
Reply to reviewers and editors: 
 

We thank all of the reviewers for their careful reading of the manuscript, and for their many 

constructive feedbacks. The original comments by reviewers are in black font, our replies are in 

blue. 

 

Reviewer #1 

 

General comments:  

The paper presented dynamic concentration downscaling and emission downscaling methods for 

air quality analysis and forecasts. Using the inverse modeling posterior results for October 2013 

over China from a companion paper, they applied the downscaling methods to generate both 

analysis and forecast surface SO2 and NO2 concentrations for November 2013 over China. The 

results are quite impressive. The paper is well organized, and the overall presentation is very 

clear.  

Thanks for the positive comments. 

 

Specific comments:  

Lines 19-20: It is an understatement or even a misleading statement to say that the joint 

assimilation of SO2 an NOx is to save computational time. 

Thanks for the comment. We want to emphasize emission inventories are initially optimized at 

coarse resolution. To avoid misleading, we have changed it to “This work thus introduces several 

approaches to downscaling coarse-resolution (2°´2.5°) posterior SO2 and NOx emissions for 

improving air quality assessment and forecasts over China in October 2013. As the Part I of this 

study, these 2°´2.5° posterior SO2 and NOx emission inventories are obtained from GEOS-Chem 

adjoint modeling with the constraints of OMPS SO2 and NO2 products retrieved at 50 ´ 50 km2 

at nadir and ~190 ´ 50 km2 at the edge of ground track.” 

Line 193: What is the height of the lowest layer?  



The height of the lowest layer is in the range of 115 m to 135 m, as shown in the figure below. 

We have added information to the manuscript and this figure to supplement. 

 

Figure S1. The box height of the lowest layer of GEOS-Chem in October 2013. 
 

Lines 297-8: Does "monthly variation(s)" refer to the temporal variation within the month? 

Please clarify.  

Thanks for pointing out this. Here "monthly variation(s)" refers to temporal variations among 

different months.  Temporal variation within a month is not considered. We have added 

corresponding clarification in the manuscript. 

 

Lines 341-2 : Do the authors believe that the negative NMB implies CGS effect? Would 43.4% 

NMB imply that MIX-DDC-PRI avoided the CGS effect?  

These are good questions. We acknowledge that simulation bias is at least affected by emission 

bias and the CGS effect. Thus, negative NMB may be CGS effect as well as emission bias. 

Similarly, 43.4% NMB does not necessarily imply that MIX-DDC-PRI could completely avoid 

the CGS effect. Compared with 2°x2.5° simulations, 0.25°x0.3125° simulations help to decrease 

the CGS effect, but it is likely that 0.25°x0.3125° simulations or downscaling 2°x2.5° 



simulations to the resolution of 0.25°x0.3125° (such as MIX-DDC-PRI) still cannot completely 

avoid the CGS effect. Zheng et al. (2017) showed that surface SO2 (NO2) concentration 

simulations from WRF-CMAQ, when evaluating with in situ observations, have a NMB of -23% 

(%0), 7% (32%), and 41% (45%) at the resolutions of 36 km (~0.36°), 12 km (~0.12°), and 4 km 

(~0.04°), respectively, which suggests that (1) the CGS effect and other non-linear resolution-

dependent processes can affect the results and (2) these problems are alleviated at the resolution 

of 0.25°x0.3125°, but are not completely avoided. We have added that CGS effect is only 

reduced in part, and other factors needs to be investigated (section 4.1 and section 4.2). 

 

Line 351: In what sense is the spatial distribution worse than the original coarse resolution 

simulations?  

We have add “in terms of NCRSME” in the sentence. NCRSME is a good metric for spatial 

distribution. 

 

Figure 6: How many ratios have been tested here? Showing the actual data points instead of 

smooth lines will be better.  

Thanks for the suggestion. The ratios increase from 0.7 to 1.0 with a step of 0.01. We have 

replaced Fig. 6 by the figure below. 

 
 

 



Figure 11: Can the separate NMSEs of SO2 and NO2 be shown as well? It would be helpful for 

the readers to understand the model behavior.  

Yes. Figure of separate NMSEs of SO2 and NO2 are helpful for the readers to understand the 

model behavior.  In revision, figures below are added the figures to the supplement (Figure S4), 

with a short description in the main text.  

 

 
Figure S4. Normalized mean squared error (NMSE) of surface SO2 (a) and NO2 (b). All surface SO2 and NO2 simulations 
come from MIX-DDC and NL-DC, respectively. Black dots are posterior simulations from Joint-F-POS. The blue line is 
prior simulation results with SO2 NMSE from MIX-DDC-PRI and NO2 NMSE from NL-DC-PRI, respectively. The orange 
line is simulation results with SO2 NMSE from MIX-DDC-POS and NO2 NMSE from NL-DC-POS, respectively. The green 
line is similar to orange line, but posterior SO2 emission from separate assimilation and prior NOx emission are used. The 
red line is similar to orange line, but posterior NOx emission from separate assimilation and prior SO2 emission are used. 
In the figure (a), the blue line is covered by the red line, and the orange line is covered by the green line. 
 

 

Figure 13. "Expected" is misleading as no one would expect the models can achieve such perfect 

results.  

To avoid misunderstanding, we have replaced “Expected” by “Observation” in the manuscript, 

as shown below. 



 
 

Technical correction: 

Line 27: Add "(NL)" after Nighttime light. Line 286: "is use" -> is used. Line 327: "excepted" -> 

expected 

Corrected. 

 

Line 391: Duplicate "Northern China". 

Corrected. 

 

Line 397: MIX-DDC-POS should be MIX-DE-POS.  

Corrected. 

  



Reply to reviewers and editors: 
 

We thank all of the reviewers for their careful reading of the manuscript, and for their many 

constructive feedbacks. The original comments by reviewers are in black font, our replies are in 

blue. 

 

 

Reviewer #2 

 

This manuscript presents down-scaling results of SO2 and NOx emissions and concentrations 

based on the coarse-resolution joint emission inversion results from Part 1. The downscaling 

approaches used information from TROPOMI NO2 observations, MIX inventories, and VIIRS 

nighttime light observations. The downscaling results were compared against surface in-situ 

observations. The impact on regional air quality forecasting is also addressed. The prosed 

approaches are unique and could contribute to improving regional air quality modeling. I would, 

however, advise the authors to revise the manuscript. These revisions should be made before the 

manuscript can be considered for publication.  

Thanks for the positive comments and constructive reviews. We’ve done our best to address the 

comments in the revision.  

 

[ Major comments ]  

As I suggested for Part 1, all the results need to be revised using higher resolution (at 0.5◦x0.667◦ 

degree resolution) joint inversion results for this type of regional study. The 2◦x2.5◦ resolution 

inversion could lead to large systematic biases in both local and regional emissions and 

concentrations in the downscaling analysis, associated with the non-linear chemistry. Ideally, 

inversion calculations should be done at 0.25◦ or 0.05◦ degree resolution to provide reference 

information for the downscaling results, but this could be difficult.  

It is more straightforward to conduct high-resolution inversions using regional models. There are 

already several high resolution regional inversion frameworks, for instance, using WRF-Chem. 

The benefit of using the current coarse resolution global joint inversion framework (rather than 



regional high resolution inversion systems) to improve regional NOx and SO2 emissions and air 

quality forecast for China needs to be discussed.  

Thanks for the comments. Please see our replies to your comments on part I.  The main reason is 

that the coarser-resolution OMPS data cannot resolve the emission sources smaller than its 

resolution on a monthly basis. In addition, there are practical issues such as computational cost 

and the availability of data at fine resolution  – the earlier the emissions can be updated by 

satellite, the better the outcomes of these satellite observations for air quality forecast.  The goal 

of this study is to develop methods potentially for improve forecasting in real time rather than to 

reconstruct the best historical analysis of high-resolution emissions (that was the goal of  (Qu et 

al., 2019)). Thus, the quality of the forecast is the ultimate test of this study.  

 

While regional model is best suited for air quality forecast, to our knowledge, when this 

manuscript was prepared, GEOS-chem adjoint model still remains the only CTM that has 

complete thermodynamic description of the secondary inorganic sulfate-nitrate-ammonium 

aerosol system and has no need to deal with the issues of chemical boundaries for the regional 

model.  Our understanding is that the full-chemistry 4D-Var is not yet possible in WRF-Chem as 

its adjoint is made only for GOCART scheme at this point, while CMAQ-adjoint (Zhao et al., 

2019) model were in open review after this paper was submitted. Again, treating the chemical 

boundary conditions in the regional adjoint model need to be further studies. All of this are the 

reasons that ended up to use GEOS-Chem. We plan to use CMAQ-adjoint in near future.  

 

Zhao, S., Russell, M. G., Hakami, A., Capps, S. L., Turner, M. D., Henze, D. K., Percell, P. B., 

Resler, J., Shen, H., Russell, A. G., Nenes, A., Pappin, A. J., Napelenok, S. L., Bash, J. O., 

Fahey, K. M., Carmichael, G. R., Stanier, C. O., and Chai, T.: A Multiphase CMAQ Version 5.0 

Adjoint, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-287, in review, 2019. 

 

The current manuscript is technical and does not seem provide sufficient scientific implications 

for ACP (not for GMD). It is required to provide scientific implications based on the proposed 

approaches. For instance, more detailed information on differences in the spatial patterns 

between VIIRS nighttime lights and MIX inventories and possible biases in the MIX emission 



inventories for each emission category would be interesting. Such information will be essential 

to determine the best downscaling approach for right reason. 

Thanks for the good suggestion. Please see our reply to your comments for the first part 

regarding the scientific merit of the paper here. ACP is very broad and methods to improve 

emission estimates and air quality forecasting are within its scope. Furthermore, we demonstrate 

the potential application of our method (monthly update of emission at coarse resolution and 

downscaling it) for regional air quality forecast (for the next month). Finally, following your 

good suggestion, we have added more discussion to Sect. 4.4. New materials about the 

relationship among Volatile Organic Compound (VOC), NOx emission, and O3 air pollutions in 

Sect 4.6 is also added to make the manuscript have more scientific merits. Below is what we 

have add to Sect. 4.4. 

 

MIX-DE-POS has improved values of R and NCRMSE than NL-DE-POS; here we discuss the 

possible reasons and propose future works to improve NL-DE. MIX is a mosaic bottom-up 

emission inventory, and it is actually the MEIC emission inventory for NOx emissions over 

China (Li et al., 2017). The MIX (or MEIC) NOx emission inventory over China consists of 

emissions from four sectors including coal-fired power plant, industrial, transport, and residential 

sectors. Coal-fired power plant emissions in MEIC are derived through extensively using 

detailed information (including locations of individual units) of 7657 generation units in China 

(Liu et al., 2015); coal-fired power plant emissions can be accurately placed to grids according to 

source location information (Li et al., 2017). Thus, if we can allocate posterior total 

anthropogenic NOx emissions into the four sectors, we expected that it is better to use the MIX 

coal-fired power plant NOx emission inventory rather than nighttime lights to downscale the 

posterior coal-fired power plant NOx emissions. For the other sectors in MIX (or MEIC) over 

China, population density is used to allocate industrial and residential emissions to grids (Li et 

al., 2017), and transport emissions are distributed according to road networks (Li et al., 2017). 

Using population density to downscale industrial and residential NOx could underestimate 

emissions over urban region, compared with the approach of using nighttime light which could 

better represent economic development levels (Geng et al., 2017). Whether it is better to use road 

networks or nighttime lights to downscale NOx emissions from the transport sector requires 

future investigations. In this study, the posterior NOx emission inventory to be downscaled is 



total anthropogenic NOx emissions, which is not allocated into different source sectors. Thus, if 

we assume that the ratios of every sectoral emissions to total anthropogenic emissions do not 

change between prior and posterior emission inventories, MIX-DE has an advantage for coal-

fired power sector, while NL-DE could benefit the downscaling for the industrial and residential 

sectors. In future work, we could optimize sectoral emissions rather than total anthropogenic 

emissions, and subsequently downscale posterior coal-fired power emissions through prior MIX 

coal-fired power emissions, and ultimately use VIIRS night time light data to downscale 

posterior industrial and residential emissions.   

