
Response to Reviews 
We thank the editor and the reviewers for their constructive comments to improve the manuscript. 
Their comments are reproduced below with our responses in blue. The corresponding changes in 
the manuscript are highlighted in blue.  
 

Editor 
While the manuscript has been improved, there are still a few major concerns need to be addressed. 
Please revise the manuscript according to the two additional points raised by referee #3 (attached). 
Also, it seems that one the major concerns about the necessity to use 58 variables (since many of 
which are highly correlated) from previous round has not been fully addressed. The authors may 
consider to use some statistical ways to test for multicollinearity, e.g., computing the variance 
inflation factor (or VIF), rather than choosing 0.7 as a threshold for correlation.  
The issue of multicollinearity should indeed be considered more quantitatively. We stated in the 
original manuscript that the random forest as a machine learning tool is less unaffected by the issue 
of multicollinearity than traditional regression methods because the random forest randomly 
selects predictors used for each tree, in which the probability of sampling strongly correlated 
variables in a particular tree is largely avoided (Siroky, 2009). To prove this for our model, we 
calculate VIF for our random forest model by a bootstrapping of seven predictors (the number of 
predictors used in each tree) for 5000 times. We randomly select seven predictors out of all 58 
potential predictors and compute the VIFs, and we repeat this sampling 5000 times for a VIF 
distribution. Each sampling yields seven VIFs values, and hence for 5000 sampling we obtain 
35000 VIFs which forms a distribution. Figure R1 shows the distribution of VIFs for all the 
selected predictors. The distribution has a median of 1.67 for the winter-spring and a median of 
1.62 for the summer fire season. The distribution has about 96% of the VIF values smaller than 10 
for both fire seasons, demonstrating the minimized multicollinearity in tree models. We thus 
contend that all 58 potential predictors should be kept as model inputs and we should let the 
random forest algorithm choose the best predictors for itself. We have included the above 
discussion into the manuscript (line 503-511). Figure R1 is added in the supplementary. 
 

 
 
Figure R1. Distributions of VIF calculated based on randomly selected seven variables of 5000 



times sampling for winter-spring (top) and summer fire season (bottom) (This figure is now Fig. 
S12. in the revised manuscript) 
 
In addition, the South Central US has been chosen as a study area where the risk of wildfires has 
been predicted to be the highest in 2031-2050. But the proposed model seems to fail to predict BA 
during the years with abnormal fire activity especially during spring fire season (figure 5). If it is 
because “random forest or quantile regression forest cannot predict burned area greater than it 
observes before”, how would that influence the performance of the proposed model for future 
predictions assuming that fire activity will increase in the next several decades. Please comment 
on it and discuss it in the revised manuscript. 
Our model is able to predict future burned area for the following two reasons. First, the predicted 
burned area across the whole domain for the future scenario can be larger than it has observed 
before. The limitation that the maximum observed burned area cannot be exceeded is applicable 
only at the grid level and this upper limit is taken from all available grids of the whole training 
period, which can be referred to as the global upper limit per grid. The global upper limit is 514 
km2 per grid for the winter-spring fire season, and 238 km2 per grid for the summer fire season. 
Under the effect of climate change, the total burned area summed across the domain can greatly 
exceed the present-day total burned area. Figure R2 shows an example for a randomly selected 
grid box. The model can predict the largest burned area on Feb 2008 and this is consistent with 
the observed burned area. This demonstrates that any single grid can predict burned area larger 
than the grid maximum by learning from other grids, and that therefore a much larger total 
burned area for the domain can be predicted by our model under future climate change. 

 
 

 
Figure. R2. Timeseries of observed (black line) and predicted total burned area (red line) for the 
selected grid (Lon: -98.75, Lat: 29.25) for the winter-spring fire season. (This figure is now Fig. 
S16. in the revised manuscript) 
 
 
Second, the global upper limit is a sufficiently large value and thus the burned area per grid in 
the future would hardly exceed the global upper limit per grid. To further demonstrate the global 
upper limit per grid would be rarely exceeded, we show in Figure R3 the distribution of gridded 
burned area for year 2011, an extremely severe fire year for the study domain, in comparison to 



the distribution of all other years for 2002-2015. It can be seen that the majority of the burned 
areas for the extreme year are still within the range of the observed burned area in 2002-2015. 
Only two grids with burned areas exceed the global upper limit from 2002-2015 (excluding 
2011). The total burned area of those exceedance grids only accounts for 20% of total burned 
area for 2011, which is within the stated uncertainty range of our prediction model. The above 
discussions have been included in the manuscript (line 622-636). 
 

