
Reply to reviewers and editors: 
 

We thank all of the reviewers for their careful reading of the manuscript, and for their many 

constructive feedbacks. The original comments by reviewers are in black font, our replies are in 

blue. 

 

 

Reviewer #2 

 

This manuscript presents down-scaling results of SO2 and NOx emissions and concentrations 

based on the coarse-resolution joint emission inversion results from Part 1. The downscaling 

approaches used information from TROPOMI NO2 observations, MIX inventories, and VIIRS 

nighttime light observations. The downscaling results were compared against surface in-situ 

observations. The impact on regional air quality forecasting is also addressed. The prosed 

approaches are unique and could contribute to improving regional air quality modeling. I would, 

however, advise the authors to revise the manuscript. These revisions should be made before the 

manuscript can be considered for publication.  

Thanks for the positive comments and constructive reviews. We’ve done our best to address the 

comments in the revision.  

 

[ Major comments ]  

As I suggested for Part 1, all the results need to be revised using higher resolution (at 0.5◦x0.667◦ 

degree resolution) joint inversion results for this type of regional study. The 2◦x2.5◦ resolution 

inversion could lead to large systematic biases in both local and regional emissions and 

concentrations in the downscaling analysis, associated with the non-linear chemistry. Ideally, 

inversion calculations should be done at 0.25◦ or 0.05◦ degree resolution to provide reference 

information for the downscaling results, but this could be difficult.  

It is more straightforward to conduct high-resolution inversions using regional models. There are 

already several high resolution regional inversion frameworks, for instance, using WRF-Chem. 

The benefit of using the current coarse resolution global joint inversion framework (rather than 



regional high resolution inversion systems) to improve regional NOx and SO2 emissions and air 

quality forecast for China needs to be discussed.  

Thanks for the comments. Please see our replies to your comments on part I.  The main reason is 

that the coarser-resolution OMPS data cannot resolve the emission sources smaller than its 

resolution on a monthly basis. In addition, there are practical issues such as computational cost 

and the availability of data at fine resolution  – the earlier the emissions can be updated by 

satellite, the better the outcomes of these satellite observations for air quality forecast.  The goal 

of this study is to develop methods potentially for improve forecasting in real time rather than to 

reconstruct the best historical analysis of high-resolution emissions (that was the goal of  (Qu et 

al., 2019)). Thus, the quality of the forecast is the ultimate test of this study.  

 

While regional model is best suited for air quality forecast, to our knowledge, when this 

manuscript was prepared, GEOS-chem adjoint model still remains the only CTM that has 

complete thermodynamic description of the secondary inorganic sulfate-nitrate-ammonium 

aerosol system and has no need to deal with the issues of chemical boundaries for the regional 

model.  Our understanding is that the full-chemistry 4D-Var is not yet possible in WRF-Chem as 

its adjoint is made only for GOCART scheme at this point, while CMAQ-adjoint (Zhao et al., 

2019) model were in open review after this paper was submitted. Again, treating the chemical 

boundary conditions in the regional adjoint model need to be further studies. All of this are the 

reasons that ended up to use GEOS-Chem. We plan to use CMAQ-adjoint in near future.  

 

Zhao, S., Russell, M. G., Hakami, A., Capps, S. L., Turner, M. D., Henze, D. K., Percell, P. B., 

Resler, J., Shen, H., Russell, A. G., Nenes, A., Pappin, A. J., Napelenok, S. L., Bash, J. O., 

Fahey, K. M., Carmichael, G. R., Stanier, C. O., and Chai, T.: A Multiphase CMAQ Version 5.0 

Adjoint, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-287, in review, 2019. 

 

The current manuscript is technical and does not seem provide sufficient scientific implications 

for ACP (not for GMD). It is required to provide scientific implications based on the proposed 

approaches. For instance, more detailed information on differences in the spatial patterns 

between VIIRS nighttime lights and MIX inventories and possible biases in the MIX emission 



inventories for each emission category would be interesting. Such information will be essential 

to determine the best downscaling approach for right reason. 

Thanks for the good suggestion. Please see our reply to your comments for the first part 

regarding the scientific merit of the paper here. ACP is very broad and methods to improve 

emission estimates and air quality forecasting are within its scope. Furthermore, we demonstrate 

the potential application of our method (monthly update of emission at coarse resolution and 

downscaling it) for regional air quality forecast (for the next month). Finally, following your 

good suggestion, we have added more discussion to Sect. 4.4. New materials about the 

relationship among Volatile Organic Compound (VOC), NOx emission, and O3 air pollutions in 

Sect 4.6 is also added to make the manuscript have more scientific merits. Below is what we 

have add to Sect. 4.4. 