 

The evaluations of forecasts in Section 4.6 are not informative in the current form. Because the 

purpose of this study is to improve regional air quality forecasts, evaluations of simulated ozone 

(one of the most important air pollutants) using in-situ observations would add important 

information.  

Both SO2 and NO2 are criteria pollutants in the atmosphere defined by US EPA and China, thus 

we think it is appropriate to evaluate the forecasts of two trace gases and state the improvements 

in regional air quality forecasts. We also agree that evaluations of simulated ozone are very 

important, and this part is now added into the revision. As shown below, using downscaled 

posterior emission inventory helps to improve spatial distribution in terms of NCRMSE, and the 

improvement of NMB depends on region. We have added the text and Fig. 14 below in Sect. 4.6 

and Fig. S5 in the supplement. 

 

In addition to the improvement of SO2 and NO2, AQF-MIX-DE-POS enhances on AQF-PRI in 

the forecast of surface O3 concentrations (Fig. 14). If all O3 in situ observations in the research 

domain are used for evaluation, a spatial distribution improvement is shown with NCRMSE 

decreasing from 1.08 for AQF-PRI to 1.05 for AQF-MIX-DE-POS, but NMB changes from -

3.1% to 5.0% (Fig. 14c). Indeed, whether bias becomes smaller or larger depends on region. In 

the North China Plain and Eastern China where NOx emissions (or NO2 surface concentrations) 

are large (the black box in Fig. 14a), forecasts of surface O3 concentration are much lower than 

other regions; and the NMB is -16.7% for AQF-PRI and -6.3% for AQF-MIX-DE-POS with 

NCRMSE decreasing from 1.20 to 1.16 (Fig. 14c). In this relatively NOx-rich region, the 

increase of O3 concentration in AQF-MIX-DE-POS is caused by the decrease of NO2 



concentrations; the change of SO2 concentrations has negligible impacts on O3 concentrations 

(Fig. S5).  This implies that if Volatile Organic Compound (VOC) concentrations remain 

constant, emission control of NOx emissions will exacerbate O3 pollutions. For the region that is 

out of the black box, although NCRMSE decreases from 0.82 for AQF-PRI to 0.80 for AQF-

MIX-DE-POS, NMB increases from 19.0% to 23.3% (Fig. 14c). 

 

 

 

 
Figure 14. Evaluation of GEOS-Chem surface O3 forecasts with in situ observations for November 2013. (a) is AQF-PRI 
O3 forecasts with in situ observations overlapped. (b) is the difference between and AQF-MIX-DE-POS and AQF-PRI O3 
forecasts (c) is the Taylor diagram of evaluations of surface O3 forecasts in (a) and (b) with in situ observations. . Circles 
and squares represent the AQF-PRI and AQF-MIX-DE-POS forecasts, respectively. Labels 1, 2, and 3 represent that all 
sites, only sites that are within the black box in (a), and only sites that are out of the black box in (a) are used for evaluations. 
 



 
Figure S5. (a) is similar to Fig. 14c, but in the posterior forecasts, the prior MIX NOx emission inventory and the posterior 
MIX-DE SO2 emission inventory is used. (b) is similar to Fig. 14c, but in the posterior forecasts, the prior MIX SO2 emission 
inventory and the posterior MIX-DE NOx emission inventory is used.  
  

The use of GCv12.0.0 model instead of GC adjoint v35m could provide some insights into the 

model dependent posterior emission inventory. Nevertheless, the usefulness of the proposed 

downscaling approach should first be evaluated in a consistent framework (GC v35m) to avoid 

too much complications. Otherwise, it is required to demonstrate the model performance 

difference in detail.  

Well, the robustness of the emission inventory should be independent of the CTMs. This is the 

original motive for us to use a different version of GC to assess the value of the optimized 

emission.  Following your suggestion, we also conducted some evaluations in a consistent 

framework. Fig. S2 and Fig. S3 are similar to Fig. 4 and Fig. 5, respectively, but using the GC 

adjoint v35m rather than GCv12.0.0.  Apparently, both MIX-DDC and NL-DC works when GC 

adjoint v35m is used for coarse resolution simulation. All conclusions about downscaling 

through MIX-DDC and NL-DC from analyzing GCv12.0.0 results can also be drawn from GC 

adjoint v35m results. It is not surprising that when a consistent framework (GC adj v35m) is 

used for coarse resolution simulation, all downscaled results show better spatial pattern (smaller 

NCRMSE) than using GCv12.0.0 for coarse resolution simulation. Considering the manuscript 



has shown MIX-DE results are similar to MIX-DDC results, we can expect that MIX-DE should 

also work in a consistent framework (GC adj v35m). We have added the two figures to the 

supplement and corresponding text to Sect. 4.1 and Sect. 4.2. 

 
Figure S2. It is similar to Fig. 4, but GC adjoint v35m rather than GCv12.0.0 is used. 

 

 
Figure S3. It is similar to Fig. 5, but GC adjoint v35m rather than GCv12.0.0 is used. 

 



More specific comments:  

3.2.2 I’m wondering if this approach can be applied to SO2. If not, please explain the reason.  

We did not apply this approach to SO2.  

We use VIIRS nighttime to downscale NO2 concentrations as there is strong linear correlation 

between NO2 VCD and nighttime light as shown in Fig 2c. The strong linear correlation is 

caused by two reasons: (1) nighttime lights are good spatial proxy for allocating NOx emissions 

(Geng et al., 2017); and (2) NO2 lifetime is short (several hours), which means the distribution of 

NO2 concentration hot spots are highly affected by source locations. We do not expect this 

approach can be used to downscale SO2 concentrations for the two reasons: (1) nighttime lights 

are not very good spatial proxy for allocating SO2 emissions as SO2 emissions from traffic sector 

are very small while nighttime lights are strong over rush traffic road; (2) SO2 lifetime is 1-2 

days, which is much longer than NO2 lifetime. We have added the explanation to the section. 

 

L350 “Thus, for SO2. . .” This suggests that the overall spatial pattern was degraded, while 

capturing hot spots. What emission sources were actually degraded? This would provide 

important implications into the emission inventories.  

Yes, compared with coarse-resolution simulations, the overall spatial patterns of fine-resolution 

simulations are degraded, although this conclusion is based on the ground-based observation data 

that are also in coarse resolution as a whole for describing the spatial pattern. The spatial pattern 

degradation implies that current chemistry transport simulations of surface SO2 concentrations 

can capture regional spatial pattern (coarse-resolution) well, but it is difficult to simulate local 

spatial pattern (fine-resolution); the weakness for describing the local spatial pattern simulation 

suggests the uncertainties of either bottom-up SO2 emission estimates at fine resolution or 

locally-resolved meteorological fields (Ge et al., 2017), or both. This uncertainty in bottom-up 

emission inventories can further stem from distributing SO2 emissions at provincial level to fine-

resolution grid. We have added the discussion to Sect. 4.1. 

 

Xing et al. (2015) also showed the difficulty of simulating local SO2 pollution. In Xing et al. 

(2015)’s research, in situ SO2 observations from US-CASTNET and US-AQS were used for 

evaluation. US-CASTNET sites are mainly located in rural areas to represent regional air 

pollution, while US-AQS sites are mainly close to urban areas to represent much smaller area 



(local air pollution) (Xing et al., 2015). The linear correction coefficients between WRF-CMAQ 

simulations of surface SO2 concentrations (108 km x 108 km resolution) over the US and in-situ 

observations were 0.67 and 0.2 when observations from US-CASTNET and US-AQS were used 

for evaluation, respectively (Xing et al., 2015).  

 

In this study, observational sites are mainly over urban area, and linear correlation coefficients 

between GEOS-Chem fine-resolution simulations and observations are in the range of from 0.26 

to 0.36 (Fig. 4g and h), which is comparable to the value of 0.2 in Xing et al. (2015)’s research. 

For coarse resolution simulations, the same sites are used for evaluation, but linear correlation 

coefficients are in the range from 0.62 to 0.66. In the process of evaluating coarse resolution 

simulations, there are usually several observational sites in a coarse grid box, and observations 

from these sites are averaged to compare with the simulation of the coarse grid box. The better 

spatial pattern at coarse resolution also means it is much easier for GEOS-Chem simulations to 

capture regional spatial pattern of surface SO2 concentrations than local spatial pattern. 

 

L360 “The MIX-DDC-POS. . .”. It is not clear to me that the POS is better and the CGS effect 

still exists (how did you know?).  

Thanks for pointing out this. We would like to express that the MIX-DDC-POS simulation is 

better than the MIX-DDC-PRI simulation in terms of spatial pattern (NCRMSE), although the 

MIX-DDC-POS simulation has larger negative bias than the MIX-DDC-PRI simulation. We 

partly ascribe the negative bias to the CGS effect. 

 

We acknowledge that simulation bias is at least affected by emission bias and the CGS effect 

Thus negative NMB may be CGS effect as well as emission bias.  Zheng et al. (2017) showed 

that surface SO2 (NO2) concentration simulations from WRF-CMAQ, when evaluating with in 

situ observations, have a NMB of -23% (%0), 7% (32%), and 41% (45%) at the resolutions of 36 

km (~0.36°), 12 km (~0.12°), and 4 km (~0.04°), respectively, which suggests that (1) the CGS 

effect and other non-linear resolution-dependent processes can affect the results and (2) these 

problems are alleviated at the resolution of 0.25°x0.3125°, but are not completely avoided. We 

have added that CGS effect is only reduced in part, and other factors needs to be investigated 

(section 4.1 and section 4.2). 



 

L365 “Thus MIX-DDC-POS”.. Why did the MIX-DDC approach show good spatial pattern for 

NO2 and not for SO2? The MIX SO2 and NO2 spatial pattern should look similar.  

The performance of the MIX-DDC approach is largely affected by fine-resolution simulations of 

surface species concentration spatial pattern using prior MIX emission inventory. Spatial patterns 

of SO2 and NO2 are comparable at coarse resolution. When come to fine-resolution simulations, 

SO2 spatial pattern degrade much stronger than NO2 spatial pattern.  Thus, MIX-DDC approach 

show good spatial pattern for NO2 but not for SO2. The reason why the simulation of SO2 spatial 

patter at fine resolution has been discussed for the question “L350 “Thus, for SO2. . .” This 

suggests that the overall spatial pattern was degraded, while capturing hot spots. What emission 

sources were actually degraded? This would provide important implications into the emission 

inventories. ”, as shown above. 

 

L378 Why are there large positive biases? 

The bias of surface NO2 concentrations are 45.3% and 25.5% for NL-DC-PRI and NL-DC-POS, 

respectively, which could come from total emission bias as well as the downscaling process 

through the NL-DC approach. The sites used for validation are mainly over urban region, and we 

lack sites that are located over rural region to evaluate if positive or negative bias persists over 

rural region. Thus, we are not able to determine how much of positive bias in NL-DC-PRI and 

NL-DC-POS is caused by the NL-DC approach. We have added the discussion in Sect. 4.2. 

 

L400 The correlation is very low. Please discuss it.  

As we answer the question above for “L350”, we have shown that the weakness for describing 

the local spatial pattern simulation suggests the uncertainties of either bottom-up SO2 emission 

estimates at fine resolution or locally-resolved meteorological fields (Ge et al., 2017), or both. 

This uncertainty in bottom-up emission inventories can further stem from distributing SO2 

emissions at provincial level to fine-resolution grid. The low correlation here also implies this 

problem. We have added the following discussion in Sect. 4.3 

 

We also noticed that R is 0.14 in  MIX-DE-POS, which is even smaller than 0.23  in F-PRI. 

