
Response to Reviews 
We thank the editor and the reviewers for their constructive comments to improve the manuscript. 
Their comments are reproduced below with our responses in blue. The corresponding changes in 
the manuscript are highlighted in blue.  
 

Editor 
While the manuscript has been improved, there are still a few major concerns need to be 
addressed. Please revise the manuscript according to the two additional points raised by referee 
#3 (attached). Also, it seems that one the major concerns about the necessity to use 58 variables 
(since many of which are highly correlated) from previous round has not been fully addressed. 
The authors may consider to use some statistical ways to test for multicollinearity, e.g., 
computing the variance inflation factor (or VIF), rather than choosing 0.7 as a threshold for 
correlation.  
The issue of multicollinearity should indeed be considered more quantitatively. We stated in the 
original manuscript that the random forest as a machine learning tool is less unaffected by the 
issue of multicollinearity than traditional regression methods because the random forest 
randomly selects predictors used for each tree, in which the probability of sampling strongly 
correlated variables in a particular tree is largely avoided (Siroky, 2009). To prove this for our 
model, we calculate VIF for our random forest model by a bootstrapping of seven predictors (the 
number of predictors used in each tree) for 5000 times. We randomly select seven predictors out 
of all 58 potential predictors and compute the VIFs, and we repeat this sampling 5000 times for a 
VIF distribution. Each sampling yields seven VIFs values, and hence for 5000 sampling we 
obtain 35000 VIFs which forms a distribution. Figure R1 shows the distribution of VIFs for all 
the selected predictors. The distribution has a median of 1.67 for the winter-spring and a median 
of 1.62 for the summer fire season. The distribution has about 96% of the VIF values smaller 
than 10 for both fire seasons, demonstrating the minimized multicollinearity in tree models. We 
thus contend that all 58 potential predictors should be kept as model inputs and we should let the 
random forest algorithm choose the best predictors for itself. We have included the above 
discussion into the manuscript (line 503-511). Figure R1 is added in the supplementary. 
 

 
 



Figure R1. Distributions of VIF calculated based on randomly selected seven variables of 5000 
times sampling for winter-spring (top) and summer fire season (bottom) (This figure is now Fig. 
S12. in the revised manuscript) 
 
In addition, the South Central US has been chosen as a study area where the risk of wildfires has 
been predicted to be the highest in 2031-2050. But the proposed model seems to fail to predict 
BA during the years with abnormal fire activity especially during spring fire season (figure 5). If 
it is because “random forest or quantile regression forest cannot predict burned area greater than 
it observes before”, how would that influence the performance of the proposed model for future 
predictions assuming that fire activity will increase in the next several decades. Please comment 
on it and discuss it in the revised manuscript. 
Our model is able to predict future burned area for the following two reasons. First, the predicted 
burned area across the whole domain for the future scenario can be larger than it has observed 
before. The limitation that the maximum observed burned area cannot be exceeded is applicable 
only at the grid level and this upper limit is taken from all available grids of the whole training 
period, which can be referred to as the global upper limit per grid. The global upper limit is 514 
km2 per grid for the winter-spring fire season, and 238 km2 per grid for the summer fire season. 
Under the effect of climate change, the total burned area summed across the domain can greatly 
exceed the present-day total burned area. Figure R2 shows an example for a randomly selected 
grid box. The model can predict the largest burned area on Feb 2008 and this is consistent with 
the observed burned area. This demonstrates that any single grid can predict burned area larger 
than the grid maximum by learning from other grids, and that therefore a much larger total 
burned area for the domain can be predicted by our model under future climate change. 
 

 

 
Figure. R2. Timeseries of observed (black line) and predicted total burned area (red line) for the 
selected grid (Lon: -98.75, Lat: 29.25) for the winter-spring fire season. (This figure is now Fig. 
S16. in the revised manuscript) 
 
 
Second, the global upper limit is a sufficiently large value and thus the burned area per grid in 
the future would hardly exceed the global upper limit per grid. To further demonstrate the global 
upper limit per grid would be rarely exceeded, we show in Figure R3 the distribution of gridded 



burned area for year 2011, an extremely severe fire year for the study domain, in comparison to 
the distribution of all other years for 2002-2015. It can be seen that the majority of the burned 
areas for the extreme year are still within the range of the observed burned area in 2002-2015. 
Only two grids with burned areas exceed the global upper limit from 2002-2015 (excluding 
2011). The total burned area of those exceedance grids only accounts for 20% of total burned 
area for 2011, which is within the stated uncertainty range of our prediction model. The above 
discussions have been included in the manuscript (line 622-636). 
 

 
Figure. R3. Distribution of burned area of all the grids for the study period excluding 2011 
(black line) and of the grids for the extreme year 2011 (red line) combined both seasons. (This 
figure is now Fig. S17. in the revised manuscript) 
 

Reviewer #3 
1. Per previous suggestion, the authors give the parameter information of the XGBoost. The 
different parameter configurations in the XGBoost and Random Forests are used for winter-
spring and summer. Perhaps, we want to a uniform robust machine learning model that can 
achieve high accuracy both in the different seasons. 
We understand the reviewer’s perspective about a unified robust model configuration. However, 
we have used two different sets of predictor variables for the two fire seasons to characterize 
different important factors and processes, because the length and characteristics of the two pre-
fire seasons are fundamentally different. In this regard, using a single set of parameter 
configuration for two different input predictor variables could not give us two fully optimized 
prediction models. Two parameter configurations that are tailor-made for two separate input 
predictor variables are needed to fully optimize the two prediction models. Using one unified 
parameter configuration for both seasons can technically be achieved easily, but it is not the best 
approach from the perspective of fine-tuning machine learning models. We have included the 
above explanations in the manuscript (line 241-244). 
 
2. The authors analyze how RH anomaly and temperature anomaly affect the prediction. But the 
temperature anomaly is just ranked 10th in the summer season. I think the authors need to 
analyze how the top at least 3 variables affect the prediction so that we can learn something from 
the machine learning model, not just the accuracy. On the other hand, the author said “The 



physical reason behind their importance is that higher temperature coupled with lower relative 
humidity in the summer can cause drier fuel and this condition is favorable for fires to start, 
spread, and burn more intensely”. But, the machine learning importance cannot provide the 
influence of change of variable values. The authors should further prove that. 
 
(1) The analyses of relationship between RH anomaly, temperature anomaly, and burned area 
demonstrate different controls of burned area in the two fire seasons. To better understand how 
the changes of top variables affect burned area, the partial dependence plots can be applied to the 
built model and show the marginal effect of a variable on the prediction performance (Friedman, 
2001), as suggested by the reviewer. As we only included the results of partial dependence plots 
of the top two variables for the winter-spring fire season in the manuscript, the results of other 
top ranked variables and for the summer fire season are similar and more discussions are 
provided here. Figure R4 shows the partial dependence plots for the model and the top four 
variables (RH anomaly, SPEI_mean4m, apcp_avg, and temp_sd) for the winter-spring fire 
season. For RH anomaly, the fitted logarithmic burned area is getting larger if the RH anomaly is 
smaller than 2% (Figure R4a). The change likely indicates the sensitivity of burned area to the 
fire-season moisture. Similar pattern is also shown in the partial dependence plot of the mean 
SPEI of the preceding 4 months (Figure R4b). Larger fitted burned area is observed to be 
associated with the preceding SPEI smaller than zero, suggesting that burned area in this season 
is highly dependent on the pre-fire-season drought conditions, which is consistent with the 
findings of prior studies (Scott and Burgan., 2005; Riley et al., 2013; Turco et al., 2017). As for 
the average precipitation of 1979-2000, the fitted burned area increases as the average 
precipitation increases (Figure R4c). This implies that larger fires occur in the areas where the 
average precipitation was more in the past. For standard deviation of temperature during 1979-
2000, the fitted burned area declines dramatically when the standard deviation of temperature is 
larger than 9K, suggesting burned area may be larger with relatively less variation of temperature 
in the winter-spring fire season (Figure R4d). 
 



 
Figure. R4. Partial dependence plots for the burned area model and (a) RH anomaly, (b) the 
mean SPEI of the preceding 4 months, (c) the average precipitation of 1979-2000, (d) the 
standard deviation of temperature of 1979-2000 for the winter-spring fire season. The blue line is 
the LOESS smooth line. (This figure is now Fig. S9. in the revised manuscript) 
 
For the summer fire season, the large burned area is associated with low values of RH anomaly, 
minimum RH anomaly, the mean SPEI of the preceding 2 months, and long-term (1979–2000) 
standard deviation of temperature (Figure R5). The fitted logarithmic burned area increases 
rapidly as the RH anomaly decreases toward zero and the increase in burned area reaches a 
maximum at RH anomaly of –14% (Fig. R5a). Compared to the partial dependence plot for RH 
anomaly, the fitted burned area increases more rapidly with decreasing minimum RH anomaly 
(Fig. R5c). At below zero, the sensitivity of log(burned area) to the minimum RH anomaly is 
0.04 %-1 (Fig. R5c), while the corresponding sensitivity to RH anomaly is only 0.02 %-1 (Fig. 
R5a). The stronger sensitivity of burned area to minimum RH anomaly indicates the stronger 
effects of extremely low humidity conditions on fire growth as compared with the mean RH 
conditions. For the standard deviation of temperature during 1979-2000, larger burned area is 
observed with smaller standard deviation of temperature in the past. This suggests burned area 
would become larger for the grids with less variation of temperature (persistent high temperature) 
in the summer. As for the mean SPEI of the preceding 2 months, we see an increase of fitted 
burned area at zero, with the largest increase at –1.8, which supports the importance of fuel 
drying process in the summer fire season. 



 
Figure. R5. Partial dependence plots for the burned area model and (a) RH anomaly, (b) long-
term (1979-2000) standard deviation of temperature, (c) minimum RH anomaly, and (d) the 
mean SPEI of the preceding 2 months for the summer season. The blue line is the LOESS 
smooth line. (This figure is now Fig. S10. In the revised manuscript) 
 
For both fire seasons, RH anomaly, mean SPEI of preceding months, and standard deviation of 
temperature for 1979-2000 are selected as the top 4 predictors, highlighting the importance of the 
common variables of the two seasons but with different thresholds and magnitudes in their 
effects on burned area. We have included the information and the above-mentioned examples in 
the revised manuscript (line 447-459 and 472-486). 
 
