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Abstract 44 

A regional fully coupled meteorology-chemistry Weather Research and Forecasting model with 45 

Chemistry (WRF-Chem) was employed to study the seasonality of ozone (O3) pollution and its 46 

sources in both China and India. Observations and model results suggest that O3 in the North 47 

China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and India exhibit 48 

distinctive seasonal features, which are linked to the influence of summer monsoons. Through 49 

a factor separation approach, we examined the sensitivity of O3 to individual anthropogenic, 50 

biogenic, and biomass burning emissions. We found that summer O3 formation in China is 51 

more sensitive to industrial and biogenic sources than to other source sectors, while the 52 

transportation and biogenic sources are more important in all seasons for India. Tagged 53 

simulations suggest that local sources play an important role in the formation of the summer 54 

O3 peak in the NCP, but sources from Northwest China should not be neglected to control 55 

summer O3 in the NCP. For the YRD region, prevailing winds and cleaner air from the ocean 56 

in summer lead to reduced transport from polluted regions, and the major source region in 57 

addition to local sources is Southeast China. For the PRD region, the upwind region is replaced 58 

by contributions from polluted PRD as autumn approaches, leading to an autumn peak. The 59 

major upwind regions in autumn for the PRD are YRD (11%) and Southeast China (10%). For 60 

India, sources in North India are more important than sources in the south. These analyses 61 

emphasize the relative importance of source sectors and regions as they change with seasons, 62 

providing important implications for O3 control strategies.  63 

 64 

 65 

 66 

1 Introduction 67 

Tropospheric ozone (O3) is the third most potent greenhouse gas in the atmosphere (Pachauri 68 

and Reisinger, 2007), an important surface air pollutant, and the major source of the hydroxyl 69 

radical (a key oxidant playing an essential role in atmospheric chemistry). With the rapid 70 

growth of industrialization, urbanization and transportation activities, emissions of O3 71 

precursors (nitrogen oxides and volatile organic compounds) in both China and India have 72 

increased significantly since 2000 (De Smedt et al., 2010; Duncan et al., 2014; Hilboll et al., 73 

2013; Kurokawa et al., 2013; Ohara et al., 2007; Stavrakou et al., 2009; Zheng et al., 2018). 74 
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Increasing concentrations of O3 precursors have led to emerging and widespread O3 pollution, 75 

threatening health and food security (Chameides et al., 1994; Malley et al., 2018). The decrease 76 

in crop yield resulting from the increase in surface O3 would have been sufficient to feed 95 77 

million people in India (Ghude et al., 2014).  78 

Great efforts have been devoted to improving understanding of exceptionally high 79 

concentrations (Wang et al., 2006) and the increasing trend in O3 for both China and India (Beig 80 

et al., 2007; Cheng et al., 2016; Ghude et al., 2008; Lu et al., 2018a; Ma et al., 2016; Saraf 81 

and Beig, 2004; Xu et al., 2008). Strong but distinctive seasonal variations of O3 observed in 82 

India and China have been linked to higher emissions of precursor gases (Lal et al., 2000), and 83 

summer monsoon (Kumar et al., 2010; Lu et al., 2018b; Wang et al., 2017). The contributions 84 

of individual economic sectors and source regions were reported based on sensitivity 85 

simulations and source apportionment techniques (Gao et al., 2016a; Li et al., 2008; Li et al., 86 

2016; Li et al., 2012; Lu et al., 2019; Wang et al., 2019). With respect to the enhanced 87 

concentrations of O3 over the past years, Sun et al. (2019) attributed this to elevated emissions 88 

of anthropogenic VOCs, while Li et al. (2019) argued that an inhibited aerosol sink for 89 

hydroperoxyl radicals induced by decreased PM2.5 over 2013-2017 played a more important 90 

role in the NCP.  91 

Despite these progresses, the seasonal behaviors of O3 in different regions greatly differ, yet 92 

have not been intercompared and the underlying causes have not been comprehensively 93 

explored. In addition, previous source apportionment studies focused on specific regions or 94 

episodes, and the policy implications drawn from these studies might not be applicable for 95 

other regions and seasons. It is both of interest and of significance to understand the similarities 96 

and differences between O3 pollution in China and India, the two most polluted and most 97 

populous countries in the world.  98 

The present study uses a fully online coupled meteorology-chemistry model (WRF-Chem) to 99 

examine the general seasonal features of O3 pollution, and its sources derived from economic 100 

sectors and regions over both China and India. Sect. 2 describes the air quality model and 101 

measurements. We examine then in Sect. 3 how the model captures the spatial and temporal 102 

variations of O3 and relevant precursors. Sect. 4 presents general seasonal features of O3 103 

pollution, and the relative importance of both economic sectors and source regions. Results are 104 



4 
 

discussed and summarized in Sect. 5.  105 

 106 

2 Model and data 107 

2.1 WRF-Chem model and configurations 108 

The fully online coupled meteorology-chemistry model WRF-Chem (Grell et al., 2005) was 109 

employed in this study using the CBMZ (Carbon Bond Mechanism version Z, Zaveri and 110 

Peters, 1999) photochemical mechanism and the MOSAIC (Model for simulating aerosol 111 

interactions and chemistry, Zaveri et al., 2008) aerosol chemistry module. The model was 112 

configured with a horizontal grid spacing of 60km with 27 vertical layers (from the surface to 113 

10 hPa), covering East and South Asia (Fig. 1). The selected physical parameterization schemes 114 

follow the settings documented in Gao et al. (2016b), and they are listed in Table S1. 115 