Thus, in the simulations, using prior emissions inventories shows better linear correlation than 



using posterior emissions inventories. Conversely. in the forecast,  using posterior emission 

inventories (AQF posterior, R=0.11, Fig. 12b) has better linear correlation than use prior 

emission inventories (AQF prior, R=0.06, Fig. 12a). The contrast may be caused by the fact that 

linear correlation coefficient is not a robust metric and should be used together with other 

metrics to evaluate the model.   

 

L416 I’m not sure if this is really caused by the CGS effect only. For instance, what happens 

when posterior emissions are biased?  

Thanks for pointing out this. We acknowledge that simulation bias is at least affected by 

emission bias and the CGS effect. Thus, negative NMB may be CGS effect as well as emission 

bias.  Zheng et al. (2017) showed that surface SO2 (NO2) concentration simulations from WRF-

CMAQ, when evaluating with in situ observations, have a NMB of -23% (%0), 7% (32%), and 

41% (45%) at the resolutions of 36 km (~0.36°), 12 km (~0.12°), and 4 km (~0.04°), 

respectively, which suggests that (1) CGS effect and other non-linear resolution-dependent 

processes can affect SO2 simulation results and (2) these problems are alleviated at the resolution 

of 0.25°x0.3125°, but are not completely avoided. We have added the discussion above to 

Sections 4.1 and 4.2. We also have let this sentence replaced by “which should be partly caused 

by the CGS effect, although emission bias and other non-linear resolution-dependent processes 

could play a role.” 

 

 

L417 “which may be attributed. . .” I don’t understand the sentence.  

We have replaced the sentence by the text below. 

 

MIX-DE-POS has improved values of R and NCRMSE than NL-DE-POS; here we discuss the 

possible reasons and propose future works to improve NL-DE. MIX is a mosaic bottom-up 

emission inventory, and it is actually the MEIC emission inventory for NOx emissions over 

China (Li et al., 2017). The MIX (or MEIC) NOx emission inventory over China consists of 

emissions from four sectors including coal-fired power plant, industrial, transport, and residential 

sectors. Coal-fired power plant emissions in MEIC are derived through extensively using 

detailed information (including locations of individual units) of 7657 generation units in China 



(Liu et al., 2015); coal-fired power plant emissions can be accurately placed to grids according to 

source location information (Li et al., 2017). Thus, if we can allocate posterior total 

anthropogenic NOx emissions into the four sectors, we expected that it is better to use the MIX 

coal-fired power plant NOx emission inventory rather than nighttime lights to downscale the 

posterior coal-fired power plant NOx emissions. For the other sectors in MIX (or MEIC) over 

China, population density is used to allocate industrial and residential emissions to grids (Li et 

al., 2017), and transport emissions are distributed according to road networks (Li et al., 2017). 

Using population density to downscale industrial and residential NOx could underestimate 

emissions over urban region, compared with the approach of using nighttime light which could 

better represent economic development levels (Geng et al., 2017). Whether it is better to use road 

networks or nighttime lights to downscale NOx emissions from the transport sector requires 

future investigations. In this study, the posterior NOx emission inventory to be downscaled is 

total anthropogenic NOx emissions, which is not allocated into different source sectors. Thus, if 

we assume that the ratios of every sectoral emissions to total anthropogenic emissions do not 

change between prior and posterior emission inventories, MIX-DE has an advantage for coal-

fired power sector, while NL-DE could benefit the downscaling for the industrial and residential 

sectors. In future work, we could optimize sectoral emissions rather than total anthropogenic 

emissions, and subsequently downscale posterior coal-fired power emissions through prior MIX 

coal-fired power emissions, and ultimately use VIIRS night time light data to downscale 

posterior industrial and residential emissions.   
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Abstract. Top-down emissions estimates provide valuable up-to-date information on pollution sources; however, 

the computational effort and spatial resolution of satellite products involved with developing these emissions often 

require them to be estimated at resolutions that are much coarser than is necessary for regional air-quality 

forecasting. This work thus introduces several approaches to downscaling coarse-resolution (2°´2.5°) posterior 

SO2 and NOx emissions for improving air quality assessment and forecasts over China in October 2013. As the 

Part I of this study, these 2°´2.5° posterior SO2 and NOx emission inventories are obtained from GEOS-Chem 

adjoint modeling with the constraints of OMPS SO2 and NO2 products retrieved at 50 ´ 50 km2 at nadir and ~190 

´ 50 km2 at the edge of ground track. The prior emission inventory (MIX) as well as the posterior GEOS-Chem 

simulations of surface SO2 and NO2 concentrations at coarse resolution underestimate observed hot spots, which 

is called the Coarse-Grid Smearing (CGS) effect. To mitigate the CGS effect, four methods are developed: (a) 

downscale 2°´2.5° GEOS-Chem surface SO2 and NO2 concentrations to the resolution of 0.25°´0.3125° through 

a Dynamic Downscaling Concentration (MIX-DDC) approach, which assumes that the 0.25°´0.3125° simulation 

using the prior MIX emissions has the correct spatial distribution of SO2 and NO2 concentrations but a systematic 

bias; (b) downscale surface NO2 simulations at 2° ´ 2.5° to 0.05° ´ 0.05° according to the spatial distribution of 

Visible Infrared Imaging Radiometer Suite (VIIRS) Nighttime Light (NL) observations (e.g., NL-DC approach) 

based on correlation between VIIRS NL intensity with TROPOMI NO2 observations; (c) Downscale posterior 

Emissions (DE) of SO2 and NOx to 0.25°´0.3125° with the assumption that the prior fine-resolution MIX 



inventory has the correct spatial distribution (e.g., MIX-DE approach); and (d) downscale posterior NOx emissions 

using VIIRS NL observations (e.g., NL-DE approach). Numerical experiments reveal that: (a) using the MIX-

DDC approach, posterior SO2 and NO2 simulations improve on the corresponding MIX prior simulations with 

normalized centered root mean square error (NCRMSE) decreases of 63.7% and 30.2%, respectively; (b) the NO2 

simulation has an NCRMSE that is 17.9% smaller than the prior NO2 simulation when they are both downscaled 

through NL_DC, and NL_DC is able to better mitigate the CGS effect than MIX-DDC; (c) the simulation at 

0.25°´0.3125° using the MIX-DE approach has NCRMSEs that are 58.8% and 14.7% smaller than the prior 

0.25°´0.3125° MIX simulation for surface SO2 and NO2 concentrations, respectively, but the RMSE from the 

MIX-DE posterior simulation is slightly larger than that from the MIX-DDC posterior simulation for both SO2 

and NO2; (d) the NL-DE posterior NO2 simulation also improves on the prior MIX simulation at 0.25°´0.3125°, 

but it is worse than the MIX-DE posterior simulation; (e) in terms of evaluating the downscaled SO2 and NO2 

simulations simultaneously, using the posterior SO2 and NOx emissions from joint inverse modeling of both 

species is better than only using one (SO2 or NOx) emissions from corresponding single-species inverse modeling 

and is similar to using the posterior emissions for both SO2 and NOx emission inventories from single-species 

inverse modeling.  

 

Forecasts of surface concentrations for November 2013 using the posterior emissions obtained by applying the 

posterior MIX-DE emissions for October 2013 with the monthly variation information derived from the prior 

MIX emission inventory show (a) the improvements of forecasting surface SO2 concentrations through MIX-DE 

and MIX-DDC are comparable; (b) for NO2 forecast, MIX-DE show larger improvement than NL-DE and MIX-

DDC; (c) NL-DC is able to better decrease the CGS effect than MIX-DE, but shows larger NCRMSE; (d) the 

forecast of surface O3 concentrations is improved by MIX-DE downscaled posterior NOx emission. Overall, for 

practical forecasting of air quality, it is recommended to use satellite-based observation already available from 

the last month to jointly constrain SO2 and NO2 emissions at coarser resolution and then downscale these posterior 

emissions at finer spatial resolution suitable for regional air quality model for the present month.  

1.  Introduction 

Simulations and forecasts of surface concentrations of SO2 and NO2, the two criteria pollutants in the atmosphere 

defined by US EPA and China, are important for studying their impacts on air quality and public health (Ghozikali 

et al., 2016). Their accuracy depends not only on reliability of meteorological fields and correct representation of 



chemical processes in the air quality model (Gao et al., 2016;Ge et al., 2017) but also on the fidelity of the 

emissions used in the latter. For the same region and time, different emission inventories can lead to differences 

of up to 100% for surface SO2 and NO2 simulations (Wang et al., 2016b).  Additionally, model resolution also 

plays an important role (Kharol et al., 2017), as the simulated concentration of these short-lived species only 

represents the average of a grid cell in which the high concentrations of SO2 and NO2 from source regions and 

(or) strong spatial variation of these species are smeared out. This is called the Coarse-Grid Smearing (CGS) 

effect, and it depends on the species lifetimes, the spatial distribution of emissions, and the model (and inventory) 

resolution. The lifetime for SO2 in the lower troposphere is less than one day in the summer and one or two days 

in winter (Lee et al., 2011) and it is several hours for NO2 (Lin et al., 2010); their smearing length scales (Palmer 

et al., 2003)  are of order of 100 km (Lee et al., 2011;Martin et al., 2003). Xing et al. (2015) showed that surface 

SO2 and NO2 concentrations from the Weather Research and Forecasting (WRF)– Community Multi-scale Air 

Quality (CMAQ) simulations at 108 x108 km2 resolution were underestimated when validated against urban 

network observations and overestimated relative to rural networks. 

 

Obtaining accurate and timely emission estimates can be challenging. The bottom-up approach, which integrates 

activity data and emission factors, is widely used to generate inventories (Li et al., 2017b;Janssens-Maenhout et 

al., 2015;Kurokawa et al., 2013). These bottom-up emissions have uncertainties larger than 30% at the regional 

scale for both SO2 and NOx over China (Kurokawa et al., 2013;Li et al., 2017b). When used to simulate air quality 

with a Chemical Transport Model (CTM), these emission estimates are gridded to regular grid cells (of ~1° or 

finer) through locations of major manufacturing facilities and power plants and proxy data such as population 

distributions and road networks (Zheng et al., 2017;Streets et al., 2003). Consequently, uncertainties of emissions 

estimates at the grid-cell scale are larger than country scale.  Moreover, bottom-up inventories usually have a time 

lag of at least one year, as it takes time to collect all the data required to generate them (Liu et al., 2018). Outdated 

emission inventories increase the uncertainty of simulations and forecasts, especially for China where emissions 

change quickly due to rapid economic development and implementation of emission control policies (Zheng et 

al., 2018; Wang et al., 2016b). 

 

Over the past two decades, many satellites have provided Vertical Column Density (VCD) data of SO2 and NO2 

and Aerosol Optical depth (AOD) retrievals globally; these data have been used to constrain emissions estimates 

with the following approaches at various spatial resolutions. The mass balance approach (Lee et al., 2011;Martin 

et al., 2003;Koukouli et al., 2018) and the finite difference mass balance method (Lamsal et al., 2011) were 



developed to use VCD retrievals of SO2 and NO2 from Global Ozone Monitoring Experiment (GOME), GOME-

2, SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMCHY), Ozone 

Monitoring Instrument (OMI), and Ozone Mapper and Profiler Suite (OMPS) to constrain SO2 and NOx emissions 

at spatial resolutions in the range of 25 km to 250 km. The accuracy, however, decreases as spatial resolution 

becomes finer (Turner et al., 2012), because the transport is not explicitly accounted for in these approaches. The 

emission strength of SO2 point sources that are larger than 30 kt per year can be estimated through a linear 

regression between OMI VCDs and emission strength (Fioletov et al., 2016), and the approach was used to build 

a global SO2 emission inventory at 0.1° ́  0.1° (Liu et al., 2018). Advanced data assimilation approaches including 

the four-dimension variational data assimilation (4D-Var) (Qu et al., 2019a;Qu et al., 2019b;Qu et al., 2017;Wang 

et al., 2016b;Wang et al., 2019;Wang et al., 2012;Xu et al., 2013;Kurokawa et al., 2009) and the Ensemble Kalman 

Filter (EnKF) approach (Miyazaki et al., 2012;Miyazaki et al., 2017) were developed to use satellite SO2 and NO2 

columns densities and AOD retrievals to constrain emissions at low spatial resolutions (>50 km) as these 

approaches are computation-intensive. Some variations of the 4D-Var and Kalman filter approaches were 

developed to save computational time at the expense of accuracy or temporal resolution (Qu et al., 2017;Kong et 

al., 2019; Mijling and van der A, 2012;Ding et al., 2015). 

