
Reply to reviewers and editors: 
 

We thank all reviewers for their careful reading of the manuscript, and for their many constructive 

feedbacks. The original comments by reviewers are in black font, our replies are in blue. 

 

Reviewer #2 

 

This manuscript presents joint inversion results of SO2 and NOx emissions over China using the 

GEOS-Chem adjoint model and OMPS satellite observations for October 2013. The inversion 

results were compared against assimilated OMPS observations and independent OMI 

observations. Several sensitivity calculations were conducted to optimize the joint inversion 

framework. The joint inversion approach is unique, while the comparison against the OMI 

observations is interesting. I would, however, advise the authors to revise the manuscript. These 

revisions should be made before the manuscript can be considered for publication in ACP. 

Thanks for the positive comments. We did our best to address them in the revision.  

 

[ Major comments ] 

The model horizontal resolution (2◦x2.5◦ resolution) is clearly too coarse for current regional 

(not global) emission research, which could lead to serious problems for many applications (e.g., 

systematic biases in the downscaling analysis (Part 2)). In the previous study by the author’s 

group (Qu et al, 2019), regional Chinese regional emissions were estimated at 0.5◦x0.667◦ 

resolution using a hybrid 4D-Var/Mass balance approach to save computational resources for the 

multiple-year calculations, while conducting a one-month adjoint calculation at 0.5◦x0.667◦ 

resolution using the same adjoint model with a nested domain for East Asia. In the same way, 

one-month inversion calculation at 0.5◦x0.667◦ resolution using OMPS observations must be 

doable and should be tested in the present study. This is essential for evaluating the joint 

inversion performance using in-situ observations (please see my comment below), as already 

performed by Qu et al. (2019) for OMI assimilation results. It could also provide improved 

information (e.g., reduced systematic errors for each grid point, considering the non-linear 

chemistry) for down-scaling analysis (Part 2). For long-term emission estimations, the authors 

could still use the hybrid inversion framework at 0.5◦x0.667◦ resolution (together with the 



downscaling approaches, if resolutions higher than at 0.5◦x0.667◦ resolution are needed). Thus, I 

don’t think the coarse resolution regional joint inversion will be needed for any applications. At 

the very least, 0.5◦x0.667◦ resolution joint inversion calculations should be performed for key 

experiments. 

Thanks for the good suggestions. We acknowledge that it is better to optimize emissions directly 

at fine resolution (such as 0.5°x0.667°, and 0.25°x0.3125°) rather than coarse resolution (such as 

2°x2.5°), and that it is doable for one-month inversion at fine resolution. After careful 

consideration, we think it is both practical and reasonable to assimilate OMPS retrievals at the 

resolution of 2°x2.5°, as OMPS pixel size could be much larger than fine-resolution grid boxes 

(and OMI whose pixel size is 13 km x 24 km at nadir and 26 km x 128km at edge). OMPS pixel 

size is 50 km x 50 km at nadir, and becomes 190 km x 50 km at edges. Thus, OMPS pixel size is 

comparable to (at nadir) or much larger than (at edges) 0.5°x0.667° grid box. An OMPS pixel 

may cover several 0.5°x0.667° grid boxes and cannot resolve variations of concentrations owing 

to variations emissions at that fine resolution. Currently, the nested GOES-Chem adjoint model 

only supports the 0.5°x0.667° GEOS-5 meteorological field and the 0.25°x0.3125° GEOS-FP 

meteorological field. And the GEOS-5 meteorological filed has a temporal coverage from 2004 

to mid‐2013; data after mid‐2013, e.g., our study time period, is unavailable. Although 

0.25°x0.3125° GEOS-FP meteorological field is up to date, apparently its resolution is too fine to 

compare with OMPS. We have added this explanation in Sect. 3.2. 

 

The joint inversion results, including those from the sensitivity calculations, need to be evaluated 

against independent in-situ measurements, in order to obtain the optimized system. For this, the 

authors need to use their 0.5◦x0.667◦ resolution joint inversion system. Resolutions higher than 

0.5◦x0.667◦ would be required for reducing representation gaps, as discussed in Part 2. 

