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Abstract. SO2 and NO2 observations from the Ozone Mapping and Profiler Suite (OMPS) sensor are used for the 

first time in conjunction with GEOS-Chem adjoint model to optimize both SO2 and NOx emission estimates over 15 
China for October 2013. OMPS SO2 and NO2 observations are first assimilated separately to optimize emissions 

of SO2 and NOx, respectively. Posterior emissions, compared to the prior, yield improvements in simulating 

columnar SO2 and NO2, in comparison to measurements from OMI and OMPS. The posterior SO2 and NOx 

emissions from separate inversions are 748 Gg S and 672 Gg N, which are 36% and 6% smaller than prior MIX 

emissions, respectively. In spite of the large reduction of SO2 emissions over the North China Plain, the simulated 20 
sulfate-nitrate-ammonium Aerosol Optical Depth (AOD) only decrease slightly, which can be attributed to (a) 

nitrate rather than sulfate as the dominant contributor to AOD and (b) replacement of ammonium sulfate with 

ammonium nitrate as SO2 emissions are reduced. Both data quality control and the weight given to SO2 relative 

to NO2 observations can affect the spatial distributions of the joint inversion results.  When the latter is properly 

balanced, the posterior emissions from assimilating OMPS SO2 and NO2 jointly yield a difference of -3% to 15% 25 
with respect to the separate assimilations for total anthropogenic SO2 emissions and ±2% for total anthropogenic 

NOx emissions; but the differences can be up to 100% for SO2 and 40% for NO2 in some grid cells. Improvements 

on SO2 and NO2 simulations evaluated with OMPS and OMI measurements from the joint inversions are overall 

consistent with those from separate inversions. Moreover, the joint assimilations save ~50% of the computational 

time than assimilating SO2 and NO2 separately when computational resources are limited to run one inversion at 30 
a time sequentially. The sensitivity analysis shows that a perturbation of NH3 to 50% (20%) of the prior emission 
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inventory: (a) has negligible impact on the separate SO2 inversion, but can lead to decrease of posterior SO2 

emissions over China by -2.4% (-7.0%) in total and up to -9.0% (-27.7%) in some grid cells in the joint inversion 

with NO2; (b) yield posterior NOx emissions over China decrease by -0.7% (-2.8%) for the separate NO2 inversion 

and by -2.7% (-5.3%) in total and up to -15.2% (-29.4%) in some grid cells for the joint inversion.  The large 35 
reduction of SO2 between 2010 and 2013, however, only leads to ~10% decrease of aerosol optical depth 

regionally; reducing surface aerosol concentration requires the reduction of emissions of NH3 as well. 

1.  Introduction 

Both SO2 and NO2 in the atmosphere have adverse impacts on human health and can affect radiative forcing that 

leads to climate change. Not only do they cause inflammation and irritation of the respiratory system, but they 40 
also react with other species to form sulfate and nitrate aerosols (Seinfeld and Pandis, 2016), which subsequently 

can lead to or exacerbate respiratory and cardiovascular diseases (Lim et al., 2012). Sulfate and nitrate account 

for the largest mass of anthropogenic aerosols, which contributed to ~3 million premature deaths worldwide in 

2010 (Lelieveld et al., 2015). In addition to health impacts, anthropogenic sulfate and nitrate are estimated to have 

caused -0.4 and -0.15 W m-2 radiative forcing, respectively, on a global scale between 1750 and 2011 through 45 
scattering solar radiation, and via modifying cloud microphysical properties (Myhre et al., 2013). 

 

Satellite-derived global distributions of SO2 and NO2 Vertical Column Densities (VCDs) have been used to study 

the aforementioned impacts of SO2 and NO2 on atmospheric composition, climate change, and human health. In 

particular, since SO2 and NO2 VCDs are, to first order, linearly related to SO2 and NOx emissions (Calkins et al., 50 
2016), they can be used to update bottom-up emission inventories that have large uncertainties and a temporal lag 

often of at least one year (Liu et al., 2018). Of particular interest for this study is China, which has large SO2 and 

NOx emissions from anthropogenic sources (coal-fired power plants, industry, transportation, and residential 

activity). Moreover, China has seen a 62% reduction in anthropogenic SO2 emissions and a 17% reduction of 

anthropogenic NO2 emissions on average from 2010 to 2017 (Zheng et al., 2018) due to the implementation of 55 
emission control policies, and these changes vary by regions, cities (Liu et al., 2016), and sectoral sources (Zheng 

et al., 2018). The reduction of SO2 emissions mainly occurred in the coal-fired power plants and industry while it 

was largely ascribed to coal-fired power plants for NO2 (Zheng et al., 2018). Noticeable uncertainties larger than 

30% for both anthropogenic SO2 and NOx in 2010 over China were documented (Li et al., 2017b) and can be 

larger at the regional scale due to the uncertainty of activity rates, emission factors, and spatial proxies, which are 60 
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used in the bottom-up approach (Janssens-Maenhout et al., 2015). Moreover, the large uncertainty is compounded 

by possible discrepancies caused by the temporal lag of bottom-up emission inventories and the rapid changes of 

emissions over time. 

 

 65 
Several methods have been developed to update SO2 and NOx emissions using satellite VCD retrievals of SO2 

and NO2, which have global coverage and near-real-time access. The mass balance method, which scales prior 

emissions by the ratios of observed VCDs to Chemistry Transport Model (CTM) counterparts, was applied to SO2 

retrievals from SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) 

and Ozone Monitoring Instrument (OMI) (Lee et al., 2011;Koukouli et al., 2018) and to NO2 from Global Ozone 70 
Monitoring Experiment (GOME) and OMI (Martin et al., 2003;Lamsal et al., 2010) to estimate SO2 and NOx 

emissions, respectively. Lamsal et al. (2011) simulated the sensitivity of VCDs to emissions (the finite difference 

mass balance approach) using a CTM, which was applied to OMI NO2 retrievals to estimate NOx emissions. SO2 

VCD retrievals from GOME, GOME-2, SCIAMCHY, and Ozone Mapping and Profiler Suite (OMPS) were used 

to estimate point sources through linear regression between VCDs and emissions or function fitting, although the 75 
method can only detect about half of the total anthropogenic SO2 emissions (Li et al., 2017a;Zhang et al., 

2017;Fioletov et al., 2013;Fioletov et al., 2016). With explicit considerations of chemistry, transport, and 

deposition, the four-dimension variational data assimilation (4D-Var) approach was applied to estimate emissions 

using SO2 data from OMI (Wang et al., 2016;Qu et al., 2019a), and NO2 data from SCIAMCHY, GOME-2, and 

OMI (Kurokawa et al., 2009;Qu et al., 2017;Kong et al., 2019). The 4D-Var posterior has a smaller root mean 80 
square error than the mass balance posterior, especially in the conditions when the initial guess and true emissions 

have different spatial patterns (Qu et al., 2017); this is because the spatial extent of source influences on modelled 

column concentrations (Turner et al., 2012) are only indirectly accounted for in the mass balance approach. 