Meteorological initial and boundary conditions were obtained from the 6-hourly FNL (final 116 

analyses, NCEP, 2000) global analysis data with 1.0°×1.0° resolution. The four-dimensional 117 

data assimilation (FDDA) technique was applied to limit errors in simulated meteorology. 118 

Horizontal winds, temperature and moisture were nudged at all vertical levels. Chemical initial 119 

and boundary conditions were provided using MOZART-4 (Emmons et al., 2010) global 120 

simulations of chemical species.  121 

Monthly anthropogenic emissions of SO2, NOx, CO, NMVOCs (Non-methane Volatile Organic 122 

Compounds), NH3, PM2.5, PM10, BC (black carbon) and OC (organic carbon) were taken from 123 

the MIX 2010 inventory (Li et al., 2017), a mosaic Asian anthropogenic emission inventory 124 

covering both China and India. In this study, the emissions in China were updated with the 125 

MEIC (Multi-resolution Emission Inventory for China, http://www.meicmodel.org/) inventory 126 

for year 2012. From 2012 to 2013, emissions of SO2 and NOx in China declined by 11% and 127 

5%, while emissions of other species did not exhibit a significant change (Zheng et al., 2018).  128 

The MIX inventory was prepared considering five economic sectors on a 0.25°×0.25° grid: 129 

power, industrial, residential (heating, combustion, solvent use, and waste disposal), 130 

transportation and agriculture. For India, SO2, BC, OC, and power plant NOx emissions were 131 

taken from the inventory developed by the Argonne National Laboratory (ANL), with the 132 

REAS (Regional Emission inventory in Asia) inventory used to supplement for missing species. 133 

Speciation mapping of VOCs emissions follows the speciation framework documented in Li et 134 

http://www.meicmodel.org/
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al. (2014) and Gao et al. (2018). The MEGAN (Model for Emissions of Gases and Aerosols 135 

from Nature, Guenther et al., 2012) model version 2.04 was used to generate biogenic 136 

emissions online. Biomass burning emissions were obtained from the 4th generation global fire 137 

emissions database (GFED4, Giglio et al., 2013). For China, industrial and power sectors are 138 

the largest two contributors to NOx emissions, while industrial sector emits the largest amounts 139 

of NMVOCs (Li et al., 2017). For India, transportation and power sectors produce the largest 140 

amounts of NOx, while residential and transportation sectors are the largest two contributors to 141 

NMVOCs emissions (Li et al., 2017). China’s biogenic emissions of VOCs are estimated to be 142 

comparable to or higher than anthropogenic sources (Li and Xie, 2014; Wei et al., 2011).    143 

 144 

2.2 Ozone tagging method and setting of source regions 145 

O3 observed in a particular region is a mixture of O3 formed by reactions of NOx with VOCs 146 

emitted at different locations and time. The O3 tagging method has the capability to apportion 147 

contributions of different source regions to O3 concentrations observed in particular regions. 148 

The present study adopted the ozone tagging method implemented in WRF-Chem by Gao et 149 

al. (2017a), which is similar to the Ozone Source Apportionment Technology (OSAT, Yarwood 150 

et al., 1996) approach implemented in the Comprehensive Air Quality Model with extensions 151 

(CAMx). Both O3 and its precursors from different source regions are tracked as independent 152 

variables. The ratio of formaldehyde to reactive nitrogen oxides (HCHO/NOy) was used as 153 

proposed by Sillman (1995) to decide whether the grid cell is under NOx or VOC limited 154 

conditions, and then different equations for these two conditions were selected to calculate total 155 

O3 chemical production. A detailed description of the technique is provided in Gao et al. 156 

(2017a).  157 

The O3 tagging method attributes production of O3 and its precursors to individual geographic 158 

areas. We divided the entire modeling domain into 23 source regions, which were classified 159 

mainly using the administrative boundaries of provinces. In eastern China, each province was 160 

considered as a source region, while provinces in northeastern, northwestern, and southwestern 161 

China were lumped together (Fig. S1). India was divided into two source regions (north and 162 

south), and other countries were considered separately as a whole (Fig. S1). Additionally, the 163 

chemical boundaries provided by MOZART-4 were adopted to specify inputs of O3, and the 164 
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initial condition was tracked also as an independent source. The names of all source groupings 165 

are indicated in Fig. S1.    166 

 167 

2.3 Experiment design 168 

To quantify the sectoral contributions to O3, a factor separation approach (FSA) was applied to 169 

differentiate two model simulations: one with all emission sources considered, and the other 170 

with some emission sources excluded. Table 1 summarizes the different sets of simulations 171 

conducted in this study. In addition to the control case, a series of sensitivity studies was 172 

performed, in which industrial, residential, transport, power, biogenic and fire emissions were 173 

separately excluded (Table 1). For each case, the entire year of 2013 was simulated.    174 

 175 

2.4 Measurements 176 

Surface air pollutants in China are measured and recorded by the Ministry of Environmental 177 

Protection (MEP), and the data are accessible on the China National Environmental Monitoring 178 

Center (CNEMC) website (http://106.37.208.233:20035/). This nationwide network was 179 

initiated in January 2013, and this dataset was used to evaluate model performance. This dataset 180 

has been extensively employed in previous studies to understand the spatial and temporal 181 

variations of air pollution in China (Hu et al., 2016; Lu et al., 2018a), and to reduce 182 

uncertainties in estimates of health and climate effects (Gao et al., 2017b). Measurements of 183 

air pollutants from the MAPAN network (Modeling of Atmospheric Pollution and Networking) 184 

set up by the Indian Institute of Tropical Meteorology (IITM) under project SAFAR (System 185 

of Air Quality and weather Forecasting And Research) (Beig et al., 2015) were used in the 186 

present study to evaluate the model performance over India. To further evaluate how the model 187 

performed in capturing the vertical distributions of O3, we used data from ozonesonde records 188 

obtained from the World Ozone and Ultraviolet Radiation Data Center website 189 

(https://woudc.org/data/dataset_info.php?id=ozonesonde). Fig. 1 displays the locations of the 190 

relevant surface and ozonesonde observation sites. We evaluated also the spatial distribution of 191 

