Griffith, 2014). The ecoregions denote areas of 

similarity in the mosaic of biotic, abiotic, terrestrial, and aquatic ecosystem components. Population density data in the year 185 

2010 from the U.S. Census Bureau (https://www.census.gov/geo/maps-data/data/tiger.html) (U.S. Census Bureau, 2010) is 

used to estimate the influence of present-day human management practices and human activities on wildfires. 
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3. Model 

3.1 Model description 190 

One major challenge in wildfire prediction is the highly uneven distribution of burned area where the number of grids 

with large burned areas is typically much smaller than the number of grids with small or zero burned areas (Figure S2a). For 

the study region (red box in Figure 1), grids without any fire occurrence in combination with those of only small fires (< 25 

ha) take up 79% of the total number of the grids but correspond to only 1% of the total burned area. By contrast, grids with 

the large burned area (>150 ha) account for 84% of the total burned area but only 6% of the total number of grids. For such 195 

unevenly-distributed data, standard machine learning methods usually favor the majority class (i.e. non-burned or small fires), 

leading to the low prediction accuracy of the minority class (i.e. large fires) (Krawczyk, 2016). To alleviate the low bias toward 

large fires, we develop a model consisting of multiple steps that address the uneven data issue.  

Figure 2 demonstrates the structures and processes of our model, which has four steps and uses three machine learning 

algorithms. First, for each data grid, given the predictor variables, we use the quantile regression forest (QRF) to predict a 200 

distribution of burned area at the targeted percentiles which are chosen at 45, 55, 65, 85, 95, and 99 in this step. The percentiles 

here refer to the relative position of the predicted burned area in the cumulative distribution of all the burned area data and 

they are chosen to include the whole conditional distribution. Second, for all the grids, we predict if a grid burns or not by 

using the logistic regression model and the same set of predictor variables as in the first step. Third, for the grids that are 

predicted to burn, instead of predicting burned area directly, we use a random forest (RF) model to predict the percentile of 205 

burned area relative to the training set. After all the predicted-burn grids obtain their predicted percentiles of burned area by 

the RF, the test dataset is divided into six sub-groups according to their predicted percentiles: {(39,49), (50,59), (60,69), 

(70,79), (80, 89), (>=90)}. The percentile groups are chosen to align with the six percentiles in the first step. The first three 

percentiles correspond to the median of the first three percentile groups. For example, the first percentile group (39, 49) has a 

median percentile of 45, the first percentile of predicted wildfire burned area from the first step. The last three percentiles (85, 210 

95, and 99) from the first step correspond to the last three percentile groups of (70, 79), (80, 89), and (>=90), respectively, 

although they lie outside the upper bounds of corresponding subgroups. This is based on the assumption that grids with the 

larger predicted burned area (predicted percentile > 70) in the testing set will have more right-shifted burned area distributions 

than the distributions of the whole training set, as shown in Figure S3. In step 4, for the grids in a given subgroup, they are 

assigned to the burned area value at the corresponding percentiles as determined by the predicted distribution generated from 215 

the first step. Specifics of the machine learning algorithms and technical details of the prediction model are described in the 

subsections below. 

Our approach alleviates the unevenness data issue for two reasons. First, the majority of zero-burn grids are separated 

by the second step. Second, for the grids predicted to burn, we predict the relative position (i.e. percentiles) of the burned area 

based on the training set. As Figure S2 and Table S2 show, the distribution of percentiles is less skewed compared to the 220 

burned area distribution. Thus, the unevenness of the burned area is less severe when predicting the percentiles than predicting 
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the burned area directly. Given the possible collinearity between the predictor variables, we choose the logistic model and RF 

model which are shown to work reasonably well under moderate collinearity (correlation coefficient < |0.7|) (Dormann et al., 

2013). We verify that the correlation between any pairs of the time-varying predictor variables is less than 0.7, except for the 

variables of the antecedent SPEI. We choose to keep the antecedent SPEI covering the different ranges of months to represent 225 

the different pre-fire drought conditions which are expected to play an important role for wildfires.  For the winter-spring fire 

season, the pre-fire season starts in October and can range from 3 to 6 months for the start (January) and end (April) of the fire 

season, respectively. For the summer fire season, we use May as the start month of the pre-fire season and the pre-fire season 

ranges from 1 to 4 months for the start (July) and the end (September) of the summer fire season, respectively. 
 230 

3.1.1 Random forest regression 

Random forest (RF) is an ensemble-learning algorithm built on decision trees. Each tree is built using the best split 

for each node among a subset of predictors randomly selected at the node (Liaw and Wiener, 2002). The best split criterion is 

based on selecting the variables at the nodes with lowest Gini Index (GI), which is defined as GI ( 𝑡!(𝑥") ) = 1- 

∑ 𝑓(𝑡!(𝑥"), 𝑗)#
$%&

2, where 𝑓(𝑡!(𝑥"), 𝑗) is the proportion of samples with the value xi belonging to leave j as node t. Two 235 

parameters can be adjusted to optimize the RF model, including the number of trees grown (ntree) and the number of predictors 

sampled for splitting at each node (mtry). The RF regression model first draws ntree bootstrap samples from the original dataset. 

For each sample, at each node of a tree, mtry predictors are randomly chosen from all the predictors and then the best split from 

among the predictors is determined at each node according to GI. In this study, we have ntree of 1200 and mtry of 8 for the 

winter-spring fire season and ntree of 1500 and mtry of 7 for the summer fire season to obtain the best prediction accuracy. The 240 

predicted value of an observation is the average of the observed values belonging to the leaves of ntree trees. Here, we use the 

RF model to predict percentiles of burned area for the grids that are predicted to burn.  

The benefit of applying the RF model is that it can provide the variable importance that measures the strength of 

individual predictors. The variable importance is measured by the increase in the mean square error (%IncMSE) and the 

increase in node purities (IncNodePurity). The %IncMSE is calculated by comparing the mean square error with and without 245 

permuting variables for each tree, and the variables with greater values of %IncMSE are more important. As for the 

IncNodePurity, the changes of residual sum of square (RSS) before and after the split are first derived at each split, and the 

final IncNodePurity of a variable is obtained by summing over the RSS of all the splits that include the variable over all trees. 

Thus, a larger IncNodePurity represents higher variable importance. 

 250 

3.1.2 Quantile regression forests 

Quantile regression forests (QRF) are an extension of the RF (Meinshausen, 2006). QRF develops trees in the same 

way as RF, but instead of calculating the average of the values from leaves of the trees to obtain a single predicted value, the 
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QRF estimates the conditional distribution of a target variable. The conditional distribution is calculated by averaging the 

conditional distributions from all the trees and the predicted quantiles or percentiles are derived from the final empirical 255 

distribution function. Here we choose to predict percentiles at 45, 55, 65, 75, 85, 95, and 99 as described above. These 

percentiles are selected because they can represent the full spectrum of fire sizes ranging from small to extremely large ones. 

The percentiles less than 45 are typically zero-burn, so the percentile of 45 is the lowest percentile that can possibly record 

both zero-burn and very small burned area for each grid.  

 260 

3.1.3 Logistic regression model 

 Logistic regression is used to estimate the probability of wildfire occurrences in a grid cell by the statistical 

relationships between wildfire occurrences and the predictor variables. Logistic regression is defined as 𝑃" =
&

&'(!"#
 and 𝜂" =

𝛽) + 𝛽&𝑋"& + 𝛽*𝑋"* +⋯+𝛽+𝑋"+, where Pi represents the probability of an occurrence of wildfire in a grid cell i, hi is the 

linear combination of the predictor variables weighted by their regression coefficients (b), xij is the value of the predictor 265 

variable j of the grid i, and 𝛽) is the constant. The logit function can be expressed as log ( ,
&-,

) = 𝑥".𝛽, where 𝑥".is the vector 

of the predictor variables and b is the vector of the parameters. Values of P greater than 0.4 are considered to be an occurrence 

of wildfires and those equal to or less than 0.4 are interpreted as nonoccurrence of wildfires. If a grid is classified not to burn, 

the predicted burned area is zero and that grid will not be processed further. On the other hand, if a grid is classified to burn, 

it would be analyzed by the RF model to predict the burned area percentiles. 270 

 

3.2 Validation method 

We apply 10-fold cross-validation (CV) technique to evaluate the model performance and to avoid overfitting. The 

entire dataset (2002-2015) is randomly divided into 10 equal-sized splits. For each round of CV, the model is trained with nine 

splits of the data and the trained model is then used to predict burned area at the remaining split.  275 

Classification of burned or unburned grids is evaluated by the accuracy, precision, recall, and F1-score. Precision and 

Recall are defined in Equation (1) and (2): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ./0(	234"5"6(
./0(	234"5"6('7894(	234"5"6(

 ,                   (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = ./0(	234"5"6(
./0(	234"5"6('7894(	:(;8"56(

,                  (2) 

where true positive is the number of burned grids correctly predicted, false positive is the number of grids which are unburned 280 

but are predicted as burned, and false negative is the number of grids that are burned but are predicted not to burn. The F1 

score measures a model’s accuracy that combines precision and recall: 

𝐹1 = *
/(<899!$'2/(<"4"3:!$

,                              (3) 
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F1 score has a maximum value of 1 and a minimum value of 0, and the higher F1 indicates a higher balance between Precision 

and Recall. In addition to the aforementioned evaluation criteria, we use the receiver operating characteristic (ROC) curve, 285 

and the area under the curve (AUC) statistics to evaluate the classifier (Metz, 1978). The ROC curve shows how well the 

model can distinguish between the true positive rate (TPR) and the false positive rate (FPR), where TPR and FPR are expressed 

by Equation (4) and (5): 

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒 = 	 ./0(	234"5"6(
./0(	234"5"6('7894(	:(;85"6(

,                 (4) 

𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒 = 7894(	234"5"6(	
7894(	234"5"6('./0(	:(;85"6(

,                 (5) 290 

 The AUC is the area under the ROC curve and it ranges from 0 to 1. The greater the AUC, the better discrimination between 

true positive and true negative. 