Cooper et. al (2017), however, showed that the iterative finite difference mass balance approach has similar 

accuracy as the 4D-Var approach for global-scale models with coarse resolution. To combine the strengths of the 85 
4D-Var and mass balance approaches, Qu et al. (2017) further introduced a hybrid 4D-Var-mass-balance approach, 

which can better capture trends and spatial variability of NOx emissions than the mass balance approach and save 

significant computational resources when applied to constrain monthly NOx emissions for multiple years. Other 

data assimilation approaches including the ensemble Kalman filter method (Miyazaki et al., 2012;Miyazaki et al., 

2017) and the Daily Emission estimates Constrained by Satellite Observation (DECSO) algorithm (Mijling and 90 
van der A, 2012;Ding et al., 2015) have also been used to constrain NOx emissions.  
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Here, we focus on the development and feasibility for joint 4D-var assimilation of satellite-based SO2 and NO2 

data to optimize SO2 and NOx emission strengths simultaneously. Specifically, this study aims to conduct 4D-Var 

assimilation of VCDs of SO2 and NO2 from OMPS to constrain SO2 and NOx emissions over China using the 95 
GEOS-Chem 4D-Var inverse modeling framework. In our companion study (Wang et al., 2019), we develop 

approaches to downscaling the optimized emission inventories for improving air quality predictions. Despite their 

numerous applications for top-down estimate of SO2 and NOx emissions in the past two decades, GOME and  

SCIAMCHY stopped providing data in 2004 and 2012, respectively, while OMI has been suffering from a row 

anomaly that leads to much less spatial coverage and larger data uncertainty (Schenkeveld et al., 2017). Hence, it 100 
is important to study the potential of next-generation sensors such as OMPS toward continuously monitoring the 

change of SO2 and NOx emissions and their atmospheric loadings. Two OMPS sensors onboard Suomi NPP and 

NOAA-20 have been launched in 2011 and 2018, respectively, and the third one is expected to be launched in 

2020.  As OMPS will continue to provide SO2 and NO2 retrievals in the next two decades, this study seeks to 

provide a critical assessment of the extent to which the OMPS observations improve emissions estimates and air 105 
quality forecast at the regional scale for the first time.  

 

The novelty of this study lies not only in the first application of OMPS SO2 and NO2 retrievals to constrain 

emissions using the 4D-Var technique but also in the deployment of OMI data to assess the GEOS-Chem 

simulation with posterior emissions, thereby studying the degree to which OMPS and OMI retrievals, despite their 110 
difference in sensor characteristics and inversion techniques, can provide consistent constraints for the model 

improvement. Qu et al. (2019a) showed that posterior SO2 emissions from different OMI SO2 products vary in 

strength and have consistent trend signs. Our study here using OMPS thus touches an important issue, which is 

whether or not there would be any artificial trends in our climate data record of atmospheric SO2 and NO2 due to 

the transition of satellite sensors. Our study is also different from past studies (Wang et al., 2016;Qu et al., 2017;Qu 115 
et al., 2019a;Qu et al., 2019b) that have applied the 4D-Var technique to OMI data with the GEOS-Chem adjoint 

model, but did not include evaluation with independent satellite data. Qu et al. (2019b) showed joint inversion 

using OMI SO2 and NO2 benefits from simultaneous adjustment of OH and O3 concentrations, which supports 

assimilating OMPS SO2 and NO2 observations simultaneously in this study. Additionally, considering that the 

uncertainty of NH3 emission inventories is up to 153% over China (Kurokawa et al., 2013) and NH3 emissions 120 
are not constrained in our inversions, we also explore issues related to the co-variation among species that appear 
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to be independent but indeed are connected through chemical processes and analyze the differences in responses 

of emissions and aerosols to NH3 emissions uncertainty between joint and single-species assimilations. 

 

We describe OMPS and OMI data in Sect. 2. The GEOS-Chem model and its adjoint as well as the design of 125 
numerical experiments are presented in Sect. 3.  Results of case studies for October 2013 are provided in Sect. 4. 

Sect. 5 consists of discussion and conclusions. 

2. Data 

2.1 OMPS data as constraints 

We use OMPS Level-2 SO2 and NO2 tropospheric VCDs in October 2013 as constraints to optimize SO2 and NOx 130 
emissions over China. The OMPS nadir mapper on board the Suomi-NPP satellite, launched in November 2011, 

observes hyperspectral solar radiance and earthshine radiance at 300-380 nm (Flynn et al., 2014). With 35 

detectors of 50x50 km nominal pixel size in cross-track direction, OMPS has a swath of 2800 km flying across 

the equator at 1:30 PM local time ascendingly at the sunlit side of the Earth surface and providing global coverage 

daily. Both SO2 and NO2 are retrieved through the Direct Vertical Column Fitting (DVCF) algorithm with SO2 135 
and NO2 atmospheric profile information from GEOS-Chem simulations and have a retrieval precision of 0.2 DU 

and 0.011 DU, respectively (Yang et al., 2013;Yang et al., 2014).  

 

Only pixels with both Solar Zenith Angle (SZA) and View Zenith Angle (VZA) less than 75° are used, as larger 

SZA or VZA result in longer light path length, and consequently less information content and lower data quality 140 
for retrieving the change of SO2 or NO2 loadings in the Plane Boundary Layer (PBL) where the two trace gases 

from anthropogenic sources mainly concentrate. We also remove the pixels with Radiative Cloud Fraction (RCF) 

larger than 0.2 for SO2 and 0.3 for NO2 as a trade-off between the data amount and cloud impacts. Considering 

their large uncertainty, OMPS SO2 retrievals in the grid cell where the prior simulation is less than 0.1 DU will 

not be used, except in Quality Control (QC) sensitivity analysis experiments. 145 

2.2 OMI data for assessment 

OMI Level-3 SO2 and NO2 tropospheric VCDs at a spatial resolution of 0.25°x0.25° from NASA are used for 

evaluating the model results. OMI is a UV-vis hyperspectral sensor that observes solar irradiance and earthshine 

radiance at 300-500 nm. The swath of OMI is 2600 km, consisting of 60 detectors with the nominal pixel size of 
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13x24 km2 at nadir. OMI flies across the equator in the ascending node at 1:45 PM local time, which is very close 150 
to the 1:30 PM local time for OMPS. Due to row anomaly (Schenkeveld et al., 2017), OMI takes more than one 

day to provide global coverage. The Level-3 product is derived from the Level-2 product; the latter is retrieved 

through the Principal Component Analysis (PCA) algorithm with a fixed Air Mass Factor (AMF) assumption for 

SO2 (Li et al., 2013) and variation of the Differential Optical Absorption Spectroscopy (DOAS) algorithm for 

NO2 (Krotkov et al., 2017;Marchenko et al., 2015), with a precision of 0.5 DU (Li et al., 2013) and 0.017 DU 155 
(Krotkov et al., 2017), respectively. In the Level-3 product, pixels affected by row anomaly are removed. For SO2, 

only the pixel with the shortest light path, SZA less than 70°, RCF less than 0.2, and detector number in the range 

of 2 to 59 (1-based) is retained in a 0.25°x0.25° grid cell and then corrected with a new AMF based on GEOS-

Chem SO2 profile simulation (Leonard, 2017). For the OMI Level-2 NO2 product, the AMF calculation is based 

on Global Modeling Initiative NO2 profile simulation (Krotkov et al., 2017), and all pixels with SZA less than 160 
85°, terrain reflectivity less than 30°, RCF less than 0.3 are averaged in a 0.25°x0.25° grid cell weighted by the 

overlapping area of grid cell and pixel to form Level-3 product (Bucsela et al., 2016). In the assessments, OMI 

observations are averaged at 2°x2.5° model grid cell, and model simulations are sampled by OMI observational 

time. 