(2) The statement of “This highlights the importance of the stronger combined effects of RH and 
temperature anomalies on burned area during summer, when higher temperature coupled with 
lower relative humidity can cause drier fuel and create favorable conditions for fires to start, 
spread, and burn more intensely” is mainly based on differences in correlation between RH 
anomaly and temp anomaly for the two fire seasons. Additionally, in the variable importance 
analyses, RH anomaly is selected for both seasons, while temperature anomaly is only shown for 
the summer fire season. To further prove the statement, here we plot out the relationship between 
RH anomaly, temperature anomaly, and burned area. We perform a regression for the RH 
anomaly (y) and temperature anomaly (x), and fires with different sizes labeled with different 



colors. The slope of the line is the change in RH anomaly over the change in temperature 
anomaly, which represents the dependence of RH anomaly on temperature anomaly. The slopes 
are -3.7 and -0.89 for the summer and winter-spring fire season, respectively, showing that a 
strong dependence of RH anomaly on temperature anomaly in the summer (Figure R6). In 
addition, large burned area (75th percentile, black dots in Figure R6) mainly occur in the 
condition of low RH anomaly and high temperature anomaly (bottom-right corner), in particular 
for the summer fire season. The conclusion from this plot supports our statement that “higher 
temperature coupled with lower relative humidity can cause drier fuel and create favorable 
conditions for fires to start, spread, and burn more intensely”. We have revised the corresponding 
paragraphs and included the above discussions and Fig R6 into the supplementary (line 431-
436). 
 
 

 
Figure R6. Scatter plot of RH anomaly versus temperature anomaly for (a) winter-spring and (b) 
summer fire season. The blue line is the fitted regression line. The color represents different sizes 
of fire burned area (Green: smaller than 50th percentile; Red: larger than 50th percentile but 
smaller than 75th percentile; Black: larger than 75th percentile). (This figure is now Fig. S8. in the 
revised manuscript) 
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Abstract. Occurrences of devastating wildfires have been increasing in the United States for the past decades. While some 

environmental controls, including weather, climate, and fuels, are known to play important roles in controlling wildfires, the 

interrelationships between these factors and wildfires are highly complex and may not be well represented by traditional 

parametric regressions. Here we develop a model consisting of multiple machine learning algorithms to predict 0.5ox0.5o-10 

gridded monthly wildfire burned area over the South Central United States during 2002-2015 and then use this model to 

identify the relative importance of the environmental drivers on the burned area for both the winter-spring and summer fire 

seasons of that region. The developed model alleviates the issue of unevenly-distributed burned area data, predicts burned 

grids with Area Under the Curve (AUC) of 0.82 and 0.83 for the two seasons, and achieves temporal correlations larger than 

0.5 for more than 70% of the grids and spatial correlations larger than 0.5 (p<0.01) for more than 60% of the months. For the 15 

total burned area over the study domain, the model can explain 50% and 79% of the observed interannual variability for the 

winter-spring and summer fire season, respectively. Variable importance measures indicate that relative humidity (RH) 

anomalies and preceding months’ drought severity are the two most important predictor variables controlling the spatial and 

temporal variation of gridded burned area for both fire seasons. The model represents the effect of climate variability by 

climate-anomaly variables and these variables are found to contribute the most to the magnitude of the total burned area 20 

across the whole domain for both fire seasons. In addition, antecedent fuel amounts and conditions are found to outweigh the 

weather effects on the amount of total burned area in the winter-spring fire season, while fire weather is more important for 

the summer fire season likely due to relatively-sufficient vegetation in this season. 

1. Introduction 

Wildfire is an important process maintaining the balance of terrestrial ecosystems. Wildfire occurrence is controlled 25 

by a complex interaction among fuel, weather, and climate (Bowman et al., 2009; Pausas and Keeley, 2009). In recent 

decades, many regions of the world have experienced an increase in frequency and intensity of wildfires, which may be 

possibly connected to changes in regional climate (Balshi et al., 2009; Barbero et al., 2015; Carvalho et al., 2008; Flannigan 

et al., 2009; Westerling et al., 2006; Westerling, 2016). More intense and more frequent wildfire activities not only heighten 
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ecosystem vulnerability but also cause poor air quality (Jaffe et al., 2008; Pellegrini et al., 2017; Wang et al., 2018; Yue et al., 30 

2015). Thus, it is imperative to understand how wildfires would respond to changes in environmental factors in a warming 

climate. 

Previous studies revealed the importance of several environmental factors on wildfires. Fuel availability and 

composition across regions can affect fire developments such as fire likelihood and spread efficiency (Nunes et al., 2005; 

Parks et al., 2012). Weather influences fuel moisture by changing precipitation and humidity and controls fire spread through 35 

winds. Long-term climate change can alter both fuel and weather conditions, for example by adjusting vegetation 

distributions and the frequency of fire-favorable atmospheric conditions (Heyerdahl et al., 2008; Keyser and Westerling, 

2017; Morgan et al., 2008; Zubkova et al., 2019), therefore changing fire regimes. Past studies also highlighted that the 

complex interplay between fuel, weather, climate, and wildfires can vary depending on spatial scale, fire size, region, and 

season. For instance, the relationships between fire activity and the environmental controls can exhibit complex 40 

nonlinearities across the spatial scale gradient (Peters et al., 2004). Fuel and topography mainly regulate fires at a local scale, 

while weather and climate control fires at a broad spatial scale (Parks et al., 2012). In terms of fire size, it was found that the 

major controlling factors could shift from fuel and topography to weather as fire size increases in boreal forests (Liu et al., 

2013; Fang et al., 2015). In the western Mediterranean Basin where land heterogeneity is large, influences of fuel can 

outweigh influences of climate and weather on large fires (Fernandes et al., 2016). Therefore, it is challenging to examine 45 

the relative importance of the environmental drivers on wildfires due to the complex interrelationships among them.  

One common method to explain the relationships between fire regimes (e.g. fire sizes or fire occurrences) and 

environmental factors is regression. This method is also used to evaluate the relative importance of different environmental 

controls (Littell et al., 2009; Slocum et al., 2010; Parisien et al., 2011; Yue et al., 2013; Liu & Wimberly, 2015; Fernandes et 

al., 2016). Among a wide range of regression techniques used, non-parametric machine learning algorithms have emerged as 50 

an important tool to predict wildfires because they rely on fewer pre-assumptions about the data. Bedia et al. (2014) used 

non-parametric multivariate adaptive regression splines (MARS) to model the monthly burned area for the phytoclimatic 

zones in Spain of sizes ranging from 25 km x 25 km to 100 km x 100 km. Amatulli et al. (2013) used two machine learning 

approaches, Random Forest (RF) and MARS, to estimate monthly burned area in five countries in Europe with a spatial 

resolution ranging from 300 km x 300 km to 1000 km x 1000 km. In these studies, the machine learning methods were used 55 

to estimate total burned area aggregated over a large-scale domain, e.g. on an ecoregion or a country scale (Table S1). 

However, fewer studies have explored the utility of machine-learning methods in resolving the within-domain and grid-level 

relationships between fires and the environmental drivers. A particular challenge in predicting burned area of fires at the grid 

level across a broad region relates to the uneven distribution of burned area both spatially and temporally, where the number 

of grids of large burned area is much smaller than the number of those with small or zero burned areas. For example, Steel et 60 

al. (2015) showed that for fires in California, small fires (< 25 ha each) contributed to 87% of the total number of grids 

burned but only 17% of the total burned area, whereas large fires (> 150 ha each) accounted for only 3% of the total number 

of burned grids but made up 64% of the total burned area. Thus, at the grid level the majority class is non-burn wildlands or 
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small fires, while the minority class is large fires. As most data-driven regression algorithms, parametric or non-parametric, 

would favor the majority class, large fires will be underpredicted for grid-level predictions. 65 

In this study, we develop a model consisting of multiple machine learning techniques to predict wildfire burned area 

at the grid level over the vegetation-rich and thus fire-prone region of the South Central United States (US), which 

encompasses four states -Texas, Oklahoma, Louisiana, and Arkansas – as shown in Figure 1.  The study region is chosen for 

several reasons. First, this region is composed of similar vegetations which are plains and oak-hickory forests. Second, the 

vegetation-rich region of the South Central US is fire-prone and has experienced periodically large wildfires in recent years, 70 

such as the 2011 Texas fires (Long et al., 2013; Nielsen-Gammon, 2012), but the region as a whole has been much less 

studied compared to the western US.  Third, this region is projected to have the highest risk of wildfires in 2031-2050 across 

the continental US (An et al., 2015; Fann et al., 2018). In terms of the prediction method, the integrated machine learning 

model aims at mitigating the problem of uneven distribution of burned area data and improving the accuracy of predicting 

wildfire burned area at a grid-scale of 0.5° x 0.5°. Using the prediction model developed here, the goal of this paper is to 75 

estimate the relative importance of different environmental factors on wildfire burned area in the study region which would 

be useful for future fire prediction as well as understanding the linkage between wildfires and climate change.  

The study period is from 2002 to 2015. For each year, we predict gridded wildfire burned area at the monthly scale 

for the typical bimodal wildfire seasons over the region (Figure S1): the winter-spring fire season from January to April and 

summer fire season from July to September (Zhang et al., 2014). Wildfires during the winter-spring wildfire season are 80 

typically associated with dry and strong winds resulting from the large-scale low-pressure systems (Heilman et al., 1998; 

Jones et al., 2013), while wildfires in the summer are mostly driven by the abundance of dry or dead vegetations produced 

from the dry season (Jones et al., 2013). These two seasons contribute 76% of the annual total burned area, indicating that 

natural environmental conditions in these months are most conducive for wildfires. While wildfires do occur outside the fire 

seasons, their lower frequency implies that non-natural factors (e.g. human actions) can be relatively more important. As our 85 

study does not focus on human factors, we choose to exclude other months of the year. 

The rest of the paper is organized as follows: Section 2 introduces data incorporated into the model. Section 3 

describes the developed model and validation method. Section 4 presents the results of model validation and evaluation. In 

section 5, we analyze the relative importance of individual variables and the environmental controls at different spatial scales. 