 
Figure. R3. Distribution of burned area of all the grids for the study period excluding 2011 (black 
line) and of the grids for the extreme year 2011 (red line) combined both seasons. (This figure is 
now Fig. S17. in the revised manuscript) 

 

Reviewer #3 
1. Per previous suggestion, the authors give the parameter information of the XGBoost. The 
different parameter configurations in the XGBoost and Random Forests are used for winter-spring 
and summer. Perhaps, we want to a uniform robust machine learning model that can achieve high 
accuracy both in the different seasons. 
We understand the reviewer’s perspective about a unified robust model configuration. However, 
we have used two different sets of predictor variables for the two fire seasons to characterize 
different important factors and processes, because the length and characteristics of the two pre-fire 
seasons are fundamentally different. In this regard, using a single set of parameter configuration 
for two different input predictor variables could not give us two fully optimized prediction models. 
Two parameter configurations that are tailor-made for two separate input predictor variables are 
needed to fully optimize the two prediction models. Using one unified parameter configuration for 
both seasons can technically be achieved easily, but it is not the best approach from the perspective 
of fine-tuning machine learning models. We have included the above explanations in the 
manuscript (line 241-244). 
 
2. The authors analyze how RH anomaly and temperature anomaly affect the prediction. But the 
temperature anomaly is just ranked 10th in the summer season. I think the authors need to analyze 
how the top at least 3 variables affect the prediction so that we can learn something from the 
machine learning model, not just the accuracy. On the other hand, the author said “The physical 
reason behind their importance is that higher temperature coupled with lower relative humidity in 



the summer can cause drier fuel and this condition is favorable for fires to start, spread, and burn 
more intensely”. But, the machine learning importance cannot provide the influence of change of 
variable values. The authors should further prove that. 
 
(1) The analyses of relationship between RH anomaly, temperature anomaly, and burned area 
demonstrate different controls of burned area in the two fire seasons. To better understand how the 
changes of top variables affect burned area, the partial dependence plots can be applied to the built 
model and show the marginal effect of a variable on the prediction performance (Friedman, 2001), 
as suggested by the reviewer. As we only included the results of partial dependence plots of the 
top two variables for the winter-spring fire season in the manuscript, the results of other top ranked 
variables and for the summer fire season are similar and more discussions are provided here. Figure 
R4 shows the partial dependence plots for the model and the top four variables (RH anomaly, 
SPEI_mean4m, apcp_avg, and temp_sd) for the winter-spring fire season. For RH anomaly, the 
fitted logarithmic burned area is getting larger if the RH anomaly is smaller than 2% (Figure R4a). 
The change likely indicates the sensitivity of burned area to the fire-season moisture. Similar 
pattern is also shown in the partial dependence plot of the mean SPEI of the preceding 4 months 
(Figure R4b). Larger fitted burned area is observed to be associated with the preceding SPEI 
smaller than zero, suggesting that burned area in this season is highly dependent on the pre-fire-
season drought conditions, which is consistent with the findings of prior studies (Scott and Burgan., 
2005; Riley et al., 2013; Turco et al., 2017). As for the average precipitation of 1979-2000, the 
fitted burned area increases as the average precipitation increases (Figure R4c). This implies that 
larger fires occur in the areas where the average precipitation was more in the past. For standard 
deviation of temperature during 1979-2000, the fitted burned area declines dramatically when the 
standard deviation of temperature is larger than 9K, suggesting burned area may be larger with 
relatively less variation of temperature in the winter-spring fire season (Figure R4d). 
 