 

The mismatch among the resolutions of emission inventories, CTMs, and satellite observations has prompted 

previous development of downscaling methods. For example, the popular OMI has a footprint size of 13x24 km2 

at nadir and 26´128 km2 at the swath edge that is too coarse to capture urban NO2 plume without oversampling. 

Consequently, a spatial weighting kernel derived from the CMAQ simulation at finer spatial resolution was 

developed to downscale OMI NO2 retrievals to 1.33´1.33 km2 (Kim et al., 2018;Kim et al., 2016;Goldberg et al., 

2017). The resulting high-spatial-resolution OMI NO2 data was further applied to constrain emissions, which 

showed an underestimate in the bottom-up NOx inventories in Seoul, South Korea during the Korea-United States 

Air Quality Study (KORUS-AQ) (Goldberg et al., 2019). In cases that model grid cells are larger than satellite 

footprints, Lamsal et al. (2008) applied the ratio between local OMI NO2 column to mean OMI field over a 2°´2.5° 

GEOS-Chem grid cell to derive local surface-VCD scaling factors, which were used to infer improved surface 

NO2 concentrations. An inverse distance weighting technique was applied to interpolate emissions and initial and 

boundary species conditions from coarse resolution to fine resolution for nested CTM simulations (Yahya et al., 

2017;Yahya et al., 2016;Hong et al., 2017), but it was not able to capture hot spots in the downscaled fields. 

 



The CGS effect, combined with the sharp spatial variations of surface SO2 and NO2 concentrations, introduces 

challenges when comparing model simulations with in situ observations.  Wang et al. (2016b) showed the 

improvement of using posterior SO2 emissions constrained by OMI SO2 to simulate surface SO2 concentrations 

at a resolution of 2°´2.5°.  However, this was illustrated for a rural site that is ~100 km away from Beijing’s urban 

center, and there are no strong SO2 sources around it, which means the CGS effect is minimal at this site. Kharol 

et al. (2015) and Kharol et al. (2017) found that surface SO2 and NO2 concentrations derived through scaling OMI 

SO2 and NO2 VCDs with vertical profiles from a CTM at a resolution of 0.1° ´ 0.1° are a factor two smaller than 

US EPA in situ observations. These underestimations are partly ascribed to the CGS effect, although uncertainty 

in vertical profiles also plays a role (Kharol et al., 2015;Kharol et al., 2017;Bechle et al., 2013). They further 

showed that the underestimation decreases significantly when in situ observations are converted to represent the 

averages of larger areas through a linear regression function which is built by comparing simulations of SO2 

between two spatial resolutions of 2.5 ´2.5 km2 and 30 ´ 30 km2.  

 

This paper, as the second of a two-part study, aims at using SO2 and NOx emissions constrained by OMPS SO2 

and NO2 retrievals through 4D-Var (which is presented in Part I, i.e. Wang et al. (2019)) to improve air quality 

forecasts. Since the emission inventories in Part I are derived at the 2°x2.5° resolution to save computational 

resources and to account for the coarse spatial resolution of satellite data used (e.g., OMPS SO2 and NO2), the 

focus here is to develop novel methods to downscale coarse-resolution emission inventories or simulation results 

to generate fine-resolution surface SO2 and NO2 concentrations and evaluate them from an air quality forecasting 

point of view. High-resolution bottom-up emission inventories and Visible Infrared Imaging Radiometer Suite 

(VIIRS) nighttime lights contain geospatial information (such as roads, location of power plants, and residential 

areas) in fine spatial resolution for downscaling coarser-resolution anthropogenic emissions. Indeed, VIIRS 

nighttime light observations are shown to be good indicators of socioeconomic parameters including urbanization, 

economic activity, population (Bennett and Smith, 2017),  road density (Levin and Zhang, 2017), and have been 

used to map CO2 emissions (Ou et al., 2015) and derive surface PM2.5 concentrations at nighttime (Wang et al., 

2016a). Thus, it should also be promising to build relationships between VIIRS nighttime lights and both NO2 in 

the atmosphere and NOx emissions, which will be assessed here for its application in downscaling surface NO2 

concentrations and NOx emissions. 

 

We introduce data in Sect. 2. Section 3 presents the models for simulations and forecasts of surface SO2 and NO2, 

and the downscaling approaches. The improvements in the simulations and forecasts through various downscaling 



methods are provided in Sect. 4. Discussions of implications of the results and conclusions are followed in Sect. 

5. 

2. Data 

2.1 In situ data of surface SO2, NO2, and O3  

We obtained the in situ measurements of surface SO2, NO2, and O3 from the China National Environmental 

Monitoring Center for model evaluation. SO2 and NO2 are measured by various commercial instruments using 

the ultraviolet fluorescence method and the chemiluminescence method, respectively (Zhang and Cao, 2015). In 

the chemiluminescence method NO2 observations are obtained by measuring NO from decomposed NO2. This 

can result in a positive bias because NOz (all compounds that are products of the atmospheric oxidation of NOx) 

will be also reduced to NO. Steinbacher et al. (2007) showed that the ratio of NO2 to NOz (rNO2) depends on the 

distance that NO2 plumes transport from the source. In other words, the longer the distance, the more the potential 

for oxidation of NO2, hence the smaller rNO2; only 43% - 76% and 70% - 83% of real NO2 contribute to the 

measured value (NO2)m for rural and urban sites, respectively (Steinbacher et al., 2007). For this study, as 

observational sites are in cities, a maximum value of 0.83 is used to convert (NO2)m measurements to the NO2 

concentrations, which is subsequently used for evaluating the model results. Additionally, we also test values for 

rNO2 in the range of 0.7 to 1.0.  

2.2 VIIRS data for artificial light 

The VIIRS on board National Polar-orbiting Partnership (Suomi-NPP) satellite was launched on 28 October 2011, 

and its Day/Night Band (DNB) provides observations of nighttime lights with a spatial resolution of 750 m (Miller 

et al., 2013). Here, we use the VIIRS nighttime lights product that has excluded background noise, solar and lunar 

contamination and has screened out the data degraded by cloud cover and features unrelated to electric lighting 

(Elvidge et al., 2017). This product is regridded to 0.05°x0.05° for October 2013 and to 0.05°x0.05° and 

0.25°x0.25° for April 2018. 

2.3 TROPOMI NO2 tropospheric VCD 

The TROPOspheric Monitoring Instrument (TROPOMI) on board Sentinel-5 Precursor was launched on 13 

October 2017, with a nadir footprint of 7x3.5 km², which is finer than that of all its predecessors. The TROPOMI 



NO2 tropospheric VCDs from Royal Netherlands Meteorological Institute (KNMI) were retrieved using a 

Differential Optical Absorption Spectroscopy (DOAS) algorithm and validated with Pandora NO2 retrievals 

(Griffin et al., 2019). We grid the product to the 0.05°´0.05° resolution for April 2018 to investigate the 

relationship between VIIRS nighttime lights and NO2 tropospheric VCDs. 

2.4 MIX emission inventory 

MIX (Li et al., 2017a) is a mosaic of Asian anthropogenic monthly emissions developed for the years 2008 and 

2010 to support the Model Inter-Comparison Study for Asia and the Task Force on Hemispheric Transport of Air 

Pollution. SO2, NOx, and NH3 emissions in MIX come from the Regional Emission inventory in ASia version 2.1 

(REAS2.1) (Kurokawa et al., 2013),  replaced by the Multi-resolution Emission Inventory for China (MEIC) SO2 

and NOx and the PKU NH3 (Huang et al., 2012) for mainland China, the ANL (Lu et al., 2011;Lu and Streets, 

2012) SO2 and NOx of some source sectors for India, and the CAPSS SO2 and NOx for the Republic of Korea (Li 

et al., 2017b).  In spite of variations among spatial resolutions of these emission inventories, they are regridded to 

0.25°´0.25° to form the MIX emissions inventory (Li et al., 2017a). In our study, not only is MIX used in the 

posterior simulations and forecasts, but it also provides information for downscaling the posterior emission 

inventories from Part I (as in Wang et al. (2019)). 

3. Methods 

3.1 GEOS-Chem and configuration 

The CTM used for the simulations and forecasts of surface SO2 and NO2 concentrations is GEOS-Chem version 

12.0.0 (GCv12.0.0), which is driven by GEOS-FP meteorological fields from GMAO. Horizontal resolutions are 

set as 2°´2.5°, the same one of posterior emissions from Part I (as in Wang et al. (2019)), and 0.25°´0.3125°, 

which is the finest resolution available for this version of GEOS-Chem, to investigate the impacts of downscaling 

on simulations and forecasts. There are 47 vertical layers, the lowest one (box height is in the range of 115 m to 

135 m, as shown in Fig. S1) of which represents surface concentrations validated against in situ observations. We 

use the MIX 2010 emissions for October 2013 prior simulations as well as November 2013 prior forecasts. 

Posterior SO2 and NOx emissions for October 2013 from Part I, i.e. Wang et al. (2019), are used for October 2013 

simulations and November 2013 forecasts at 2°´2.5° resolution, but need be downscaled for 0.25°´0.3125° 

simulations, as described in Sect. 3.3. 



 

It is worth noting that the GEOS-Chem adjoint model (Henze et al., 2007) used in Part I of this study by Wang et 

al. (2019), is v35m, which is developed based on GEOS-Chem version 8.2.1, updated through version 9. Here we 

use GCv12.0.0 rather than GC adjoint v35m to investigate if the model-dependent posterior emission inventory 

can be applied to other models to improve simulations and forecasts. With the same MIX emissions used, 

GCv12.0.0 surface SO2 and NO2 concentrations are in general larger than that from v35m, with differences of up 

to 15 μg m-3 for SO2 and 10 μg m-3 for NO2 (Fig. 1). The difference is due to differences in chemical mechanism 

and boundary layer parameterization schemes between the two models. Therefore, by using two different versions 

of GC, we can study the degree to which the posterior emissions derived from one model (in this case global, with 

coarser resolution) can be applied for another (here a regional model with finer resolution). 

3.2 Downscaling GEOS-Chem surface concentrations 

GEOS-Chem surface SO2 and NO2 concentrations at a resolution of 2°´2.5° are not expected to be able to capture 

hot spots due to the CGS effect, and thus we aim to downscale them to finer resolutions. The prior emissions are 

MIX for October and November 2010. The posterior emissions are from separate inverse emission estimates in 

Part I (e.g., E-SO2 and E-NO2 experiments as described in Wang et al. (2019)), unless it is specifically stated. The 

downscaling methods here should be distinguished from interpolation approaches to simply increasing spatial 

resolutions.  

3.2.1 Downscaling concentrations with MIX simulations 

With the assumption that surface concentrations of GEOS-Chem simulations using outdated emissions have 

correct spatial distributions at fine scales but systemic bias at coarse scales, we use 0.25°´0.3125° prior surface 

concentration patterns to downscale both prior and posterior 2°x2.5° simulations of surface species concentrations 

as shown in Eq. (1).  
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A coarse 2°´2.5° grid cell consists of n (64) fine 0.25°´0.3125° grid cells, and !!,#./0 represents the MIX prior 

simulation of surface concentrations from the ith 0.25°´0.3125° grid cell within a 2°´2.5° grid cell. Thus, 
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between fine and coarse grids, which multiples the 2°´2.5° surface concentration, !*, to obtain the downscaled 

result !!,#$%&'(). This approach is titled Dynamic Downscaling Concentration with MIX simulation (MIX-DDC). 