Discussion and conclusion are given in section 6. 90 

 

2. Data 

2.1 Wildfire burned area  

The model predicts wildfire burned area at a grid-scale of 0.5°×0.5° over the study region. Wildfire burned area is 

chosen as the target variable because it is a widely-used parameter for quantitative assessment of fire danger and fire impact 95 
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(Amatulli et al., 2013; Balshi et al., 2009; Yue et al., 2013). Wildfire information over the study period (2002-2015) is 

obtained from the Fire Program Analysis Fire-Occurrence Database (FPA-FOD). The FPA-FOD collects daily wildfire 

reports from federal, state, tribal, and local governments. The dataset includes wildfire burned area, fire location in longitude 

and latitude, and fire discovery date from 1992 to 2015 (Short, 2017). The FPA-FOD fire data excludes prescribed fires 

except for the prescribed fires that escape their planned perimeters and become wildfires. A known caveat of this database is 100 

that it does not include some small fires that occur on private lands. Short (2014) reported that for the period of 1992-1997 

the national total number of wildfires from the FPA-FOD is about 30% lower compared to that from the US Department of 

Agriculture Forest Service (USFS) Wildfire Statistics, although the national total burned area is consistent between the two 

datasets. Thus, our model will not be able to predict those small fires missing from the FDA-FOD as such information is not 

in the training dataset. 105 

The FPA-FOD wildfire data is point data at a daily time step. As the prediction model deals with the monthly total 

burned area at a spatial resolution of 0.5°×0.5°, we aggregate the daily point burned area into 0.5°×0.5° grid cells based on 

fire longitude and latitude and sum the burned area in each grid by month. The resulting dataset of monthly burned area has 

nearly 70% of the grids with burned area less than 10 ha or non-burned. To reduce skewness and improve data symmetry, we 

apply the log transformation function ln(x+1), where x is the gridded monthly total burned area. The log-transformed burned 110 

area is the target variable of the model. 

2.2 Predictor variables 

Based on previously published studies, we collect a number of predictor variables that are thought to influence 

wildfire burned area (Fang et al., 2015; Keyser and Westerling, 2017; Liu and Wimberly, 2015; Riley et al., 2013; Yue et al., 

2013) and group them into four categories of environmental controls (Table 1): weather, climate, fuel, and fixed-geospatial 115 

variables. These predictor variables are listed in Table 1 and described below. All the variables, including continuous and 

discrete thematic variables, are resampled to a spatial resolution of 0.5°× 0.5° by the nearest neighbor resampling method 

(Baboo and Devi, 2010). The nearest neighbor resampling method assigns a value to the new grid according to the value of 

the original grid closest to the center of the new grid. The resampling method has the advantages of being efficient and not 

changing any value from the original dataset. 120 

 

2.2.1 Weather variables  

The meteorological data are obtained from the North American Regional Reanalysis (NARR) with a spatial 

resolution of 32 km x 32 km (Mesinger et al., 2006). The weather variables include the monthly total accumulated 

precipitation and the monthly means of the following variables: daily precipitation, daily average and maximum temperature, 125 

zonal (U) and meridional (V) components of wind at 10 m, and daily average and minimum relative humidity (RH). In order 

to select extreme conditions that are likely to induce wildfires on a sub-monthly time scale, we also include the number of 
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consecutive days without rainfall within a month, which is based on daily precipitation from the NARR data. Another 

extreme weather pattern conducive for wildfires is drought (Gudmundsson et al., 2014; Riley et al., 2013; Turco et al., 2017). 

Drought depicts the extreme condition of water deficit in the coupled land-atmosphere system that can be driven not only by 130 

lack of precipitation but also by excessive evaporation. We use the Standard Precipitation and Evaporation Index (SPEI) to 

represent drought intensity (Vicente-Serrano et al., 2009). The SPEI incorporates both precipitation and potential 

evapotranspiration to estimate climatic water balance at different time scales (1 to 48 months). In this study, we use the 1-

month SPEI from the global SPEI database (http://spei.csic.es/database.html) with a spatial resolution of 0.5°× 0.5°. Positive 

values of SPEI represent wetter than normal conditions and negative values indicate conditions that are drier than normal. 135 

Weather conditions in the preceding months are also known to influence fire development. For example, an increase 

of precipitation in the preceding months can promote biomass growth and provide fuels for a widespread of larger wildfires 

in a later month (Fréjaville and Curt, 2017; Littell et al., 2009). To consider such lagged effects, for a given month t, we 

calculate the averages of the aforementioned weather variables from the months t-1 to t-12. We then include those lagged 

variables that have correlation coefficients (r) larger than 0.5 with wildfire burned area of month t but are not strongly 140 

correlated with the same variables of month t (r < 0.5). For the winter-spring fire season, the antecedent variables that pass 

this criterion are the monthly mean of daily precipitation of months t-1 and the average SPEI of the months t-1, t-1 to t-2, t-1 

to t-3, t-1 to t-4, t-1 to t-5, and t-1 to t-6. For the summer fire season, the selected antecedent variables are the average of 

monthly mean temperature for months t-1 and t-1 to t-2, monthly mean of daily precipitation for months t-1, t-1 to t-2 and t-1 

to t-3, and mean SPEI of months t-1, t-1 to t-2, and t-1 to t-3. 145 

 

2.2.2 Climate variables 

Inputs of climate variables to the model include both climate anomalies and 22-year (1979-2000) means and 

standard deviations of selected meteorological variables from the NARR data. Here climate anomalies refer to the departure 

of monthly mean meteorological variables from their long-term averages over 1979-2000, thereby representing the effects of 150 

climate on meteorological conditions. The climate anomalies are calculated for the monthly total precipitation and monthly 

means of daily average precipitation, daily average and maximum temperature, average and minimum RH. The long-term 

average and standard deviation of meteorological variables characterize the spatial and temporal patterns of the mean climate 

conditions, which can determine the typical vegetation of the study region and hence influence fire occurrence and size 

(Keyser and Westerling, 2017). We use the 22-year means and standard deviations of monthly total accumulated 155 

precipitation and monthly means of daily average and maximum temperature, and daily average precipitation. As 

climatological means and standard deviations do not vary with time, they are grouped with the geospatial variables later in 

the study as the category of fixed variables. 
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2.2.3 Fuel variables 160 

Fuel variables are selected to estimate the fuel effect on burned area and these variables include monthly mean of 

Leaf Area Index (LAI), sum of neighboring LAI, and soil moisture. The LAI is the ratio of the total one-sided area of green 

leaf area per unit ground surface area, which has been widely used to describe the structural property of a plant canopy 

(Watson, 1947; Chen and Black, 1992). Additionally, LAI is correlated with important metrics of canopy fuel loads, such as 

canopy bulk density (Keane et al., 2005; Steele-Feldman et al., 2006). The monthly mean LAI at a spatial resolution of 500 165 

m is obtained from MODerate resolution Imaging Spectroradiometer (MODIS) instruments (Myneni et al., 2015). Besides 

local LAI values, to capture the effects of spatial autocorrelations, we consider each grid cell as the center of a 3-by-3 grid 

matrix and compute the summation of the LAI from the center grid’s eight neighboring grids. This summation is referred to 

as the ‘sum of neighboring LAI’ and included as a predictor variable. The lagged effects of fuel buildup in the preceding 

months are expected to influence wildfire occurrence and size. Using the same criteria to select antecedent weather variables 170 

(section 2.2.1), the averages of LAI and sum of neighboring LAI for the months t-1 to t-6 are selected as antecedent fuel 

variables for the winter-spring fire season, but no such variables are included for the summer fire season because none passes 

the selection criteria. 

Fuel moisture is a critical property for evaluating fire danger. As fuel moisture data is limited, soil moisture is often 

used as an indicator of fuel moisture because of the strong correlation between the two (Krueger et al., 2016). Here, we use 175 

the monthly surface soil moisture (0-10 cm) from the Noah land-surface model for Phase 2 of the North American Land Data 

Assimilation System (NLDAS-2) with a spatial resolution of 0.125°× 0.125° to represent the influence of fuel moisture 

(Mocko., 2013; Xia et al., 2012).  

 

2.2.4 Geospatial variables and population 180 

Lastly, population and two geospatial variables are used as predictors, including ecoregions and land cover types 

which are chosen to capture the effects of land use and ecosystem similarity on wildfire burned area. Land cover mainly 

describes the physical material at the surface of the earth. The land cover data at the spatial resolution of 30 m is obtained 

from the 2011 Landsat-derived land cover map from the National Land Cover Database (NLCD) (https://www.mrlc.gov) 

(Homer et al., 2020). The ecoregion data is obtained from the United States Environmental Protection Agency (US EPA) 185 

(https://www.epa.gov/eco-research/ecoregions) (Omernik, 1995; Omernik and Griffith, 2014). The ecoregions denote areas 

of similarity in the mosaic of biotic, abiotic, terrestrial, and aquatic ecosystem components. Population density data in the 

year 2010 from the U.S. Census Bureau (https://www.census.gov/geo/maps-data/data/tiger.html) (U.S. Census Bureau, 2010) 

is used to estimate the influence of present-day human management practices and human activities on wildfires. 

 190 

https://www.mrlc.gov/
https://www.epa.gov/eco-research/ecoregions
https://www.census.gov/geo/maps-data/data/tiger.html
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3. Model 

3.1 Model description 

One major challenge in wildfire prediction is the highly uneven distribution of burned area where the number of 

grids with large burned areas is typically much smaller than the number of grids with small or zero burned areas (Figure S2a). 

For the study region (red box in Figure 1), grids without any fire occurrence in combination with those of only small fires (< 195 

25 ha) take up 79% of the total number of the grids but correspond to only 1% of the total burned area. By contrast, grids 

with the large burned area (>150 ha) account for 84% of the total burned area but only 6% of the total number of grids. For 

such unevenly-distributed data, standard machine learning methods usually favor the majority class (i.e. non-burned or small 

fires), leading to the low prediction accuracy of the minority class (i.e. large fires) (Krawczyk, 2016). To alleviate the low 

bias toward large fires, we develop a model consisting of multiple steps that address the uneven data issue.  200 

Figure 2 demonstrates the structures and processes of our model, which has four steps and uses three machine 

learning algorithms. First, for each data grid, given the predictor variables, we use the quantile regression forest (QRF) to 

predict a distribution of burned area at the targeted percentiles which are chosen at 45, 55, 65, 85, 95, and 99 in this step. The 

percentiles here refer to the relative position of the predicted burned area in the cumulative distribution of all the burned area 

data and they are chosen to include the whole conditional distribution. Second, for all the grids, we predict if a grid burns or 205 

not by using the logistic regression model and the same set of predictor variables as in the first step. Third, for the grids that 

are predicted to burn, instead of predicting burned area directly, we use a random forest (RF) model to predict the percentile 

of burned area relative to the training set. After all the predicted-burn grids obtain their predicted percentiles of burned area 

by the RF, the test dataset is divided into six sub-groups according to their predicted percentiles: {(39,49), (50,59), (60,69), 

(70,79), (80, 89), (>=90)}. The percentile groups are chosen to align with the six percentiles in the first step. The first three 210 

percentiles correspond to the median of the first three percentile groups. For example, the first percentile group (39, 49) has a 

median percentile of 45, the first percentile of predicted wildfire burned area from the first step. The last three percentiles (85, 

95, and 99) from the first step correspond to the last three percentile groups of (70, 79), (80, 89), and (>=90), respectively, 

although they lie outside the upper bounds of corresponding subgroups. This is based on the assumption that grids with the 

larger predicted burned area (predicted percentile > 70) in the testing set will have more right-shifted burned area 215 

distributions than the distributions of the whole training set, as shown in Figure S3. In step 4, for the grids in a given 

subgroup, they are assigned to the burned area value at the corresponding percentiles as determined by the predicted 

distribution generated from the first step. Specifics of the machine learning algorithms and technical details of the prediction 

model are described in the subsections below. 