 

MIX-DE-POS has improved values of R and NCRMSE than NL-DE-POS; here we discuss the 

possible reasons and propose future works to improve NL-DE. MIX is a mosaic bottom-up 

emission inventory, and it is actually the MEIC emission inventory for NOx emissions over 

China (Li et al., 2017). The MIX (or MEIC) NOx emission inventory over China consists of 

emissions from four sectors including coal-fired power plant, industrial, transport, and residential 

sectors. Coal-fired power plant emissions in MEIC are derived through extensively using 

detailed information (including locations of individual units) of 7657 generation units in China 

(Liu et al., 2015); coal-fired power plant emissions can be accurately placed to grids according to 

source location information (Li et al., 2017). Thus, if we can allocate posterior total 

anthropogenic NOx emissions into the four sectors, we expected that it is better to use the MIX 

coal-fired power plant NOx emission inventory rather than nighttime lights to downscale the 

posterior coal-fired power plant NOx emissions. For the other sectors in MIX (or MEIC) over 

China, population density is used to allocate industrial and residential emissions to grids (Li et 

al., 2017), and transport emissions are distributed according to road networks (Li et al., 2017). 

Using population density to downscale industrial and residential NOx could underestimate 

emissions over urban region, compared with the approach of using nighttime light which could 

better represent economic development levels (Geng et al., 2017). Whether it is better to use road 

networks or nighttime lights to downscale NOx emissions from the transport sector requires 

future investigations. In this study, the posterior NOx emission inventory to be downscaled is 



total anthropogenic NOx emissions, which is not allocated into different source sectors. Thus, if 

we assume that the ratios of every sectoral emissions to total anthropogenic emissions do not 

change between prior and posterior emission inventories, MIX-DE has an advantage for coal-

fired power sector, while NL-DE could benefit the downscaling for the industrial and residential 

sectors. In future work, we could optimize sectoral emissions rather than total anthropogenic 

emissions, and subsequently downscale posterior coal-fired power emissions through prior MIX 

coal-fired power emissions, and ultimately use VIIRS night time light data to downscale 

posterior industrial and residential emissions.   

 

The evaluations of forecasts in Section 4.6 are not informative in the current form. Because the 

purpose of this study is to improve regional air quality forecasts, evaluations of simulated ozone 

(one of the most important air pollutants) using in-situ observations would add important 

information.  

Both SO2 and NO2 are criteria pollutants in the atmosphere defined by US EPA and China, thus 

we think it is appropriate to evaluate the forecasts of two trace gases and state the improvements 

in regional air quality forecasts. We also agree that evaluations of simulated ozone are very 

important, and this part is now added into the revision. As shown below, using downscaled 

posterior emission inventory helps to improve spatial distribution in terms of NCRMSE, and the 

improvement of NMB depends on region. We have added the text and Fig. 14 below in Sect. 4.6 

and Fig. S5 in the supplement. 

 

In addition to the improvement of SO2 and NO2, AQF-MIX-DE-POS enhances on AQF-PRI in 

the forecast of surface O3 concentrations (Fig. 14). If all O3 in situ observations in the research 

domain are used for evaluation, a spatial distribution improvement is shown with NCRMSE 

decreasing from 1.08 for AQF-PRI to 1.05 for AQF-MIX-DE-POS, but NMB changes from -

3.1% to 5.0% (Fig. 14c). Indeed, whether bias becomes smaller or larger depends on region. In 

the North China Plain and Eastern China where NOx emissions (or NO2 surface concentrations) 

are large (the black box in Fig. 14a), forecasts of surface O3 concentration are much lower than 

other regions; and the NMB is -16.7% for AQF-PRI and -6.3% for AQF-MIX-DE-POS with 

NCRMSE decreasing from 1.20 to 1.16 (Fig. 14c). In this relatively NOx-rich region, the 

increase of O3 concentration in AQF-MIX-DE-POS is caused by the decrease of NO2 



concentrations; the change of SO2 concentrations has negligible impacts on O3 concentrations 

(Fig. S5).  This implies that if Volatile Organic Compound (VOC) concentrations remain 

constant, emission control of NOx emissions will exacerbate O3 pollutions. For the region that is 

out of the black box, although NCRMSE decreases from 0.82 for AQF-PRI to 0.80 for AQF-

MIX-DE-POS, NMB increases from 19.0% to 23.3% (Fig. 14c). 