3. Method 165 

3.1 GEOS-Chem and its adjoint 

GEOS-Chem is a 3-D chemistry transport model driven by emissions and GEOS-FP meteorological fields. The 

secondary sulfate-nitrate-ammonium aerosol formation in the model is introduced by Park et al. (2004). Both 

aerosols and gases are removed by wet deposition, including washout and rainout from large-scale or convective 

precipitation (Liu et al., 2001) and the dry deposition following a resistance-in-series scheme with aerodynamic 170 
resistance and boundary resistance calculated from GOES-FP meteorological field and surface resistances based 

largely on a canopy model (Wang et al., 1998;Wesely, 1989). Anthropogenic SO2, NOx, and NH3 emissions used 

over East Asia are the mosaic emission inventory (MIX) (Li et al., 2017b) for year 2010. SO2 and NO2 VCDs are 

simulated at 2°x2.5° resolution with 47 vertical layers using both the prior and posterior emission inventories to 

compare with OMI retrievals.  175 
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The GEOS-Chem adjoint model is a tool for efficiently calculating the sensitivity of a scalar cost function with 

respective to large numbers of model parameters simultaneously such as emissions (Henze et al., 2007). In this 

study, the cost function is defined as Eq. (1).  

 180 

J(#) = γ '
(
)H+,(-M(#)/ − 1+,(2

3
4+,(5' )H+,(-M(#)/ − 1+,(2 +

'
(
)H7,(-M(#)/ − 17,(2

3
47,(5' )H7,(-M(#)/ −

17,(2 +
'
(
[# − #9]3495'[# − #9]      (1) 

 

E is a vector in which SO2 and NOx emissions are ordered by GEOS-Chem model grid cell and by species. Ea is 

a prior estimate, and σ is a state vector, consisting of ln(Ei/Ea,i), where Ei and Ea,i are the ith element in E and Ea, 185 
respectively. cSO2 and cNO2 are vectors of OMPS SO2 and NO2 tropospheric VCDs, respectively. SSO2 and SNO2 are 

observation error covariance matrixes for SO2 and NO2 and are assumed to be diagonal, which means 

observational errors are uncorrelated. M is the GEOS-Chem model that simulates the relationship between SO2 

and NO2 concentrations in the atmosphere and the emissions factors. HSO2 and HNO2 are observation operators 

which map GEOS-Chem simulations of SO2 and NO2 to the observational space, respectively. σa is the prior 190 
estimate of σ, and Sa is the error covariance matrix for σa. Sa is assumed to be diagonal with a relative error of 50% 

for SO2 and 100% for NOx as used in Xu et al. (2013).  γ is a parameter we introduce to balance the importance 

of the SO2 observation term (first term on the right side of Eq. (1)) and NO2 observational term (second term on 

the right side of Eq. (1)), given both the different sizes and observation errors of these two observation datasets. 

 195 
OMPS SO2 and NO2 tropospheric VCDs can be directly compared to GEOS-Chem tropospheric VCDs of SO2 

(H+,(-M(#)/ in Eq. (1)) and NO2 (H7,(-M(#)/ in Eq. (1)). Retrieving satellite SO2 and NO2 tropospheric VCDs 

requires assumptions regareding SO2 and NO2 vertical profiles, as the sensitivity of the radiance observed by 

satellite sensors to the changes of SO2 or NO2 loadings is a function of plume height. If the vertical profile 

assumptions in the retrieval process are inconsistent with the GEOS-Chem simulations, the inconsistency partly 200 
contributes to the difference between the GEOS-Chem simulations and the OMPS retrievals (H+,(-M(#)/ − 1+,( 

or H7,(-M(#)/ − 17,(). In this study, OMPS SO2 and NO2 tropospheric VCDs are retrieved using the shape of 

vertical profiles from GEOS-Chem simulations (Yang et al., 2013;Yang et al., 2014), although differences of 

model version, simulation year, and emission inventory still exist.  Hence, the difference between the GEOS-

Chem simulations and the OMPS retrievals is mostly ascribed to the uncertainty of the emissions. 205 
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We developed the observation operators for OMPS SO2 and NO2, and the validations are shown in Fig. 1. The 

sensitivities of the cost function with respect to anthropogenic SO2 and NOx emissions from the adjoint model is 

consistent with the sensitivities calculated through the finite difference approach. Hence, Fig. 1 confirms the 

correctness of the new observation operators integrated into the GEOS-Chem adjoint model. 210 
 

To optimize the emission inventories, σ is adjusted iteratively until the cost function is minimized. The 

minimization is conducted with the L-BFGS-B algorithm (Byrd et al., 1995), which utilizes the sensitivity of the 

cost function with respect to σ that is calculated by the GEOS-Chem adjoint model. The minimization process 

halts when the difference in the cost function between two consecutive iterations is less than 3%. 215 

3.2 Experiment design 

Several elements play a role in the inverse modeling of emissions, including data quality control, balancing the 

spatial distributions of observational frequencies for the same species, balancing the observation contributions 

from different species, and uncertainties in the NH3 emission inventory (because NH3 has impacts on SO2 and 

NO2 lifetimes). To investigate the impacts of these factors on the posterior emissions, we design a set of 220 
experiments as summarized in Table 1 and Table 2. All these experiments use OMPS SO2 and NO2 retrievals to 

optimize corresponding emissions over China in October 2013 at a horizontal resolution of 2°x2.5°. Although 

finer resolution options such as 0.5°x0.625° or 0.25°x0.3125° are available for China, the 2°x2.5° resolution is 

selected to save computational time; in Part II (Wang et al., 2019) of this study, we develop downscaling tools for 

regional air quality modeling.  225 

3.2.1 Control experiments 

The first control experiment is E-SO2, in which only OMPS SO2 tropospheric VCDs are used to constrain SO2 

emissions by removing the second additive term on the right side of Eq. (1). γ is just set to unity, as the issue of 

balancing the cost function contributions from SO2 and NO2 observations does not exist. If the OMPS SO2 

tropospheric VCD error is set to 0.2 DU (Yang et al., 2013) for every pixel, the SO2 observational term in the cost 230 
function (first term on the right side of Eq. (1)) over the North China Plain is much larger than that over 

Southwestern China (Fig. 2b), which thus has the high potential to over-constrain the former and under-constrain 

the latter. The spatially unbalanced cost function is caused by cloud screening, as the number of observations over 

Southwestern China is much less than that over the North China Plain (Fig. 2a). To balance the cost function by 

accounting for this difference in the number of observation, SO2 observation error is set to 0.2 DU multiplied by 235 
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the square root of the number of OMPS overpasses that have SO2 observation in the 2°x2.5° GEOS-Chem grid 

cell.  