Our approach alleviates the issue of unevenness data for two reasons. First, the majority of zero-burn grids are 220 

separated by the second step. Second, for the grids predicted to burn, we predict the relative position (i.e. percentiles) of the 

burned area based on the training set. As Figure S2 and Table S2 show, the distribution of percentiles is less skewed 

compared to the burned area distribution. Thus, the unevenness of the burned area is less severe when predicting the 
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percentiles than predicting the burned area directly. Given the possible collinearity between the predictor variables, we 

choose the logistic model and RF model which are shown to work reasonably well under moderate collinearity (correlation 225 

coefficient < |0.7|) (Dormann et al., 2013). We verify that the correlation between any pairs of the time-varying predictor 

variables is less than 0.7, except for the variables of the antecedent SPEI. We choose to keep the antecedent SPEI covering 

the different ranges of months to represent the different pre-fire drought conditions which are expected to play an important 

role for wildfires.  For the winter-spring fire season, the pre-fire season starts in October and can range from 3 to 6 months 

for the start (January) and end (April) of the fire season, respectively. For the summer fire season, we use May as the start 230 

month of the pre-fire season and the pre-fire season ranges from 1 to 4 months for the start (July) and the end (September) of 

the summer fire season, respectively. 
 

3.1.1 Random forest regression 

Random forest (RF) is an ensemble-learning algorithm built on decision trees. Each tree is built using the best split 235 

for each node among a subset of predictors randomly selected at the node (Liaw and Wiener, 2002). The best split criterion 

is based on selecting the variables at the nodes with lowest Gini Index (GI), which is defined as GI (𝑡𝑥(𝑥𝑖)) = 1- 

∑ 𝑓(𝑡𝑥(𝑥𝑖), 𝑗)𝑚
𝑗=1 P

2, where 𝑓(𝑡𝑥(𝑥𝑖), 𝑗) is the proportion of samples with the value xi belonging to leave j as node t. Two 

parameters can be adjusted to optimize the RF model, including the number of trees grown (ntree) and the number of 

predictors sampled for splitting at each node (mtry). The RF regression model first draws ntree bootstrap samples from the 240 

original dataset. For each sample, at each node of a tree, mtry predictors are randomly chosen from all the predictors and then 

the best split from among the predictors is determined at each node according to GI. In this study, we have ntree of 1200 and 

mtry of 8 for the winter-spring fire season and ntree of 1500 and mtry of 7 for the summer fire season. As the length and 

characteristics of the two fire seasons are different, we use two sets of parameter configurations for the models of the two 

fire seasons which include different predictor variables (section 2.2). This way would ensure the prediction model is fully 245 

optimized for each fire season to obtain the best prediction accuracy. The predicted value of an observation is the average of 

the observed values belonging to the leaves of ntree trees. Here, we use the RF model to predict percentiles of burned area for 

the grids that are predicted to burn.  

The benefit of applying the RF model is that it can provide the variable importance that measures the strength of 

individual predictors. The variable importance is measured by the increase in the mean square error (%IncMSE) and the 250 

increase in node purities (IncNodePurity). The %IncMSE is calculated by comparing the mean square error with and without 

permuting variables for each tree, and the variables with greater values of %IncMSE are more important. As for the 

IncNodePurity, the changes of residual sum of square (RSS) before and after the split are first derived at each split, and the 

final IncNodePurity of a variable is obtained by summing over the RSS of all the splits that include the variable over all trees. 

Thus, a larger IncNodePurity represents higher variable importance. 255 
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3.1.2 Quantile regression forests 

Quantile regression forests (QRF) are an extension of the RF (Meinshausen, 2006). QRF develops trees in the same 

way as RF, but instead of calculating the average of the values from leaves of the trees to obtain a single predicted value, the 

QRF estimates the conditional distribution of a target variable. The conditional distribution is calculated by averaging the 260 

conditional distributions from all the trees and the predicted quantiles or percentiles are derived from the final empirical 

distribution function. Here we choose to predict percentiles at 45, 55, 65, 75, 85, 95, and 99 as described above. These 

percentiles are selected because they can represent the full spectrum of fire sizes ranging from small to extremely large ones. 

The percentiles less than 45 are typically zero-burn, so the percentile of 45 is the lowest percentile that can possibly record 

both zero-burn and very small burned area for each grid.  265 

 

3.1.3 Logistic regression model 

 Logistic regression is used to estimate the probability of wildfire occurrences in a grid cell by the statistical 

relationships between wildfire occurrences and the predictor variables. Logistic regression is defined as 𝑃𝑖 = 1
1+𝑒−𝜂𝜂

 and 

𝜂𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +⋯+ 𝛽𝜌𝑋𝑖𝜌, where Pi represents the probability of an occurrence of wildfire in a grid cell i, ηi is 270 

the linear combination of the predictor variables weighted by their regression coefficients (β), x ij is the value of the predictor 

variable j of the grid i, and 𝛽0 is the constant. The logit function can be expressed as log ( 𝑃
1−𝑃

) = 𝑥𝑖𝑇𝛽, where 𝑥𝑖𝑇is the vector 

of the predictor variables and β is the vector of the parameters. Values of P greater than 0.4 are considered to be an 

occurrence of wildfires and those equal to or less than 0.4 are interpreted as nonoccurrence of wildfires. If a grid is classified 

not to burn, the predicted burned area is zero and that grid will not be processed further. On the other hand, if a grid is 275 

classified to burn, it would be analyzed by the RF model to predict the burned area percentiles. 

 

3.2 Validation method 

We apply 10-fold cross-validation (CV) technique to evaluate the model performance and to avoid overfitting. The 

entire dataset (2002-2015) is randomly divided into 10 equal-sized splits. For each round of CV, the model is trained with 280 

nine splits of the data and the trained model is then used to predict burned area at the remaining split.  

Classification of burned or unburned grids is evaluated by the accuracy, precision, recall, and F1-score. Precision 

and Recall are defined in Equation (1) and (2): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑒  𝑝𝑝𝑝𝑖𝑝𝑖𝑝𝑒
𝑇𝑇𝑇𝑒 𝑝𝑝𝑝𝑖𝑝𝑖𝑝𝑒+𝐹𝐹𝐹𝑝𝑒  𝑝𝑝𝑝𝑖𝑝𝑖𝑝𝑒

 ,                   (1) 

𝑅𝑃𝑃𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑒 𝑝𝑝𝑝𝑖𝑝𝑖𝑝𝑒
𝑇𝑇𝑇𝑒 𝑝𝑝𝑝𝑖𝑝𝑖𝑝𝑒+𝐹𝐹𝐹𝑝𝑒  𝑛𝑒𝑛𝐹𝑖𝑝𝑝𝑒

,                  (2) 285 
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where true positive is the number of burned grids correctly predicted, false positive is the number of grids which are 

unburned but are predicted as burned, and false negative is the number of grids that are burned but are predicted not to burn. 

The F1 score measures a model’s accuracy that combines precision and recall: 

𝐹1 = 2
𝑇𝑒𝑟𝐹𝐹𝐹−1+𝑝𝑇𝑒𝑟𝑖𝑝𝑖𝑝𝑛−1

,                              (3) 

F1 score has a maximum value of 1 and a minimum value of 0, and the higher F1 indicates a higher balance between 290 

Precision and Recall. In addition to the aforementioned evaluation criteria, we use the receiver operating characteristic (ROC) 

curve, and the area under the curve (AUC) statistics to evaluate the classifier (Metz, 1978). The ROC curve shows how well 

the model can distinguish between the true positive rate (TPR) and the false positive rate (FPR), where TPR and FPR are 

expressed by Equation (4) and (5): 

𝑇𝑃𝑇𝑃 𝑝𝑃𝑃𝑃𝑡𝑃𝑝𝑃 𝑃𝑅𝑡𝑃 =  𝑇𝑇𝑇𝑒  𝑝𝑝𝑝𝑖𝑝𝑖𝑝𝑒
𝑇𝑇𝑇𝑒 𝑝𝑝𝑝𝑖𝑝𝑖𝑝𝑒+𝐹𝐹𝐹𝑝𝑒 𝑛𝑒𝑛𝐹𝑝𝑖𝑝𝑒

,                 (4) 295 

𝐹𝑅𝑅𝑃𝑃 𝑝𝑃𝑃𝑃𝑡𝑃𝑝𝑃 𝑃𝑅𝑡𝑃 = 𝐹𝐹𝐹𝑝𝑒  𝑝𝑝𝑝𝑖𝑝𝑖𝑝𝑒  
𝐹𝐹𝐹𝑝𝑒  𝑝𝑝𝑝𝑖𝑝𝑖𝑝𝑒+𝑇𝑇𝑇𝑒 𝑛𝑒𝑛𝐹𝑝𝑖𝑝𝑒

,                 (5) 

 The AUC is the area under the ROC curve and it ranges from 0 to 1. The greater the AUC, the better discrimination between 

true positive and true negative. 

Burned area predictions are evaluated using statistical indicators such as the coefficient of determination (R2), mean 

absolute error (MAE), and root mean squared error (RMSE) between the predicted and observed wildfire burned areas. The 300 

evaluation is conducted for the winter-spring fire season and summer fire season separately. The prediction performance is 

also quantified in terms of the model ability in reproducing temporal variation of burned area for each grid and spatial 

patterns of burned area across all the grids of the study domain. Details on the calculation of the spatial and temporal 

correlations are described in the Supporting Information. 