Here, dynamic downscaling means the application of fine-scale model concentrations to downscale coarse 

resolution concentrations.  

3.2.2 Downscaling concentrations with nighttime lights 

The VIIRS nighttime lights product at a resolution of 0.05°´0.05° is used to downscale GEOS-Chem simulations 

of surface NO2 due to its high spatial resolution and strong correlation with population distribution (Bennett and 

Smith, 2017) as well as NO2 VCDs. Figures 2a-b show the spatial distributions of VIIRS nighttime lights and 

TROPOMI NO2 tropospheric VCDs over China, and it is not surprising that both nighttime lights and NO2 hot 

spots are mainly over metropolises. Figure 2c shows strong linear correlation between the logarithm of VIIRS 

nighttime lights and TROPOMI NO2 tropospheric VCDs at a resolution of 0.05°´0.05°. This strong correlation is 

caused by two reasons: (1) nighttime lights are good spatial proxy for allocating NOx emissions (Geng et al., 

2017); and (2) NO2 lifetime is short (several hours), which means the distribution of  NO2 concentration hot spots 

are highly affected by source locations. This relationship is used to downscale as shown in Eq. (2) and (3). 

%# = ln()#) − ln	(0.1)      (2) 

!!,#45'() = !* × 6#
67       (3) 

)# represents the ith VIIRS 0.05°´0.05° nighttime light in a 2°´2.5° grid cell and all nighttime lights less than 0.1 

nW cm-2 sr-1 are set to be 0.1 nW cm-2 sr-1; thus, the minimum of %# is naught. %0  is the average of %# in a 2°´2.5° 

grid cell, and we assume %#/%0  represents the ratio of the surface NO2 concentration at 0.05°´0.05° to that at 

2°´2.5°, due to the relationship between VIIRS nighttime lights and TROPOMI NO2 tropospheric VCDs. The 

ratio multiplies the surface NO2 concentration at 2°´2.5° !* , to obtain the downscaled result !!,#45'() . This 

approach is referred as Nighttime-light Downscaling Concentration (NL-DC).   

 

We do not expect this approach can be used to downscale SO2 concentrations for the two reasons (1) nighttime 

lights are not very good spatial proxy for allocating SO2 emissions as SO2 emissions from traffic sector are very 

small while nighttime lights are strong over rush traffic road; (2) SO2 lifetime is 1-2 days, which is much longer 

than NO2 lifetime. 

3.3 Downscaling emissions 



To simulate or forecast surface SO2 and NO2 concentrations at a resolution of 0.25°´0.3125° through the GEOS-

Chem model, the posterior emissions at a resolution of 2°´2.5° should be downscaled to fit the model resolution. 

The prior MIX 2010 emission inventory has a spatial resolution of 0.25°´0.25°, which is slightly finer than 

0.25°x0.3125°, and it can be easily processed to fit 0.25°x0.3125° simulations through the HEMCO – the GEOS-

Chem emission processing package (Keller et al., 2014). Thus, all the posterior emissions at a resolution of 2°´2.5° 

are downscaled to 0.25°´0.25°, which are further regridded to 0.25°x0.3125° with HEMCO. We introduce two 

emission downscaling approaches with prior MIX 0.25°´0.25° emissions and 0.05°´0.05° VIIRS nighttime lights 

used as spatial proxies. The two methods are referred as Downscaling Emissions with MIX (MIX-DE) and 

Downscaling Emissions with Nighttime Light (NL-DE).  

3.3.1 MIX-DE 

We assume fine-resolution prior emission inventories have correct relative spatial distributions at fine scales, but 

a systemic bias exists at coarse scale. The emission downscaling approach is shown in Eq. (4), where 2!,#./0 is the 

ith MIX emission estimate at 0.25°´0.25° resolution in a 2°´2.5° grid cell for year 2010, n (=80) is the number of 

0.25°´0.25° grids in a 2°´2.5° grid cell, 2*.89: is posterior emissions at 2°´2.5° from Wang et al. (2019), and 

2!,#$%&'(; is the downscaled posterior emissions at 0.25°´0.25° resolution. 

2!,#$%&'(; = 2*.89: ×
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      (4) 

 

3.3.2 NL-DE 

VIIRS nighttime lights are good proxies for allocating CO2 emissions (Ou et al., 2015), and they are also expected 

to be useful for downscaling NOx emissions. Figure 3 shows that VIIRS nighttime lights and MIX NOx emissions 

have similar spatial patterns and the linear correlation coefficient between them is as high as 0.73. Thus, VIIRS 

nighttime lights at a resolution of 0.05°´0.05° are used to downscale NOx emissions as shown in Eq. (5). 2*.89: is 

posterior emissions at 2°´2.5° from Part I (Wang et al. (2019), 3# and )# are ith area and VIIRS nighttime lights 

at 0.05°´0.05°, respectively, n (=2000) is the number of 0.05°´0.05° grids in a 2°´2.5° grid cell. 2!,#45'(; is the 

downscaled posterior NOx emissions at 0.05°´0.05°, which is further aggregated to 0.25°´0.25°. 

2!,#45'(; = 2*.89: × =#>#
∑ =#>#(
#)'

      (5) 



3.4 Design of experiments 

3.4.1 Simulations for October 2013 

A set of GEOS-Chem simulation experiments are designed to illustrate the impacts of model resolutions and 

emission inventories on simulating surface SO2 and NO2 concentrations over China for October 2013, as 

summarized in Table 1. Simulations of surface SO2 and NO2 concentrations are validated with in situ observations. 

C-PRI and C-POS are designed to show the CGS effect of surface SO2 and NO2 concentrations in coarse (C) -

resolution simulations with prior (PRI) and posterior (POS) emissions, respectively.  Both C-PRI and C-POS have 

a simulation resolution of 2°´2.5°, and use the prior and posterior emissions, respectively. MIX-DDC-PRI, MIX-

DDC-POS, NL-DC-PRI, and NL-DC-POS illustrate alleviation of the CGS effect through downscaling of surface 

concentrations. In MIX-DDC-PRI and MIX-DDC-POS, surface SO2 and NO2 concentrations at 2°´2.5° from C-

PRI and C-POS are downscaled to the resolution of 0.25°´0.3125° through the MIX-DDC approach. NL-DC-PRI, 

and NL-DC-POS downscale NO2 concentrations at 2°´2.5° from C-PRI and C-POS to the resolution of 

0.05°x0.05° through the NL-DC approach. JOINT-F-POS is designed to show the impacts of using posterior 

emissions from joint (JOINT) assimilations on surface SO2 and NO2 forecast at fine (F) spatial scale. In JOINT-

F-POS, posterior SO2 and NOx emissions from joint assimilations with various observation balance parameter γ 

from Part I, i.e. Wang et al. (2019), are used to simulate surface SO2 and NO2 at 2°´2.5°; this  parameter is used 

to balance the importance of the SO2 and NO2 observational terms in the cost function. The simulated surface SO2 

and NO2 concentrations are further downscaled to 0.25°´0.3125° through the MIX-DDC approach and 0.05°´0.05° 

through the NL-DC approach, respectively. F-PRI, MIX-DE-POS, and NL-DE-POS illustrate the improvements 

of using downscaled posterior emissions to simulate surface SO2 and NO2 concentrations. All three simulations 

have a resolution of 0.25°´0.3125°, but use different emission inventories. F-PRI uses the prior MIX emissions, 

but MIX-DE-POS and NL-DE-POS use the downscaled posterior emissions. Posterior SO2 emissions downscaled 

through the MIX-DE approach are used in the two simulations, but posterior NOx emissions used in MIX-DE-

POS and NL-DE-POS are downscaled through the MIX-DE and NL-DE approaches, respectively.  

3.4.2 Forecasts for November 2013 

Wang et al. (2016b) used posterior emissions of the current month to improve air quality forecasts of the next 

month. We implement a similar approach in this study, but emission variations among different months are also 

considered. With the assumption that the prior MIX emission inventory has proper temporal variations among 

different months, posterior MIX-DE and NL-DE emission inventories for November 2013 are obtained by 



multiplying posterior MIX-DE or NL-DE emission inventories for October 2013, respectively, by the ratios of 

prior MIX emissions between November and October 2010. As summarized in Table 2, we design a set of 

experiments for Air Quality Forecasts (AQF) of surface SO2,NO2, and O3 concentrations at fine resolution over 

China in November 2013. AQF-PRI uses the prior MIX inventory for November 2010 to forecast surface SO2, 

NO2, and O3 concentrations of November 2013 at 0.25°´0.3125° while AQF-MIX-DE-POS used the posterior 

MIX-DE inventory for November 2013. AQF-NL-DE-POS is similar to AQF-MIX-DE-POS, but the posterior 

NL-DE inventory for NOx is used. AQF-MIX-DDC-PRI and AQF-MIX-DDC-POS use the prior MIX for 

November 2010 and posterior MIX-DE for November 2013 inventories to forecast surface SO2 and NO2 

concentrations at 2°´2.5°, which are further downscaled to 0.25°´0.3125° through the MIX-DDC approach. Since 

NO2 hot spots cannot be captured at 0.25°´0.3125° resolution, the NL-DC approach is also applied to the NO2 

forecasts. Thus, AQF-NL-DC-PRI and AQF-NL-DC-POS use the prior MIX inventory for November 2010 and 

the posterior MIX-DE inventory for November 2013 to forecast surface SO2 and NO2 concentrations of November 

2013 at 2°´2.5°, which are further downscaled to 0.05°´0.05° according to VIIRS nighttime light of October 2013 

through NL-DC approach. 

3.5 Evaluation statistics 

We use linear correlation coefficient (R), mean bias (MB), normalized mean bias (NMB), normalized centered 

root mean square error (NCRMSE) (Wang et. al, 2019), and normalized (NMSE) as measures to evaluate GEOS-

Chem SO2 and NO2 surface concentrations with in situ observations. NCRMSE measures the spatial distribution 

difference between forecasts and in situ observations is similar to root mean squared error, but the impact of bias 

is removed. NMSE is defined as Eq. (6), where Mi and Oi are the ith GEOS-Chem simulation and in situ 

observation, respectively, 45 is mean of the observations, and N is number of the observations. 

NMSE =
'
+∑ (@#'A#),+

#)'
'
+∑ (A#'AC),+

#)'
      (6) 

4. Results 

4.1 CGS and MIX-DDC for SO2 

The CGS effect of surface SO2 concentrations in the coarse-resolution (2°´2.5°) simulations (C-PRI and C-POS 

experiments) is shown in Fig. 4a-d. The GEOS-Chem 2°´2.5° simulation of every grid cell is the average of 



surface SO2 at ~5´104 km2 area, while in situ SO2 observations can only represent average concentrations of much 

smaller area. Considering that all sites are in cities, where emission sources are located, GEOS-Chem 2°´2.5° 

simulations are expected to be smaller than in situ observations. In this study, the NMB is -26.7% (Fig. 4c) in the 

C-PRI simulation, while the C-POS simulation shows an even stronger negative NMB of bias of -65.3% (Fig. 4d), 

as the posterior SO2 emission is 35.8% smaller than prior MIX 2010.  