 

In the E-NO2 experiment, OMPS NO2 tropospheric VCDs alone are used to constrain NOx emissions by removing 

the first additive term on the right side of Eq. (1). Due to cloud screening, we have much more OMPS NO2 240 
observations over the North China Plain than over Southwestern China, which also could lead to a spatially 

unbalanced cost function if the OMPS NO2 observation error is uniform. The OMPS NO2 observation error is, 

however, assumed to be 0.011 DU (Yang et al., 2014) for every pixel in this study, regardless of location, because 

the NOx emissions adjustments during the inverse modeling process are supposed to be mainly over the North 

China Plain where prior NOx emissions are much larger than those over Southwestern China. In this study, we 245 
optimize emission scale factors rather than the emissions themselves, thus emissions are adjusted mainly at 

locations where prior emissions are large. 

 

Both the SO2 and NO2 from OMPS are used simultaneously in E-joint for two reasons. Firstly, Qu et. al (2019b) 

showed that the change of SO2 or NOx emissions lead to the changes of O3 and OH concentrations, hence the 250 
changes of SO2 and NO2 oxidations. Secondly, the computational time is reduced by ~50% in the joint assimilation 

as compared to separate assimilations when computational resource are restricted to running individual inversions 

sequentially (as opposed to in parallel), and energy usage is also saved; the latter require the realization of GEOS-

chem adjoint twice, while only once is needed by the former.   

 255 
In the E-joint experiment, observational terms for SO2 and NO2 in the cost function should be balanced through 

setting γ in Eq. (1). If they are not balanced, it is likely to under-constrain for one observational term. One approach 

is to set γ to be the ratio of number of NO2 observations to the number of SO2 observations. This approach is not 

feasible here as the SO2 observational error in E-SO2 is much larger than the NO2 observational error in E-NO2; 

not only does the number of observations play a role, but the observation error also has important impacts on 260 
balancing the cost function.  If γ is simply set as unity, the NO2 observational term in Eq. (1) is a factor of ~200 

larger than the SO2 observational term, which can lead to OMPS SO2 in the E-joint experiment to be negligible. 

To balance the two terms, γ is set as 200 (ratio of observational term in E-NO2 to that in E-SO2) in E-joint. 

3.2.2 Sensitivity experiments 
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To investigate the impacts of data quality control and spatially balancing the cost function on optimizing SO2 265 
emissions only, we design two sensitivity experiments. The first is E-SO2-noQC-noBL that is similar to E-SO2 

except that: (1) OMPS SO2 retrievals in the 2°x2.5° grid cell where the prior GEOS-Chem simulation is less than 

0.1 DU are also assimilated, i.e. without QC; (2) OMPS SO2 observation error is set as 0.2 DU for every pixel, 

which means we do not spatially balance the cost function. The second sensitivity experiment is E-SO2-noBL in 

which the cost function is not spatially balanced, and it uses the same setting as E-SO2 except for assuming an 270 
observation error of 0.2 DU uniformly. 

 

To evaluate the effect of γ (of 200) in E-joint, we further test γ values of 20, 50, 100, 300, 500, 1000, 1500, and 

2000 in the joint inversions; hereafter these experiments are named E-joint-dγ. Through these sensitivity 

experiments, we study the proper γ range for jointly assimilating OMPS SO2 and NO2. In future studies that may 275 
be conducted to jointly assimilate OMPS SO2 and NO2 for other months to obtain a long-term optimized emission 

inventory, it is proposed to set proper γ values for each month based on the range with easy adjustment according 

to the numbers of OMPS SO2 and NO2 observations and their associated errors. 

 

NH3 emissions are not optimized in our inverse modeling and yet their uncertainty is up to 153% over China 280 
(Kurokawa et al., 2013). Thus, it is important to evaluate how this uncertainty may affect posterior SO2 and NOx 

emissions. Wang et al. (2013) emphasized the importance of controlling NH3 to alleviate PM2.5 pollution over 

China, however it could worsen acid rain (Liu et al., 2019). Changes of NH3 emissions is expected to change 

ammonium and nitrate aerosol concentrations, or the aerosol surface area for heterogeneous N2O5 chemistry, 

hence affecting NO2 concentrations or posterior NOx emissions in the inverse modeling. The change of posterior 285 
NOx emissions is expected to lead to the change of posterior SO2 emissions in the joint inverse modeling. Thus, 

we shall investigate if NH3 emissions are reduced to 50% and 20%, how the optimized SO2 and NO2 emission 

inventories would change. Correspondingly, all these experiments are summarized in Table 2. E-SO2-0.5NH3, E-

NO2-0.5NH3, and E-joint-0.5NH3-γ500 in Table 2 are similar to E-SO2, E-NO2, and E-joint-dγ (γ=500) in Table 

1, respectively, but NH3 emissions are set to 50% of the original values. Similarly, E-SO2-0.2NH3, E-NO2-0.2NH3, 290 
and E-joint-0.2NH3- γ500 are the scenarios that NH3 emissions are set to 20% of the original values. 

3.3 Evaluation statistics 

We use linear correlation coefficient (R), root mean square error (RMSE), mean bias (MB), normalized mean bias 

(NMB), normalized standard deviation (NSD), and normalized centered root mean square error (NCRMSE) as 
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measures to evaluate GEOS-Chem SO2 and NO2 VCD simulations with satellite (OMPS and OMI) observations. 295 
NSD is the ratio of the standard deviation of the simulation to the standard deviation of the observation. NCRMSE 

is similar to RMSE, but the impact of bias is removed. This is shown in Eq. (2), where i is the ith grid cell, N is 

the total number of grid cells, Mi and Oi are the ith GEOS-Chem simulation and satellite observation, respectively, 

and M;  and O;  are averages of GEOS-Chem simulation and satellite observation, respectively. A composite 

summary of these statistics is provided by the Taylor diagram (Taylor, 2001) which is a quadrant which 300 
summarizes R (shown as cosine of polar angle), NSD (shown as radius from the quadrant center), and NCRMSE 

(shown as radius from expected, satellite observation, point, which is located at the point where R and NSD are 

unity). 

NCRMSE =
BC
D
∑ [(FG5F; )5(,G5,;)]H
D
GIC

BC
D
∑ (,G5,;)H
D
GIC

      (2) 

4. Results  305 

4.1 Separate and joint assimilations of SO2 and NO2 

4.1.1 Self-consistency check 

The cost functions are reduced by 41.6%, 27.6%, and 28.6% for E-SO2, E-NO2, and E-joint, respectively, and the 

results are shown in Fig. 3. Noticeably, hot spots of SO2 VCDs over the North China Plain and the Sichuan Basin 

are shown in the OMPS observations (Fig. 3a), prior (Fig. 3b), posterior E-SO2 (Fig. 3c), and posterior E-joint 310 
(Fig. 3d) simulations, however the prior simulation has an NMB of 106.5% (Fig. 3i) when compared with OMPS. 

This large positive NMB decreases to 13.0% and 38.3% in the posterior E-SO2 (Fig. 3j) and E-joint (Fig. 3k) 

simulations with an RMSE decreasing from 0.42 DU to 0.13 DU and 0.20 DU and R increasing from 0.62 to 0.72 

and 0.64, respectively. Large NO2 values are found over the North China Plain and Eastern China with large NOx 

emissions from the transportation sector (Fig. 3e-h). Comparing with OMPS NO2, GEOS-Chem results have an 315 
RMSE of 0.05 DU in the prior simulation (Fig. 3l) and reduce to 0.02 DU and 0.03 DU for E-NO2 (Fig. 3m) and 

E-joint (Fig. 3n), with R increasing from 0.95 to 0.99 and 0.98, respectively. In general, the E-SO2 and E-NO2 

posterior simulations show better results than E-joint, which may be affected by the value of γ, which we will 

discuss in Sect. 4.3. 