Nevertheless, Qu et al (2019) already demonstrated that joint inversions at 0.5◦x0.667◦ resolution 

can be evaluated using in- situ surface observations. This is also essential for evaluating possible 

biases in both OMPS and OMI satellite observations, which can be one of the most important 

results from the present study. 

As answered the previous question, due to large pixel size of OMPS, we didn’t attempt to constrain 

the emissions at the resolution finer than the satellite instrument on the monthly basis.  In addition, 

for those retrievals at high resolution (such as TROPOMI), the retrieval uncertainty is expected to 



be alleviated after aggregating pixel-level retrieval into the coarser resolution. Furthermore, even 

if the inversion were conducted at the resolution of 0.5°x0.667° or  0.25°x0.3125°, it is still very 

challenging to evaluating possible bias in both OMPS and OMI satellite observations, as 

representation gaps still exists in the two resolutions. Zheng et al. (2017) showed that surface SO2 

(NO2) concentration simulations from WRF-CMAQ, when evaluating with in situ observations, 

have a NMB of -23% (%0), 7% (32%), and 41% (45%) at the resolutions of 36 km (~0.36°), 12 

km (~0.12°), and 4 km (~0.04°), respectively; this shows that representation gaps still exist at 12 

km (~0.12°), which is already finer than 0.5° and 0.25°. Thus, perhaps it is not surprising that large 

negative bias exists when evaluating posterior GEOS-Chem 0.5°x0.667° simulations with in situ 

SO2 (Fig. 10 in Qu et al. (2019)) and NO2 (Fig. 11 in Qu et al. (2019)) in Qu et al. (2019), and it is 

somewhat assertive to conclude that the negative bias imply the negative bias of OMI SO2 and 

NO2 retrievals. In Qu et al. (2019), the improvements of posterior simulations when evaluating 

with in situ SO2 and NO2 surface concentrations are mainly represented by Normalized Mean 

Square Error (NMSE) rather than bias.  

 

The goal of this paper is NOT to replicate the method by Qu et al. (2019). Rather, the goal of this 

paper is to illustrate how OMPS data could be used to improve an air quality forecast through 

monhtly update of emissions (possibly in near real time manner) at a resolution much finer than 

OMPS. Hence, if implemented, our method of using 2°x2.5° resolution for performing the 

optimization can save considerable computational time (and is much more feasible for a research 

group such us in the university), and then using the downscaling method (part II developed by this 

study), the finer resolution forecast can be made in a practical manner (suitable for a regional 

modeling group for air quality forecast). In contrast, the focus of Qu et al (2019) is the re-analysis 

of emissions, as opposed to forecasting of air quality at the finer scales.  In contrast, optimization 

at 0.5° x 0.67° will still require downscaling method for air quality forecast (normally at ~10 km 

resolution). We have added the elaborations above in section 3.2. 

 

Although the joint inversion reduced the total computational cost, its scientific benefits (required 

for ACP, not for GMD) are not very clear. The discussions in Sections 4.4 and 4.5 are 



interesting. Adding evaluations using any AOD, NH3, and relevant observations would be 

helpful to demonstrate the scientific value of the joint inversion. 

We have expanded discussion of the scientific benefits of the approach in response to the first 

comment from the reviewer 1, see above. Further, ACP’s scope is very broad and developing 

data assimilation techniques for using new satellite data has been published in ACP, such as 

Chen et. al (2018). Please look at this part I and part II paper as a whole – they effectively 

showcase an approach that is economic in computation to use OMPS data to improve air quality 

forecast at fine scale. In part II, we did many independent evaluations. Furthermore, we also 

studied the results of the sensitivity to NH3 – a topic that has not been studied before in data 

assimilation. We consider they have good scientific merits. 

 

 

[ A few more specific comments ] 

L203 “In this study, OMPS SO2 and NO2 tropospheric VCDs are retrieved using the shape of 

NO2 vertical profiles from GEOS-Chem simulations (Yang et al., 2013; Yang et al., 2014), 

although differences of model version, simulation year, and emission inventory still exists” 

These profiles can be largely different. The lack of averaging kernel in the observation operator 

can lead to serious problems. Please justify and demonstrate its impacts. Otherwise, data 

assimilation adjustments can be meaningless. 