 

To decrease the impact of CGS on surface SO2 simulations, both the prior and posterior GEOS-Chem surface SO2 

simulations at 2°´2.5° resolution are downscaled to 0.25°´0.3125° through the MIX-DDC approach (MIX-DDC-

PRI and MIX-DDC-POS experiments). Zheng et al. (2017) showed that surface SO2 concentration simulations 

from WRF-CMAQ, when evaluating with in situ observations, have a NMB of -23%, 7%, and 41% at the 

resolutions of 36 km (~0.36°), 12 km (~0.12°), and 4 km (~0.04°), respectively, which suggests that: (1) CGS 

effect and other non-linear resolution-dependent processes can affect SO2 simulation results, and (2) these 

problems are alleviated at the resolution of 0.25°x0.3125°, but are not completely avoided.  The downscaled prior 

(MIX-DDC-PRI) and posterior (MIX-DDC-POS) GEOS-Chem surface SO2 concentrations at 0.25°x0.3125° are 

shown in Fig. 4e-h. MIX-DDC-PRI and MIX-DDC-POS SO2 simulations show hot spots of up to 270 μg m-3 (Fig. 

4e) and 80 μg m-3 (Fig. 4f), respectively, compared with the largest value of less than 60 μg m-3 (Fig. 4a) and 35 

μg m-3 (Fig. 4b) in the C-PRI and C-POS simulations, respectively.  

 

MIX-DDC-POS SO2 simulations are in better agreement with in situ observations than MIX-DDC-PRI. The 

NMSE decreases from 4.63 in MIX-DDC-PRI to 1.50 in MIX-DDC-POS, and the linear correlation coefficient 

(R) increases from 0.32 to 0.36 (Fig. 4g-h).  The NMB changes, however, from 43.4% to -35.3% (Fig. 3g-h), 

which implies CGS effect may not be completely avoided at a resolution of 0.25°´0.3125°, and other factors that 

may affect the result should be investigated in the future. We also separately compare MIX-DDC-PRI and MIX-

DDC-POS simulations with in situ observations over provincial capital cities, as SO2 hot spots in smaller cities 

may still be difficult to be captured by the 0.25°´0.3125° MIX-DDC-PRI and MIX-DDC-POS simulations. The 

NMB is 115.0% in the MIX-DDC-PRI simulation and reduces to -5% in the MIX-DDC-POS simulation. 

Additionally, the MIX-DDC-POS simulation shows better spatial pattern than the MIX-DDC-PRI simulation in 

terms of NCRMSE, although linear correlation decreases slightly. In spite of the improvement of capturing hot 

spots in term of NMB using the MIX-DDC approach, we should also notice that the coarse resolution simulations 

(Fig. 4c-d) have larger linear correlation coefficients and smaller NCRMSEs than the MIX-DDC simulations. 



Thus, for SO2 simulations, MIX-DDC helps to capture hot spots, but can make spatial distribution worse than the 

original coarse resolution simulations in terms of NCRMSE. The spatial pattern degradation implies that current 

chemistry transport simulations of surface SO2 concentrations can capture regional spatial pattern (coarse-

resolution) well, but it is difficult to simulate local spatial pattern (fine-resolution); the weakness for describing 

the local spatial pattern simulation suggests the uncertainties of either bottom-up SO2 emission estimates at fine 

resolution or locally-resolved meteorological fields (Ge et al., 2017), or both. This uncertainty in bottom-up 

emission inventories can further stem from distributing SO2 emissions at provincial level to fine-resolution grid. 

MIX-DDC also performances well when GC adj v35m is used for coarse resolution, and results show better spatial 

pattern (smaller NCRMSE) than using GC v12.0.0 (Fig. S2). 

4.2 GCS, MIX-DDC and NL-DC for NO2 

NO2 has even a shorter lifetime than SO2, thus the GCS effect also exists in the C-PRI and C-POS simulations. 

Figure 5a-d shows that almost all in situ NO2 observations are larger than the GEOS-Chem simulations, regardless 

of using the prior MIX 2010 (C-PRI) or the posterior (C-POS) NOx emissions. GEOS-Chem surface NO2 averages 

from the C-PRI and C-POS simulations, sampled according to in situ observational sites, are 49.2% and 54.5% 

smaller than average of in situ observations, respectively. 

 

The MIX-DDC approach is also applied to downscale NO2 surface simulations (MIX-DDC-PRI and MIX-DDC-

POS experiments), and the results are validated with in situ observations. As discussed, according to Zheng et al. 

(2017),  the CGS effect and other non-linear resolution-dependent problem can be alleviated at the resolution of 

0.25°´0.3125° (such as in MIX-DDC-PRI and MIX-DDC-POS experiments), but cannot be completely avoided. 

The MIX-DDC-POS simulation is better than the MIX-DDC-PRI simulation in terms of spatial pattern 

(NCRMSE), although the CGS effect may still exists and other non-linear resolution-dependent problem should 

be investigated in the future. The NMB is -19.3% and -31.8% for the MIX-DDC-PRI and MIX-DDC-POS 

simulations, respectively (Fig. 5e-h), which implies that 0.25°´0.3125° may be still too coarse to capture hot spots 

due to the short lifetime of NO2. The larger negative bias in the MIX-DDC-POS simulation than in the MIX-

DDC-PRI also lead to that the former shows large NMSE.  Despite the negative bias, R between observations and 

the MIX-DDC simulations increases from 0.53 in MIX-DDC-PRI to 0.75 in MIX-DDC-POS, and the NCRMSE 

reduces from 0.96 to 0.67, which is only slightly larger than 0.64 in the C-POS simulation. Thus MIX-DDC-POS 

can better capture NO2 hot spots and shows spatial pattern as good as C-POS. MIX-DDC also performs well when 



GC adj v35m is used for coarse resolution simulations, and results show better spatial pattern (smaller NCRMSE) 

than using GC v12.0.0 (Fig. S3). 

 

To further alleviate the CGS effect, we downscale GEOS-Chem surface NO2 simulations at 2°´2.5° to 0.05°´0.05° 

according to VIIRS nighttime light distributions through the NL-DC approach (NL-DC-PRI and NL-DC-POS 

experiments), and the results are evaluated with in situ surface NO2 observations (Fig. 5i-l). The largest GEOS-

Chem surface NO2 values are less than 35 μg m-3 in both the coarse C-PRI and C-POS simulations (Fig. 5a-b), 

while they are larger than 100 μg m-3 at 0.05°´0.05° in the NL-DC-PRI and NL-DC-POS simulations (Fig. 5i-j). 

The Scatter plots of the NL-DC-PRI (Fig. 5k) and NL-DC-POS (Fig. 5l) simulations versus in situ surface NO2 

observations show that R increases from 0.61 in the NL-DC-PRI simulation to 0.75 in the NL-DC-POS simulation, 

and NMSE decreases from 3.69 to 1.80, which is smaller than that in the coarse-resolution simulations and the 

MIX-DDC downscaled simulation. It suggests that NL-DC has the advantage to downscale surface concentrations 

(without evoking any CTM simulation and its associated needs of computational resources). The bias of surface 

NO2 concentrations are 45.3% and 25.5% for NL-DC-PRI and NL-DC-POS, respectively, which could come from 

total emission bias as well as the downscaling process through the NL-DC approach. The sites used for validation 

are mainly over urban region, and we lack sites that are located over rural region to evaluate if positive or negative 

bias persists over rural region. Thus, we are not able to determine how much of positive bias in NL-DC-PRI and 

NL-DC-POS is caused by the NL-DC approach. When NL-DC is applied to downscale GC adj v35m coarse 

resolution simulations, results show better spatial pattern (smaller NCRMSE) than that of GC v12.0.0 (Fig. S3). 

 

The surface NO2 concentrations used for evaluation are derived from measurements of (NO2)m assuming  rNO2 of 

0.83 as stated in Sect. 2.1.  Due to the lack of information on rNO2, we also test the values in the range of 0.7 to 

1.0, and the derived NO2 concentrations are used to validate the NL-DC-PRI and NL-DC-POS simulations at the 

0.05°´0.05° resolution. Figure 6 shows that the NL-DC-POS simulation has NMSE in the range of 1 to 4, which 

is always better than the NL-DC-PRI simulation with NMSE in the range of 2 to 8.  

4.3 MIX-DE for SO2 simulations 

Instead of downscaling simulation results as shown in Sect. 4.1, we directly simulate surface SO2 concentrations 

at 0.25°´0.3125° resolution through GEOS-Chem over China in October 2013 using the prior MIX 2010 

emissions and the posterior emissions. The posterior SO2 emissions at 2°´2.5° resolution are downscaled to 



0.25°´0.3125° through the MIX-DE approach. The posterior MIX-DE SO2 emissions are smaller than the prior 

MIX 2010 SO2 emissions over Northern China and Southwestern China (Fig. 7). 

 

The 0.25°´0.3125° GEOS-Chem simulations of surface SO2 for October 2013 with using the prior MIX (F-PRI 

experiment) and the posterior MIX-DE (MIX-DE-POS experiment) emission inventories, are shown in Fig. 8. 

When validating with all in situ SO2 observations, NMSE decreases from 3.73 in F-PRI to 1.55 in MIX-DE-POS, 

but bias changes from 15.76 μg m-3 to -14.98 μg m-3. For the same reason in MIX-DDC-PRI and MIX-DDC-POS 

assessment in Sect. 4.1, we also focus on provincial capital cities. In this scene, NMSE of the MIX-DE-POS 

simulation is 1.85 (Fig. 8d), which is much smaller than 15.07 in the F-PRI simulation (Fig. 8c), but it is slightly 

larger than 1.76 in the MIX-DDC-POS simulation (Fig. 4h). Moreover, NMB decreases from 101.2% in the F-

PRI simulation to -8.4% in the MIX-DE-POS simulation (Fig. 8). R is 0.23 and 0.14 in F-PRI and MIX-DE-POS, 

respectively, neither of which is significant at the 95% confidence level. In Sect 4.2, we have shown that good 

spatial distribution is captured in coarse-resolution rather than fine-resolution simulations, which implies that 

large uncertainty of bottom-up SO2 emission estimates at fine resolution maybe introduced when distributing SO2 

emissions at provincial level to fine-resolution grid.  It is not surprising that the correlation coefficients are small 

for F-PRI and MIX-DE-POS, as both are in fine resolution. 

4.4 MIX-DE and NL-DE for NO2 simulations 

Posterior NOx emissions at 2°´2.5° resolution are downscaled through MIX-DE and NL-DE approaches. Figure 

9 shows the prior MIX, posterior MIX-DE, and posterior NL-DE NOx emissions at 0.25°´0.3125° resolutions. 

All three emission inventories show NOx emission hot spots over metropolises (Fig. 9a-c). Compared with prior 

MIX, posterior MIX-DE is larger over Hebei province, but smaller over most other areas of the North China Plain 

and Eastern China (Fig. 9d). As posterior NL-DE emission inventory is downscaled according to the VIIRS 

nighttime light distribution, the difference (Fig. 9e) between posterior NL-DE and prior MIX and the difference 

(Fig. 9f) between posterior NL-DE and posterior MIX-DE show scattered positive and negative values. 

 

The three emission inventories are used to simulate surface NO2 concentrations at the 0.25°´0.3125° resolution 

over China in October 2013, that is F-PRI, MIX-DE-POS, and NL-DE-POS experiments in Table 1. All these 

simulations are evaluated with in situ NO2 observations (Fig. 10).  R increases from 0.46 in F-PRI to 0.61 in MIX-

DE-POS and 0.58 in NL-DE-POS, and NCRMSE decreases from 0.95 in F-PRI to 0.81 in MIX-DE-POS and 0.85 

in NL-DE-POS (Fig. 10d-f). Both MIX-DE-POS and NL-DE-POS show stronger negative NMB and larger 



NMSE than F-PRI, which should be partly caused by the CGS effect, although emission bias and other non-linear 

resolution-dependent processes could play a role.  