 305 

4. Model validation and evaluation 

Here we present the validation results at two spatial scales: the grid-scale of 0.5°× 0.5° and the large-domain scale 

of 700 km x 700 km corresponding to the size of the study domain (red box in Figure 1). The grid-scale prediction of all 

possible outcomes (i.e., unburned, small burned, and large burned area) is a unique strength of our model. To the best of our 

knowledge, only few previously published studies included unburned and small burned grids into the prediction of wildfire 310 

burned area at a grid-scale as fine as 0.5°× 0.5°. At the large-domain scale, we will compare our model performance with 

prior studies that predicted total burned area of an ecoregion or a country. 

Table 2 lists a variety of statistics representing the model performance at the grid-scale for the winter-spring fire 

season and summer fire season. The prediction performance of the classifier (i.e. the second step in the model) is evaluated 

by the ROC curves (Figure S4), the area under the ROC curve (AUC), accuracy, recall, precision, and F1-score. The ROC 315 

curves of both fire seasons steer toward the upper left corner, indicating good performance of the model with a high 
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detection rate of fires and a low false alarm. The AUCs for the two fire seasons are 0.82 and 0.83. The accuracy and F-1 

score are 0.74 and 0.79, respectively for the winter-spring fire season and 0.74 and 0.77 for the summer fire season. These 

results indicate the model is capable of classifying burned grids and unburned grids with a good balance of recall and 

precision. 320 

In terms of burned area prediction at the grid-scale, the R2 reaches 0.42 and 0.40 for the winter-spring and summer 

fire season respectively. MAE and RMSE are 1.13 and 8.37 respectively for the winter-spring fire season, and 0.57 and 4.26 

for the summer fire season. Before comparing these prediction statistics with previously published studies that predicted 

gridded burned area, it is important to note that the prediction accuracy will depend on the temporal scale (e.g. monthly or 

annual) and grid resolution at which the prediction is made. The larger spatiotemporal scales are expected to have a better 325 

prediction performance. Regarding the type of grids to be predicted, the most challenging case is the prediction including all 

possible outcomes of a given grid (i.e., unburned, with small burned areas, and with large burned areas). As fewer prior 

studies of the similar nature as ours predicted all possible outcomes (i.e. not only large burned areas but also unburned and 

small burned cases) at the grid-level and none of these studies targeted the South Central US, we choose to compare our 

model performance with previously published models that predicted gridded burned area in terms of the approaches, the 330 

temporal and spatial resolution, and the percent of variance explained by the model, regardless of their study regions, periods, 

methods, and predictors. Chen et al. (2016) used ocean climate indices to estimate annual burned area at the grid resolution 

of 1° x 1° but their prediction was only for those grids with non-zero annual burned area. They achieved a prediction R2 of 

less than 0.3 (correlation coefficient r around 0.55) over the southern US (SUS). Using boosted regression trees, Liu and 

Wimberly (2015) obtained a higher R2 of 0.76 between climate variables and burned area over the western US, but their 335 

investigation was limited to only extremely large fires (> 405 ha) and was at a 1° x 1° resolution and annual timestep. 

Compared to those studies, our model targets a more challenging prediction (i.e. prediction at a finer spatial and temporal 

scale and for all the grids), yet achieves a comparable if not better performance at the grid scale. 

Considering there are very few studies that predicted burned area by grids and at the same time considered 

unburned grids or grids with small fires, we extend the comparison to past studies predicting burned area of regions with the 340 

similar spatial scales of 0.5° x 0.5°. Urbieta et al. (2015) used Multiple Linear Regression (MLR) to predict the annual 

burned area of provinces and national forests in the southern countries of the European Union (EUMED) and Pacific 

Western US (PWUSA), with the mean domain size of 108 km x 108 km. Their reported median R2 is 0.28 for EUMED and 

0.22 for PWUSA, smaller than our value (0.4). Using the MLR method, Carvalho et al. (2008) predicted monthly burned 

area of Portuguese districts of sizes ranging from ~ 25 km x 25 km to 100 km x 100 km and their R2 is between 0.43 to 0.80. 345 

The better model performance was only for some districts with evenly-distributed burned area, whereas the districts with 

highly right-skewed burned area distributions (Evora and Portalegre) had prediction R2 of 0.43~0.45. Bedia et al. (2014) 

predicted monthly burned area of the phytoclimatic zones in Spain (~25 km x 25 km to 100 km x 100 km) by using 

multivariate adaptive regression splines (MARS) and obtained R2 ranging from 0.01 to 0.37. In comparison with these 

results, the R2 of 0.42 and 0.40 that we achieve for the two fire seasons at a grid resolution of 0.5° x 0.5° is a significant 350 
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improvement for situations with unevenly-distributed burned area. In addition, by predicting all possible outcomes for all the 

grids within a large domain, our model framework would be more flexible and practical to be applied to other domains. 

The aforementioned statistics demonstrate the general capability of our four-step model in predicting gridded 

burned area over the study period. We select three specific years to further illustrate the model performance: 2011 with the 

largest domain-mean gridded burned area, 2008 and 2014 with the domain-mean gridded burned area close to the 14-year-355 

mean for the winter-spring and summer fire season respectively (Table S4). Figure 3 shows the selected CV-predicted and 

observed monthly burned area of these years for each fire season. The R2 is 0.42, 0.51, and 0.66 for 2011 (combing both 

seasons), 2014 (the winter-spring season), and 2008 (the summer fire season), respectively, after excluding misclassified 

grids. MAE of 2011, 2014, and 2008 are 5.25, 0.77, 0.43 and RMSE are 21.06, 5.87, and 1.75. The detailed statistics of the 

model performance for each year are also shown in Table S5. The results show that the model has a better performance in 360 

predicting gridded burned area for normal years of 2008 and 2014 than for the exceptionally large wildfire year of 2011. 

Although larger MAE and RMSE are shown in 2011 (peak year), our model predicts significantly larger mean gridded 

burned area for the peak months. For 2011, the large burned area can be well modeled but the small burned area (log of 

burned area < 2) is overpredicted. This can be explained by the fact that the extremely hot and dry weather during 2011 

caused fire-favorable conditions across the study domain. Due to the lack of reliable and detailed information about ignition 365 

and suppression, it is difficult for the model to discriminate between small and large fires given widespread extreme drought 

conditions across the whole domain during 2011 (Long et al., 2013; Nielsen-Gammon, 2012).  

The model performance is further evaluated in terms of its ability in reproducing the spatiotemporal patterns of 

monthly mean burned area for the two fire seasons (Figure 4). The correlation coefficient between the 14-year mean 

observed and predicted burned area is 0.82 and 0.80 for the winter-spring and summer fire season, respectively. For the 370 

whole study period, more than 60% of the months have a spatial correlation larger than 0.5 for both fire seasons between the 

observed and predicted monthly burned area. It is noteworthy that such performance is achieved without introducing any 

coordinate variables like longitude or latitude as predictors. This indicates the chosen predictors contain sufficient 

information to capture the spatial heterogeneity of the environmental factors and thus the framework of the model could be 

easily adopted for other regions, making it possible to be incorporated into climate models in future applications. Temporally, 375 

more than 70% of the grids have a correlation higher than 0.5 between the observed and predicted time series of burned area 

(combined the two fire seasons) (Figure S5). These results demonstrate the model has a certain ability in predicting both 

spatial and temporal variation of the burned area at the grid-scale across the study domain. 

Even though bias may be introduced in the multi-steps model, the developed four-step model can achieve higher 

accuracy and alleviate the issue of uneven-distributed dataset. To prove that, we compare the model performance of our four-380 

step model with the prediction performance of simulations using MLR, only the RF model and another decision-tree-based 

ensemble machine learning algorithm called eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016). The results 

are listed in Table S2 and the description as well as the parameters of XGBoost are included in supplementary. Our four-step 

model has a lower MAE, which is 27% and 33% lower than the MLR model for the winter-spring and summer fire season, 
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respectively. Compared to the RF model, our four-step model has a lower MAE by 15% and 19% for the winter-spring and 385 

summer fire season, respectively. Compared to the XGBoost model, the MAE from our four-step model is 11% and 15% 

lower for the two fire seasons. The distribution of MAE from the 10-fold cross-validation shows that our four-step model has 

a smaller median MAE but a larger range of MAE compared to other models (Figure S6). In addition, the distribution of 

percentiles is more uniform than the distribution of the burned area, as shown in Figure S2 and the skewness value. Details 

about the calculation of skewness are described in Supporting Information. Larger positive skewness value indicates a more 390 

highly right-skewed distribution. The skewness of the burned area is 37.4 and 33.8 for the winter-spring and summer fire 

season while the skewness of percentiles is 0.7 and 0.96, showing that the strategy of the four-step model can effectively 

reduce unevenness of the distribution.     

In addition to the grid-scale statistics, we evaluate the model performance at the large-domain scale by adding up all 

the grid-level predictions to obtain the total burned area of the study domain by months. Figure 5 shows the time series of the 395 

predicted total burned area over South Central US in comparison to the observed ones for the two fire seasons. The domain-

scale prediction explains 50% and 79% of the month-to-month variability of burned area for the winter-spring and summer 

fire season, respectively. Higher R2 for the summer fire season can be explained by the stricter fire regulations during 

summer in the southern states, such as Texas (While and Hanselka, 2000). For the summer fire season, under strict fire 

regulations, environmental factors such as high temperature or low relative humidity can play a more important role in 400 

wildfire development. For the winter-spring fire season, more human perturbations may be involved. As the human factor in 

the model does not capture such perturbation, less variability is explained by the model for the winter-spring season. MAE of 

the monthly burned area across the whole domain is 251.3 km2 for the winter-spring fire season and 100.7 km2 for the 

summer fire season. Generally, our model is able to capture the interannual variability of burned area and the prediction 

accuracy of our model in terms of R2 is equivalent to or better than most of the published studies on the ecoregion scale or 405 

country scale, as shown in Table S1. 