NO2 columns using the KNMI-DOMINO (Dutch OMI NO2) daily level-2 products of 192 

tropospheric NO2 column (www.temis.nl), with row anomaly removed (according to 193 

operational flagging), solar zenith angles less than 80º, and cloud fraction less than 0.2. The 194 

http://106.37.208.233:20035/
https://woudc.org/data/dataset_info.php?id=ozonesonde
http://www.temis.nl/
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model results were sampled according to selected satellite data on a pair-to-pair basis. The 195 

matched model results were transformed by applying the OMI averaging kernel to the modeled 196 

vertical profiles of NO2 concentrations. 197 

 198 

3 Model evaluation 199 

We evaluated the spatial distribution of simulated seasonal mean (winter months include 200 

January, February and December (DJF); spring months include March, April and May (MAM); 201 

summer months include June, July and August (JJA); Autumn months include September, 202 

October, and November (SON)) O3 concentrations by comparing model results with 203 

observations (filled circles in Fig. 2) for 62 cities in China and India. The model captures the 204 

spatiotemporal patterns of O3 in east China, with lower values in fall (Fig. 2d) and winter (Fig. 205 

2a), and enhanced levels in spring (Fig. 2b) and summer (Fig. 2c). However, O3 concentrations 206 

are overestimated by the model in central, northwest and southwest China for all seasons (Fig. 207 

2). Hu et al. (2016) reported also that their model tends to predict higher O3 concentrations for 208 

these regions. Scatter plots of simulated and observed O3 for four seasons suggest that model 209 

overestimates O3 in most sites during winter, and exhibit better performance during other 210 

seasons (Fig. 3). Fig. S2 indicates that modeled NO2 column values in east China are not as 211 

high as observed, but model overpredicts NO2 column in central China and most parts of India, 212 

which could partly explain the overestimation of O3 in central China.  213 

We conducted a further site-by-site evaluation of monthly mean O3 concentrations, and we 214 

grouped stations into four major densely-populated regions, namely North China Plain (NCP), 215 

Yangtze River Delta (YRD), Pearl River Delta (PRD), and India. The seasonality of observed 216 

O3 concentrations is reproduced well in these four regions (Fig. 4), although concentrations are 217 

underestimated in the NCP in spring. O3 concentrations in October, November and December 218 

in the PRD region are overestimated by the model. The correlation coefficients between model 219 

and observations range between 0.84 and 0.98. Detailed model evaluation statistics are 220 

documented in Table 2. In Beijing, the daily maximum 8-h average (MDA8) O3 concentrations 221 

are well captured by the model (Fig. S3), except that the model is biased low in spring. Stronger 222 

NOx titration (underestimation of O3 during the night, Fig. S4) are found in the model results 223 

for the NCP and YRD regions in spring, which can partly explain the underestimation of O3 in 224 
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spring in the NCP and PRD (Fig. S4). The simulated magnitudes of O3 in India are generally 225 

consistent with observations, though lower in central India and in May. The high concentrations 226 

of O3 in India were not captured by the model is mainly because of the large underestimation 227 

in Jabalpur (Central India) with complex terrain. Model’s coarse resolution and poor capability 228 

of resolving strong spatial heterogeneity in land types within a small area have led to this 229 

mismatch, which was also found in Sharma et al. (2017). Fig. 4 suggests also that the seasonal 230 

behavior of O3 in these four major regions exhibits distinctive patterns, discussed in detail in 231 

Sect. 4.  232 

In this work, ozonesonde measurements from the Hong Kong Observatory (HKO), Japan 233 

Meteorological Agency (JMA), and the Hydrometeorological Service of S.R. Vietnam (HSSRV) 234 

(locations marked in purple in Fig. 1) were used. Wintertime near-surface O3 concentrations 235 

are overestimated for HKO (Fig. S5), while vertical variations are satisfactorily captured by 236 

the model. Comparisons of near-surface O3 precursors suggest that CO concentrations are 237 

underestimated in all the regions (Fig. S6), which could be explained by an underestimate of 238 

CO emissions (Wang et al., 2011). The coarse grid resolution of the model might provide 239 

another reason for this underestimation, as the observation sites in China are located mostly in 240 

urban areas. Underestimates of CO concentrations are reported also for many sites in India 241 

(Hakim et al., 2019). The effects of underestimated CO on O3 were found to be small, but the 242 

underestimation of CO may lead to bias in methane lifetime (Strode et al., 2015), which is 243 

beyond the discussion of regional pollution in this study. Simulated NO2 concentrations are 244 

slightly overestimated in the NCP but are underestimated in the PRD (Fig. S6). Despite these 245 

issues, the model still captures the seasonal behavior of O3 in different regions, and we do not 246 

expect the model biases to change the major findings of the present study.  247 

 248 

4 Seasonality, source sectors and source regions 249 

4.1 Seasonality of surface O3 in different regions 250 

Comparisons between modeled and observed near-surface O3 concentrations for different 251 

regions suggest distinctive seasonal patterns (Fig. 4). Over the NCP, near-surface O3 exhibits 252 

an inverted V-shaped pattern, with maximum O3 concentrations in summer, minimum in winter 253 