Burned area predictions are evaluated using statistical indicators such as the coefficient of determination (R2), mean 

absolute error (MAE), and root mean squared error (RMSE) between the predicted and observed wildfire burned areas. The 

evaluation is done for the winter-spring fire season and summer fire season separately. The prediction performance is also 295 

quantified in terms of the model ability in reproducing temporal variation of burned area for each grid and spatial patterns of 

burned area across all the grids of the study domain. Details on the calculation of the spatial and temporal correlations are 

described in the Supporting Information. 

 

4. Model validation and evaluation 300 

Here we present the validation results at two spatial scales: the grid-scale of 0.5°× 0.5° and the large-domain scale of 

700 km x 700 km corresponding to the size of the study domain (red box in Figure 1). The grid-scale prediction of all possible 

outcomes (i.e., unburned, small burned, and large burned area) is a unique strength of our model. To the best of our knowledge, 

only few previously published studies included unburned and small burned grids into the prediction of wildfire burned area at 

a grid-scale as fine as 0.5°× 0.5°. At the large-domain scale, we will compare our model performance with prior studies that 305 

predicted total burned area of an ecoregion or a country. 

Table 2 lists a variety of statistics representing the model performance at the grid-scale for the winter-spring fire 

season and summer fire season. The prediction performance of the classifier (i.e. the second step in the model) is evaluated by 

the ROC curves (Figure S4), the area under the ROC curve (AUC), accuracy, recall, precision, and F1-score. The ROC curves 

of both fire seasons steer toward the upper left corner, indicating good performance of the model with a high detection rate of 310 

fires and a low false alarm. The AUCs for the two fire seasons are 0.82 and 0.83. The accuracy and F-1 score are 0.74 and 

0.79, respectively for the winter-spring fire season and 0.74 and 0.77 for the summer fire season. These results indicate the 

model is capable of classifying burned grids and unburned grids with a good balance of recall and precision. 
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In terms of burned area prediction at the grid-scale, the R2 reaches 0.42 and 0.40 for the winter-spring and summer 

fire season respectively. MAE and RMSE are 1.13 and 8.37 respectively for the winter-spring fire season, and 0.57 and 4.26 315 

for the summer fire season. Before comparing these prediction statistics with previously published studies that predicted 

gridded burned area, it is important to note that the prediction accuracy will depend on the temporal scale (e.g. monthly or 

annual) and grid resolution at which the prediction is made. The larger spatiotemporal scales are expected to have a better 

prediction performance. Regarding the type of grids to be predicted, the most challenging case is the prediction including all 

possible outcomes of a given grid (i.e., unburned, with small burned areas, and with large burned areas). As fewer prior studies 320 

of the similar nature as ours predicted all possible outcomes (i.e. not only large burned areas but also unburned and small 

burned cases) at the grid-level and none of these studies targeted the South Central US, we choose to compare our model 

performance with previously published models that predicted gridded burned area in terms of the approaches, the temporal 

and spatial resolution, and the percent of variance explained by the model, regardless of their study regions, periods, methods, 

and predictors. Chen et al. (2016) used ocean climate indices to estimate annual burned area at the grid resolution of 1° x 1° 325 

but their prediction was only for those grids with non-zero annual burned area. They achieved a prediction R2 of less than 0.3 

(correlation coefficient r around 0.55) over the southern US (SUS). Using boosted regression trees, Liu and Wimberly (2015) 

obtained a higher R2 of 0.76 between climate variables and burned area over the western US, but their investigation was limited 

to only extremely large fires (> 405 ha) and was at a 1° x 1° resolution and annual timestep. Compared to those studies, our 

model targets a more challenging prediction (i.e. prediction at a finer spatial and temporal scale and for all the grids), yet 330 

achieves a comparable if not better performance at the grid scale. 

Considering there are very few studies that predicted burned area by grids and at the same time considered unburned 

grids or grids with small fires, we extend the comparison to past studies predicting burned area of regions with the similar 

spatial scales of 0.5° x 0.5°. Urbieta et al. (2015) used Multiple Linear Regression (MLR) to predict the annual burned area of 

provinces and national forests in the southern countries of the European Union (EUMED) and Pacific Western US (PWUSA), 335 

with the mean domain size of 108 km x 108 km. Their reported median R2 is 0.28 for EUMED and 0.22 for PWUSA, smaller 

than our value (0.4). Using the MLR method, Carvalho et al. (2008) predicted monthly burned area of Portuguese districts of 

sizes ranging from ~ 25 km x 25 km to 100 km x 100 km and their R2 is between 0.43 to 0.80. The better model performance 

was only for some districts with evenly-distributed burned area, whereas the districts with highly right-skewed burned area 

distributions (Evora and Portalegre) had prediction R2 of 0.43~0.45. Bedia et al. (2014) predicted monthly burned area of the 340 

phytoclimatic zones in Spain (~25 km x 25 km to 100 km x 100 km) by using multivariate adaptive regression splines (MARS) 

and obtained R2 ranging from 0.01 to 0.37. In comparison with these results, the R2 of 0.42 and 0.40 that we achieve for the 

two fire seasons at a grid resolution of 0.5° x 0.5° is a significant improvement for situations with unevenly-distributed burned 

area. In addition, by predicting all possible outcomes for all the grids within a large domain, our model framework would be 

more flexible and practical to be applied to other domains. 345 

The aforementioned statistics demonstrate the general capability of our four-step model in predicting gridded burned 

area over the study period. We select three specific years to further illustrate the model performance: 2011 with the largest 
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domain-mean gridded burned area, 2008 and 2014 with the domain-mean gridded burned area close to the 14-year-mean for 

the winter-spring and summer fire season respectively (Table S4). Figure 3 shows the selected CV-predicted and observed 

monthly burned area of these years for each fire season. The R2 is 0.42, 0.51, and 0.66 for 2011 (combing both seasons), 2014 350 

(the winter-spring season), and 2008 (the summer fire season), respectively, after excluding misclassified grids. MAE of 2011, 

2014, and 2008 are 5.25, 0.77, 0.43 and RMSE are 21.06, 5.87, and 1.75. The detailed statistics of the model performance for 

each year are also shown in Table S5. The results show that the model has a better performance in predicting gridded burned 

area for normal years of 2008 and 2014 than for the exceptionally large wildfire year of 2011. Although larger MAE and 

RMSE are shown in 2011 (peak year), our model predicts significantly larger mean gridded burned area for the peak months. 355 

For 2011, the large burned area can be well modeled but the small burned area (log of burned area < 2) is overpredicted. This 

can be explained by the fact that the extremely hot and dry weather during 2011 caused fire-favorable conditions across the 

study domain. Due to the lack of reliable and detailed information about ignition and suppression, it is difficult for the model 

to discriminate between small and large fires given widespread extreme drought conditions across the whole domain during 

2011 (Long et al., 2013; Nielsen-Gammon, 2012).  360 

The model performance is further evaluated in terms of its ability in reproducing the spatiotemporal patterns of 

monthly mean burned area for the two fire seasons (Figure 4). The correlation coefficient between the 14-year mean observed 

and predicted burned area is 0.82 and 0.80 for the winter-spring and summer fire season, respectively. For the whole study 

period, more than 60% of the months have a spatial correlation larger than 0.5 for both fire seasons between the observed and 

predicted monthly burned area. It is noteworthy that such performance is achieved without introducing any coordinate variables 365 

like longitude or latitude as predictors. This indicates the chosen predictors contain sufficient information to capture the spatial 

heterogeneity of the environmental factors and thus the framework of the model could be easily adopted for other regions, 

making it possible to be incorporated into climate models in future applications. Temporally, more than 70% of the grids have 

a correlation higher than 0.5 between the observed and predicted time series of burned area (combined the two fire seasons) 

(Figure S5). These results demonstrate the model has a certain ability in predicting both spatial and temporal variation of the 370 

burned area at the grid-scale across the study domain. 