 

5. Contributions of environmental factors to predicted wildfire burned area 

5.1 Individual variable importance at grid scale 

Before discussing the environmental controls on wildfire burned area across the study domain, it is useful to 410 

understand the dominant factors controlling the burned area at the grid scale. One advantage of the random forest approach is 

that it provides the variable importance metrics that can measure the power of predictor variables in the prediction. Figure 6 

shows the top 14 predictors ranked by %IncMSE to illustrate the intricate relationships between fires, weather, climate, and 

fuel. The top 14 variables are chosen because they represent the top quarter (25%) of the selected predictor variables. In 

addition, a sensitivity test shows that the largest drop in the %IncMSE occurs around the 15th variable ranked by importance, 415 

as shown in Table S6. To ensure the reliability of the inferred importance of predicted factors, we conduct 50 times 10-fold 



14 
 

cross-validation by randomizing the order of all the data each time. Figure S7 shows the distributions of %IncMSE for each 

variable ranked by the median %IncMSE. Even though the numerical values of feature importance vary in different runs, the 

variable ranks by median values stay the same, indicating the robustness of the feature importance identified by the RF 

model. 420 

For both fire seasons, RH anomaly is the most important predictor of wildfire burned area at the grid-scale (Figure 

6). This finding broadly supports past studies that highlighted the importance of RH on burned area (Riley et al., 2013; 

Ruthrof et al., 2016). Yet, our model particularly reveals the response of fire burned area to the changes in RH anomaly, 

which is a climate variable as opposed to a weather variable. The rhum is the actual RH which can vary by location and 

season, while RH anomaly measures the departure of rhum from its long-term average due to climate change and/or climate 425 

variability. For the study domain and time period, the correlation between RH anomaly and RH is 0.66. Although they have 

a moderate correlation, their values have different physical meanings and both of them are included in the model. For 

example, for grids with rhum of ~70%, rhum_anomaly can range from -11.16% to 15.35%. For the same rhum value of 

~70%, positive rhum_anomaly indicates a relatively wetter condition and negative rhum_anomaly a relatively dryer 

condition compared to their long-term condition in the past.  The variable importance metric highlights that RH anomaly, 430 

which indicates the changes of the fire-season RH relative to its historical climatology, ranks higher than the actual value of 

the fire-season RH.  

While both fire seasons have RH as the top driver of burned area, notable differences are found for the relative 

importance of other variables between the two fire seasons. For the summer fire season, temperature anomaly and maximum 

temperature anomaly are the other two climatic factors besides RH anomaly that are included in the top 14 variables. While 435 

RH anomaly and temperature anomaly are expected to correlate to some extent, the slope from a linear regression of RH 

anomaly (y) on temperature anomaly (x) is substantially greater (in absolute value) in the summer fire season (slope= -3.7) 

than that in the spring fire season (slope= -0.89) (Figure S8). This highlights the stronger dependence of RH anomaly on 

temperature anomaly in the summer. Additionally, larger burned areas (75th percentile and above, black dots in Figure S8) 

mainly occur under the condition of low RH anomaly and high temperature anomaly (bottom-right corner), in particular for 440 

the summer fire season. The results suggest that higher temperature coupled with lower relative humidity can cause drier fuel 

and create favorable conditions for fires to start, spread, and burn more intensely, in particular during the summer fire season 

(Williams et al., 2013; Holden et al., 2018). 

For the winter-spring fire season specifically, the long-term averages of monthly total precipitation and monthly 

means of daily precipitation (apcp_avg and asum avg) are identified as the key climate variables (Figure 6a). These two 445 

variables represent the precipitation normal, indicating the amount of available moisture that could affect fuel distributions 

and tendency of fire activities (Keyser and Westerling, 2017; Westerling and Bryant, 2008). The averaged SPEI of the 

preceding 4 months is the second most important variable and the highest-ranked weather variables, which is even more 

important than the SPEI during the fire season. The averaged SPEI of the preceding 3 months and 5 months are also included 

in the top 14 variables. The 3-5 months’ time lag coincidentally corresponds to the interval between the two fire seasons. 450 
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Thus, our results indicate that burned area in this season is highly dependent on the pre-fire-season drought conditions, 

which is in agreement with prior studies (Scott and Burgan., 2005; Riley et al., 2013; Turco et al., 2017). To better 

understand how the changes of top variables affect the burned area, we use the partial dependence plots to show the marginal 

effect of a variable on the prediction performance of the built model (Friedman, 2001). Figure S9 shows the partial 

dependence plots of the top four variables (RH anomaly, SPEI_mean4m, apcp_avg, and temp_sd) for the winter-spring fire 455 

season. For RH anomaly, the fitted logarithmic burned area becomes larger if the RH anomaly is smaller than 2% (Figure 

S9a). This change likely indicates the sensitivity of burned area to the fire-season moisture. The similar pattern is also shown 

in the partial dependence plot of the mean SPEI of the preceding 4 months (Figure S9b). Larger fitted burned area is 

observed to be associated with the preceding SPEI smaller than zero, suggesting that burned area in this season is highly 

dependent on the pre-fire-season drought conditions. As for the average precipitation of 1979-2000, the fitted burned area 460 

increases as the average precipitation increases (Figure S9c). This implies the shift of fire regimes in that larger fires occur in 

the areas with more average precipitation in the past. For the standard deviation of temperature during 1979-2000, the fitted 

burned area declines dramatically when the standard deviation of temperature is larger 9K, suggesting the threshold effect of 

temperature variation on the burned area in the winter-spring fire season (Figure S9d). In addition to the top 4 variables 

which are all meteorological variables, the average of LAI and sum of neighboring LAI for months t-1 to t-6 are the only 465 

fuel variables that are selected among the top 14 variables in the winter-spring fire season (Figure 6). Although these two 

variables rank below others among the top 14 variables, they are the fifth and sixth most important variables when excluding 

the fixed variables. Thus, when considering the importance of the time-varying variables, we can infer that fuel abundance 

together with drought conditions in the pre-fire-season determine the amount of dry fuel, which likely exerts the primary 

controls of the burned area during the winter-spring fire season.  470 

For the summer fire season, important weather variables include the average of monthly accumulated precipitation 

of the preceding one month and the mean SPEI of the preceding one month, two months, and three months (Figure 6b). 

These variables are known to affect burned area by influencing fuel moisture. Consistently, fuel moisture as represented by 

soil moisture is identified as the only fuel variable among the top 14 variables in the summer fire season. These results 

suggest that fuel drying during the summer fire season driven by both increasing temperature and pre-fire season drought 475 

conditions is the pivotal process determining wildfire burned area in the summer. Similar to our findings, rising summer 

temperature under climate change was found to cause fast fuel dryness and increase fire activity in the western US (Williams 

et al., 2013; Holden et al., 2018). As the partial dependence plots show (Figure S10), the large burned area is associated with 

low values of RH anomaly, minimum RH anomaly, the mean SPEI of the preceding 2 months, and long-term (1979–2000) 

standard deviation of temperature for the summer fire season. The fitted logarithmic burned area increases rapidly as the RH 480 

anomaly decreases toward zero and the increase in burned area reaches a maximum at RH anomaly of –14% (Fig. S10a). 

Compared to the partial dependence plot for RH anomaly, the fitted burned area increases more rapidly with decreasing 

minimum RH anomaly (Fig. S10c). At below zero, the sensitivity of log(burned area) to the minimum RH anomaly is 0.04 

%-1 (Fig. S10c), while the corresponding sensitivity to RH anomaly is only 0.02 %-1 (Fig. S10a). The stronger sensitivity of 
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burned area to minimum RH anomaly indicates the stronger effect of extremely low humidity conditions on fire growth as 485 

compared with the mean RH conditions. For the standard deviation of temperature during 1979-2000, larger burned area is 

observed with smaller standard deviation of temperature in the past. This suggests burned area would become larger for the 

grids with less variation of temperature in the summer. As for the mean SPEI of the preceding 2 months, we see an increase 

of fitted burned area at zero, with the largest increase at –1.8, which supports the importance of fuel drying process in the 

summer fire season. For both fire seasons, RH anomaly, mean SPEI of preceding months, and standard deviation of 490 

temperature for 1979-2000 are selected as the top 4 predictors, highlighting the common importance of these variables in the 

two seasons but with different thresholds and magnitudes in their effects on burned area. The difference in controlling 

factors for wildfires between the two fire seasons can be also demonstrated by the difference in correlation coefficients 

between burned area and predictors in the two seasons. The correlation between burned area and the average daily 

precipitation of months t-1 is -0.05 and -0.28 for the winter-spring and summer fire season respectively. The correlation 495 

between burned area and the average of SPEI of pre-fire seasons (months of t-1 to t-3 for winter-spring and t-1 to t-2 for 

summer) is -0.28 and -0.34. Although lower moisture during the pre-fire season increases burned area for both fire seasons, 

the summer fire season has a stronger negative correlation between burned area and moisture during the pre-fire season. For 

the summer, since vegetation is relatively sufficient, fuel drying in the fire season and pre-fire-season is a more important 

control for wildfire development. For the winter-spring fire season, as the vegetation amount is not as abundant as in the 500 

summer fire season, both fuel abundance and fuel drying in the pre-fire-season are critical for wildfires development. The 

balance between the two factors may explain the weaker negative correlation between burned area and moisture in the pre-

fire season for the winter-spring fire season. 

Figure S11 shows the correlation coefficients between the predictor variables. Most of the important variables have 

weak to moderate correlations (𝑃 <  |0.7|) between each other. The exceptions are for the fixed-climate variables (e.g. 505 

asum_avg vs. apcp_avg and temp_sd vs. tmax_sd) and the antecedent variables (e.g. SPEI_mean4m and SPEI_mean5m) for 

both fire seasons. This is expected because the long-term mean or standard deviation of the same types of meteorology do 

not change by time and the average of antecedent drought conditions (SPEI) may not vary a lot from including or excluding 

a single month. Although there is collinearity between the predictor variables, the logistic model and the RF model we use in 

this study are relatively insensitive to collinearity. Random forest as a machine learning tool is less unaffected by the issue of 510 

multicollinearity than traditional regression methods because the random forest model randomly selects predictors used for 

each tree so that the probability of sampling strongly correlated variables in a particular tree is largely avoided (Siroky, 

2009). To prove that the collinearity would not be an issue for our model, we calculate Variance Inflation Factor (VIF) for 

the random forest model by a bootstrapping of seven predictors (the number of predictors used in each tree) out of all 58 

potential predictors for 5000 times. Each sampling yields seven VIF values, and hence we can obtain a distribution of 35000 515 

VIFs for 5000 samplings. Figure S12 shows the distribution of VIFs for all the predictors. The distribution has a median of 

1.67 for the winter-spring and a median of 1.62 for the summer fire season. The distribution has about 96% of the VIF values 

smaller than 10 for both seasons, demonstrating the minimized multicollinearity in the random forest model. In addition, we 
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conduct a sensitivity test where the model uses predictor variables that have lower degrees of collinearity (|𝑃|<0.5), 

compared to the results using variables with higher degrees of collinearity (|𝑃|<0.7). The results show that removing the 520 

predictors that have a higher degree of collinearity causes larger biases in the classification of burned grids and the 

prediction of extremely-large fires (Table S7). The overall MAE and RMSE are also slightly degraded in the sensitivity test. 