(Fig. 4). Over the YRD, O3 presents a bridge shape, with relatively higher concentrations in 254 
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spring, summer and autumn (Fig. 4). O3 concentrations over the PRD peak in autumn, with a 255 

minimum in summer (Fig. 4). Similarly, O3 over India exhibits a minimum in summer, with 256 

highest concentrations in winter (Fig. 4).  257 

China and India are influenced largely by monsoonal climates (Wang et al., 2001), and the 258 

seasonality of O3 in different regions is affected by wind pattern reversals related to the winter 259 

and summer monsoon systems (Lu et al., 2018b). Various monsoon indices have been proposed 260 

to describe the major features of the Asian monsoon, based on pressure, temperature, and wind 261 

fields, etc. In the present study, we adopted the dynamical normalized seasonality monsoon 262 

index (DNSMI) developed by Li and Zeng (2002) to explore the influence of monsoon intensity 263 

on the seasonal behavior of O3 in the boundary layer in different regions of China and India. 264 

DNSMI is defined as follows:  265 

𝐷𝑁𝑆𝑀𝐼 =
‖𝑉1̅̅ ̅−𝑉𝑖‖

𝑉̅
− 2  (1) 266 

in which 𝑉1  and 𝑉𝑖  represent the wind vectors in January, and wind vectors in month 𝑖 , 267 

respectively. 𝑉̅  denotes the mean of wind vectors in January and July. The norm of a given 268 

variable is defined as: 269 

‖𝐴‖ = (∫ ∫|𝐴|2𝑑𝑆 )
1

2  (2) 270 

where S represents the spatial area of each model grid cell. More detailed information on the 271 

definition is presented in Li and Zeng (2002).  272 

This definition of monsoon proposed by Li and Zeng (2002) focuses on wind vectors, 273 

representing the intensity of wind direction alternation from winter to summer. In winter, 274 

northwesterly winds are predominant, then higher DNSMI values indicate stronger alternation 275 

of wind directions. For example, DNSMI values are higher than 5 in coastal regions of South 276 

China and most environments in India (Fig. 5c), suggesting that these regions are influenced 277 

largely by the summer monsoon. The spatial distribution of monsoon precipitation in Fig. S7(c) 278 

also indicates that most areas of India and South China are influenced by summer monsoon. 279 

The alternation of wind vectors (Fig. 5) and precipitation (Fig. S7) from winter to summer 280 

results in changes in upwind areas and abundance of O3 precursors, modulating the severity of 281 

O3 pollution. In summer, the southerly winds containing clean maritime air masses, serve to 282 

reduce the intensity of pollution in regions that are affected largely by the summer monsoon 283 
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(e.g., most regions over India, and coastal regions of China). Besides, summer monsoon can 284 

bring about cloudy and rainy weather conditions (Fig. S7, removement of ozone precursors), 285 

weaker solar radiation, and lower temperature (Lu et al., 2018b), which are not conducive to 286 

photochemical production of O3 (Lu et al, 2018b; Tang et al., 2013). The onset of the summer 287 

monsoon is also associated with strong air convergence and uplift, which is not favorable for 288 

the accumulation of O3 and its precursors (Lu et al, 2018b). 289 

North China is less influenced by the summer monsoon as suggested by the insignificant 290 

precipitation in summer (Fig. S7c). East China and South China are more affected as suggested 291 

by DNSMI values higher than 0.5 and more abundant precipitation (Fig. 5c and Fig. S7c).  292 

High temperature and stronger solar radiation in summer favor the photochemical production 293 

of O3. As a result, O3 concentrations in the NCP peak in summer, exhibiting an inverted V-294 

shaped pattern (Fig. 4a). The YRD region is affected moderately by the summer monsoon, with 295 

DNSMI values greater than 0.6 and mean precipitation greater than 7mm/day (Fig. 5c and S7c). 296 

The upwind sources for the YRD in summer include both polluted (south China) and clean 297 

(ocean) regions. Thus, the inhibition of O3 formation in the YRD due to the summer monsoon 298 

does not lead to the annual minima in summer. Because of the favorable weather conditions 299 

(increasing temperature and solar radiation, and low precipitation) in spring and autumn (Fig. 300 

S7d), the seasonality of O3 in the YRD exhibits a bridge shape, consistent with previous 301 

observations within this region (Tang et al., 2013). In addition, southerly winds might bring O3 302 

and its precursors from the YRD region in summer (Fig. 5c), which is further quantified in Sect. 303 

4.3. For India and the PRD region, the alternation of wind fields and precipitation begins as 304 

spring approaches (Fig. 5 and Fig. S7). As a result, O3 concentrations decline in response to 305 

input of cleaner air from the ocean and more precipitation. As summer arrives, the intensity of 306 

the monsoon reaches its maximum (Fig. 5c and S7) and concentrations of O3 in both India and 307 

South China decline to reach their annual minima (Fig. 4c and Fig. 4d). As wind direction 308 

changes over the east coast of China from summer to autumn, O3 peaks in autumn in South 309 

China can be attributed also to the outflow of O3 and its precursors from the NCP and YRD 310 

regions (Fig. 5d). This contribution is discussed further also in Sect. 4.3.  311 

 312 

4.2 O3 sensitivity to emissions from individual source sectors  313 
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O3 in the troposphere is formed through complex nonlinear processes involving emissions of 314 