Even though bias may be introduced in the multi-steps model, the developed four-step model can achieve higher 

accuracy and alleviate the issue of uneven-distributed dataset. To prove that, we compare the model performance of our four-

step model with the prediction performance of simulations using MLR, only the RF model and another decision-tree-based 

ensemble machine learning algorithm called eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016). The results 375 

are listed in Table S2 and the description as well as the parameters of XGBoost are included in supplementary. Our four-step 

model has a lower MAE, which is 27% and 33% lower than the MLR model for the winter-spring and summer fire season, 

respectively. Compared to the RF model, our four-step model has a lower MAE by 15% and 19% for the winter-spring and 

summer fire season, respectively. Compared to the XGBoost model, the MAE from our four-step model is 11% and 15% lower 

for the two fire seasons. The distribution of MAE from the 10-fold cross-validation shows that our four-step model has a 380 

smaller median MAE but a larger range of MAE compared to other models (Figure S6). In addition, the distribution of 
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percentiles is more uniform than the distribution of the burned area, as shown in Figure S2 and the skewness value. Details 

about the calculation of skewness are described in Supporting Information. Larger positive skewness value indicates a more 

highly right-skewed distribution. The skewness of the burned area is 37.4 and 33.8 for the winter-spring and summer fire 

season while the skewness of percentiles is 0.7 and 0.96, showing that the strategy of the four-step model can effectively reduce 385 

unevenness of the distribution.     

In addition to the grid-scale statistics, we evaluate the model performance at the large-domain scale by adding up all 

the grid-level predictions to obtain the total burned area of the study domain by months. Figure 5 shows the time series of the 

predicted total burned area over South Central US in comparison to the observed ones for the two fire seasons. The domain-

scale prediction explains 50% and 79% of the month-to-month variability of burned area for the winter-spring and summer 390 

fire season, respectively. Higher R2 for the summer fire season can be explained by the stricter fire regulations during summer 

in the southern states, such as Texas (While and Hanselka, 2000). For the summer fire season, under strict fire regulations, 

environmental factors such as high temperature or low relative humidity can play a more important role in wildfire 

development. For the winter-spring fire season, more human perturbations may be involved. As the human factor in the model 

does not capture such perturbation, less variability is explained by the model for the winter-spring season. MAE of the monthly 395 

burned area across the whole domain is 251.3 km2 for the winter-spring fire season and 100.7 km2 for the summer fire season. 

Generally, our model is able to capture the interannual variability of burned area and the prediction accuracy of our model in 

terms of R2 is equivalent to or better than most of the published studies on the ecoregion scale or country scale, as shown in 

Table S1. 

 400 

5. Contributions of environmental factors to predicted wildfire burned area 

5.1 Individual variable importance at grid scale 

Before discussing the environmental controls on wildfire burned area across the study domain, it is useful to 

understand the dominant factors controlling the burned area at the grid scale. One advantage of the random forest approach is 

that it provides the variable importance metrics that can measure the power of predictor variables in the prediction. Figure 6 405 

shows the top 14 predictors ranked by %IncMSE to illustrate the intricate relationships between fires, weather, climate, and 

fuel. The top 14 variables are chosen because they represent the top quarter (25%) of selected predictor variables. In addition, 

a sensitivity test shows that the largest drop in the %IncMSE occurs around the 15th variable ranked by importance, as shown 

in Table S6. To ensure the reliability of the inferred importance of predicted factors, we conduct 50 times 10-fold cross-

validation by randomizing the order of all the data each time. Figure S7 shows the distributions of %IncMSE for each variable 410 

ranked by the median %IncMSE. Even though the numerical values of feature importance vary in different runs, the variable 

ranks by median values stay the same, indicating the robustness of the feature importance identified by the RF model. 
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For both fire seasons, RH anomaly is the most important predictor of wildfire burned area at the grid-scale (Figure 

6). This finding broadly supports past studies that highlighted the importance of RH on burned area (Riley et al., 2013; Ruthrof 

et al., 2016). Yet, our model particularly reveals the response of fire burned area to the changes in RH anomaly, which is a 415 

climate variable as opposed to a weather variable. The rhum is the actual RH which can vary by location and season, while 

RH anomaly measures the departure of rhum from its long-term average due to climate change and/or climate variability. For 

the study domain and time period, the correlation between RH anomaly and RH is 0.66. Although they have a moderate 

correlation, their values have different physical meanings and both of them are included in the model. For example, for grids 

with rhum of ~70%, rhum_anomaly can range from -11.16% to 15.35%. For the same rhum value of ~70%, positive 420 

rhum_anomaly indicates a relatively wetter condition and negative rhum_anomaly a relatively dryer condition compared to 

their long-term condition in the past.  The variable importance metric highlights that RH anomaly, which indicates the changes 

of the fire-season RH relative to its historical climatology, ranks higher than the actual value of the fire-season RH.  

While both fire seasons have RH as the top driver of burned area, notable differences are found for the relative 

importance of other variables between the two fire seasons. For the summer fire season, temperature anomaly and maximum 425 

temperature anomaly are the other two climatic factors besides RH anomaly that are included in the top 14 variables. While 

RH anomaly and temperature anomaly are expected to correlate to some extent, their negative correlation is stronger in the 

summer fire season (r= -0.7) than in the spring fire season (r= -0.2). This highlights the importance of the stronger combined 

effects of RH and temperature anomalies on burned area during summer, when higher temperature coupled with lower relative 

humidity can cause drier fuel and create favorable conditions for fires to start, spread, and burn more intensely (Williams et 430 

al., 2013; Holden et al., 2018). 

For the winter-spring fire season specifically, the long-term averages of monthly total precipitation and monthly 

means of daily precipitation (apcp_avg and asum avg) are identified as the key climate variables (Figure 6a). These two 

variables represent the precipitation normal, indicating the amount of available moisture that could affect fuel distributions 

and tendency of fire activities (Keyser and Westerling, 2017; Westerling and Bryant, 2008). The averaged SPEI of the 435 

preceding 4 months is the second most important variable and the highest-ranked weather variables, which is even more 

important than the SPEI during the fire season. The averaged SPEI of the preceding 3 months and 5 months are also included 

in the top 14 variables. The 3-5 months’ time lag coincidentally corresponds to the interval between the two fire seasons. Thus, 

our results indicate that wildfire burned area in this season is highly dependent on the pre-fire-season drought conditions, 

which is in agreement with prior studies (Scott and Burgan., 2005; Riley et al., 2013; Turco et al., 2017). The variable 440 

importance by the RF is supported by the partial dependence plot which shows the marginal effect of a variable on the 

prediction performance (Friedman, 2001). Figure S8 shows the partial dependence plots for the burned area model and the top 

two variables of RH anomaly and mean SPEI of the preceding 4 months for the winter-spring fire season. For these two 

variables, there is a significant drop of fitted burned area when RH anomaly is larger than -1 and mean SPEI of the preceding 

4 months larger than -0.6, demonstrating the large sensitivity of the predicted burned area to the top-ranked variables. 445 

Interestingly, the average of LAI and sum of neighboring LAI for months t-1 to t-6 are the only fuel variables that are selected 
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among the top 14 variables in the winter-spring fire season (Figure 6). Although these two variables rank below others among 

the top 14 variables, they are the fifth and sixth most important variables when excluding the fixed variables. Thus, when 

considering the importance of the time-varying variables, we can infer that fuel abundance together with drought conditions 

in the pre-fire-season determine the amount of dry fuel, which likely exerts the primary controls of the burned area during the 450 

winter-spring fire season. For the summer fire season, important weather variables include the average of monthly accumulated 

precipitation of the preceding one month and the mean SPEI of the preceding one month, two months, and three months (Figure 

6b). These variables are known to affect burned area by influencing fuel moisture. Consistently, fuel moisture as represented 

by soil moisture is identified as the only fuel variable among the top 14 variables in the summer fire season. These results 

suggest that fuel drying during the summer fire season driven by both increasing temperature and pre-fire season drought 455 

conditions is the pivotal process determining wildfire burned area in the summer. Similar to our findings, rising summer 

temperature under climate change was found to cause fast fuel dryness and increase fire activity in the western US (Williams 

et al., 2013; Holden et al., 2018). The difference in controlling factors for wildfires between the two fire seasons can be also 

demonstrated by the difference in correlation coefficients between burned area and predictors in the two seasons. The 

correlation between burned area and the average daily precipitation of months t-1 is -0.05 and -0.28 for the winter-spring and 460 

summer fire season respectively. The correlation between burned area and the average of SPEI of pre-fire seasons (months of 

t-1 to t-3 for winter-spring and t-1 to t-2 for summer) is -0.28 and -0.34. Although lower moisture during the pre-fire season 

increases burned area for both fire seasons, the summer fire season has a stronger negative correlation between burned area 

and moisture during the pre-fire season. For the summer, since vegetation is relatively sufficient, fuel drying in the fire season 

and pre-fire-season is a more important control for wildfire development. For the winter-spring fire season, as the vegetation 465 

amount is not as abundant as in the summer fire season, both fuel abundance and fuel drying in the pre-fire-season are critical 

for wildfires development. The balance between the two factors may explain the weaker negative correlation between burned 

area and moisture in the pre-fire season for the winter-spring fire season. 