 

MIX-DE-POS has improved values of R and NCRMSE than NL-DE-POS; here we discuss the possible reasons 

and propose future works to improve NL-DE. MIX is a mosaic bottom-up emission inventory, and it is actually 

the MEIC emission inventory for NOx emissions over China (Li et al., 2017). The MIX (or MEIC) NOx emission 

inventory over China consists of emissions from four sectors including coal-fired power plant, industrial, transport, 

and residential sectors. Coal-fired power plant emissions in MEIC are derived through extensively using detailed 

information (including locations of individual units) of 7657 generation units in China (Liu et al., 2015); coal-

fired power plant emissions can be accurately placed to grids according to source location information (Li et al., 

2017). Thus, if we can allocate posterior total anthropogenic NOx emissions into the four sectors, we expected 

that it is better to use the MIX coal-fired power plant NOx emission inventory rather than nighttime lights to 

downscale the posterior coal-fired power plant NOx emissions. For the other sectors in MIX (or MEIC) over China, 

population density is used to allocate industrial and residential emissions to grids (Li et al., 2017), and transport 

emissions are distributed according to road networks (Li et al., 2017). Using population density to downscale 

industrial and residential NOx could underestimate emissions over urban region, compared with the approach of 

using nighttime light which could better represent economic development levels (Geng et al., 2017). Whether it 

is better to use road networks or nighttime lights to downscale NOx emissions from the transport sector requires 

future investigations. In this study, the posterior NOx emission inventory to be downscaled is total anthropogenic 

NOx emissions, which is not allocated into different source sectors. Thus, if we assume that the ratios of every 

sectoral emissions to total anthropogenic emissions do not change between prior and posterior emission 

inventories, MIX-DE has an advantage for coal-fired power sector, while NL-DE could benefit the downscaling 

for the industrial and residential sectors. In future work, we could optimize sectoral emissions rather than total 

anthropogenic emissions, and subsequently downscale posterior coal-fired power emissions through prior MIX 

coal-fired power emissions, and ultimately use VIIRS night time light data to downscale posterior industrial and 

residential emissions.   

4.5 Impacts of joint assimilations on surface SO2 and NO2 simulations 

To evaluate the posterior SO2 and NOx emissions of joint assimilations with various observation balance 

parameter γ in from Part I, i.e. Wang et al. (2019), we focus on the sum of NMSE of surface SO2 and NO2 as 

shown in Fig. 11. The experiment of using the prior MIX SO2 and NOx emissions has the largest sum of NMSE, 



which is followed by the simulation using the prior MIX SO2 emissions and the posterior NOx emissions from 

separate assimilation. The sum of NMSE of using the posterior SO2 and NOx emissions of joint assimilations 

(JOINT-F-POS) with various observation balance parameter γ (as γ increases, the NO2 species is more emphasized 

in the cost function) is always smaller than that of the experiment of using the prior MIX SO2 emissions and the 

posterior NOx emission from separate assimilation and decrease as γ increases. When γ is 1500 or 2000, the sum 

of NMSE of using the posterior SO2 and NOx emissions of joint assimilations is smaller than that of the experiment 

of using the prior MIX NOx emission and the posterior SO2 emission from separate assimilation, but it equals that 

of the experiment of using the posterior SO2 and NOx emissions from separate assimilations. The value of γ mainly 

affect SO2 NMSE (Fig. S4a) rather than NO2 NMSE (Fig. S4b). 

4.6 Application for forecasts 

Figure 12 shows evaluations of surface SO2 and NO2 forecasts with in situ observations. AQF-PRI SO2 

concentrations are generally larger than in situ observations with MB of 45.07 μg m-3 and NMSE of 7.97 (Fig. 

12a).  The MB and NMSE reduces to -7.12 μg m-3 and 1.38 (Fig. 12b), respectively, in AQF-MIX-DE-POS. For 

surface NO2, NCRMSE and R are 0.76 and 0.65 (Fig. 12c), respectively, in AQF-PRI, and change to 0.75 and 

0.66 (Fig. 12d), respectively, in AQF-MIX-DE-POS. The stronger negative NMB and larger NMSE for NO2 in 

AQF-MIX-DE-POS than that in AQF-PRI is likely attributable to the CGM effect. The CGS effect is eliminated 

in both the AQF-NL-DC-PRI and AQF-NL-DC-POS, which show positive bias (Fig. 12e,f). In the 0.05°x0.05 

forecasts, NMSE decreases from 4.61 in AQF-NL-DC-PRI to 3.43 in AQF-NL-DC-POS, and R increases from 

0.38 to 0.42.  

 

In this study, we show the improvements of GEOS-Chem simulations or forecasts of surface SO2 and NO2 

concentrations through posterior emissions constrained by integration of GEOS-Chem adjoint and OMPS 

observations. All the improvements of SO2 and NO2 forecasts are summarized in the Taylor diagrams (Fig. 13), 

which includes R, normalized standard deviation (the ratio of forecast standard deviation to in situ observations), 

NMB, and normalized centered root mean square error (NCRMSE). NCRMSE is shown as the distance between 

the forecast point and the expected (in situ observation) point. The improvements of forecasting surface SO2 

concentrations through MIX-DE and MIX-DDC are comparable (Fig. 13a). For NO2 forecast, MIX-DE show 

larger improvement than NL-DE and MIX-DDC (Fig. 13b). NL-DC is able to better decrease the Coarse-Grid 

Smearing effect than MIX-DE, but shows larger normalized centered root mean square error. In the future, we 

plan to investigate if the posterior emissions can be applied to other models such as WRF-Chem and WRF-GC at 



a spatial resolution finer than 0.25°x0.3125°. In case of global model of chemistry, it is promising to use nighttime 

light to downscale NO2 simulations so as to obtain a quick look of NO2 air quality at very fine resolution.  

 

In addition to the improvement of SO2 and NO2, AQF-MIX-DE-POS enhances on AQF-PRI in the forecast of 

surface O3 concentrations (Fig. 14). If all O3 in situ observations in the research domain are used for evaluation, 

a spatial distribution improvement is shown with NCRMSE decreasing from 1.08 for AQF-PRI to 1.05 for AQF-

MIX-DE-POS, but NMB changes from -3.1% to 5.0% (Fig. 14c). Indeed, whether bias becomes smaller or larger 

depends on region. In the North China Plain and Eastern China where NOx emissions (or NO2 surface 

concentrations) are large (the black box in Fig. 14a), forecasts of surface O3 concentration are much lower than 

other regions; and the NMB is -16.7% for AQF-PRI and -6.3% for AQF-MIX-DE-POS with NCRMSE decreasing 

from 1.20 to 1.16 (Fig. 14c). In this relatively NOx-rich region, the increase of O3 concentration in AQF-MIX-

DE-POS is caused by the decrease of NO2 concentrations; the change of SO2 concentrations has negligible impacts 

on O3 concentrations (Fig. S5).  This implies that if Volatile Organic Compound (VOC) concentrations remain 

constant, emission control of NOx emissions will exacerbate O3 pollutions. For the region that is out of the black 

box, although NCRMSE decreases from 0.82 for AQF-PRI to 0.80 for AQF-MIX-DE-POS, NMB increases from 

19.0% to 23.3% (Fig. 14c). 

5. Discussion and conclusions 

The posterior SO2 and NOx emissions at 2° x 2.5° resolution constrained by OMPS SO2 and NO2 retrievals through  

the GEOS-Chem adjoint model (Wang et al., 2019) are expected to improve simulations and forecasts of SO2 and 

NO2 pollutions, but model simulation at such a coarse resolution fails to capture hot spots over cities due to the 

Coarse-Grid-Smearing or CGS effect, which prompts the study and development of downscaling techniques. Here, 

we introduce several downscaling approaches to obtaining surface SO2 and NO2 concentrations at finer resolution, 

which are further validated with in situ observations. All these methods are demonstrated through simulations of 

SO2 and NO2 for October 2013 and forecasts of SO2, NO2, and O3 for November 2013 over China. 

 

GEOS-Chem 2° x 2.5° simulations of surface SO2 and NO2 over China in October 2013 using the prior MIX 2010 

emissions and the posterior emissions show negative bias due to the Coarse-Resolution Smearing (CGS) effect. 

The coarse-resolution simulations are downscaled to 0.25°x0.3125° resolution according to the distributions of 

0.25°x0.3125°simulations based on the prior MIX 2010 emissions (MIX-DDC approach). When comparing with 



in situ surface observations, the MIX-DDC posterior SO2 and NO2 simulations show normalized centered root 

mean squared error (NCRMSE) is 63.7% and 30.2%, respectively, smaller than the MIX-DDC prior simulations. 

Compared with the 2° x 2.5° simulations, the downscaled 0.25°x0.3125° simulations alleviate the CGS effect, but 

do not avoid it completely. To further decrease the CGS effect for NO2, we further downscale the surface NO2 

simulations from 2°x2.5° to 0.05°x0.05° according to VIIRS nighttime light observations, which are strongly 

related with TROPOMI NO2 tropospheric VCDs (NL-DC approach). The NL-DC NO2 posterior simulation is 

better than the NL-DC prior simulation when compared with in situ observations with NCRMSE decreasing from 

1.34 to 1.10 and the MB decreases from 18.30 μg m-3 to 10.29 μg m-3, respectively. In terms of evaluating the 

downscaled SO2 and NO2 simulations simultaneously, using posterior SO2 and NOx emission inventories from 

joint assimilation is better than only using one (SO2 or NOx) emission inventory from separate assimilation, and 

it is similar to using posterior SO2 and NOx emission inventories from separate assimilation.  

 

Instead of using prior fine-resolution simulations to downscale posterior coarse-resolution surface SO2 and NO2 

concentrations, another approach is downscaling posterior emissions for 0.25°x0.3125° simulations. We 

downscale the posterior 2° x 2.5° SO2 emissions according to the distributions of fine-resolution prior MIX SO2 

emissions (MIX-DE). In the 0.25° x 0.3125° simulations, posterior surface SO2 is in better agreement with in situ 

observations than the prior. Not only are the fine-resolution prior MIX NOx emissions used to downscale posterior 

2°x2.5° NOx emissions, we also use VIIRS nighttime light observations as proxies to downscale posterior 2°x2.5° 

NOx emissions (NL-DE approach). All these emissions are used to simulate surface NO2 concentrations, which 

are validated with in situ observations. The simulations of using MIX-DE and NL-DE posterior NOx emissions 

show smaller root mean square error and larger linear correlation than the prior simulation. The NO2 simulation 

using MIX-DE emissions shows better results than that using NL-DE emissions, which may be owing to all NOx 

emissions being treated as area sources in the NL-DE approach while the MIX-DE approach has point source 

information, if we assume that sectoral ratios do not change between prior and posterior emissions. We also notice 

that using the prior fine-resolution simulations to downscale the posterior coarse-resolution surface SO2 and NO2 

concentrations is slightly better than simulations using the downscaled posterior emissions.  

 

To study the feasibility of improving surface SO2, NO2, and O3 predictions, posterior emission inventories of the 

current month are scaled to the next month according to the monthly variations of prior MIX emission inventory, 

and are subsequently applied to forecasts of the next month. Here we integrate MIX-DE posterior SO2 and NOx 

emission inventories for October 2013 and the monthly scale factors derived from prior MIX emission inventory 



to obtain posterior SO2 and NOx emission inventories for November 2013. These are further used to forecast 

surface SO2, NO2, and O3 concentrations at 0.25°x0.3125° for November 2013, and the results are better than 

using prior emissions when validated with in situ observations, although the CGS effect is not completed avoided 

at this spatial resolution for SO2 and NO2. The forecasts of surface NO2 concentrations at 0.05°x0.05° resolutions 

through NL-DC can eliminate the CGS effect, and the posterior forecast is also in better agreement with in situ 

observations than the prior forecast. 
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Table 1. Design of experiments for simulating surface SO2 and NO2 concentrations over China in October 2013. 

Experimental 
namea 

Model 
resolution 

SO2 emissions NOx emissions Downscaling 
sfc. SO2 conc.  

Downscaling 
sfc. NO2 conc. 