NOx and VOCs from various anthropogenic, biogenic, and biomass burning sources. We 315 

illustrate in Fig. 6 the sensitivity of seasonal mean O3 concentrations in both China and India 316 

to individual source sectors, patterns that offer important implications for seasonal O3 control 317 

strategies in some highly polluted regions. The sensitivity is defined as the responses of O3 318 

concentration to the elimination of each source sector (𝑂3𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
− 𝑂3𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑒𝑎𝑐ℎ 𝑠𝑒𝑐𝑡𝑜𝑟

).   319 

For China, summer O3 formation is more sensitive to industrial sources than to other 320 

anthropogenic sources, including power, residential, and transport (Fig. 6c and Table 3). 321 

Emissions from the industrial sector are responsible for an enhancement of O3 concentrations 322 

by more than 8 ppb in the NCP and YRD regions in summer (Fig. 6c and Table 3). Using a 323 

similar approach, Li et al. (2017) reported that the contribution to O3 from industrial sources 324 

exceeded 30 µg/m3 (~15 ppb) in highly industrialized areas, including Hebei, Shandong, 325 

Zhejiang, etc. during an episode in May. Li et al. (2016) concluded that the industrial sector 326 

plays the most important role for O3 formation in Shanghai, accounting for more than 35% of 327 

observed concentrations. Adopting a source-oriented chemical transport model, Wang et al., 328 

(2019) demonstrated that the industrial source contributes 36%, 46%, and 29% to non-329 

background O3 in Beijing, Shanghai and Guangdong, respectively.  330 

In the NCP and YRD regions, O3 formation in winter, spring, and autumn reflects negative 331 

sensitivity to the transport and power sectors (Fig. 6 and Table 3). These two sectors dominate 332 

emissions of NOx in China (Li et al., 2017). Removing these sectors would lead to increases in 333 

O3 in VOC-limited regions of east China in winter, spring and fall (less biogenic emissions of 334 

VOCs in these seasons, Fu et al., 2012). The ratio of formaldehyde to reactive nitrogen 335 

(HCHO/NOy) is widely used to determine the O3 production sensitivity with critical value of 336 

0.28 (Sillman, 1995; Zhao et al., 2009). Fig. S8 indicates that east China is VOCs-limited in 337 

winter, spring and fall. Urban regions in China are still VOC-limited (Fig. S8c, Fu et al., 2012; 338 

Jin et al., 2017) in summer, leading to negligible or negative sensitivity to the transport and 339 

power sectors as shown in Fig. 6g and Fig 6o. In other regions of east China, removing transport 340 

and power sources would lead to an increase in O3 concentrations by about 4 ppb in summer. 341 

The negative sensitivity of O3 to the transport and power sectors may be also caused by the 342 
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nighttime titration effects. In winter, daytime mean O3 exhibit also negative sensitivity to 343 

transportation sector, and similar distribution with daily mean O3 sensitivity (Fig. S9a and S9b), 344 

suggesting nighttime titration effects might not be the major reason in winter. However, 345 

daytime mean and daily mean O3 exhibit different patterns of sensitivity to transportation sector 346 

in highly urbanized regions in summer, which could be related to nighttime titration effects. As 347 

indicated in Fig. S10, O3 sensitivity to transportation sector in Beijing is positive during the 348 

day but negative during the night.  349 

Including biogenic emissions results in an increase in summer mean O3 concentrations by more 350 

than 18 ppb in the NCP and YRD regions (Fig. 6s and Table 3). The large sensitivity of O3 to 351 

biogenic emissions is associated with the massive VOCs emitted from biosphere (Table S2). 352 

The amount of biogenic VOCs is comparable to those emitted from all anthropogenic sectors 353 

in China and greater than anthropogenic VOCs in India (Table S2). Using a similar approach, 354 

Li et al. (2018) found that biogenic emissions contributed 8.2 ppb in urban Xi’an. Other source 355 

apportionment studies indicate that the contribution of biogenic emissions to O3 formation is 356 

about 20% in China (Li et al., 2016; Wang et al., 2019). The enhancements due to biogenic 357 

emissions are larger over south China during winter, and the significantly impacted regions 358 

extend northwards in spring and autumn (Fig. 6q-6t). Biomass burning emissions lead to 359 

relatively lower O3 enhancements over China in winter, but they are responsible for an 360 

appreciable contribution to O3 pollution (~4 ppb) in east China in summer (Fig. 6w and Table 361 

3). Li et al. (2016) suggested that biomass burning sources contribute about 4% to O3 formation 362 

in the YRD region in summer. The enhancement due to biomass burning estimated by Lu et al. 363 

(2019) using a different model indicates lower values in east China.  364 

For India, O3 formation is most sensitive to the transport vehicle sector (~8 ppb) in all seasons 365 

(Table 3), slightly higher than it is to the biogenic source (Fig. 6m-6p and Table 3). Among 366 

other sectors, the sensitivity of O3 formation to the residential sector is significant in winter as 367 

residential sector emits the largest amount of NMVOCs (Li et al., 2017), while the influence 368 

of biomass burning emissions is negligible.  369 

To further address the issue of nighttime titration effects, we calculated also the sensitivity of 370 

daytime O3 formation in July to sectors, and we found that daytime O3 in the NCP and YRD 371 

are also most sensitive to industrial and biogenic emissions (Table 4). Among other 372 
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anthropogenic sectors, transportation emissions play important roles in the formation of 373 

daytime O3 in China, followed by power generation emissions (Table 4).Our results highlight 374 

the importance of industrial sources and biogenic emissions in O3 formation in east China, 375 

consistent with the conclusions of Li et al. (2017). The significance of other sectors 376 

demonstrated by Li et al. (2017) partly disagrees with the current findings. Conclusions from 377 

Li et al. (2017) rely on simulations of a one-week episode in May, while our results provide 378 

more information considering different seasons and different highly polluted regions.  379 