 
Figure. R4. Partial dependence plots for the burned area model and (a) RH anomaly, (b) the mean 
SPEI of the preceding 4 months, (c) the average precipitation of 1979-2000, (d) the standard 
deviation of temperature of 1979-2000 for the winter-spring fire season. The blue line is the 
LOESS smooth line. (This figure is now Fig. S9. in the revised manuscript) 
 
For the summer fire season, the large burned area is associated with low values of RH anomaly, 
minimum RH anomaly, the mean SPEI of the preceding 2 months, and long-term (1979–2000) 
standard deviation of temperature (Figure R5). The fitted logarithmic burned area increases rapidly 
as the RH anomaly decreases toward zero and the increase in burned area reaches a maximum at 
RH anomaly of –14% (Fig. R5a). Compared to the partial dependence plot for RH anomaly, the 
fitted burned area increases more rapidly with decreasing minimum RH anomaly (Fig. R5c). At 
below zero, the sensitivity of log(burned area) to the minimum RH anomaly is 0.04 %-1 (Fig. R5c), 
while the corresponding sensitivity to RH anomaly is only 0.02 %-1 (Fig. R5a). The stronger 
sensitivity of burned area to minimum RH anomaly indicates the stronger effects of extremely low 
humidity conditions on fire growth as compared with the mean RH conditions. For the standard 
deviation of temperature during 1979-2000, larger burned area is observed with smaller standard 
deviation of temperature in the past. This suggests burned area would become larger for the grids 
with less variation of temperature (persistent high temperature) in the summer. As for the mean 
SPEI of the preceding 2 months, we see an increase of fitted burned area at zero, with the largest 
increase at –1.8, which supports the importance of fuel drying process in the summer fire season. 



 
Figure. R5. Partial dependence plots for the burned area model and (a) RH anomaly, (b) long-
term (1979-2000) standard deviation of temperature, (c) minimum RH anomaly, and (d) the mean 
SPEI of the preceding 2 months for the summer season. The blue line is the LOESS smooth line. 
(This figure is now Fig. S10. In the revised manuscript) 
 
For both fire seasons, RH anomaly, mean SPEI of preceding months, and standard deviation of 
temperature for 1979-2000 are selected as the top 4 predictors, highlighting the importance of the 
common variables of the two seasons but with different thresholds and magnitudes in their effects 
on burned area. We have included the information and the above-mentioned examples in the 
revised manuscript (line 447-459 and 472-486). 
 
(2) The statement of “This highlights the importance of the stronger combined effects of RH and 
temperature anomalies on burned area during summer, when higher temperature coupled with 
lower relative humidity can cause drier fuel and create favorable conditions for fires to start, spread, 
and burn more intensely” is mainly based on differences in correlation between RH anomaly and 
temp anomaly for the two fire seasons. Additionally, in the variable importance analyses, RH 
anomaly is selected for both seasons, while temperature anomaly is only shown for the summer 
fire season. To further prove the statement, here we plot out the relationship between RH anomaly, 
temperature anomaly, and burned area. We perform a regression for the RH anomaly (y) and 
temperature anomaly (x), and fires with different sizes labeled with different colors. The slope of 



the line is the change in RH anomaly over the change in temperature anomaly, which represents 
the dependence of RH anomaly on temperature anomaly. The slopes are -3.7 and -0.89 for the 
summer and winter-spring fire season, respectively, showing that a strong dependence of RH 
anomaly on temperature anomaly in the summer (Figure R6). In addition, large burned area (75th 
percentile, black dots in Figure R6) mainly occur in the condition of low RH anomaly and high 
temperature anomaly (bottom-right corner), in particular for the summer fire season. The 
conclusion from this plot supports our statement that “higher temperature coupled with lower 
relative humidity can cause drier fuel and create favorable conditions for fires to start, spread, and 
burn more intensely”. We have revised the corresponding paragraphs and included the above 
discussions and Fig R6 into the supplementary (line 431-436). 
 
 

 
Figure R6. Scatter plot of RH anomaly versus temperature anomaly for (a) winter-spring and (b) 
summer fire season. The blue line is the fitted regression line. The color represents different sizes 
of fire burned area (Green: smaller than 50th percentile; Red: larger than 50th percentile but smaller 
than 75th percentile; Black: larger than 75th percentile). (This figure is now Fig. S8. in the revised 
manuscript) 
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