Sfc. SO2 
resolution 

Sfc. NO2 

resolution 
C-PRI 2°x2.5° Prior MIX Prior MIX No No 2°x2.5° 2°x2.5° 

C-POS 2°x2.5° Post Post No No 2°x2.5° 2°x2.5° 

MIX-DDC-PRI 2°x2.5° Prior MIX Prior MIX MIX-DDC MIX-DDC 0.25°x0.3125° 0.25°x0.3125° 

MIX-DDC-POS 2°x2.5° Post Post MIX-DDC MIX-DDC 0.25°x0.3125° 0.25°x0.3125° 

NL-DC-PRI 2°x2.5° Prior MIX Prior MIX No NL-DC NA 0.05°x0.05° 

NL-DC-POS 2°x2.5° Post Post No NL-DC NA 0.05°x0.05° 

JOINT-F-POSb 2°x2.5° Joint post Joint post MIX-DDC NL-DC 0.25°x0.3125° 0.05°x0.05° 

F-PRI 0.25°x0.3125° Prior MIX Prior MIX No No 0.25°x0.3125° 0.25°x0.3125° 

MIX-DE-POS 0.25°x0.3125° Post MIX-DE Post MIX-DE No No 0.25°x0.3125° 0.25°x0.3125° 

NL-DE-POS 0.25°x0.3125° Post MIX-DE Post NL-DE No No NA 0.25°x0.3125° 
aThe nomenclature of the experimental name is as follows. C represents coarse resolution, F fine resolution, PRI prior, POS posterior, 

DDC dynamic downscaling concentration, DC downscaling concentration, NL nighttime light, MIX prior MIX emission inventory, 

DE downscaling emissions, JOINT emission inventory from joint inverse modeling. 
bJOINT-F-POS is a set of experiments of using posterior emission inventories from joint inversion modeling using different 

observations balance parameter γ. 
 



 
 

Table 2. Design of experiments for forecasting surface SO2, NO2, and O3 concentrations over China in November 2013 

Experimental 
Namea 

SO2 and NOx emissions Model 
Resolution 

Downscaling sfc. conc. 
(resolution) 

AQF-PRI Prior MIX for Nov. 2010 0.25°x0.3125° No (0.25°x0.3125°) 

AQF-MIX-DE-POS Posterior MIX-DE for Nov. 2013  0.25°x0.3125° No (0.25°x0.3125°) 

AQF-NL-DE-POS Posterior MIX-DE of SO2 and NL-DE 
of NOx for Nov. 2013 

0.25°x0.3125° No (0.25°x0.3125°) 

AQF-MIX-DDC-PRI Prior MIX for Nov. 2010 2°x2.5° MIX-DDC (0.25°x0.3125°) 

AQF-MIX-DDC-POS Posterior MIX-DE for Nov. 2013 2°x2.5° MIX-DDC (0.25°x0.3125°) 

AQF-NL-DC-PRI Prior MIX for Nov. 2010 2°x2.5° NL-DC (0.05°x0.05°) 

AQF-NL-DC-POS Posterior MIX-DE for Nov. 2013  2°x2.5° NL-DC (0.05°x0.05°) 

          aThe nomenclature of the experimental name is as follows. AQF represents air quality forecasts, PRI prior, POS posterior, MIX  
prior MIX emission inventory, NL nighttime light, DE downscaling emissions, DDC dynamic downscaling concentration,  
DC downscaling concentration. 
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Figure 1. Simulations of surface SO2 and NO2 concentrations for October 2013. (a) and (b) are surface SO2 simulated 

by GC-adj v35m (developed based on GEOS-Chem version 8.2.1, updated through version 9, and we name it v8 for 5 
short) and GCv12.0.0 (v12 for short), respectively, and (c) is the difference between v12 and v8. (d), (e), and (f) are 

similar to (a), (b), and (c), but for NO2.  
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Figure 2. (a) and (b) are TROPOMI NO2 VCD and VIIRS nighttime light radiance at the 0.05°x0.05° resolution in 

April 2018. (c) is a scatter plot of TROPOMI NO2 versus logarithm of VIIRS nighttime light radiance (grid cells with 10 
VIIRS nighttime light radiance less than 0.1 nW cm-2 sr-1 are removed). 
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Figure 3.  (a) and (b) are VIIRS nighttime light radiance and MIX NOx emissions at 0.25°x0.25° resolution in April 

2018 and April 2010, respectively. (c) is scatter plot of MIX NOx emissions versus VIIRS nighttime light radiance (grid 15 
cells with VIIRS nighttime light radiance less than 0.1 nW cm-2 sr-1 are removed). 
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Figure 4. Evaluations of coarse-resolution, MIX-DDC GEOS-Chem surface SO2 simulations with in situ observations 20 
for October 2013. (a) and (b) are C-PRI and C-POS simulations, respectively, with in situ observations overlapped. If 

there are more than one observations in a 2°x2.5° grid cell, they are averaged. (c) and (d) are scatter plots of C-PRI 

and C-POS simulations versus in situ observations, respectively. (e) and (f) are surface SO2 concentrations of MIX-

DDC-PRI and MIX-DDC-POS, respectively, with in situ province-capital-city (triangle) and non-province-capital-city 

(circle) observations overlapped. (g) and (h) are scatter plots of MIX-DDC-PRI and MIX-DDC-POS simulations versus 25 
in situ province-capital-city (triangle) and non-province-capital-city (circle) observations, respectively. Linear 

correlation coefficient (R), normalized centered root mean squared error (NCRMSE), normalized mean squared error 

(NMSE), normalized mean bias (NMB), mean bias (MB), and number of observations (N) are shown over scatter plots, 

with black color text for all observations and purple color text for province-capital-city observations. 
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Figure 5. Evaluation of coarse-resolution, MIX-DDC, and NL-DC GEOS-Chem surface NO2 simulations with in situ 35 
observations for October 2013. (a) and (b) are C-PRI and C-POS simulations, respectively, with in situ observations 

overlapped. If there are more than one observations in a 2°x2.5° grid cell, they are averaged. (c) and (d) are scatter 

plots of C-PRI and C-POS simulations versus in situ observations, respectively. (e) and (f) are GEOS-Chem surface 

NO2 of MIX-DDC-PRI and MIX-DDC-POS, respectively, with in situ observations overlapped. (g) and (h) are scatter 

plots of MIX-DDC-PRI and MIX-DDC-POS simulations versus in situ observations, respectively. (i), (j), (k), and (l) 40 
are similar to (e), (f), (g), and (h), respectively, but results are downscaled through the NL-DC approach (NL-DC-PRI 

and NL-DC-POS). Linear correlation coefficient (R), normalized centered root mean squared error (NCRMSE), 

normalized mean squared error (NMSE), normalized mean bias (NMB), mean bias (MB), and number of observations 

(N) are shown over scatter plots. As NOx emission is mainly over the North China Plain and Eastern China, validation 

with in situ surface NO2 is conducted at these areas (red box in a). 45 
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 50 
Figure 6. Normalized mean squared error (NMSE) for NL-DC-PRI (blue line) and NL-DC-POS (orange line) when 

validating with in situ surface NO2 derived from various NO2/(NO2)m ratio (increasing from 0.7 to 1.0 with a step of 

0.01), where (NO2)m is measured NOz concentration. 
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Figure 7. (a) is SO2 0.25°x0.3125° emissions of prior MIX 2010, (b) is posterior MIX-DE, and (c) the difference between 

posterior MIX-DE and prior MIX 2010. 
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Figure 8. Evaluations of fine-resolution GEOS-Chem surface SO2 simulations with in situ observations for October 

2013. (a) and (b) are surface SO2 concentrations of F-PRI and MIX-DE-POS, respectively, with in situ province-capital-

city (triangle) and non-province-capital-city (circle) observations overlapped. (c) and (d) are scatter plots of F-PRI and 65 
MIX-DE-POS simulations versus in situ province-capital-city (triangle) and non-province-capital-city (circle) 

observations, respectively. Linear correlation coefficient (R), normalized centered root mean squared error 

(NCRMSE), normalized mean squared error (NMSE), normalized mean bias (NMB), mean bias (MB), and number of 

observations (N) are shown over scatter plots, with black color text for all observations and purple color text for 

province-capital-city observations.  70 
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Figure 9. NOx 0.25°x0.3125° emissions of prior MIX 2010 (a), posterior MIX-DE (b), posterior NL-DE (c), the difference 

between posterior MIX-DE and prior MIX 2010 (d), the difference between posterior NL-DE and prior MIX 2010 (e), 

and the difference between posterior NL-DE and posterior MIX-DE (f). 75 
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Figure 10. Evaluations of fine-resolution GEOS-Chem surface NO2 simulations with in situ observations for October 

2013. (a), (b), and (c) are surface NO2 concentrations of F-PRI, MIX-DE-POS, and NL-DE-POS, respectively, with in 85 
situ observations overlapped. (d), (e), and (f) are scatter plots of F-PRI, MIX-DE-POS, and NL-DE-POS simulations 

versus in situ observations, respectively. Linear correlation coefficient (R), normalized centered root mean squared 

error (NCRMSE), normalized mean squared error (NMSE), normalized mean bias (NMB), mean bias (MB), and 

number of observations (N) are shown over scatter plots. 

 90 
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Figure 11. Sum of normalized mean squared error (NMSE) of surface SO2 and NO2. All surface SO2 and NO2 
simulations come from MIX-DDC and NL-DC, respectively. Black dots are posterior simulations from Joint-F-POS. 95 
The blue line is prior simulation results with SO2 NMSE from MIX-DDC-PRI and NO2 NMSE from NL-DC-PRI, 

respectively. The orange line is simulation results with SO2 NMSE from MIX-DDC-POS and NO2 NMSE from NL-

DC-POS, respectively. The green line is similar to orange line, but posterior SO2 emission from separate assimilation 

and prior NOx emission are used. The red line is similar to orange line, but posterior NOx emission from separate 

assimilation and prior SO2 emission are used. 100 
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Figure 12. Evaluation of GEOS-Chem surface SO2 and NO2 forecasts with in situ observations for November 2013. (a) 

and (b) are scatter plots of AQF-PRI and AQF-MIX-DE-POS SO2 at 0.25°x0.3125° versus in situ province-capital-city 

observations, respectively. (c) and (d) are scatter plots of AQF-PRI and AQF-MIX-DE-POS NO2 at 0.25°x0.3125° 105 
versus in situ observations, respectively. (e) and (f) are scatter plots of AQF-NL-DC-PRI and AQF-NL-DC-POS NO2 

at 0.05°x0.05° versus in situ observations, respectively. Linear correlation coefficient (R), normalized centered root 

mean squared error (NCRMSE), normalized mean squared error (NMSE), normalized mean bias (NMB), mean bias 

(MB), and number of observations (N) are shown over scatter plots. 
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Figure 13. Taylor diagrams of evaluations of surface SO2 (a) and NO2 (b) forecasts with in situ observations. Circle 1 

represents AQF-MIX-DDC-PRI, circle 2 AQF-MIX-DDC-POS, square 1 AQF-PRI, square 2 AQF-MIX-DE-POS, 115 
triangle 2 AQF-NL-DE-POS, diamond 1 AQF-NL-DC-PRI, and diamond 2 AQF-NL-DC-POS. 
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Figure 14. Evaluation of GEOS-Chem surface O3 forecasts with in situ observations for November 2013. (a) is AQF-

PRI O3 forecasts with in situ observations overlapped. (b) is the difference between and AQF-MIX-DE-POS and AQF-120 
PRI O3 forecasts (c) is the Taylor diagram of evaluations of surface O3 forecasts in (a) and (b) with in situ observations. . 

Circles and squares represent the AQF-PRI and AQF-MIX-DE-POS forecasts, respectively. Labels 1, 2, and 3 

represent that all sites, only sites that are within the black box in (a), and only sites that are out of the black box in (a) 

are used for evaluations. 
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