That is because although some variables may have a moderate correlation, they have different physical meanings and thus 

provide different predictive information. Therefore, we include all the variables in the model and allow the algorithms to 

choose the predictors for better performance. 525 

Overall, the analysis of variable importance and partial dependence plots reveal the common and different 

characteristics of the wildfire development between the two fire seasons and show semi-quantitatively that drought 

conditions in the preceding months (3-5 months for the spring fire season and 1-3 months for the summer fire season) may 

be more important than within-season conditions. Furthermore, we demonstrate that the effect of climate variability on 

burned area is consequential and even more influential than concurrent fire weather. This aspect has not been well 530 

documented or quantified in past studies for the South Central US, partly due to a lack of long-term observations of wildfires 

over this region. Although we did not use long-term wildfire data (only 14-years of data used), with the 10-fold cross-

validation approach, the training dataset contains around 16277 samples for each fold. Such a large sample size is enough to 

capture the variability in wildfire activity and its response to the recent decadal climate if we assume wildfire relationships 

with the environmental factors contain certain uniqueness for each individual grid. Considering the majority of grids over the 535 

study domain are grassland/plain with short fire interval (~1 year) (Barrett et al., 2010), the 14-year data is suitable for 

assessing fire variability for our study domain. Within this 14-year period, some regions (e.g. SE Texas) experienced the 

largest wildfire and the most severe single-year drought in the past 50 years (i.e., 2011 Texas wildfire). For future 

applications, our model can be applied to other regions with longer fire return intervals if more data is included. As the 

accuracy of our model is not quite high, uncertainties may exist in the rank of variable importance from the RF model. 540 

However, the selected top 14 variables all have physical linkages to wildfire burned area and they have been discussed in 

this section and prior studies. 

5.2 Relative importance of environmental controls at large scale 

The variable importance metrics presented in the previous section reveal the relative importance of individual 

predictors. As mentioned before, these predictors are purposely selected from four broadly defined categories of 545 

environmental controls on wildfire burned area, namely climate, weather, fuel, and fixed-geospatial. Here the climate 

category includes only variables of climate anomalies. The weather and fuel category are comprised of both fire-season and 

antecedent weather and fuel conditions, respectively. The fixed geospatial category includes all the variables that do not 

change with time, including land types, ecoregion types, population, and 22-year means and standard deviations of 

meteorological variables (i.e. climate normals). Given that variables within the same category may work in conjunction to 550 

create conditions conducive to wildfires, in this section we examine the composite influence of predictors by category and 
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quantify the contributions of these environmental controls to wildfire burned area. To do so, the prediction model developed 

from Section 3 is used to decompose the effect of different environmental controls across our study domain by perturbing all 

the variables belonging to one category at a time. The details of the decomposition method are described in the 

supplementary information. 555 

 Figure S13 shows the time series of the contributions of different environmental controls on the burned area for the 

two fire seasons. The results show that the weather, fuel, climate, and fixed effects tend to increase the burned area for the 

large burn events (e.g. July 2011 in the summer fire season). To further investigate whether or not all factors would increase 

the burned area, we calculate the effect of each group in percentage by dividing the total burned area of the month, as shown 

in Figure S14. For the months with the large burned area (e.g. Jan 2006 and Sep 2011), weather, fuel, climate, and fix effect 560 

tend to increase burned area. This is consistent with the results in Fig S8. This is not the case for some months with the 

relatively small burned area, such as Feb 2012 where the interaction (-143%), climate (-1.4%), and weather effect (-33.8%) 

reduce the burned area but fuel (12%) and fix effect (266%) together increase the burned area. As the number of variables in 

each environmental control category is different, we first normalize the absolute contribution of one environmental control 

by the number of variables in that category and then compare each category’s contribution in scaled absolute percentage, 565 

which is defined as the normalized absolute contribution of one environmental control divided by the summation of 

normalized absolute contributions over all the categories. The scaled absolute percentage represents the average contribution 

from all the variables in one environmental category, so the variable importance presented here is not affected by the number 

of variables we include in each category. Figure S15 shows the time series of the scaled absolute percentage of each category. 

For both fire seasons, on average, the climate and fixed categories have larger contributions to the burned area than other 570 

categories, although their relative importance varies by time. Figure 7 and Table S8 present the mean effect of the 

environmental controls where the scaled absolute percentage of each category of environmental controls is averaged over the 

whole study periods. Figure 7 clearly shows that the climate category on average has the largest contribution to the burned 

area for both fire seasons, with the mean scaled absolute contribution of 33% and 35% for the winter-spring and summer fire 

season, respectively. This suggests climate variability is a significant factor to explain wildfire burned area over our study 575 

domain. This result is consistent with previous studies that demonstrated the significant contribution of changing climate to 

the total burned area of ecoregions in the western US (Littell et al., 2009; Swetnam and Anderson, 2008; Yue et al., 2013). 

For example, increasing temperature and earlier spring snowmelt due to climate change are highly associated with increased 

large wildfire activity in the western US (Westerling et al., 2006). Another study showed that fire-year climate variables such 

as average spring temperature are predictive variables that could improve the predicting probability of high severity fires in 580 

the western US (Keyser and Westerling, 2017). Additionally, the fixed effect that comprises the geospatial variables and past 

climatology is ranked as the second most important control (Figure 7). This is consistent with the findings of Keyser and 

Westerling (2017), which revealed the importance of long-term climate normals in controlling large fire occurrences in the 

western US.  
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Comparing the effects of the environmental controls between the two fire seasons, we find the fuel effect is 585 

significantly more important in the winter-spring fire season, while weather and climate effects are more substantial in the 

summer fire season. This can probably be explained by the different characteristics of the two fire seasons. As biomass 

growth is relatively limited in the winter-spring fire season, the effect of fuel (mainly from vegetation in the pre-fire growing 

season) is likely the limiting factor for wildfires. On the other hand, vegetation is relatively sufficient during the summer 

growing fire season and thus fuel abundance would not be a constraint of wildfires (Littell et al., 2009; Zhang et al., 2014). 590 

Yet, fire weather that determines fuel moisture is a substantial factor in the summer fire season (Figure 7).  

The above analysis represents the relative importance of the environmental controls at the large-domain scale. At 

the grid scale, we calculate the average of variable importance (%IncMSE) from RF (section 3.1.1) of each category and use 

the category-averaged variable importance to represent the relative importance at the grid-scale (Table S9). Climate variables 

are found to have the largest importance in controlling burned area at the grid scale for the two fire seasons, with the mean 595 

%IncMSE of 12.09 and 19.18 for the winter-spring and summer fire season, respectively. This is consistent with the results 

based on the large-domain scale. Fuel effect outweighs weather effect on the grid scale in the winter-spring fire season, 

while weather effect is more important in the summer fire season, both consistent with the aforementioned analysis based on 

the large-scale domain (Table S9). However, the fixed effect estimated at the grid-scale is less important than at the large-

scale domain (Table S9) and this is partly due to how these variables are encoded in the model. Fixed variables consist of 600 

past climatology and geospatial variables (i.e. land use, ecoregion, and population). The geospatial variables, except 

population, are encoded as categorical variables in the prediction model. For example, forest ecoregion is coded as 0 or 1 for 

a given grid, with 0 representing non-forest and 1 representing a forest. For such an encoding method, each categorical 

variable (e.g. forest v.s. non-forest) tends to have a smaller relative importance score, compared to the relative importance 

score of other variables encoded by continuous values. As RF measures the effect of a specific split on the improvement in 605 

model performance and aggregates the improvement of all the splits with a specific variable, the fragmented scores for each 

category are likely smaller than the scores reflecting all of the categories. Therefore, for the relative importance at the grid 

level measured by RF, the effect of a single geospatial variable such as a land type on the burned area is trivial. When we 

average the relative importance of all the fixed variables including many small scores, the resulting average importance 

becomes still a small value.  610 

 

6. Concluding remarks 

We present a model consisting of multiple machine learning methods to predict monthly burned area over South 

Central US at 0.5° x 0.5° grid cells. The prediction model is able to alleviate the issue of unevenly-distributed burned area 

and consequently improves the model capability of predicting large burned area at a finer spatial and temporal scale. The 615 

predicted burned area shows a good agreement with the observed burned area at both the grid and large-domain scale. At the 
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grid scale, the classification component of the model achieves an AUC of 0.82 and 0.83 for the winter-spring and summer 

fire season, respectively. With respect to burned area prediction, a CV-R2 of 0.42 and 0.40 is achieved for the winter-spring 

and summer fire season, respectively, which makes a significant improvement to the prediction for the cases with unevenly-

distributed burned area compared to most past studies. Our four-step model is able to predict the spatial patterns of the 14-620 

year mean burned area, with a correlation coefficient between mean observed and predicted burned area of 0.82 and 0.80 for 

the winter-spring and summer fire season, respectively. Throughout the study period, more than 60% of the months have a 

spatial correlation larger than 0.5. When comparing the timeseries of observed and predicted burned area of each grid across 

the study domain, over 70% of the grids have a correlation coefficient larger than 0.5. At the large-domain scale, the 

prediction model can explain 50% and 79% of the interannual variability of wildfire burned area for the winter-spring and 625 

summer fire season, respectively. The validation results demonstrate that the model has certain skills in predicting monthly 

burned area at both grid-scale and large-domain scale. 

Although the model shows a better ability to predict monthly burned area at both grid-scale and large-domain scale 

than past studies of similar nature, it has several limitations. First, errors might be propagated through our serial model and 

lead to lower accuracy. For example, when the burned grids are predicted not to burn, low bias occurs because the burned 630 

grids are not able to enter step 3. Similarly, inclusion of unburned grids in step 3 will introduce a positive bias. Second, 

random forest or quantile regression forest cannot predict burned area greater than it observes before, i.e. the maximum 

burned area of any of the available grids. We should point out that such limitation is applicable only at grid level and that 

upper limit is taken from all available grids of the whole training period, which we refer to as the global upper limit per grid. 