 

 

 

 
Figure 14. Evaluation of GEOS-Chem surface O3 forecasts with in situ observations for November 2013. (a) is AQF-PRI 
O3 forecasts with in situ observations overlapped. (b) is the difference between and AQF-MIX-DE-POS and AQF-PRI O3 
forecasts (c) is the Taylor diagram of evaluations of surface O3 forecasts in (a) and (b) with in situ observations. . Circles 
and squares represent the AQF-PRI and AQF-MIX-DE-POS forecasts, respectively. Labels 1, 2, and 3 represent that all 
sites, only sites that are within the black box in (a), and only sites that are out of the black box in (a) are used for evaluations. 
 



 
Figure S5. (a) is similar to Fig. 14c, but in the posterior forecasts, the prior MIX NOx emission inventory and the posterior 
MIX-DE SO2 emission inventory is used. (b) is similar to Fig. 14c, but in the posterior forecasts, the prior MIX SO2 emission 
inventory and the posterior MIX-DE NOx emission inventory is used.  
  

The use of GCv12.0.0 model instead of GC adjoint v35m could provide some insights into the 

model dependent posterior emission inventory. Nevertheless, the usefulness of the proposed 

downscaling approach should first be evaluated in a consistent framework (GC v35m) to avoid 

too much complications. Otherwise, it is required to demonstrate the model performance 

difference in detail.  

Well, the robustness of the emission inventory should be independent of the CTMs. This is the 

original motive for us to use a different version of GC to assess the value of the optimized 

emission.  Following your suggestion, we also conducted some evaluations in a consistent 

framework. Fig. S2 and Fig. S3 are similar to Fig. 4 and Fig. 5, respectively, but using the GC 

adjoint v35m rather than GCv12.0.0.  Apparently, both MIX-DDC and NL-DC works when GC 

adjoint v35m is used for coarse resolution simulation. All conclusions about downscaling 

through MIX-DDC and NL-DC from analyzing GCv12.0.0 results can also be drawn from GC 

adjoint v35m results. It is not surprising that when a consistent framework (GC adj v35m) is 

used for coarse resolution simulation, all downscaled results show better spatial pattern (smaller 

NCRMSE) than using GCv12.0.0 for coarse resolution simulation. Considering the manuscript 



has shown MIX-DE results are similar to MIX-DDC results, we can expect that MIX-DE should 

also work in a consistent framework (GC adj v35m). We have added the two figures to the 

supplement and corresponding text to Sect. 4.1 and Sect. 4.2. 

 
Figure S2. It is similar to Fig. 4, but GC adjoint v35m rather than GCv12.0.0 is used. 

 

 
Figure S3. It is similar to Fig. 5, but GC adjoint v35m rather than GCv12.0.0 is used. 

 



More specific comments:  

3.2.2 I’m wondering if this approach can be applied to SO2. If not, please explain the reason.  

We did not apply this approach to SO2.  

We use VIIRS nighttime to downscale NO2 concentrations as there is strong linear correlation 

between NO2 VCD and nighttime light as shown in Fig 2c. The strong linear correlation is 

caused by two reasons: (1) nighttime lights are good spatial proxy for allocating NOx emissions 

(Geng et al., 2017); and (2) NO2 lifetime is short (several hours), which means the distribution of 

NO2 concentration hot spots are highly affected by source locations. We do not expect this 

approach can be used to downscale SO2 concentrations for the two reasons: (1) nighttime lights 

are not very good spatial proxy for allocating SO2 emissions as SO2 emissions from traffic sector 

are very small while nighttime lights are strong over rush traffic road; (2) SO2 lifetime is 1-2 

days, which is much longer than NO2 lifetime. We have added the explanation to the section. 

 

L350 “Thus, for SO2. . .” This suggests that the overall spatial pattern was degraded, while 

capturing hot spots. What emission sources were actually degraded? This would provide 

important implications into the emission inventories.  

Yes, compared with coarse-resolution simulations, the overall spatial patterns of fine-resolution 

simulations are degraded, although this conclusion is based on the ground-based observation data 

that are also in coarse resolution as a whole for describing the spatial pattern. The spatial pattern 

degradation implies that current chemistry transport simulations of surface SO2 concentrations 

can capture regional spatial pattern (coarse-resolution) well, but it is difficult to simulate local 

spatial pattern (fine-resolution); the weakness for describing the local spatial pattern simulation 

suggests the uncertainties of either bottom-up SO2 emission estimates at fine resolution or 

locally-resolved meteorological fields (Ge et al., 2017), or both. This uncertainty in bottom-up 

emission inventories can further stem from distributing SO2 emissions at provincial level to fine-

resolution grid. We have added the discussion to Sect. 4.1. 