4.1.2 Emissions 320 
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The anthropogenic SO2 and NOx prior MIX emissions for October 2010 and posterior emissions from E-SO2, E-

NO2, and E-joint for October 2013 are shown in Fig. 4. SO2 and NOx hot spots are found in the prior emissions 

over both the North China Plain and Eastern China, while large SO2 emissions are also at Southwestern China. 

Anthropogenic SO2 emissions over China are 1166 Gg S in prior MIX for October 2010 (Fig. 4a), dropping 418 

Gg S (Fig. 4b) and 306 Gg S (Fig. 4c), or 35.8% and 26.2%, in E-SO2 and E-joint for, respectively, for October 325 
2013. Our finding of a large reduction of SO2 emissions is in marked contrast with the 9% reduction from 2010 

to 2013 analyzed in a bottom-up emission inventory from Zheng et al. (2018)’s research. The differences of 

reduction in percentage may imply overestimation of MIX SO2 emissions for October 2010 or underestimation of 

this study for October. Posterior E-joint total anthropogenic SO2 emissions are 112 Gg, or 15% larger than E-SO2 

over China (Fig. 4e), but the difference can be up to 100% in some model grid cells (Fig. 4f). Anthropogenic NOx 330 
emissions over China  are reduced by 5.8% and 6.5% , from 714 Gg N in prior MIX for October 2010 (Fig 4g) to 

672 Gg N (Fig. 4h) in E-NO2 and 667 Gg N (Fig. 4i) in E-joint for October 2013, although all other emissions 

inventories (Zheng et al., 2018; Miyazaki et al., 2017; Ding et al., 2017) reveal upward trends or no trends during 

the period. This sign difference may imply overestimation of MIX NOx emissions for October 2010 or 

underestimation of this study for October. Although the relative difference between E-joint and E-NO2 proved to 335 
be less than 2% in terms of total anthropogenic NOx emissions over China (Fig. 4k), it is up to 40% for some 

model grid cells (Fig. 4 l). 

4.1.3 Independent evaluation with OMI data 

The optimized emission inventories are evaluated by comparing prior and posterior GEOS-Chem simulations of 

SO2 and NO2 with OMI VCDs as shown in Fig. 5. We only focus on regions covered by OMPS observations, 340 
although smaller changes of emissions exist in outskirt regions where OMPS observations are not used. High SO2 

levels are shown over the North China Plain and the Sichuan Basin in both the prior and posterior simulations 

while OMI only observes hot spots over the former region (Fig. 5a-d). When validating with OMI SO2 VCDs, the 

NMB is ~300% in the prior simulation, and it reduces to ~100% in E-SO2 and ~130% in E-joint (Fig. 5i). Not 

only is the NMB reduced, but the spatial distributions are also improved with the NCRMSE reducing from ~1.6 345 
in the prior simulation to ~0.7 in E-SO2 and ~0.8 in E-joint, which is much closer to ~0.6 when comparing OMPS 

observations with OMI observations (Fig. 5i). For NO2, OMI observations and the prior and posterior simulations 

show large NO2 concentrations over the North China Plain and Eastern China (Fig. 5e-h). The improvements for 

E-NO2 and E-joint are reflected in terms of R when evaluating with OMI tropospheric VCDs, although the two 

experiments show larger negative NMB than the prior simulation (Fig. 5j). 350 
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Although OMPS observations and GEOS-Chem simulations are compared with OMI observations as an 

evaluation of posterior emission inventories, it is not assumed that OMI provides the true status of SO2 and NO2 

in the atmosphere. OMPS SO2 average is ~0.14 DU, or  ~95% larger than OMI SO2, and the R of the two products 

is 0.81 (Fig. 6b). Thus, it is reasonable that posterior SO2 is larger than OMI observations by ~100% in E-SO2 and 355 
~130% in E-joint. OMPS NO2 is ~24% smaller than OMI (Fig. 6d), which explains why the posterior NO2 

simulations have larger negative NMB than the prior simulation when compared with the OMI observations. Our 

analysis also shows that the systematic difference among various satellite products for the same species (such as 

SO2 or NO2) can lead to biases in constraining emissions, but the posterior GEOS-Chem simulations still show in 

terms of the spatial distribution of SO2 and NO2.  360 

4.2 The impacts of QC and spatial balance 

The results of E-SO2-noQC-noBL and E-SO2-noBL are compared with E-SO2 to show the impacts of QC and 

spatial balance. Both OMPS retrievals and the GEOS-Chem prior simulations show that SO2 VCDs over Inner 

Mongolia and the Sichuan Basin (grid cells M and S, respectively in Fig. 7) are smaller than those over the North 

China Plain; this pattern reverses in the posterior E-SO2-noQC-noBL simulation where SO2 over the North China 365 
Plain becomes smaller than that over grid cells M and S. Grid cell M becomes more reasonable after conducting 

the data quality control by removing OMPS SO2 in any grid cells where prior GEOS-Chem SO2 VCDs are less 

than 0.1 DU (e.g., as in E-SO2-noBL, as shown in Fig. 7d). QC helps to improve grid cell M, as the data removed 

are close to Inner Mongolia, and are generally less than 0.1 DU, which are comparable to the retrieval error. SO2 

over grid cell S from E-SO2-noBL (Fig. 7d) is, however, still larger than that over the North China Plain, compared 370 
with the better spatial pattern from E-SO2 (Fig. 3c). Thus, QC and spatial balancing of the cost function together 

improve the spatial pattern of the posterior GEOS-Chem SO2 VCD simulation. 

4.3 The impacts of γ on joint assimilations 

In addition to setting γ as 200 in E-joint, we test the impacts of using various γ values on joint assimilation in E-

joint-dγ for October 2013. All the SO2 and NO2 VCDs from prior and posterior E-joint and E-joint-dγ simulations 375 
are compared with OMPS counterparts (Fig. 8a-b). Regardless of the γ values used, all the posterior simulations 

of SO2 show smaller NMB and NCRMSE than the prior simulation when validating against OMPS and OMI 

counterparts, but the extents vary. When γ is 20, 50, or 100, the SO2 terms are obviously under-constrained, and 

GEOS-Chem SO2 NCRMSE, evaluated with OMPS observations, changes from ~1.8 in the prior simulation to in 
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the range of ~1.4 to ~1.7 in the posterior E-joint-dγ simulations, which are much larger than ~0.7 in E-SO2 (Fig. 380 
8a). Similarly, when γ is no larger than 100, the bias of GEOS-Chem SO2, validated with OMPS observations, 

only reduces from ~100% to ~75%, compared to ~25% in E-SO2 (Fig. 8a), and the posterior SO2 emissions are in 

the range of 1055 Gg S to 1143 Gg S, which are much larger than 748 Gg S from E-SO2 (Table 3). When γ is in 

the range of 200 to 2000, the SO2 simulation results and emissions from joint assimilations are more similar to 

that from E-SO2 than that with γ no larger than 100 (Fig. 8a and Table 3). Similar to SO2, the NO2 GEOS-Chem 385 
simulations in the sensitivity experiments improve in terms of R and NCRMSE in all joint assimilation tests, but 

the significance of γ is less than that for SO2. NO2 NCRMSE is ~0.4 in the prior simulation when evaluating with 

OMPS counterparts, compared to the range of ~0.2 to ~0.25 in E-joint, E-joint-dγ and E-NO2 (Fig. 8b). The 

posterior NOx emissions are in the range of 662 Gg N to 682 Gg N, compared with 672 Gg N in E-NO2 (Table 3). 

