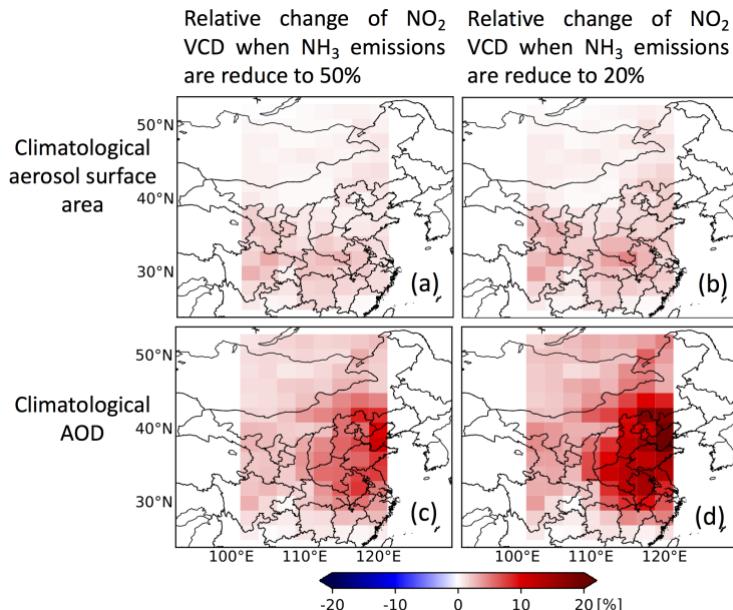


Inverse modeling of SO₂ and NO_x emissions over China using multi-sensor satellite data: 1. formulation and sensitivity analysis

5 Yi Wang¹, Jun Wang^{1,2}, Xiaoguang Xu^{2,3}, Daven K. Henze⁴, Zhen Qu⁴


¹Interdisciplinary Graduate Program in Informatics, The University of Iowa, Iowa City, IA 52242, USA

²Department of Chemical and Biochemical Engineering, and Center for Global & Regional Environmental Research, The University of Iowa, Iowa City, IA 52242, USA

10 ³Joint Center for Earth Systems Technology and Department of Physics, University of Maryland Baltimore County, Baltimore, Maryland, 21250, USA

⁴Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA

Correspondence to: Jun Wang (jun-wang-1@uiowa.edu) and Yi Wang (yi-wang-4@uiowa.edu)

15

Figure S1. Relative change of GEOS-Chem NO₂ VCDs when NH₃ emissions reduce to 50% (a) and 20% (b), respectively at OMPS overpassing time, and a dataset of climatological aerosol surface area is used, regardless of scenarios of NH₃ emissions. (c) and (d) are similar to (a) and (b), respectively, but a dataset of climatological AOD rather than climatological aerosol surface area is used.

20

Figure S1 a and b show the relative change GEOS-Chem NO₂ VCDs with NH₃ emissions reducing to 50% and 20%, respectively, in the situation that a dataset of climatological aerosol surface area is used, regardless of scenarios of NH₃ emissions, hence reflecting the impact of photolysis of O₃ and NO₂ on NO₂ lifetime when NH₃ emissions are reduced. The situation that a dataset of climatological AOD is used is shown in Fig. S1 c and d ;
25 thus they are the impact of N₂O₅ chemistry on NO₂ lifetime. Apparently, the impact of photolysis of O₃ and NO₂ on NO₂ lifetime caused by the reduction of NH₃ emissions is negligible compared to that of N₂O₅ chemistry.