Figure S9 shows the correlation coefficients between the predictor variables. Most of the important variables have 

weak to moderate correlations (𝑟 < 	 |0.7|) between each other. The exceptions are for the fixed-climate variables (e.g. 470 

asum_avg vs. apcp_avg and temp_sd vs. tmax_sd) and the antecedent variables (e.g. SPEI_mean4m and SPEI_mean5m) for 

both fire seasons. This is expected because the long-term mean or standard deviation of the same types of meteorology do not 

change by time and the average of antecedent drought conditions (SPEI) may not vary a lot from including or excluding a 

single month. Although there is collinearity between the predictor variables, the logistic model and the RF model we use in 

this study are relatively insensitive to collinearity. To test whether the collinearity would influence model performance, we 475 

conduct a sensitivity test where the model uses predictor variables that have lower degrees of collinearity (|𝑟|<0.5). The results 

show that removing the predictors that have a higher degree of collinearity causes larger biases in the classification of burned 

grids and the prediction of extremely-large fires (Table S7). The overall MAE and RMSE are also slightly degraded in the 

sensitivity test. Therefore, we include all the variables in the model to achieve better performance. That is because although 
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some variables may have a moderate correlation, they have different physical meanings and thus provide different predictive 480 

information. 

Overall, the analysis of variable importance reveals some important differences of the wildfire development between 

the two fire seasons and shows semi-quantitatively that drought conditions in the preceding months (3-5 months for the spring 

fire season and 1-3 months for the summer fire season) may be more important than within-season conditions. Furthermore, 

we demonstrate that the effect of climate variability on burned area is consequential and even more influential than concurrent 485 

fire weather. This aspect has not been well documented or quantified in past studies for the South Central US, partly due to a 

lack of long-term observations of wildfires over this region. Although we did not use long-term wildfire data (only 14-years 

of data used), with the 10-fold cross-validation approach, the training dataset contains around 16277 samples for each fold. 

Such a large sample size is enough to capture the variability in wildfire activity and its response to the recent decadal climate 

if we assume wildfire relationships with the environmental factors contain certain uniqueness for each individual grid. 490 

Considering the majority of grids over the study domain are grassland/plain with short fire interval (~1 year) (Barrett et al., 

2010), the 14-year data is suitable for assessing fire variability for our study domain. Within this 14-year period, some regions 

(e.g. SE Texas) experienced the largest wildfire and the most severe single-year drought in the past 50 years (i.e., 2011 Texas 

wildfire). For future applications, our model can be applied to other regions with longer fire return intervals if more data is 

included. As the accuracy of our model is not quite high, uncertainties may exist in the rank of variable importance from the 495 

RF model. However, the selected top 14 variables all have physical linkages to wildfire burned area and they have been 

discussed in this section and prior studies. 

5.2 Relative importance of environmental controls at large scale 

The variable importance metrics presented in the previous section reveal the relative importance of individual 

predictors. As mentioned before, these predictors are purposely selected from four broadly defined categories of environmental 500 

controls on wildfire burned area, namely climate, weather, fuel, and fixed-geospatial. Here the climate category includes only 

variables of climate anomalies. The weather and fuel category are comprised of both fire-season and antecedent weather and 

fuel conditions, respectively. The fixed geospatial category includes all the variables that do not change with time, including 

land types, ecoregion types, population, and 22-year means and standard deviations of meteorological variables (i.e. climate 

normals). Given that variables within the same category may work in conjunction to create conditions conducive to wildfires, 505 

in this section we examine the composite influence of predictors by category and quantify the contributions of these 

environmental controls to wildfire burned area. To do so, the prediction model developed from Section 3 is used to decompose 

the effect of different environmental controls across our study domain by perturbing all the variables belonging to one category 

at a time. The details of the decomposition method are described in the supplementary information. 

 Figure S10 shows the time series of the contributions of different environmental controls on the burned area for the 510 

two fire seasons. The results show that the weather, fuel, climate, and fixed effects tend to increase the burned area for the 

large burn events (e.g. July 2011 in the summer fire season). To further investigate whether or not all factors would increase 



17 
 

the burned area, we calculate the effect of each group in percentage by dividing the total burned area of the month, as shown 

in Figure S11. For the months with the large burned area (e.g. Jan 2006 and Sep 2011), weather, fuel, climate, and fix effect 

tend to increase burned area. This is consistent with the results in Fig S8. This is not the case for some months with the 515 

relatively small burned area, such as Feb 2012 where the interaction (-143%), climate (-1.4%), and weather effect (-33.8%) 

reduce the burned area but fuel (12%) and fix effect (266%) together increase the burned area. As the number of variables in 

each environmental control category is different, we first normalize the absolute contribution of one environmental control by 

the number of variables in that category and then compare each category’s contribution in scaled absolute percentage, which 

is defined as the normalized absolute contribution of one environmental control divided by the summation of normalized 520 

absolute contributions over all the categories. The scaled absolute percentage represents the average contribution from all the 

variables in one environmental category, so the variable importance presented here is not affected by the number of variables 

we include in each category. Figure S12 shows the time series of the scaled absolute percentage of each category. For both fire 

seasons, on average, the climate and fixed categories have larger contributions to the burned area than other categories, 

although their relative importance varies by time. Figure 7 and Table S8 present the mean effect of the environmental controls 525 

where the scaled absolute percentage of each category of environmental controls is averaged over the whole study periods. 

Figure 7 clearly shows that the climate category on average has the largest contribution to the burned area for both fire seasons, 

with the mean scaled absolute contribution of 33% and 35% for the winter-spring and summer fire season, respectively. This 

suggests climate variability is a significant factor to explain wildfire burned area over our study domain. This result is 

consistent with previous studies that demonstrated the significant contribution of changing climate to the total burned area of 530 

ecoregions in the western US (Littell et al., 2009; Swetnam and Anderson, 2008; Yue et al., 2013). For example, increasing 

temperature and earlier spring snowmelt due to climate change are highly associated with increased large wildfire activity in 

the western US (Westerling et al., 2006). Another study showed that fire-year climate variables such as average spring 

temperature are predictive variables that could improve the predicting probability of high severity fires in the western US 

(Keyser and Westerling, 2017). Additionally, the fixed effect that comprises the geospatial variables and past climatology is 535 

ranked as the second most important control (Figure 7). This is consistent with the findings of Keyser and Westerling (2017), 

which revealed the importance of long-term climate normals in controlling large fire occurrences in the western US.  

Comparing the effects of the environmental controls between the two fire seasons, we find the fuel effect is 

significantly more important in the winter-spring fire season, while weather and climate effects are more substantial in the 

summer fire season. This can probably be explained by the different characteristics of the two fire seasons. As biomass growth 540 

is relatively limited in the winter-spring fire season, the effect of fuel (mainly from vegetation in the pre-fire growing season) 

is likely the limiting factor for wildfires in the winter-spring fire season. On the other hand, vegetation is relatively sufficient 

during the summer growing fire season and thus fuel abundance would not be a constraint of wildfires (Littell et al., 2009; 

Zhang et al., 2014). Yet, fire weather that determines fuel moisture is a substantial factor in the summer fire season (Figure 7).  

The above analysis represents the relative importance of the environmental controls at the large-domain scale. At the 545 

grid scale, we calculate the average of variable importance (%IncMSE) from RF (section 3.1.1) of each category and use the 
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category-averaged variable importance to represent the relative importance at the grid-scale (Table S9). Climate variables are 

found to have the largest importance in controlling burned area at the grid scale for the two fire seasons, with the mean 

%IncMSE of 12.09 and 19.18 for the winter-spring and summer fire season, respectively. This is consistent with the results 

presented for the large-domain scale. Fuel effect outweighs weather effect on the grid scale in the winter-spring fire season, 550 

while weather effect is more important in the summer fire season, both consistent with the aforementioned analysis based on 

the large-scale domain (Table S9). However, the fixed effect estimated at the grid-scale is less important than at the large-scale 

domain (Table S9) and this is partly due to how these variables are encoded in the model. Fixed variables consist of past 

climatology and geospatial variables (i.e. land use, ecoregion, and population). The geospatial variables, except population, 

are encoded as categorical variables in the prediction model. For example, forest ecoregion is coded as 0 or 1 for a given grid, 555 

with 0 representing non-forest and 1 representing a forest. For such an encoding method, each categorical variable (e.g. forest 

v.s. non-forest) tends to have a smaller relative importance score, compared to the relative importance score of other variables 

encoded by continuous values. As RF measures the effect of a specific split on the improvement in model performance and 

aggregates the improvement of all the splits with a specific variable, the fragmented scores for each category are likely smaller 

than the scores reflecting all of the categories. Therefore, for the relative importance at the grid level measured by RF, the 560 

effect of a single geospatial variable such as a land type on the burned area is trivial. When we average the relative importance 

of all the fixed variables including many small scores, the resulting average importance becomes still a small value.  