 390 
The impacts of γ are also reflected when evaluating SO2 and NO2 simulations with OMI retrievals (Fig. 8c-d). 

Small γ values of 20, 50, and 100 lead to a much larger bias and NCRMES for SO2 from E-joint-dγ than that from 

E-SO2. For NO2, these small γ values make results from E-joint-dγ very similar to that from E-NO2.  

 

Considering all of the above analyses, the results with γ in the range of 200 to 2000 are deemed acceptable. The 395 
E-joint-dγ (200≤ γ ≤2000) emissions are within -3% to 15% of E-SO2 for SO2 and ±2% of E-NO2 for NOx in 

terms of total anthropogenic SO2 and NOx emissions over China. When evaluating with OMPS observations, the 

NCRMSE of using the posterior emissions from the separate and joint (200≤ γ ≤2000) inversions are ~60% and 

~45%-60% smaller than that of using the prior emissions for SO2, respectively, and ~50% and ~38%-50% smaller 

than that of using the prior emissions for NO2, respectively. 400 

4.4 The impacts of NH3 emission 

In the single-species inversions, NH3 emission uncertainty has weaker impacts on posterior SO2 emissions than 

NOx emissions. Posterior SO2 emissions over China are 748 Gg S in the 100% NH3 emission scenario (E-SO2), 

and they only slightly reduce to 747 Gg S and 745 Gg S when NH3 emissions are 50% (E-SO2-0.5NH3) and 20% 

(E-SO2-0.2NH3) of the original values, respectively (Table 4). The largest relative changes at model-grid-cell 405 
scale are only -2.5% (Fig. 9a) for E-SO2-0.5NH3 for and -4.7% (Fig. 9b) for E-SO2-0.2NH3. All these results can 

be explained by considering how changes of NH3 can potentially impact the lifetimes of SO2 and NO2 and hence 

affect SO2 and NO2 VCD simulations. When the NH3 emissions decrease to 50%, and 20% SO2 VCDs only 

increase up to 3.8% and 6.1%, respectively, in some grid cells over the Sichuan Basin in the prior simulations, 
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and these changes are even much smaller over the North China Plain (Fig. 10a-b), as NH3 has no direct effect on 410 
the life cycle of SO2. This is understandable because in GEOS-Chem, once SO2 is oxidized to H2SO4, SO42- 

remains as particulate sulfate  regardless it is neutralized by NH3 or not (Wang et al., 2008). Hence, the reductions 

of NH3 to 50% and 20% overall has minimal (negligible) impact on SO2 amount in the prior simulation, hence on 

the posterior separate SO2 emission inversion.  

 415 
Although the posterior NOx emissions in the scenarios of 50% (E-NO2-0.5NH3) and 20% (E-NO2-0.2NH3) NH3 

emission experiments of the original values are 5 Gg N (0.7%) and 19 Gg N (2.8%), respectively, which are 

smaller than those when using the original (E-NO2) NH3 emissions over China (Table 4), the reduction is up to -

4.0% (Fig. 9e) for E-NO2-0.5NH3 and -9.1% (Fig. 9f) for E-NO2-0.2NH3 in individual grid cells. These decreases 

are understood by simultaneous reduction of nitrate by 59.5% (Fig. 12h vs. 12g) and 80.5% (Fig 12i vs. 12g) and 420 
ammonium by 39.6% (Fig. 12n vs. 12m) and 67.5% (Fig. 12o vs. 12m), which leads to large reduction of the 

hydrated aerosol surface area for heterogeneous N2O5 chemistry at night, hence overall NO2 lifetime (Fig. 10c-d). 

N2O5 normally forms at night by reaction between NO2 and NO3, and thermally decomposes back to NO2 and 

NO3 (Seinfeld and Pandis, 2016), and hence the amount of N2O5, NO2, and NO3 are in equilibrium through the 

reversible reaction. Since the hydrolysis of N2O5 to form HNO3 mainly occurs on hydrated aerosol particles 425 
(Seinfeld and Pandis, 2016), the decrease of hydrated aerosol surface area (due to reduction of NH3 emission) 

leads to less hydrolysis of N2O5 (an important sink for atmospheric NOx) and subsequently more NO2 to be in the 

equilibrium with N2O5 at night. As a result, the reduction of NH3 emissions further increases the positive bias in 

the prior NO2 simulations when comparing with OMPS observations, and to compensate such large positive bias, 

non-negligible decreases in the posterior NOx emissions are required (Fig. 9 e and f). The reduction of nitrate and 430 
ammonium aerosols can also increase sunlight reaching troposphere, hence photolysis O3 and NO2. Figure S1 

separates the impacts of increase of photolysis O3 and NO2 and decrease heterogeneous N2O5 chemistry on NO2 

lifetime and shows that the former is negligible compared the latter. 

 

The decreases of posterior SO2 and NOx emissions in the joint inversions caused by the reduction of NH3 435 
emissions are stronger than that in the separate inversions (Table 4 and Fig. 9). Although the changes of NH3 

emissions only have slight impacts on the SO2 separate inversions (E-SO2, E-SO2-0.5NH3, and E-SO2-0.2NH3), 

the posterior SO2 emission is 802 Gg S in E-joint-dγ (γ=500), down to 783 Gg S (decreasing by 2.4%) and 746 

Gg S (decreasing by 7.0%) in E-joint-0.5NH3- γ500 and E-joint-0.2NH3- γ500, respectively (Table 4); in some 

grid cells, the relative reductions are up to -9.0% (Fig. 9c) for E-joint-0.5NH3- γ500 and -27.7% (Fig. 9d) for E-440 
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joint-0.2NH3- γ500. For posterior NOx emissions at the grid cells, the relative changes are up -15.2% (Fig. 9g) for 

E-joint-0.5NH3- γ500 and -29.4% (Fig. 9h) for E-joint-0.2NH3- γ500 with respect to E-joint-dγ (γ=500). 

4.5 Aerosol responses to emission changes 

Although SO2 emissions over the North China Plain (E-joint-dγ (γ=500)) have decreased by more than 50%, and 

NOx emissions have also been reduced, reductions of Sulfate-Nitrate-Ammonium (SNA) Aerosol Optical Depth 445 
(AOD) over the same region are only up to 10% (Fig. 11). This is because the North China Plain is mainly polluted 

by nitrate rather than sulfate (Fig. 12a-l), and the reduction of SO2 emissions will increase nitrate loadings in the 

atmosphere (Fig. 12g-l), which is also consistent with Kharol et al. (2013)’s research that shows nitrate 

concentrations decrease as SO2 emissions increase; the reduction of SO2 emissions lead to less H2SO4 to react 

with NH3, which further favor the reaction of HNO3 and NH3 to form nitrate. As NH3 emissions change reduce 450 
by 50% and 80% ammonium column loadings decrease by ~40% and ~70% (Fig. 12g-l), respectively, and nitrate 

column loadings decrease even by ~70% and ~90%, respectively (Fig. 12m-r).  