 

Xing et al. (2015) also showed the difficulty of simulating local SO2 pollution. In Xing et al. 

(2015)’s research, in situ SO2 observations from US-CASTNET and US-AQS were used for 

evaluation. US-CASTNET sites are mainly located in rural areas to represent regional air 

pollution, while US-AQS sites are mainly close to urban areas to represent much smaller area 



(local air pollution) (Xing et al., 2015). The linear correction coefficients between WRF-CMAQ 

simulations of surface SO2 concentrations (108 km x 108 km resolution) over the US and in-situ 

observations were 0.67 and 0.2 when observations from US-CASTNET and US-AQS were used 

for evaluation, respectively (Xing et al., 2015).  

 

In this study, observational sites are mainly over urban area, and linear correlation coefficients 

between GEOS-Chem fine-resolution simulations and observations are in the range of from 0.26 

to 0.36 (Fig. 4g and h), which is comparable to the value of 0.2 in Xing et al. (2015)’s research. 

For coarse resolution simulations, the same sites are used for evaluation, but linear correlation 

coefficients are in the range from 0.62 to 0.66. In the process of evaluating coarse resolution 

simulations, there are usually several observational sites in a coarse grid box, and observations 

from these sites are averaged to compare with the simulation of the coarse grid box. The better 

spatial pattern at coarse resolution also means it is much easier for GEOS-Chem simulations to 

capture regional spatial pattern of surface SO2 concentrations than local spatial pattern. 

 

L360 “The MIX-DDC-POS. . .”. It is not clear to me that the POS is better and the CGS effect 

still exists (how did you know?).  

Thanks for pointing out this. We would like to express that the MIX-DDC-POS simulation is 

better than the MIX-DDC-PRI simulation in terms of spatial pattern (NCRMSE), although the 

MIX-DDC-POS simulation has larger negative bias than the MIX-DDC-PRI simulation. We 

partly ascribe the negative bias to the CGS effect. 

 

We acknowledge that simulation bias is at least affected by emission bias and the CGS effect 

Thus negative NMB may be CGS effect as well as emission bias.  Zheng et al. (2017) showed 

that surface SO2 (NO2) concentration simulations from WRF-CMAQ, when evaluating with in 

situ observations, have a NMB of -23% (%0), 7% (32%), and 41% (45%) at the resolutions of 36 

km (~0.36°), 12 km (~0.12°), and 4 km (~0.04°), respectively, which suggests that (1) the CGS 

effect and other non-linear resolution-dependent processes can affect the results and (2) these 

problems are alleviated at the resolution of 0.25°x0.3125°, but are not completely avoided. We 

have added that CGS effect is only reduced in part, and other factors needs to be investigated 

(section 4.1 and section 4.2). 



 

L365 “Thus MIX-DDC-POS”.. Why did the MIX-DDC approach show good spatial pattern for 

NO2 and not for SO2? The MIX SO2 and NO2 spatial pattern should look similar.  

The performance of the MIX-DDC approach is largely affected by fine-resolution simulations of 

surface species concentration spatial pattern using prior MIX emission inventory. Spatial patterns 

of SO2 and NO2 are comparable at coarse resolution. When come to fine-resolution simulations, 

SO2 spatial pattern degrade much stronger than NO2 spatial pattern.  Thus, MIX-DDC approach 

show good spatial pattern for NO2 but not for SO2. The reason why the simulation of SO2 spatial 

patter at fine resolution has been discussed for the question “L350 “Thus, for SO2. . .” This 

suggests that the overall spatial pattern was degraded, while capturing hot spots. What emission 

sources were actually degraded? This would provide important implications into the emission 

inventories. ”, as shown above. 

 

L378 Why are there large positive biases? 

The bias of surface NO2 concentrations are 45.3% and 25.5% for NL-DC-PRI and NL-DC-POS, 

respectively, which could come from total emission bias as well as the downscaling process 

through the NL-DC approach. The sites used for validation are mainly over urban region, and we 

lack sites that are located over rural region to evaluate if positive or negative bias persists over 

rural region. Thus, we are not able to determine how much of positive bias in NL-DC-PRI and 

NL-DC-POS is caused by the NL-DC approach. We have added the discussion in Sect. 4.2. 