 380 

4.3 O3 contribution from individual source regions 381 

The sensitivity of O3 pollution to individual source sectors discussed in the previous section 382 

provides a quantitative understanding of the relative importance of individual source sectors. 383 

Additionally, information on the contribution of individual source regions to O3 pollution 384 

should provide useful inputs for O3 control strategies. Because of the large computational costs 385 

of sensitivity simulations, we employed the tagging method to examine contributions to O3 386 

pollution from individual source regions. Fig. 7 presents monthly mean concentrations of O3 387 

averaged over the NCP, YRD, PRD and India, with contributions from individual source 388 

regions.  389 

The NCP region is influenced largely by sources outside China, especially in wintertime, which 390 

might be attributed to less local production and a longer O3 lifetime in winter. In winter, sources 391 

outside China are responsible for more than 75% of O3 formation in the NCP region. However, 392 

this contribution declines to about 50% as summer approaches. Using the tagged tracer method 393 

with a global chemical transport model, Nagashima et al. (2010) suggested that sources outside 394 

China contributed about 60% and 40% to surface O3 in North China in spring and summer, 395 

respectively. Our estimate for the contributions of sources outside China in these two seasons 396 

suggests slightly higher values: 73% and 51% (Table 5). In summer, NCP local sources 397 

contribute about 31%, with additional 8% from Northwestern China.  398 

For the YRD region, local emissions contribute 32% to O3 formation in summer, but the 399 

contribution declines by 8% in spring and autumn (Table 5). The contribution of sources 400 

outside China decreases greatly in summer (46%), leading to a small summer O3 trough. The 401 

source apportionment results in Nagashima et al. (2010) also indicated that the contribution of 402 
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sources outside China to O3 in the Yangtze River Basin decreases significantly from spring to 403 

summer (44% to 30%). The relatively lower contribution from sources outside China is 404 

associated with the prevailing winds and cleaner air from the ocean in summer (Fig. 5c). In 405 

addition to local sources, we further identified the major source region for O3 in the YRD region 406 

is the NCP in winter, spring and autumn (14%, 6% and 8%, respectively). In summer, the major 407 

source region of O3 in the YRD region is Southeast China (10%). Gao et al. (2016a) concluded 408 

that YRD local emissions contribute 13.6%-20.6% to daytime O3 under different wind 409 

conditions, and the contribution of super regional sources (Outside) ranges from 32 to 34% in 410 

May. In Hangzhou (a megacity within YRD), source apportionment results reveal that long-411 

range transport contributes 36.5% to daily maximum O3 with the overall contribution 412 

dominated by local sources (Li et al., 2016). 413 

O3 concentrations in the YRD region are influenced largely by the summer monsoon, and the 414 

prevailing winds from the ocean result in a minimum contribution from polluted regions. The 415 

estimated contribution of sources outside China declines to 46% in summer, which agrees well 416 

with the number 47% inferred from Nagashima et al. (2010). Li et al. (2012) applied the OSAT 417 

tool in the CAMx model to apportion O3 sources in south China, and they reported that super-418 

regional sources contributed 55% and 71% to monthly mean O3 in summer and autumn, 419 

respectively. They pointed out also that regional and local sources play more important roles 420 

in O3 pollution episodes (Li et al., 2002). The contribution of local source peaks in summer 421 

(41%) exceeds the local contribution in the NCP and YRD regions. As discussed in Sect. 4.1, 422 

the outflow of O3 and its precursors from the NCP and YRD regions might play important roles 423 

in peak autumn O3 in the YRD (Fig. 5d), as wind direction switches from summer to autumn. 424 

We identified the major upwind regions for the PRD in autumn as YRD (11%) and Southeast 425 

China (10%). From summer to autumn, the contribution of YRD sources to the PRD increases 426 

from 2% to 11%. For India, O3 concentrations are dominated by sources outside India, and 427 

sources in North India (Fig. 7d). In winter, sources outside India contribute 49%, while sources 428 

in North India contribute 38%.   429 

We calculated also the contributions of sources in different regions to MDA8 O3 concentrations, 430 

and we compared the results with contributions to daily mean O3. As shown in Fig. 8, the 431 

contributions of sources in different regions do not exhibit a large difference for Beijing, except 432 
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that the local sources play a more important role in the formation of daytime O3 in winter (Fig. 433 

8a). Similarly, higher contributions of local sources to the formation of daytime O3 are found 434 

for Guangzhou in autumn, and for Shanghai in all seasons (Fig. 8). The contributions of sources 435 

in different regions do not show a notable difference for New Delhi, India. 436 

The estimated contributions of sources outside China to O3 pollution in receptor regions exhibit 437 

slightly higher values than the values inferred from studies using global models (Nagashima et 438 

al., 2010; Wang et al., 2011). This might be related partly to the inconsistency between 439 

simulations from the applied regional model and boundary conditions from another global 440 

model. Global chemical transport models usually show better skills in simulating 441 

transboundary pollution.  442 

 443 

5 Discussion and Summary 444 

In this study, we used a fully coupled regional meteorology-chemistry model with a horizontal 445 

grid spacing of 60 km × 60 km to study the seasonality and characteristics of sources of O3 446 

pollution in highly polluted regions in both China and India. Both observations and model 447 

results indicate that O3 in the NCP, YRD, PRD, and in India display distinctive seasonal 448 

features. Surface concentrations of O3 peak in summer in the NCP, in spring in the YRD, in 449 

autumn in the PRD and in winter in India. These distinct seasonal features for different regions 450 

are linked to the intensity of the summer monsoon, to sources, and to atmospheric transport.  451 