5. Discussion and conclusions 

We develop 4D-var observation operators for assimilating OMPS SO2 and NO2 VCDs to constrain SO2 and NOx 

emissions through GEOS-Chem adjoint model. The approach is applied for case study in China for October 2013 455 
at 2°x2.5° resolution and the MIX 2010 is used as the prior emission inventory. Several experiments of 

assimilating OMPS SO2 and NO2 separately and jointly are conducted, and SO2 and NO2 VCDs from the GEOS-

Chem prior and posterior simulations are compared with counterparts from OMPS and OMI. 

 

OMPS SO2 and NO2 retrievals are separately and jointly used to constrain their corresponding emissions. In the 460 
single-species inversions, posterior anthropogenic SO2 and NOx emissions are 748 Gg S and 672 Gg N for October 

2013, down from 1166 Gg S and 714 Gg N in the prior MIX for October 2010, respectively. In the joint inversions 

of assimilating OMPS SO2 and NO2 simultaneously, the cost function is balanced according to the values of 

observational terms rather than the number of observations. When the cost function is well balanced (γ in the 

range of 200 to 2000), the results of the joint inversions are within -3% to 15% of the single-species inversion for 465 
total anthropogenic SO2 emissions and ±2% for total anthropogenic NOx emissions. However, the differences 

between the separate and joint inversions are up to 100% and 40% in some model grid cells for anthropogenic 

SO2 and NOx emissions, respectively. In comparison to OMPS observations, NCRMSE from joint inversions (γ 
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in the range of 200 to 2000) is reduced by ~45%-~60% for SO2 and ~38%-~50% for NO2, respectively, which is 

close to the ~60% reduction from the SO2 inversion and the ~50% reduction from the separate NO2 inversion. To 470 
obtain posterior emissions for both SO2 and NOx, the computational time for the joint inversion is only about ~50% 

of the single-species inversions, when the latter are computed sequentially. Moreover, posterior GEOS-Chem SO2 

and NO2 show improvements in terms of R when comparing against OMI observations, and the increase of 

posterior GEOS-Chem NO2 negative NMB is ascribed to that the average of OMPS NO2 over China is smaller 

than the OMI counterpart. Above all, the posterior emission increases the GEOS-Chem simulated spatial 475 
distributions of SO2 and NO2.  

 

Both data quality control and spatially balancing the cost function play an important role for constraining SO2 

emissions. OMPS SO2 retrievals over the regions where emissions are small are removed as VCDs are comparable 

to retrieval errors. A sensitivity study shows that if these data are included, it will lead to artifacts in the posterior 480 
SO2 emission spatial distribution. Due to cloud screening, the number of OMPS SO2 retrievals over the Sichuan 

Basin is much less than that over the North China Plain, which will lead to under-constraining over Sichuan Basin, 

if the observation error is assumed spatially constant. When the observation error is set based on the number of 

observations, the artifacts are avoided. 

 485 
To investigate the impacts of the uncertainty of NH3 emissions on posterior SO2 and NOx emissions, several 

inverse modeling experiments are conducted by setting prior NH3 emissions to as 50% and 20% of their original 

values. The reduction of NH3 emissions can lead to a larger decrease of posterior NOx emissions and a smaller 

decrease of SO2 emissions in separate assimilations, which ascribes to the NO2 lifetime is more than the SO2 

affected by the change of NH3 emissions. The impacts of NH3 emissions uncertainty on both posterior SO2 and 490 
NOx emissions in joint assimilations are stronger than separate assimilations.  

 

Large SO2 emissions are mainly produced over the Sichuan basin and the North China Plain, while AOD responses 

to the changes of SO2 emissions are quite different over the two regions. The reduction in SO2 emissions can 

effectively decrease AOD over the Sichuan Basin, while AOD declines only slightly over the North China Plain, 495 
which can be ascribed to (1) nitrate rather than sulfate is dominant over the North China Plain and (2) the reduction 

of SO2 emissions facilitate the formation of additional nitrate. AOD over the North China Plain is mainly 

determined by NOx and NH3 emissions rather than SO2 emissions.    
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All emissions are constrained on the monthly scale and at the coarse spatial resolution of 2°x2.5° in this study, as 500 
OMPS observations are provided once per day and the 4D-Var data assimilation at finer spatial resolution (on the 

order of 0.1 degree) would be computationally prohibitive. The approach, however, has the potential for 

optimizing emissions at the daily resolution from higher temporal resolution observations, such as those from 

future geostationary satellites. In particular, TEMPO (monitoring North America), GEMS (monitoring East Asia), 

and Sentinel-4 (monitoring Europe) are to be launched in the next several years, and all of these satellites will 505 
provide hourly SO2 and NO2 observations during the daytime. Furthermore, in Part II of this work, we develop 

various downscale methods to apply these coarser-resolution top-down estimates of emissions for air quality 

forecasts and evaluate the forecasts with surface measurements, both at the finer spatial scale (Wang et al., 2019).  
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Table 1. Different experimental design for using OMPS SO2 and NO2 to constrain corresponding emissions over China 
for October 2013. 725 

Name Data SO2 errorb NO2 error γc QC for SO2d 

E-SO2 SO2 0.2 DU x √K NA 1 Yes 

E-NO2 NO2 NA 0.011 DU NA NA 

E-joint SO2 and NO2 0.2 DU x √K 0.011 DU 200 Yes 

E-SO2-noQC-noBL SO2 0.2 DU NA 1 No 

E-SO2-noBL SO2 0.2 DU NA 1 Yes 

E-joint-dγ SO2 and NO2 0.2 DU x √K 0.011 DU 20 to 2000e Yes 
aSee description of these names in detail in Set. 3.2. 
bN in this column is number of OMPS overpass that have SO2 observation in the 2x2.5 GEOS-Chem grid cell. 
cγ is a parameter used to balance SO2 and NO2 observation terms in the cost function. 
dOMPS SO2 retrievals in the 2x2.5 grid cell where the prior GEOS-Chem simulation is less than 0.1 DU are 

removed. 730 
eAll these γ values (20, 50, 100, 300, 500, 1000, 1500, and 2000) are used. 
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Table 2. Different experimental design for assessing the impacts of NH3 emission inventories on using OMPS SO2 and NO2 
to constrain corresponding emissions over China for October 2013a.  735 

Nameb Data γc NH3 emissions 

E-SO2-0.5NH3 SO2 NA 50% 

E-NO2-0.5NH3 NO2 NA 50% 

E-joint-0.5NH3- γ500 SO2 and NO2 500 50% 

E-SO2-0.2NH3 SO2 NA 20% 

E-NO2-0.2NH3 NO2 NA 20% 

E-joint-0.2NH3- γ500 SO2 and NO2 500 20% 
aData quality control and observation errors are same as E-joint in Table 1. 
bSee description of these names in detail in Set. 3.2. 
cγ is a parameter used to balance SO2 and NO2 observation terms in the cost function. 
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 740 
Table 3. Posterior anthropogenic emissions for October 2013 from E-joint, E-joint-dγ, E-SO2 and E-NO2. 