Thanks for pointing out this. We totally agree that differences of model version, simulation year, 

and emission inventory could lead to profile differences. Thus, we compare operational OMPS 

retrievals with VCDs modified through averaging kernel to investigate how much VCD 

differences are caused by profile differences. We have added the discussion below to Sect. 4.1.1 

and figures below to supplement.  

 

For SO2 

The SO2 NMB (106.5%) between GOES-Chem prior simulation and OMPS is much larger than 

the NMB (-6.8%, Fig S1) caused by the difference of SO2 vertical profiles between OMPS SO2 

retrieval algorithm and current prior simulation; thus averaging kernel is not considered in the 

OMPS SO2 observation operator. 



 
Figure S1. OMPS SO2 Vertical Column Density (VCD) retrievals in Arpil 2018.  (a) and (b) are operational VCDs and the 
VCDs that are modified through averaging kernel according to formula S1, respectively. (c) is the differences between the 
modified and operational VCDs. (d) is scatter plot of modified VCDs versus operational VCDs. Linear correlation 
coefficient (R), linear regression equation, root mean squared error (RMSE), normalized mean bias (NMB), mean bias 
(MB), and number of observations (N) are shown over the scatter plot. 
 

 

For NO2    

Similarly, the averaging kernel is not considered in the OMPS NO2 observation operator for 

optimization for the following reasons. First, the OMPS NO2 retrieval differences due to the 

profile differences can lead to a NMB of -7.5% (Fig S2), which is still smaller than the prior 

GEOS-Chem simulation NMB (10.9%, Fig. 3l).  Second, a NMB of 10.9% for model NO2 VCD 

simulation is not a very large value, as the difference between satellite NO2 VCD retrievals and 

ground-based measurements could be comparable to this value. For example, Krotkov et al. 

(2017) shows that OMI NO2 VCD retrievals, on average, are ~10% larger than ground-based 

FTIR spectrometer. Thus, current research should mainly focus on the change of the spatial 

distribution (such as linear correlation coefficient) rather than bias of prior and posterior GEOS-

Chem NO2 VCD simulation. Finally, given that linear correlation coefficient between OMPS 

retrievals and that are modified through integration of averaging kernel and NO2 vertical profile 

from this study is as large as 0.99, averaging kernel is not treated in the OMPS NO2 observation 

operator. 



 
Figure S2. OMPS NO2 Vertical Column Density (VCD) retrievals in October 2013.  (a) and (b) are operational VCDs and 
the VCDs that are modified through averaging kernel according to formula S1, respectively. (c) is the differences between 
the modified and operational VCDs. (d) is scatter plot of modified VCDs versus operational VCDs. Linear correlation 
coefficient (R), linear regression equation, root mean squared error (RMSE), normalized mean bias (NMB), mean bias 
(MB), and number of observations (N) are shown over the scatter plot. 
 

 

L204 “Hence, the difference between the GEOS-Chem simulations and the OMPS retrievals is 

mostly ascribed to the uncertainty of the emissions.” This may not be true and requires further 

investigation. 

We acknowledge that when averaging kernel is not considered in the observation operator, the 

profile differences can contribute to the difference between the GEOS-Chem simulations and the 

OMPS retrievals. Additionally, GEOS-Chem model uncertainty can also contribute to the 

difference between the GEOS-Chem simulations and the OMPS retrievals, and it is difficult to 

estimate model uncertainty. Thus, we delete the sentence in the revised manuscript; we added the 

discussion in Sect. 4.1.1 to show that difference between the GEOS-Chem simulations and the 

operational OMPS retrievals is larger than difference between operational OMPS retrievals and 

retrievals modified through consideration of averaging kernel. Therefore, the inverse modeling 

results are statistically significant. We also acknowledge that GEOS-Chem model uncertainty 

affects inverse modeling results, thus we apply optimized emission inventory to another model 

(different version of the GEOS-Chem model with much finer resolution) to show that 

improvement of air quality simulation and forecasts is obtained though the uncertainty of 



models. In addition, we also follow the suggestion of evaluating the optimized emission 

inventory in a consistent framework for part II manuscript; please see details in our reply for part 

II manuscript. 

 

OMI L3 data is used for validation. Without applying the averaging kernels, comparisons may 

not provide meaningful information. This needs to be investigated. 