 

6. Concluding remarks 

We present a model consisting of multiple machine learning methods to predict monthly burned area over South 565 

Central US at 0.5° x 0.5° grid cells. The prediction model is able to alleviate the issue of unevenly-distributed burned area and 

consequently improves the model capability of predicting large burned area at a finer spatial and temporal scale. The predicted 

burned area shows a good agreement with the observed burned area at both the grid and large-domain scale. At the grid scale, 

the classification component of the model achieves an AUC of 0.82 and 0.83 for the winter-spring and summer fire season, 

respectively. With respect to burned area prediction, a CV-R2 of 0.42 and 0.40 is achieved for the winter-spring and summer 570 

fire season, respectively, which makes a significant improvement to the prediction for the cases with unevenly-distributed 

burned area compared to most past studies. Our four-step model is able to predict the spatial patterns of the 14-year mean 

burned area, with a correlation coefficient between mean observed and predicted burned area of 0.82 and 0.80 for the winter-

spring and summer fire season, respectively. Throughout the study period, more than 60% of the months have a spatial 

correlation larger than 0.5. When comparing the timeseries of observed and predicted burned area of each grid across the study 575 

domain, over 70% of the grids have a correlation coefficient larger than 0.5. At the large-domain scale, the prediction model 

can explain 50% and 79% of the interannual variability of wildfire burned area for the winter-spring and summer fire season, 
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respectively. The validation results demonstrate that the model has certain skills in predicting monthly burned area at both 

grid-scale and large-domain scale. 

Although the model shows a better ability to predict monthly burned area at both grid-scale and large-domain scale 580 

than past studies of similar nature, it has several limitations. First, errors might be propagated through our serial model and 

lead to lower accuracy. For example, when the burned grids are predicted not to burn, low bias occurs because the burned grids 

are not able to enter step 3. Similarly, inclusion of unburned grids in step 3 will introduce a positive bias. Second, although for 

a single grid our four-step model can predict burned area greater than that grid had experienced before by learning from other 

grids, random forest or quantile regression forest cannot predict burned area greater than it observes before, i.e. the maximum 585 

burned area of any of the available grids. For example, if the largest gridded burned area across the whole domain for the study 

period is 800 ha, the prediction for any single grid would never exceed 800 ha. Even though other methods such as MLR can 

predict burned area larger than it observes before, other uncertainties arise in extrapolation, which are difficult to quantify 

(Amatulli et al., 2013; Mckenzie et al., 1996). For machine learning methods such as RF, the model performance will keep 

improving as more data is included in the training set. Third, as machine learning models are data-driven, data quality of 590 

different input datasets may introduce biases as the input datasets come from a wide variety of data sources and errors in one 

type of input data may cause sequential errors in the prediction. For instance, biases in the NARR meteorological data can 

further lead to incorrect fire-meteorology relationships learned by the model. Fourth, this study focuses on the effects of 

environmental controls on burned area under present-day human management practices and human activity. As such, we do 

not examine the effects of time-varying socioeconomic factors on burned area, such as human actions that affect wildfires 595 

through ignition, suppression, or modifying fuel distribution (Andela et al., 2017; Bowman et al., 2011; Mann et al., 2016; 

Syphard et al., 2007). Given that human activity is one of the major controls on fire activity, future work is needed to better 

understand the role of human activity engaged with climate change and its implications for wildfire control. Finally, the pre-

defined parameters that are used in the model, including the percentiles and subgroups, may induce uncertainties. To 

understand the related uncertainties, we switch the pre-defined percentiles but fix the subgroups in the first sensitivity 600 

experiment (Table S10). In this experiment, the last three quantiles are changed to the median values between a new set of 

lower and upper bounds. The second experiment is conducted by changing the number of subgroups, their ranges, and the 

corresponding percentiles. Generally, changing pre-defined parameters has little effect on overall MAE for the two fire seasons 

but the MAE of large burned area becomes larger and the standard deviation of the predicted values becomes smaller. Thus, 

the pre-defined parameters mostly affect the spread of the predictions and the prediction of large burned areas. Despite this 605 

sensitivity, the prediction model with the chosen settings (i.e. percentiles and subgroups) is able to predict burned area at 0.5° 

x 0.5°-grid scale and achieves a higher prediction accuracy compared to prior studies. 

The individual variable importance from the RF model is analyzed and discussed. For both fire seasons, RH anomaly 

followed by drought conditions in the preceding months (3-5 months for the winter-spring fire season and 1-3 months for the 

summer fire seasons) are the two top variables in predicting burned area at the grid scale. For the winter-spring fire season 610 

specifically, the average of LAI and sum of neighboring LAI of the preceding six months are the only two fuel variables that 
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are identified in the top 14 variables and they rank fifth and sixth when only considering time-varying variables. The findings 

suggest that fuel abundance together with drought conditions during the pre-fire season regulate the abundance of dry fuel, 

which is the primary control of fire burned area during the winter-spring seasons. For the summer fire season, temperature 

anomalies, the average of monthly accumulated precipitation of the preceding one month, and fire season soil moisture are 615 

important variables in predicting burned area. This suggests that temperature variability and pre-fire season drought can speed 

up fuel drying and lead to wildfires in the summer. The model highlights the effect of climate variability on burned area as 

well as the different environmental controls of burned area for the two fire seasons. 

Besides the relative importance of individual predictors, we also analyze the relative importance of the environmental 

controls by four categories - climate, weather, fuel, and fixed-geospatial - at both the grid and large-domain scale. The relative 620 

importance of these factors is generally consistent at the two scales. The climate variable on average has the largest contribution 

to the burned area for both fire seasons, with the mean scaled absolute contribution of 33% and 35 % to the burned area at the 

large-domain scale for the winter-spring and summer fire season, respectively. For the winter-spring fire season, the fuel 

variable on average has larger importance compared to the weather variable; while for the summer fire season, the weather 

variable is more dominant than the fuel variable. The difference in the relative importance of the environmental controls 625 

between the large-domain scale and grid scale mainly lies in the predominance of the fixed effect. The fixed effect is ranked 

as the second most important control at the large-domain scale, but it is not as important at the grid scale.  

Predictor variables representing climate variability are ranked as the most important variables by our prediction model. 

This reinforces the importance of regional climate variability as the key driver for wildfires that have been revealed by past 

studies for other regions, yet our study is among the first to explicitly demonstrate such importance for the South Central US. 630 

For this region, our model further reveals drought conditions in the preceding 3-5 months of a fire season as an important 

predictor for wildfire burned area. This antecedent time scale would be valuable for fire management and fire prediction in the 

future. While the relative importance of environmental controls is largely consistent between the large-domain scale (~700 km 

x 700 km) and the grid scale (~50 km x 50 km), our analysis at different spatial scales would help estimate how the relationship 

between wildfire and environmental controls will change as a function of spatial scales, which could be used to improve 635 

wildfire modeling and prediction in different models. 

 

Code availability. Model code is available upon request to the first author  

 

Data availability. All dataset used in this study are publicly accessible online at 640 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2FLRPDAA 

 

Author contributions. SW and YW conceived the research idea. SW wrote the initial draft of the paper, performed the analyses, 

and model development. All authors contributed to the interpretation of the results and the preparation of the manuscript. 

 645 



21 
 

Competing interests. The authors declare that they have no conflict of interest. 

 

Acknowledgements. This work was funded in part with funds from an AI for Earth grant from Microsoft and from the State of 

Texas as part of the program of the Texas Air Research Center (grant number: 117UHH0175A). The contents do not 

necessarily reflect the views and policies of the sponsor nor does the mention of trade names or commercial products constitute 650 

endorsement or recommendation for use. We acknowledge the NCEP Reanalysis data provided by the NOAA/OAR/ESRL 

PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov/. 

References 

Amatulli, G., Camia, A. and San-Miguel-Ayanz, J.: Estimating future burned areas under changing climate in the EU-
Mediterranean countries, Science of The Total Environment, 450–451, 209–222, doi:10.1016/j.scitotenv.2013.02.014, 2013. 655 

An, H., Gan, J. and Cho, S. J.: Assessing Climate Change Impacts on Wildfire Risk in the United States, Forests, 6(9), 3197–
3211, doi:10.3390/f6093197, 2015. 

Andela, N., Morton, D. C., Giglio, L., Chen, Y., Werf, G. R. van der, Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, 
S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Mangeon, S., Melton, J. R., Yue, C. and Randerson, J. T.: A human-
driven decline in global burned area, Science, 356(6345), 1356–1362, doi:10.1126/science.aal4108, 2017. 660 

Baboo, S. and Devi, R.: An Analysis of Different Resampling Methods in Coimbatore, District, Global Journal of Computer 
Science and Technology, 10(15), 61–66, 2010. 

Balshi, M. S., McGUIRE, A. D., Duffy, P., Flannigan, M., Walsh, J. and Melillo, J.: Assessing the response of area burned to 
changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach, 
Global Change Biology, 15(3), 578–600, doi:10.1111/j.1365-2486.2008.01679.x, 2009. 665 

Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. and Stocks, B.: Climate change presents increased potential for 
very large fires in the contiguous United States, Int. J. Wildland Fire, 24(7), 892–899, doi:10.1071/WF15083, 2015. 