Experiment 

name or γ 
20 50 100 200 300 500 1000 1500 2000 E-SO2 or E-NO2 

SO2 [Gg S] 1143 1110 1055 860 795 802 733 730 728 748 

NOx [Gg N] 681 682 682 667 662 664 668 666 674 672 
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Table 4. Posterior anthropogenic emissions for October 2013 under different NH3 emission scenarios 

Name SO2 emissions 
[Gg S] 

NOx emission 

[Gg N] 

E-SO2 748 NA 

E-SO2-0.5NH3 747 NA 

E-SO2-0.2NH3 745 NA 

E-NO2 NA 672 

E-NO2-0.5NH3 NA 667 

E-NO2-0.2NH3 NA 653 

E-joint-dγ (γ=500) 802 664 

E-joint-0.5NH3- γ500 783 646 

E-joint-0.2NH3- γ500 746 629 
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 745 
 
Figure 1. Validation of adjoint model sensitivity through comparison to centered finite difference results for a 3-day 
simulation. Shown here are the sensitivity of column cost function (penalty term is not included, and horizontal 
transport is turned off) with respect to logarithm of anthropogenic SO2 (a) and NOx (b) emission scale factors: the 1:1 
line (dotted), the number of grid columns (N), Root Mean Squared Error (RMSE), and correlation coefficient (R), and 750 
Means and standard deviations of finite difference sensitivity and adjoint sensitivity (x and y). 
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Figure 2. (a) and (b) are the numbers of the OMPS overpass time that provides SO2 VCD retrievals and SO2 term in 755 
cost function at first iteration, respectively, in October 2013 
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Figure 3. Comparisons of VCDs of SO2 and NO2 from the OMPS and the GEOS-Chem prior and posterior simulations 
in October 2013 over China. The first row is SO2 VCDs from the OMPS (a), the prior simulation (b), the E-SO2 760 
posterior simulation (c), and the E-joint posterior simulation (d). The second row is NO2 tropospheric VCDs from the 
OMPS (e), the prior simulation (f), the E-NO2 posterior simulation (g), and the E-joint posterior simulation (h). The 
third row is the SO2 VCD scatter plots of the GEOS-Chem prior (i), the E-SO2 posterior (j), and the E-joint posterior 
(k) versus the OMPS, respectively. The last row is the NO2 tropospheric VCD scatter plots of the GEOS-Chem prior 
(l), the E-NO2 posterior (m), and the E-joint posterior (n) versus the OMPS, respectively. Linear correlation coefficient 765 
(R), linear regression equation, root mean squared error (RMSE), normalized mean bias (NMB), mean bias (MB), and 
number of observations (N) are shown over scatter plots. 
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Figure 4. The top is anthropogenic SO2 emissions from prior MIX 2010 (a), posterior E-SO2 (b), posterior E-joint (c), 770 
the difference between posterior E-SO2 and prior MIX 2010 (d), the difference between posterior E-joint and posterior 
E-SO2 (e), and the relative difference between posterior E-joint and posterior E-SO2 (f) for October 2013. The bottom 
is similar to the top except that (1) it is for NOx and (2) E-SO2 is replaced by E-NO2. 
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Figure 5. Comparisons of VCDs of SO2 and NO2 from the OMPS and the GEOS-Chem prior and posterior simulations 
with that from the OMI in October 2013 over China. The first row is SO2 VCDs from the OMI (a), the prior simulation 
(b), the E-SO2 posterior simulation (c), and the E-joint posterior simulation (d). The second row is NO2 tropospheric 780 
VCDs from the OMI (e), the prior simulation (f), the E-NO2 posterior simulation (g), and the E-joint posterior 
simulation (h). The third row is Taylor diagrams for comparing GEOS-Chem simulations (squares for prior, triangles 
for posterior E-SO2 or E-NO2, and diamonds for E-joint) and OMPS observations (circles) with OMI SO2 (i) and NO2 
(j). 
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Figure 6. (a) and (b) are the difference between OMPS and OMI SO2 and scatter plot of OMPS versus OMI SO2. (c) 
and (d) are similar (a) and (b), but for NO2. Linear correlation coefficient (R), linear regression equation, root mean 
squared error (RMSE), normalized mean bias (NMB), mean bias (MB), and number of observations (N) are shown 
over scatter plots. 790 
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 800 
Figure 7. SO2 VCD in October 2013 from OMPS (a), prior GEOS-Chem simulation (b), posterior GEOS-chem 
simulation through using all OMPS data in the red box (c), and posterior GEOS-chem simulation through using only 
OMPS data that are in the grid cell where GEOS-Chem prior simulation of VCD is larger than 0.1 DU. For posterior 
simulation, we only plot SO2 VCD over grid cells where OMPS data are used to constrain emissions. M and S point to 
a grid cell in Inner Mongolia and Sichuan basin, respectively. 805 
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 810 
Figure 8. Taylor diagram of comparing GEOS-Chem simulation with OMPS (a for SO2 and b for NO2) or OMI (c for 
SO2 and d for NO2) in October 2013. Circles, squares, and triangles represent GEOS-Chem simulations using prior 
MIX 2010 emissions, posterior emissions constrained by single species (E_SO2 for a and c, E_NO2 for b and d), and 
posterior emissions constrained through joint inversion (E_joint), respectively. Different triangles labeled by numbers 
represent different γ values in Eq. (1), and 1 through 9 correspond to 20, 50, 100, 200, 300, 500, 1000, 1500, and 2000, 815 
respectively. 
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Figure 9. Relative changes of posterior SO2 (top row) and NOx (bottom row) emissions from the scenarios of perturbing 
NH3 emissions with respect to that using original NH3 emission inventory. (a) and (b) are relative changes of posterior 820 
SO2 emissions from E-SO2-0.5NH3 and E-SO2-0.2NH3 with respect to that from E-SO2, respectively. (c) and (d) are 
relative changes of posterior SO2 emissions from E-joint-0.5NH3-γ500 and E-joint-0.2NH3-γ500 with respect to that 
from E-joint-dγ (γ=500), respectively. (e) and (f) are relative changes of posterior NOx emissions from E-NO2-0.5NH3 
and E-NO2-0.2NH3 with respect to that from E-NO2, respectively. (g) and (h) are similar to (c) and (d), respectively, 
but for posterior NOx emissions. Minimum and maximum are shown in brackets.  825 
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Figure 10. Relative change of GEOS-Chem SO2 VCDs when NH3 emissions reduce to 50% (a) and 20% (b), respectively 
at OMPS overpassing time. (c) and  (d) are similar to (a) and  (b), respectively, but for NO2. 830 
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Figure 11. Sulfate-nitrate-ammonium aerosol optical depth in prior (a) and posterior joint inversion (γ=500) (b). (c) is 835 
the difference between (b) and (a), and (d) is relative change in percentage.  
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Figure 12. Sulfate, nitrate, and ammonium column loadings in different scenarios. (a), (b), and (c) are prior sulfate at 
100%, 50%, and 20% NH3 emissions, respectively. (d), (e), and (f) are posterior sulfate from joint inversions (γ=500) 
at 100%, 50%, and 20% NH3 emissions, respectively. (g)-(i) and (m)-(r) are similar to (a)-(f), but for nitrate and 840 
ammonium, respectively. 
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