 

L400 The correlation is very low. Please discuss it.  

As we answer the question above for “L350”, we have shown that the weakness for describing 

the local spatial pattern simulation suggests the uncertainties of either bottom-up SO2 emission 

estimates at fine resolution or locally-resolved meteorological fields (Ge et al., 2017), or both. 

This uncertainty in bottom-up emission inventories can further stem from distributing SO2 

emissions at provincial level to fine-resolution grid. The low correlation here also implies this 

problem. We have added the following discussion in Sect. 4.3 

 

We also noticed that R is 0.14 in  MIX-DE-POS, which is even smaller than 0.23  in F-PRI. 

Thus, in the simulations, using prior emissions inventories shows better linear correlation than 



using posterior emissions inventories. Conversely. in the forecast,  using posterior emission 

inventories (AQF posterior, R=0.11, Fig. 12b) has better linear correlation than use prior 

emission inventories (AQF prior, R=0.06, Fig. 12a). The contrast may be caused by the fact that 

linear correlation coefficient is not a robust metric and should be used together with other 

metrics to evaluate the model.   

 

L416 I’m not sure if this is really caused by the CGS effect only. For instance, what happens 

when posterior emissions are biased?  

Thanks for pointing out this. We acknowledge that simulation bias is at least affected by 

emission bias and the CGS effect. Thus, negative NMB may be CGS effect as well as emission 

bias.  Zheng et al. (2017) showed that surface SO2 (NO2) concentration simulations from WRF-

CMAQ, when evaluating with in situ observations, have a NMB of -23% (%0), 7% (32%), and 

41% (45%) at the resolutions of 36 km (~0.36°), 12 km (~0.12°), and 4 km (~0.04°), 

respectively, which suggests that (1) CGS effect and other non-linear resolution-dependent 

processes can affect SO2 simulation results and (2) these problems are alleviated at the resolution 

of 0.25°x0.3125°, but are not completely avoided. We have added the discussion above to 

Sections 4.1 and 4.2. We also have let this sentence replaced by “which should be partly caused 

by the CGS effect, although emission bias and other non-linear resolution-dependent processes 

could play a role.” 

 

 

L417 “which may be attributed. . .” I don’t understand the sentence.  

We have replaced the sentence by the text below. 

 

MIX-DE-POS has improved values of R and NCRMSE than NL-DE-POS; here we discuss the 

possible reasons and propose future works to improve NL-DE. MIX is a mosaic bottom-up 

emission inventory, and it is actually the MEIC emission inventory for NOx emissions over 

China (Li et al., 2017). The MIX (or MEIC) NOx emission inventory over China consists of 

emissions from four sectors including coal-fired power plant, industrial, transport, and residential 

sectors. Coal-fired power plant emissions in MEIC are derived through extensively using 

detailed information (including locations of individual units) of 7657 generation units in China 



(Liu et al., 2015); coal-fired power plant emissions can be accurately placed to grids according to 

source location information (Li et al., 2017). Thus, if we can allocate posterior total 

anthropogenic NOx emissions into the four sectors, we expected that it is better to use the MIX 

coal-fired power plant NOx emission inventory rather than nighttime lights to downscale the 

posterior coal-fired power plant NOx emissions. For the other sectors in MIX (or MEIC) over 

China, population density is used to allocate industrial and residential emissions to grids (Li et 

al., 2017), and transport emissions are distributed according to road networks (Li et al., 2017). 

Using population density to downscale industrial and residential NOx could underestimate 

emissions over urban region, compared with the approach of using nighttime light which could 

better represent economic development levels (Geng et al., 2017). Whether it is better to use road 

networks or nighttime lights to downscale NOx emissions from the transport sector requires 

future investigations. In this study, the posterior NOx emission inventory to be downscaled is 

total anthropogenic NOx emissions, which is not allocated into different source sectors. Thus, if 

we assume that the ratios of every sectoral emissions to total anthropogenic emissions do not 

change between prior and posterior emission inventories, MIX-DE has an advantage for coal-

fired power sector, while NL-DE could benefit the downscaling for the industrial and residential 

sectors. In future work, we could optimize sectoral emissions rather than total anthropogenic 

emissions, and subsequently downscale posterior coal-fired power emissions through prior MIX 

coal-fired power emissions, and ultimately use VIIRS night time light data to downscale 

posterior industrial and residential emissions.   
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