With confidence in the model’s ability to reproduce the major features of O3 pollution, we 452 

examined the sensitivity of O3 pollution to individual anthropogenic emission sectors, and to 453 

emissions from biogenic sources and from burning of biomass. We found that production of O3 454 

in summer is more sensitive to industrial and biogenic sources than to other source sectors for 455 

China, while the transportation and biogenic emissions are more important for all seasons in 456 

India. For India, in addition to transportation, the residential sector also plays an important role 457 

in winter when O3 concentrations peak. These differences in conditions between China and 458 

India suggest differences in control strategies on economic sectors should be implemented to 459 

minimize resulting pollution.   460 

Tagged simulations suggest that sources in east China play an important role in the formation 461 
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of the summer O3 peak in the NCP, and sources from Northwest China should not be neglected 462 

to control summer O3 in the NCP. For the YRD region, prevailing winds and cleaner air from 463 

the ocean in summer lead to reduced transport from polluted regions, and the major source 464 

region in addition to local sources is Southeast China. For the PRD region, the upwind region 465 

is replaced by contributions from polluted east China as autumn approaches, leading to an 466 

autumn peak. The major upwind regions in autumn for the PRD are YRD (11%) and Southeast 467 

China (10%). For India, sources in North India show larger contributions than sources in South 468 

India.  469 

The focus of our analysis is on the seasonality of O3 pollution and its sources in both China 470 

and India, with an emphasis on implications for O3 control strategies. Most previous studies 471 

focused on the analysis of episodes or monthly means for a region, while the current study 472 

presents a more comprehensive picture. For the NCP region, O3 concentrations peak in summer, 473 

during which industrial sources should be given higher priority. Besides local sources in the 474 

NCP, sources from Northwest China play also important roles. For the YRD region, O3 475 

concentrations in spring, summer and autumn are equally important, showing appreciable 476 

sensitivity to the industrial sources. In addition to local sources, sources from the NCP should 477 

be considered for control of O3 in spring and autumn, while sources from Southeast China 478 

should be considered in summer. For the PRD region, O3 concentrations peak in spring and 479 

autumn, during which reducing industrial and transportation sources could be more effective. 480 

In both spring and autumn, sources from the YRD and Southeast China show appreciable 481 

contributions to O3 pollution in the PRD. For India, O3 pollution is more serious in winter, 482 

during which controlling residential and transport sources in North India could be more 483 

effective.  484 

However, uncertainties remain in the conclusions resulting from the assumptions and 485 

methodology adopted in this study. The zero-out method is computationally inefficient. It is a 486 

sensitivity method, and does not provide source contribution for nonlinear systems, as the sum 487 

of impacts of all sources will not equal the total concentration (Yarwood et al., 2007). Although 488 

there is no perfect source apportionment technique for nonlinear systems, reasonable method 489 

that tracks mass contributions and accounts for chemical nonlinearity can provide additional 490 

information in terms of the design of control strategies (Yarwood et al., 2007). In the tagging 491 
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method, photochemical indicator HCHO/NOy with threshold of 0.28 (Sillman, 1995) was used 492 

to determine NOx- or VOC-limited, which can also result in uncertainties in the results. There 493 

are several other indicators have been proposed to indicate photochemical sensitivity, including 494 

O3/NOx, O3/NOy, etc. However, the robustness of these indicators can vary with ambient 495 

conditions and locations (Andreani-Aksoyoglu et al., 2001). Zhang et al. (2009) recommended 496 

using multiple indicators rather than a single one to reduce uncertainties. Wang et al. (2019) 497 

suggested that the use of a single threshold for these indicators is insufficient, as O3 can be 498 

sensitive to both NOx and VOCs. A three-regime O3 attribution technique was developed by 499 

Wang et al. (2019) to address this problem. Additionally, although comparisons are shown for 500 

daytime mean and daily mean, most conclusions in this study are based on seasonal mean (both 501 

daytime and nighttime) O3 while many previous studies investigate sources of 8-h or daily 502 

maximum O3. As illustrated in Li et al. (2016), the dominant contribution to nighttime O3 is 503 

associated with long-range transport. All of these factors contribute to uncertainties in the 504 

results of source apportionment, but should not downplay the significance of current findings 505 

in terms of policy implications.  506 

   507 

2 tables and 10 figures are listed in the supplement.  508 
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Table 1. Descriptions of simulations 820 

Simulations Descriptions  

Control Anthropogenic, biogenic and fire emissions are considered;  

Industrial Same as control except industry sector in anthropogenic emissions is 

excluded; 

Residential Same as control except residential sector in anthropogenic emissions is 

excluded; 

Transportation Same as control except transportation sector in anthropogenic emissions is 

excluded; 

Power Same as control except power sector in anthropogenic emissions is 

excluded; 

Biogenic Same as control except biogenic emissions are excluded; 

Fire Same as control except fire emissions are excluded; 

 821 

 822 

Table 2 Model evaluation statistics 823 

Regions NCP YRD PRD India 

Mean Bias -3.8 -1.8 3.1 -2.0 

Root Mean 

Square Error 

6.4 5.5 7.9 4.4 

Normalized 

Mean Bias 

-13.3% -6.2% 10.7% -5.6% 

Normalized 

Mean Error 

18.7% 14.9% 21.2% 11.1% 

R  0.98 0.96 0.84 0.91 
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Table 3. Sensitivity of seasonal O3 to emission sectors for different regions (ppb) 831 