Barrett, S.; Havlina, D.; Jones, J.; Hann, W.; Frame, C.; Hamilton, D.; Schon, K.; Demeo, T.; Hutter, L.; Menakis, J.: 
Interagency Fire Regime Condition Class Guidebook, United States Forest Service and U.S. Department of the Interior, The 
Nature Conservancy, U.S., 2010. 670 

Bedia, J., Herrera, S. and Gutiérrez, J. M.: Assessing the predictability of fire occurrence and area burned across phytoclimatic 
regions in Spain, Natural Hazards and Earth System Sciences, 14(1), 53–66, doi:https://doi.org/10.5194/nhess-14-53-2014, 
2014. 

Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D’Antonio, C. M., DeFries, R. 
S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., 675 
Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., Werf, G. R. van der and Pyne, S. J.: Fire in the Earth System, Science, 
324(5926), 481–484, doi:10.1126/science.1163886, 2009. 

Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’Antonio, C. M., DeFries, R., Johnston, F. H., 
Keeley, J. E., Krawchuk, M. A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A. C., Sodhi, N. S. and 



22 
 

Swetnam, T. W.: The human dimension of fire regimes on Earth, Journal of Biogeography, 38(12), 2223–2236, 680 
doi:10.1111/j.1365-2699.2011.02595.x, 2011. 

Camia, A., and Amatulli, G.: Weather Factors and Fire Danger in the Mediterranean, Earth Observation of Wildland Fires in 
Mediterranean Ecosystems, 71–82, doi:10.1007/978-3-642-01754-4_6, 2010. 

Carvalho, Flannigan, M., Logan, Miranda, A. and Borrego, C.: Fire activity in Portugal and its relationship to weather and the 
Canadian Fire Weather Index System, International Journal of Wildland Fire, 17, 328–338, doi:10.1071/WF07014, 2008. 685 

Chen, J. M. and Black, T. A.: Defining leaf area index for non-flat leaves, Plant, Cell & Environment, 15(4), 421–429, 
doi:10.1111/j.1365-3040.1992.tb00992.x, 1992. 

Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, pp. 785–794, Association for Computing Machinery, 
San Francisco, California, USA., 2016. 690 

Chen, Y., Morton, D. C., Andela, N., Giglio, L. and Randerson, J. T.: How much global burned area can be forecast on seasonal 
time scales using sea surface temperatures?, Environ. Res. Lett., 11(4), 045001, doi:10.1088/1748-9326/11/4/045001, 2016. 

David Mocko, NASA/GSFC/HSL, NLDAS Noah Land Surface Model L4 Monthly Climatology 0.125 x 0.125 degree V002, 
Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/U5BAYF8R76IK, 2013. 

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, 695 
P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D. and Lautenbach, 
S.: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance, Ecography, 36(1), 
27–46, doi:10.1111/j.1600-0587.2012.07348.x, 2013. 

Duane, A., Kelly, L., Gijohann, K., Batllori, E., McCarthy, M. and Brotons, L.: Disentangling the Influence of Past Fires on 
Subsequent Fires in Mediterranean Landscapes, Ecosystems, 22(6), 1338-1351, doi:10.1007/s10021-019-00340-6, 2019. 700 

Fang, L., Yang, J., Zu, J., Li, G. and Zhang, J.: Quantifying influences and relative importance of fire weather, topography, 
and vegetation on fire size and fire severity in a Chinese boreal forest landscape, Forest Ecology and Management, 356, 2–12, 
doi:10.1016/j.foreco.2015.01.011, 2015. 

Fann, N., Alman, B., Broome, R. A., Morgan, G. G., Johnston, F. H., Pouliot, G. and Rappold, A. G.: The health impacts and 
economic value of wildland fire episodes in the U.S.: 2008-2012, Sci. Total Environ., 610–611, 802–809, 705 
doi:10.1016/j.scitotenv.2017.08.024, 2018. 

Fernandes, P. M., Monteiro-Henriques, T., Guiomar, N., Loureiro, C. and Barros, A. M. G.: Bottom-Up Variables Govern 
Large-Fire Size in Portugal, Ecosystems, 19(8), 1362–1375, doi:10.1007/s10021-016-0010-2, 2016. 

Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R., and Stocks, B. J.: Future area burned in Canada, Climate 
Change, 72(1), 1–16, doi: 10.1007/s10584-005-5935-y, 2005. 710 

Fréjaville, T. and Curt, T.: Seasonal changes in the human alteration of fire regimes beyond the climate forcing, Environ. Res. 
Lett., 12(3), 035006, doi:10.1088/1748-9326/aa5d23, 2017. 

Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, 29(5), 1189–1232, 
2001. 



23 
 

Gudmundsson, L., Rego, F. C., Rocha, M. and Seneviratne, S. I.: Predicting above normal wildfire activity in southern Europe 715 
as a function of meteorological drought, Environ. Res. Lett., 9(8), 084008, doi:10.1088/1748-9326/9/8/084008, 2014. 

Heilman, W. E., Potter, B. E., Zerbe J. I.: Regional climate change in the southern United States: The implications for wildfire 
occurrence in the Productivity and Sustainability of Southern Forest Ecosystems in a Changing Environment, New York: 
Springer-Verlag, pp. 683-699, 1998. 

Heyerdahl, E. K., McKenzie, D., Daniels, L. D., Hessl, A. E., Littell, J. S. and Mantua, N. J.: Climate drivers of regionally 720 
synchronous fires in the inland northwest (1651-1900), International Journal of Wildland Fire. 17: 40-49., 2008. 

Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J. W., Warren, D. A., Parsons, R. and Affleck, D.: 
Decreasing fire season precipitation increased recent western US forest wildfire activity, PNAS, 115(36), E8349–E8357, 
doi:10.1073/pnas.1802316115, 2018. 

Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R. 725 
and Riitters, K.: Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover 
Database, ISPRS Journal of Photogrammetry and Remote Sensing, 162, 184–199, doi:10.1016/j.isprsjprs.2020.02.019, 2020. 

Jaffe, D., Hafner, W., Chand, D., Westerling, A. and Spracklen, D.: Interannual Variations in PM2.5 due to Wildfires in the 
Western United States, Environ. Sci. Technol., 42(8), 2812–2818, doi:10.1021/es702755v, 2008. 

Jones, Justice, April Saginor, and Brad Smith: 2011 Texas Wildfires: Common Denominators of Home Destruction, College 730 
Station, TX, Texas A&M Forest Service, 2013. 

Keane, R. E., Reinhardt, E. D., Scott, J., Gray, K. and Reardon, J.: Estimating forest canopy bulk density using six indirect 
methods, Canadian Journal of Forest Research, 35(3), 724–739, doi:10.1139/x04-213, 2005. 

Keyser, A. and Westerling, A. L.: Climate drives inter-annual variability in probability of high severity fire occurrence in the 
western United States, Environ. Res. Lett., 12(6), 065003, doi:10.1088/1748-9326/aa6b10, 2017. 735 

Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J. and Anslow, F. S.: Attribution of the Influence of 
Human-Induced Climate Change on an Extreme Fire Season, Earth's Future, 7(1), 2-10, doi:10.1029/2018EF001050, 2018. 

Krawczyk, B.: Learning from imbalanced data: open challenges and future directions, Prog Artif Intell, 5(4), 221–232, 
doi:10.1007/s13748-016-0094-0, 2016. 

Krueger, E. S., Ochsner, T. E., Carlson, J. D., Engle, D. M., Twidwell, D. and Fuhlendorf, S. D.: Concurrent and antecedent 740 
soil moisture relate positively or negatively to probability of large wildfires depending on season, Int. J. Wildland Fire, 25(6), 
657–668, doi:10.1071/WF15104, 2016. 

Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R News, 2, 18-22, 2002. 

Littell, J. S., McKenzie, D., Peterson, D. L. and Westerling, A. L.: Climate and wildfire area burned in western U.S. 
ecoprovinces, 1916–2003, Ecological Applications, 19(4), 1003–1021, doi:10.1890/07-1183.1, 2009. 745 

Liu, Y., L. Goodrick, S. and A. Stanturf, J.: Future U.S. wildfire potential trends projected using a dynamically downscaled 
climate change scenario, Forest Ecology and Management, 294, 120–135, doi:10.1016/j.foreco.2012.06.049, 2013. 

Liu, Z. and Wimberly, M. C.: Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United 
States, PLOS ONE, 10(10), e0140839, doi:10.1371/journal.pone.0140839, 2015. 



24 
 

Long, D., Scanlon, B. R., Longuevergne, L., Sun, A. Y., Fernando, D. N. and Save, H.: GRACE satellite monitoring of large 750 
depletion in water storage in response to the 2011 drought in Texas, Geophysical Research Letters, 40(13), 3395–3401, 
doi:10.1002/grl.50655, 2013. 