 

Thanks for the suggestion. We acknowledge there should be differences between apply and do 

not apply averaging kernels (or scattering weights) in the comparisons. Following the suggestion, 

we investigate how this affect evaluation. In the manuscript, OMI L3 SO2 and OMI L3 NO2 are 

used for evaluation. In OMI L3 SO2 dataset, only the best pixel in a 0.25°x0.25° grid cell is 

retained, and the observational geometry information for the pixel is also available. Thus, we can 

still apply scattering weights to OMI L3 SO2. In OMI L3 NO2 dataset, observational geometry 

information it not available, thus we can only apply scattering weights to OMI L2 NO2. The text 

and figures below are added to supplement. We have emphasized in the main text that these 

conclusions do not change in Sect. 4.1.3. 

 

 



 
Figure S4. Taylor diagrams for comparing of VCDs of SO2 (a) and NO2 (b) from the GEOS-Chem simulations (squares for 
prior, triangles for posterior E-SO2 (a) or E-NO2 (b), and diamonds for E-joint) with that from the OMI (label 1 for 
operational level 3 SO2 (a) or level 3 NO2 (b) and label 2 for the level 3 SO2 (a) that are modified by considering the vertical 
profiles from the GEOS-Chem simulation with which is to be compared or the level 2 NO2 (b) that are modified by 
considering the vertical profiles from the GEOS-Chem simulation with which is to be compared) in October 2013 over 
China.  
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Equation S2 is used to convert OMI SO2 (NO2) vertical column density Ω%

"#$ to SO2 (NO2) slant 
column density Ω!

"#$ by multiplying SO2 (NO2) air mass factor 𝑀"#$ from OMI product. Equation 
S3 is used to calculate new SO2 (NO2) air mass factor 	𝑀&'(, where 𝑾 is  SO2 (NO2)  scattering 
weight, and  𝑺&'( is SO2 (NO2)  shape factor that from the GEOS-Chem simulation with which is 
to be compared. Equation S4 is used to calculate new OMI SO2 (NO2) vertical column density 
Ω%
"#$. 

 

Whether use OMI data without applying scattering weight (Label 1 in Fig. S4) or OMI data with 

applying scattering weight (Label 2 in Fig. S4), the main conclusions in Sect. 4.1.3 does not 

change. These conclusions are: 



(1) For SO2, posterior GEOS-Chem simulations (E-SO2 and E-joint) show smaller NMB and 

better spatial distribution (in terms of NCRMSE) than prior GEOS-Chem simulations 

when evaluating with OMI SO2 (apply or not apply scattering weight). 

(2) For NO2, the improvements for E-NO2 and E-joint are reflected in terms of R when 

evaluating with OMI tropospheric VCDs (apply or not apply scattering weight), although 

the two experiments show larger negative NMB than the prior simulation. 

 

 

L325 and some other paces, “Our finding of a large reduction. . .“ The discussion about trends 

between the 2013 October inversion and the 2010 inventories does not make any sense. 

Thanks for pointing out this. The MIX 2010 inventory was derived through bottom-up approach, 

while the 2013 October inversion inventory is derived through integration of GEOS-Chem 

adjoint model and OMPS SO2 and NO2 vertical column density retrievals. We have to 

acknowledge that systematic bias exists in both of the inventories, and so, the difference between 

the two emission inventories should not be considered as trend. To investigate trends, emission 

inventories should be derived from the same approach. In the revision, we therefore have 

removed the discussions and emphasized that the differences should not be considered as trends.  

 

L330 “in some model grid cells”: Please discuss the spatial pattern. 

Sure. We have added “Although the relative difference between E-joint and E-NO2 proved to be 

less than 2% in terms of total anthropogenic NOx emissions over China (Fig. 4k), it is up to 40% 

over Shanxi province, and both grids with large positive differences and grids with large 

negative differences exist over North China Plain (Fig. 4 l).”  in section 4.1.2.  

 

Section 4.2 does not provide very useful information and can be removed or shortened. 

Thank you for the comment. This section shows the impacts of data quality control and spatial 

balance. Although it does not include much scientific information, it helps to understand how 

observational errors are assumed. Thus, we hope to keep it. 
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