Sectors Seasons NCP YRD PRD India 

Industry Winter -4.1 -1.5 4.5 2.1 

Spring -0.3 3.8 6.5 1.7 

Summer 8.3 8.3 4.7 1.6 

Autumn -1.4 1.7 7.1 2.1 

Power Winter -5.6 -7.5 -1.2 1.7 

Spring -3.2 -2.2 2.2 2.3 

Summer 2.7 2.9 3.3 1.9 

Autumn -3.3 -3.3 2.1 2.4 

Residential Winter 5.1 7.7 6.6 4.2 

Spring 2.4 2.5 1.9 2.4 

Summer 2.5 1.4 1.1 2.2 

Autumn 2.2 2.2 1.6 3.2 

Transport Winter -8.5 -8.0 0.2 7.6 

Spring -3.7 -1.5 3.4 7.9 

Summer 2.8 4.0 3.6 6.7 

Autumn -4.3 -3.3 3.0 8.9 

Biogenic Winter 0.3 1.0 3.8 4.8 

Spring 4.3 6.6 7.5 5.6 

Summer 19.2 18.5 9.4 5.7 

Autumn 5.7 6.5 11.4 8.0 

Fire Winter 0.1 0.2 2.3 0.6 

Spring 1.1 1.8 2.6 1.1 

Summer 3.8 4.0 1.2 0.2 

Autumn 1.2 1.4 1.9 0.5 

 832 

 833 

 834 
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Table 4. Sensitivity of summer (July) daytime O3 to emission sectors for different regions 835 

(ppb) 836 

Sectors NCP YRD PRD India 

Industry 19.9 14.3 7.1 2.3 

Power 6.1 7.0 4.9 2.7 

Residential 4.1 1.9 1.6 3.3 

Transport 8.9 9.2 5.9 10.0 

Biogenic 28.7 28.9 12.0 7.6 

Fire 1.4 0.8 0.3 0.1 

 837 

Table 5. Long range transport, local, and regional source contributions for seasonal mean O3 838 

for different regions 839 

 NCP YRD PRD India 

Winter Outside: 81% Outside:51% Outside: 44% Outside: 49% 

Local: 12% Local: 26% Local: 13% N India: 35% 

NW China: 6% NCP: 14% YRD: 13% S India: 16% 

Spring Outside: 73% Outside:59% Outside: 48% Outside: 58% 

Local: 17% Local: 24% Local: 27% N India: 28% 

NW China: 5% NCP: 6% YRD: 7% S India: 14% 

  SE China: 6%  

Summer Outside: 51% 

 

Outside:46% 

 

Outside: 46% 

 

Outside: 45% 

 

Local: 31% Local: 32% Local: 41% N India: 38% 

NW China: 8% SE China: 10% SE China: 4% S India: 17% 

Autumn Outside: 69% Outside:61% Outside: 50% Outside: 42% 

Local: 21% Local: 24% Local: 15% N India: 41% 

NW China: 7% NCP: 8% YRD: 11% S India: 17% 

  SE China: 10%  

(Outside sources represent sources outside China for the discussed three regions in China, and sources outside 840 
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India for India, including also transport from upper boundary of the model; NCP: Beijing, Tianjin, Hebei, 841 

Shandong, and Henan; YRD: Anhui, Jiangsu, Shanghai and Zhejiang; SE China: Jiangxi, Fujian and Taiwan; 842 

Central China: Hunan and Hubei; South China: Guangxi and Hainan) 843 

  844 

 845 

 846 

Fig. 1. WRF-Chem domain setting with terrain height and the locations of surface ozone 847 

observations marked by solid red circles. Purple solid triangles mark the location of 848 

ozonesonde observations.  849 

 850 
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 851 

Fig. 2. Spatial distribution of simulated and observed seasonal mean ozone concentrations for 852 

Winter (a), Spring (b), Summer (c) and Fall (d). 853 

 854 
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 855 

Fig. 3. Scatter plot of simulated and observed seasonal mean ozone concentrations for Winter 856 

(a), Spring (b), Summer (c) and Fall (d). 857 

 858 

 859 

Fig. 4. Observed and simulated monthly mean O3 concentrations averaged for the North 860 

China Plain (NCP) (a), Yangtze River Delta (YRD) (b), Pearl River Delta (PRD) (c), and 861 

India (d).  862 
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 864 

 865 

 866 

Fig. 5. Modeled mean near surface wind fields (winds at 10 meters above ground) and the 867 

monsoon index in the boundary layer (0-1.5km) for winter (December, January, and February, 868 

a), spring (March, April, and May, b), summer (June, July and August, c), and autumn 869 

(September, October, and November, d).  870 
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 872 
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 874 

Fig. 6. Distributions of the contributions to near-surface ozone averaged for winter, spring, 875 

summer and autumn from industry (a-d), power, (e-h), residential (i-l), transport (m-p), 876 

biogenic (q-t) and fire/biomass burning (u-x) emissions.  877 

 878 
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 Fig. 7. 880 

Contributions to monthly mean ozone in NCP (a), YRD (b), PRD (c), and India (d) from 881 

different source regions (NCP: Beijing, Tianjin, Hebei, Shandong, and Henan; YRD: Anhui, 882 

Jiangsu, Shanghai and Zhejiang; SE China: Jiangxi, Fujian and Taiwan; Central China: 883 

Hunan and Hubei; South China: Guangxi and Hainan). 884 
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 888 

 889 

Fig. 8. Contributions to seasonally daily mean ozone (DJF, MAM, JJA, and SON) and MDA8 890 

ozone (DJF M8, MAM M8, JJA M8, and SON M8) in Beijing (a), Shanghai (b), Guangzhou 891 

(c), and New Delhi (d) from different source regions. 892 
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