Mann, M. L., Batllori, E., Moritz, M. A., Waller, E. K., Berck, P., Flint, A. L., Flint, L. E. and Dolfi, E.: Incorporating 
Anthropogenic Influences into Fire Probability Models: Effects of Human Activity and Climate Change on Fire Activity in 
California, PLOS ONE, 11(4), e0153589, doi:10.1371/journal.pone.0153589, 2016. 755 

Mckenzie, D., Peterson, D. L. and Alvarado, E.: Extrapolation Problems in Modeling Fire Effects at Large Spatial Scales: a 
Review, Int. J. Wildland Fire, 6(4), 165–176, doi:10.1071/wf9960165, 1996. 

Meinshausen, N.: Quantile Regression Forests, Journal of Machine Learning Research, 7(Jun), 983–999, 2006. 

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, 
E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D. and Shi, W.: North American 760 
Regional Reanalysis, Bull. Amer. Meteor. Soc., 87(3), 343–360, doi:10.1175/BAMS-87-3-343, 2006. 

Metz, C. E.: Basic principles of ROC analysis, Semin Nucl Med, 8(4), 283–298, doi:10.1016/s0001-2998(78)80014-2, 1978. 

Morgan, P., Heyerdahl, E. K. and Gibson, C. E.: Multi-season climate synchronized forest fires throughout the 20th century, 
Northern Rockies, USA, Ecology. 89(3): 717-728, 2008. 

Myneni, R., Knyazikhin, Y., Park, T.: MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN 765 
Grid V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD15A2H.006, 2015. 

Nielsen-Gammon, J. W.: The 2011 Texas Drought, Texas Water Journal, 3(1), 59–95, 2012. 

Nunes, M. C. S., Vasconcelos, M. J., Pereira, J. M. C., Dasgupta, N., Alldredge, R. J. and Rego, F. C.: Land Cover Type and 
Fire in Portugal: Do Fires Burn Land Cover Selectively?, Landscape Ecol, 20(6), 661–673, doi:10.1007/s10980-005-0070-8, 
2005. 770 

Omernik, J.M. (Eds.): Ecoregions: A spatial framework for environmental management. In: Biological Assessment and 
Criteria: Tools for Water Resource Planning and Decision Making, Lewis Publishers, Boca Raton, FL, 49-62, 1995. 

Omernik, J. M. and Griffith, G. E.: Ecoregions of the conterminous United States: evolution of a hierarchical spatial 
framework, Environ Manage, 54(6), 1249–1266, doi:10.1007/s00267-014-0364-1, 2014. 

Parisien, M.-A., Parks, S. A., Krawchuk, M. A., Flannigan, M. D., Bowman, L. M. and Moritz, M. A.: Scale-dependent controls 775 
on the area burned in the boreal forest of Canada, 1980-2005, Ecol Appl, 21(3), 789–805, doi:10.1890/10-0326.1, 2011. 

Parks, S. A., Parisien, M.-A. and Miller, C.: Spatial bottom-up controls on fire likelihood vary across western North America, 
Ecosphere. 3(1): Article 12., doi:10.1890/ES11-00298.1, 2012. 

Pausas, J. G. and Keeley, J. E.: A Burning Story: The Role of Fire in the History of Life, BioScience, 59(7), 593–601, 
doi:10.1525/bio.2009.59.7.10, 2009. 780 

Pellegrini, A. F. A., Anderegg, W. R. L., Paine, C. E. T., Hoffmann, W. A., Kartzinel, T., Rabin, S. S., Sheil, D., Franco, A. 
C. and Pacala, S. W.: Convergence of bark investment according to fire and climate structures ecosystem vulnerability to 
future change, Ecology Letters, 20(3), 307–316, doi:10.1111/ele.12725, 2017. 



25 
 

Peters, D. P. C., Pielke, R. A., Bestelmeyer, B. T., Allen, C. D., Munson-McGee, S. and Havstad, K. M.: Cross-scale 
interactions, nonlinearities, and forecasting catastrophic events, PNAS, 101(42), 15130–15135, 785 
doi:10.1073/pnas.0403822101, 2004. 

Riley, K. L., Abatzoglou, J. T., Grenfell, I. C., Klene, A. E. and Heinsch, F. A.: The relationship of large fire occurrence with 
drought and fire danger indices in the western USA, 1984–2008: the role of temporal scale, International Journal of Wildland 
Fire, 22(7), 894, doi:10.1071/WF12149, 2013. 

Ruthrof, K. X., Fontaine, J. B., Matusick, G., Breshears, D. D., Law, D. J., Powell, S. and Hardy, G.: How drought-induced 790 
forest die-off alters microclimate and increases fuel loadings and fire potentials, Int. J. Wildland Fire, 25(8), 819–830, 
doi:10.1071/WF15028, 2016. 

Scott, J. H. and Burgan, R. E.: Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire 
spread model, Gen. Tech. Rep. RMRS-GTR-153. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky 
Mountain Research Station. 72 p., 153, doi:10.2737/RMRS-GTR-153, 2005. 795 

Short, K. C.: A spatial database of wildfires in the United States, 1992-2011, Earth System Science Data, 6, 1–27, 
doi:10.5194/essd-6-1-2014, 2014. 

Short, K. C.: Spatial wildfire occurrence data for the United States, 1992-2015, Forest Service Research Data Archive (4th 
Edition), doi:10.2737/RDS-2013-0009.4, 2017. 

Slocum, M. G., Beckage, B., Platt, W. J., Orzell, S. L. and Taylor, W.: Effect of Climate on Wildfire Size: A Cross-Scale 800 
Analysis, Ecosystems, 13(6), 828–840, doi:10.1007/s10021-010-9357-y, 2010. 

Sousa, P. M., Trigo, R. M. and Pereira, M. G.: Different approaches to model future burnt area in the Iberian Peninsula, 
Agricultural and Forest Meteorology, 202, 11–25, doi: 10.1016/j.agrformet.2014.11.018, 2015. 

Spracklen, D. V., Mickley, L. J., Logan, J. A., Hudman, R. C., Yevich, R., Flannigan, M. D. and Westerling, A. L.: Impacts 
of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States, 805 
Journal of Geophysical Research: Atmospheres, 114(D20), doi: 10.1029/2008JD010966, 2009. 

Steele-Feldman, A., Reinhardt, E. and Parsons, R. A.: Fuels Management-How to Measure Success: Conference Proceedings, 
USDA Forest Proceedings, 283–291, 2006. 

Steel, Z. L., Safford, H. D. and Viers, J. H.: The fire frequency-severity relationship and the legacy of fire suppression in 
California forests, Ecosphere, 6(1), 1–23, doi:10.1890/ES14-00224.1, 2015. 810 

Swetnam, T. W. and Anderson, R. S.: Fire Climatology in the western United States: introduction to special issue, Int. J. 
Wildland Fire, 17(1), 1–7, doi:10.1071/WF08016, 2008. 

Syphard, A. D., Radeloff, V. C., Keeley, J. E., Hawbaker, T. J., Clayton, M. K., Stewart, S. I. and Hammer, R. B.: Human 
Influence on California Fire Regimes, Ecological Applications, 17(5), 1388–1402, doi:10.1890/06-1128.1, 2007. 

Turco, M., Hardenberg, J. von, AghaKouchak, A., Llasat, M. C., Provenzale, A. and Trigo, R. M.: On the key role of droughts 815 
in the dynamics of summer fires in Mediterranean Europe, Scientific Reports, 7(81), doi:10.1038/s41598-017-00116-9, 2017. 

Urbieta, I. R., Zavala, G., Bedia, J., Gutierrez, J. M., San Miguel-Ayanz, J., Camia, A., Keeley, J. E. and Moreno, J. M.: Fire 
activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and 
Pacific western USA, Environmental Research Letters, 10(11), doi:10.1088/1748-9326/10/11/114013, 2015. 



26 
 

U.S. Census Bureau, Population Estimates, 2010 Census Population density, https://www.census.gov/geographies/mapping-820 
files/time-series/geo/tiger-line-file.2010.html, 2010. 

Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming: The 
Standardized Precipitation Evapotranspiration Index, J. Climate, 23(7), 1696–1718, doi:10.1175/2009JCLI2909.1, 2009. 

Wang, S.-C., Wang, Y., Estes, M., Lei, R., Talbot, R., Zhu, L. and Hou, P.: Transport of Central American Fire Emissions to 
the U.S. Gulf Coast: Climatological Pathways and Impacts on Ozone and PM2.5, Journal of Geophysical Research: 825 
Atmospheres, 123(15), 8344–8361, doi:10.1029/2018JD028684, 2018. 

Watson, D. J.: Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and 
Leaf Area between Species and Varieties, and within and between Years, , 11(1), 41–76, 
doi:10.1093/oxfordjournals.aob.a083148, 1947. 

Westerling, A. L.: Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring, Philosophical 830 
Transactions of the Royal Society B: Biological Sciences, 371(1696), 20150178, doi:10.1098/rstb.2015.0178, 2016. 

Westerling, A. L. and Bryant, B. P.: Climate change and wildfire in California, Climatic Change, 87(1), 231–249, 
doi:10.1007/s10584-007-9363-z, 2008. 

Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H. and Ryan, M. G.: Continued warming could transform 
Greater Yellowstone fire regimes by mid-21st century, Proceedings of the National Academy of Sciences, 108(32), 13165-835 
13170, doi:10.1073/pnas.1110199108, 2011. 

Westerling, A. L., Hidalgo, H. G., Cayan, D. R. and Swetnam, T. W.: Warming and Earlier Spring Increase Western U.S. 
Forest Wildfire Activity, Science, 313(5789), 940–943, doi:10.1126/science.1128834, 2006. 

While, L. D. and Hanselka, C. W.: Prescribed Range Burning in Texas, Texas AgriLife Extension Service Publication, College 
Station, Texas., 2000. 840 

Williams, P. A., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., Swetnam, T. W., Rauscher, S. 
A., Seager, R., Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M. and McDowell, N. G.: 
Temperature as a potent driver of regional forest drought stress and tree mortality, Nature Climate Change, 3(3), 292–297, 
doi:10.1038/nclimate1693, 2013. 

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., 845 
Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y. and Mocko, D.: Continental-scale water and energy flux analysis and 
validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and 
application of model products, Journal of Geophysical Research: Atmospheres, 117(D3), doi:10.1029/2011JD016048, 2012. 

Yue, X., Mickley, L. J., Logan, J. A. and Kaplan, J. O.: Ensemble projections of wildfire activity and carbonaceous aerosol 
concentrations over the western United States in the mid-21st century, Atmos Environ (1994), 77, 767–780, 850 
doi:10.1016/j.atmosenv.2013.06.003, 2013. 

Yue, X., Mickley, L. J., Logan, J. A., Hudman, R. C., Martin, M. V. and Yantosca, R. M.: Impact of 2050 climate change on 
North American wildfire: consequences for ozone air quality, Atmospheric Chemistry and Physics, 15(17), 10033–10055, 
doi:https://doi.org/10.5194/acp-15-10033-2015, 2015. 

Zhang, X., Kondragunta, S. and Roy, D. P.: Interannual variation in biomass burning and fire seasonality derived from 855 
geostationary satellite data across the contiguous United States from 1995 to 2011, Journal of Geophysical Research: 



27 
 

Biogeosciences, 119(6), 1147–1162, doi:10.1002/2013JG002518, 2014. 

Zubkova, M., Boschetti, L., Abatzoglou, J. T. and Giglio, L.: Changes in Fire Activity in Africa from 2002 to 2016 and Their 
Potential Drivers, Geophysical Research Letters, 46(13), 7643–7653, doi:10.1029/2019GL083469, 2019. 

 860 

 

 

 

 

 865 

 

Table 1. Predictor variables that were used in the fire prediction models 

Variables Abbreviation Categories Temporal 

resolution 

Spatial 

resolution 

Data source 

Weather variables    

Monthly mean surface temperature temp weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly mean of daily precipitation apcp weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly total precipitation asum weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly mean surface relative humidity (%) rhum weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly mean U-component of wind speed U weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly mean V-component of wind speed V weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly maximum temperature tmax weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly minimum RH rmin weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Number of consecutive days without rainfall in a 

month 

LargeConsec weather monthly 32 km North American Regional 

Reanalysis (NARR) 

1-month SPEI SPEI weather 1-month 0.5° Global SPEI database 

Fuel variables    
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Monthly mean Leaf Area Index (LAI) LAI fuel monthly 500 m MODerate resolution Imaging 

Spectroradiometer (MODIS) 

Monthly mean sum of neighboring LAI convLAI fuel monthly 500 m MODerate resolution Imaging 

Spectroradiometer (MODIS) 

Monthly mean soil moisture at 0-10 cm soil fuel monthly 0.125° North American Land Data 

Assimilation System (NLDAS-2) 

Geospatial and population variables    

Land types land_ fix  30 m National Land Cover Database 

(NLCD) 

Ecoregion types eco_ fix   U.S. Environmental Protection 

Agency (EPA) 

Population density pop fix   U.S. Census 2010 

Climate variables (over 1979-2000)    

Long-term average and standard deviation of 

monthly temperature  

temp_avg; 

temp_sd 

fix monthly 32 km North American Regional 

Reanalysis (NARR) 

Long-term average and standard deviation of 

monthly mean of daily precipitation 

apcp_avg; 

apcp_sd 

fix monthly 32 km North American Regional 

Reanalysis (NARR) 

Long-term average and standard deviation of 

monthly maximum temperature 

tmax_avg; 

tmax_sd 

fix monthly 32 km North American Regional 

Reanalysis (NARR) 

Long-term average and standard deviation of 

monthly total precipitation 

asum_avg; 

asum_sd 

fix monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly mean temperature temp_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly mean of daily 

precipitation 

apcp_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly mean RH rhum_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly maximum 

temperature 

tmax_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly minimum RH rmin_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly total precipitation asum_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Lagged variables    

Winter-spring fire season    
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The monthly mean of daily precipitation of 

months t-1 

apcp_mean1m weather monthly 32 km North American Regional 

Reanalysis (NARR) 

The average SPEI of the months t-1, t-1 to t-2, t-1 

to t-3, t-1 to t-4, t-1 to t-5, and t-1 to t-6 

SPEI_mean1m weather monthly 0.5°  Global SPEI database 

The averages of LAI and sum of neighboring LAI 

for the months t-1 to t-6 

LAI_mean6m, 

convLAI_mean6

m 

fuel monthly 500 m MODerate resolution Imaging 

Spectroradiometer (MODIS) 

Summer fire season    

The average of monthly mean of daily 

precipitation for months t-1, t-1 to t-2 

apcp_mean1m weather monthly 32 km North American Regional 

Reanalysis (NARR) 

The average of monthly mean temperature for 

months t-1 and t-1 to t-2 

temp_mean1m weather monthly 32 km North American Regional 

Reanalysis (NARR) 

The average of SPEI of months t-1, t-1 to t-2, and 

t-1 to t-3 

SPEI_mean1m weather 1-month 0.5° Global SPEI database 
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Table 2. Model performance at grid level for the two fire seasons. 
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Fire season 

Evaluation Metrics 

Accuracy Recall Precision F1-score AUC R2 RMSE 

(km2) 

MAE 

(km2) 

F1 0.74 0.88 0.73 0.79 0.82 0.42 8.37 1.13 

F2 0.74 0.84 0.71 0.77 0.83 0.40 4.26 0.57 
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Figure 1. The colored grid boxes show the averaged burned area for the winter-spring and summer fire seasons during 2002-

2015 from Fire Program Analysis Fire-Occurrence Database (FPA-FOD). The red box denotes the South Central US domain. 
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Classification Logistic model

0: burned area =0 ha

1: burned area > 0 ha

Predicted burned
area = 0

Random forest regression model

Quantile regression forest

Using criterion:
Probability of burn > 0.4

Step 1: Predict burned area distribution at selected percentiles

All input data - Predicted burned area distribution at percentiles:
45, 55, 65, 85, 95, and 99

All input data

Grids predicted to
burn

Step 2: Classify unburned and burned grids

Step 3: Predict burned area quantiles

- Grids in the subsets are
assigned to the value at the
corresponding percentiles in the
distribution generated in step 1

Step 4: Assign final predicted burned area from
QRF based on predicted percentiles from RF

- Predicted burned grids are grouped by predicted
percentiles from RF:
(39,49),(50,59),(60,69),(70,79),(80,89),(>=90) Final predicted

burned area

Grids predicted to
burn

- Predicted burned grids are grouped by predicted
percentiles from RF:
(39,49),(50,59),(60,69),(70,79),(80,89),(>=90)

- Predicted burned area distribution at percentiles:
45, 55, 65, 85, 95, and 99
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 890 

Figure 2. Illustration of the steps in the developed model. The model includes four steps and three machine learning algorithms, 

including a logistic model (dark blue) classifying a grid with non-zero burned area or not, a random forest model (yellow) 

predicting percentiles of burned area, and a quantile regression forest (dark green) predicting conditional burned area 

distributions. 
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Figure 3. Comparison between log of observed and predicted burned area (hectare) for the (a) winter-spring and (b) summer 900 

fire season in selected years: 2011 (red, year of the largest burned area), 2008 (blue, year with burned area close to the 14-year 

mean of its season), and 2014 (black, year with burned area close to the 14-year mean of its season).  The black line represents 

the line of unity and the blue line is a best fit to the data by linear regression. 
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 905 
Figure 4. Map of monthly mean observed and predicted burned area averaged from 2002 to 2015 for the (a) winter-spring and 

(b) summer fire season. 
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Figure 5. Timeseries of observed (black line) and predicted total burned area (red line) over South Central US for the (a) 

winter-spring and (b) summer fire season. 
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Figure 6. Relative importance of the top 14 variables presented by increase in mean square errors (%Inc.MSE) for (a) the 

winter-spring fire season (b) summer fire season. 
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Figure 7. The mean scaled absolute percentage of the environmental controls for the winter-spring (blue) and summer fire 

season (red). 925 
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