For example, the global upper limit is 514 km2 per grid for the winter-spring fire season, and 238 km2 per grid for the 635 

summer fire season. For a single grid, burned area prediction can be greater than what this grid had experienced before by 

learning from other grids, although the prediction per grid cannot exceed the global upper limit.  Figure S16 shows an 

example for a randomly selected grid box. For this grid, the model predicts the largest burned area on Feb 2008, consistent 

with observed burned area. This demonstrates that any single grid can predict burned area larger than the grid maximum by 

learning from other grids and as such a larger total burned area for the domain can be predicted by the model under future 640 

climate change. In addition, we verify that the global upper limit is a sufficiently large value because of the intrinsically 

skewed nature of burned area distributions. Figure S17 shows the distribution of gridded burned area for year 2011, an 

extremely severe fire year for the study domain, in comparison to the distribution of all other years during 2002-2015. It can 

be seen that the majority of the burned areas for the extreme year are still within the range of the observed burned area in 

2002-2015, with only two grids having burned areas larger than the global upper limit from 2002-2015 (excluding 2011). 645 

The total burned area of those exceedance grids only accounts for 20% of total burned area for 2011, which is within the 

stated uncertainty range of our prediction model. Third, as machine learning models are data-driven, data quality of different 

input datasets may introduce biases as the input datasets come from a wide variety of data sources and errors in one type of 

input data may cause sequential errors in the prediction. For instance, biases in the NARR meteorological data can further 

lead to incorrect fire-meteorology relationships learned by the model. Fourth, this study focuses on the effects of 650 
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environmental controls on burned area under present-day human management practices and human activity. As such, we do 

not examine the effects of time-varying socioeconomic factors on burned area, such as human actions that affect wildfires 

through ignition, suppression, or modifying fuel distribution (Andela et al., 2017; Bowman et al., 2011; Mann et al., 2016; 

Syphard et al., 2007). Given that human activity is one of the major controls on fire activity, future work is needed to better 

understand the role of human activity engaged with climate change and its implications for wildfire control. Finally, the pre-655 

defined parameters that are used in the model, including the percentiles and subgroups, may induce uncertainties. To 

understand the related uncertainties, we switch the pre-defined percentiles but fix the subgroups in the first sensitivity 

experiment (Table S10). In this experiment, the last three quantiles are changed to the median values between a new set of 

lower and upper bounds. The second experiment is conducted by changing the number of subgroups, their ranges, and the 

corresponding percentiles. Generally, changing pre-defined parameters has little effect on overall MAE for the two fire 660 

seasons but the MAE of large burned area becomes larger and the standard deviation of the predicted values becomes 

smaller. Thus, the pre-defined parameters mostly affect the spread of the predictions and the prediction of large burned areas. 

Despite this sensitivity, the prediction model with the chosen settings (i.e. percentiles and subgroups) is able to predict 

burned area at 0.5° x 0.5°-grid scale and achieves a higher prediction accuracy compared to prior studies. 

The individual variable importance from the RF model is analyzed and discussed. For both fire seasons, RH 665 

anomaly followed by drought conditions in the preceding months (3-5 months for the winter-spring fire season and 1-3 

months for the summer fire seasons) are the two top variables in predicting burned area at the grid scale. For the winter-

spring fire season specifically, the average of LAI and sum of neighboring LAI of the preceding six months are the only two 

fuel variables that are identified in the top 14 variables and they rank fifth and sixth when only considering time-varying 

variables. The findings suggest that fuel abundance together with drought conditions during the pre-fire season regulate the 670 

abundance of dry fuel, which is the primary control of fire burned area during the winter-spring seasons. For the summer fire 

season, temperature anomalies, the average of monthly accumulated precipitation of the preceding one month, and fire 

season soil moisture are important variables in predicting burned area. This suggests that temperature variability and pre-fire 

season drought can speed up fuel drying and lead to wildfires in the summer. The model highlights the effect of climate 

variability on burned area as well as the different environmental controls of burned area for the two fire seasons. 675 

Besides the relative importance of individual predictors, we also analyze the relative importance of the 

environmental controls by four categories - climate, weather, fuel, and fixed-geospatial - at both the grid and large-domain 

scale. The relative importance of these factors is generally consistent at the two scales. The climate variable on average has 

the largest contribution to the burned area for both fire seasons, with the mean scaled absolute contribution of 33% and 35 % 

to the burned area at the large-domain scale for the winter-spring and summer fire season, respectively. For the winter-spring 680 

fire season, the fuel variable on average has larger importance compared to the weather variable; while for the summer fire 

season, the weather variable is more dominant than the fuel variable. The difference in the relative importance of the 

environmental controls between the large-domain scale and grid scale mainly lies in the predominance of the fixed effect. 
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The fixed effect is ranked as the second most important control at the large-domain scale, but it is not as important at the grid 

scale.  685 

Predictor variables representing climate variability are ranked as the most important variables by our prediction 

model. This reinforces the importance of regional climate variability as the key driver for wildfires that have been revealed 

by past studies for other regions, yet our study is among the first to explicitly demonstrate such importance for the South 

Central US. For this region, our model further reveals drought conditions in the preceding 3-5 months of a fire season as an 

important predictor for wildfire burned area. This antecedent time scale would be valuable for fire management and fire 690 

prediction in the future. While the relative importance of environmental controls is largely consistent between the large-

domain scale (~700 km x 700 km) and the grid scale (~50 km x 50 km), our analysis at different spatial scales would help 

estimate how the relationship between wildfire and environmental controls will change as a function of spatial scales, which 

could be used to improve wildfire modeling and prediction in different models. 
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Table 1. Predictor variables that were used in the fire prediction models 930 

Variables Abbreviation Categories Temporal 

resolution 

Spatial 

resolution 

Data source 

Weather variables    

Monthly mean surface temperature temp weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly mean of daily precipitation apcp weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly total precipitation asum weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly mean surface relative humidity (%) rhum weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly mean U-component of wind speed U weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly mean V-component of wind speed V weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly maximum temperature tmax weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Monthly minimum RH rmin weather monthly 32 km North American Regional 

Reanalysis (NARR) 

Number of consecutive days without rainfall in a 

month 

LargeConsec weather monthly 32 km North American Regional 

Reanalysis (NARR) 

1-month SPEI SPEI weather 1-month 0.5° Global SPEI database 

Fuel variables    

Monthly mean Leaf Area Index (LAI) LAI fuel monthly 500 m MODerate resolution Imaging 

Spectroradiometer (MODIS) 

Monthly mean sum of neighboring LAI convLAI fuel monthly 500 m MODerate resolution Imaging 

Spectroradiometer (MODIS) 

Monthly mean soil moisture at 0-10 cm soil fuel monthly 0.125° North American Land Data 

Assimilation System (NLDAS-2) 

Geospatial and population variables    

Land types land_ fix  30 m National Land Cover Database 

(NLCD) 

Ecoregion types eco_ fix   U.S. Environmental Protection 

Agency (EPA) 



30 
 

Population density pop fix   U.S. Census 2010 

Climate variables (over 1979-2000)    

Long-term average and standard deviation of 

monthly temperature  

temp_avg; 

temp_sd 

fix monthly 32 km North American Regional 

Reanalysis (NARR) 

Long-term average and standard deviation of 

monthly mean of daily precipitation 

apcp_avg; 

apcp_sd 

fix monthly 32 km North American Regional 

Reanalysis (NARR) 

Long-term average and standard deviation of 

monthly maximum temperature 

tmax_avg; 

tmax_sd 

fix monthly 32 km North American Regional 

Reanalysis (NARR) 

Long-term average and standard deviation of 

monthly total precipitation 

asum_avg; 

asum_sd 

fix monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly mean temperature temp_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly mean of daily 

precipitation 

apcp_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly mean RH rhum_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly maximum 

temperature 

tmax_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly minimum RH rmin_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Climate anomalies of monthly total precipitation asum_anomaly climate monthly 32 km North American Regional 

Reanalysis (NARR) 

Lagged variables    

Winter-spring fire season    

The monthly mean of daily precipitation of 

months t-1 

apcp_mean1m weather monthly 32 km North American Regional 

Reanalysis (NARR) 

The average SPEI of the months t-1, t-1 to t-2, t-

1 to t-3, t-1 to t-4, t-1 to t-5, and t-1 to t-6 

SPEI_mean1m weather monthly 0.5°  Global SPEI database 

The averages of LAI and sum of neighboring 

LAI for the months t-1 to t-6 

LAI_mean6m, 

convLAI_mean6

m 

fuel monthly 500 m MODerate resolution Imaging 

Spectroradiometer (MODIS) 

Summer fire season    

The average of monthly mean of daily 

precipitation for months t-1, t-1 to t-2 

apcp_mean1m weather monthly 32 km North American Regional 

Reanalysis (NARR) 
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The average of monthly mean temperature for 

months t-1 and t-1 to t-2 

temp_mean1m weather monthly 32 km North American Regional 

Reanalysis (NARR) 

The average of SPEI of months t-1, t-1 to t-2, 

and t-1 to t-3 

SPEI_mean1m weather 1-month 0.5° Global SPEI database 

 

 

 

Table 2. Model performance at grid level for the two fire seasons. 
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Fire season 

Evaluation Metrics 

Accuracy Recall Precision F1-score AUC R2 RMSE 

(km2) 

MAE 

(km2) 

F1 0.74 0.88 0.73 0.79 0.82 0.42 8.37 1.13 

F2 0.74 0.84 0.71 0.77 0.83 0.40 4.26 0.57 
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 945 
Figure 1. The colored grid boxes show the averaged burned area for the winter-spring and summer fire seasons during 2002-

2015 from Fire Program Analysis Fire-Occurrence Database (FPA-FOD). The red box denotes the South Central US domain. 
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Figure 2. Illustration of the steps in the developed model. The model includes four steps and three machine learning 

algorithms, including a logistic model (dark blue) classifying a grid with non-zero burned area or not, a random forest model 955 

(yellow) predicting percentiles of burned area, and a quantile regression forest (dark green) predicting conditional burned 

area distributions. 

 

 

 960 

 
 

Figure 3. Comparison between log of observed and predicted burned area (hectare) for the (a) winter-spring and (b) summer 

fire season in selected years: 2011 (red, year of the largest burned area), 2008 (blue, year with burned area close to the 14-

year mean of its season), and 2014 (black, year with burned area close to the 14-year mean of its season).  The black line 965 

represents the line of unity and the blue line is a best fit to the data by linear regression. 
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Figure 4. Map of monthly mean observed and predicted burned area averaged from 2002 to 2015 for the (a) winter-spring 

and (b) summer fire season. 970 
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Figure 5. Timeseries of observed (black line) and predicted total burned area (red line) over South Central US for the (a) 975 

winter-spring and (b) summer fire season. 

 

 

 
 980 

Figure 6. Relative importance of the top 14 variables presented by increase in mean square errors (%Inc.MSE) for (a) the 

winter-spring fire season (b) summer fire season. 
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 985 
 

Figure 7. The mean scaled absolute percentage of the environmental controls for the winter-spring (blue) and summer fire 

season (red). 
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