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Abstract. This paper addresses the question of how much uncertainties in CO2 fluxes over Australia can be reduced by assim-

ilation of total-column carbon dioxide retrievals from the Orbiting Carbon Observatory−2 (OCO-2) satellite instrument. We

apply a four-dimensional variational data assimilation system, based around the Community Multiscale Air Quality (CMAQ)

transport-dispersion model. We ran a series of observing system simulation experiments to estimate posterior error statistics of

optimized monthly mean CO2 fluxes in Australia. Our assimilations were run with a horizontal grid resolution of 81 km using5

OCO-2 data for 2015. Based on four representative months we find that the integrated flux uncertainty for Australia is reduced

from 0.52 pgC y−1 to 0.13 pgC y−1. Uncertainty reductions of up to 90% were found at grid-point resolution over productive

ecosystems. Our sensitivity experiments show that the choice of the correlation structure in the prior error covariance plays a

large role in distributing information from the observations. We also found that biases in the observations would significantly

impact the inverted fluxes and could contaminate the final results of the inversion. Biases in prior fluxes are generally removed10

by the inversion system. Biases in the boundary conditions have a significant impact on retrieved fluxes but this can be miti-

gated by including boundary conditions in our retrieved parameters. In general, results from our idealised experiments suggest

that flux inversions at this unusually fine-scale will yield useful information on the carbon cycle at continental and finer scale.

1 Introduction

The future of climate change depends mainly on the trajectory of green-house gas concentrations in the Earth’s atmosphere, in15

particular carbon dioxide (CO2) (Arora et al., 2013). Emissions from fossil fuel, land-use and land use-change have added more

CO2 to the atmosphere than can be readily absorbed by the ocean and biosphere (Myhre et al., 2013). Quantifying the terrestrial-

and ocean-atmosphere carbon exchange is relevant for understanding the carbon cycle and climate since they play an important

role by absorbing more than half of anthropogenic CO2 emissions (Ciais et al., 2013). Despite important progress in quantifying

all the components in the global CO2 carbon budget, the amount of carbon uptake and release by land component remains20

poorly constrained by biosphere models. Currently, future predictions from most of the Dynamic Global Vegetation Models

(DGVMs) are highly uncertain about the behaviour of the carbon cycle (Sitch et al., 2008). Even though DGVMs simulate

a cumulative carbon uptake by 2099, the magnitude of the uptake varies considerably among them, especially at regional

scale (Sitch et al., 2013, 2015). Reducing the regional-scale CO2 flux uncertainties in these biogeochemical models (Canadell
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et al., 2010, 2011) is crucial to ascertain more accurate estimates of future climate projections (Friedlingstein et al., 2006;

Huntingford et al., 2009; Friedlingstein et al., 2014). Inverse modelling of CO2 fluxes (Ciais et al., 2010; Rayner et al., 2019)

can potentially help to constrain these uncertainties (Chevallier et al., 2010b) by directly using information from atmospheric

CO2 concentrations (Chevallier et al., 2005a, 2007; Baker et al., 2010).

Several studies over Europe (e.g. Broquet et al., 2011) and North America (e.g. Peters et al., 2007) have used ground-based5

CO2 measurements to estimate CO2 surface fluxes, which offer an accuracy of about 0.1-0.2 ppm. Despite their relatively

small measurement error, in-situ observations have some disadvantages, such as limited spatial representativeness. In-situ

measurements are traditionally located at remote sites, distant from strong sources and sinks of CO2. Finally, the existing in-

situ network leaves much of the world unobserved (Ciais et al., 2013). For instance, the sparseness and spatial inhomogeneity

of the atmospheric CO2 monitoring system in the tropics and Southern Hemisphere restricts the potential of global atmospheric10

inversions to constrain regional fluxes in continents such as South America, Africa and Australia (Gurney et al., 2002; Peylin

et al., 2013).

Satellite-based retrievals of total-column CO2 have the potential to address some of these shortcomings, since they have

much higher spatial coverage compared with surface networks (Rayner and O’Brien, 2001; Ciais et al., 2014). During the last

decade, satellite-derived estimates of the column-average CO2 mole fraction have improved considerably, in terms of vertical15

sensitivity, precision and spatial resolution. Before this period, satellite-based instruments had limited ability to constrain

surface CO2 fluxes, since their measurements were more sensitive to CO2 mixing ratios in the middle to upper troposphere and

not in the lower troposphere where surface CO2 fluxes have their greatest influence (Chevallier et al., 2005b).

The Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY; Burrows et al., 1995; Buch-

witz et al., 2015), which operated aboard ENVISAT during 2002-2012, was one of the first instruments with a more uniform20

sensitivity to CO2 throughout the atmospheric column (including the boundary layer) compared to earliest satellite instruments

such as the Operational Vertical Sounder (TOVS) (Chédin, 2003), the Infrared Atmospheric Sounding Interferometer (IASI)

(Crevoisier et al., 2009) and the Tropospheric Emissions Spectrometer (TES) (Kulawik et al., 2010). Despite its increased sen-

sitivity to the lower atmosphere, SCIAMACHY’s large nadir surface footprint (30 km by 60 km) and the low single-sounding

precision (2-5 ppm) restricted its ability to quantify in detail sources and sinks of CO2 (e.g. Reuter et al., 2014). In contrast25

to SCIAMACHY, the Greenhouse Gases Observing Satellite (GOSAT, launched on January 23, 2009) was the first satellite

created to measure CO2 concentration with sufficient precision and resolution to study surface sources and sinks of CO2

(Hamazaki et al., 2004; Yokota et al., 2009). Its smaller footprint (10.5 km at nadir) and high scan rate (approximately 10,000

soundings per day) has provided considerably more information about regional carbon fluxes in previously unobserved regions

(e.g. Parazoo et al., 2013).30

The Orbiting Carbon Observatory-2 OCO-2 (launched on July 2, 2014) was also designed to be sensitive to CO2 concen-

trations in the planetary boundary layer, with a even smaller nadir footprint (1.6 km × 2.2 km) and a higher precision than

GOSAT (Eldering et al., 2017). A recent validation experiment, which compares GOSAT and OCO-2 against the Total Carbon

Column Observing Network (TCCON) data (Liang et al., 2017) shows that in general OCO-2 has better accuracy in measuring

the atmospheric CO2 column concentration over 2014-2016. Liang et al. (2017) findings show that the mean biases of GOSAT35
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(FTS Level 2-3 data products, version02.xx) were larger than OCO-2. Over 2014-2016, the GOSAT mean bias was -0.62 ppm

with a precision of 2.3 ppm compared to OCO-2 biases (OCO-2 Lite File Product version 7), which was 0.27 ppm with a

precision 1.56 ppm. Because a wider detection coverage and higher spatial resolution, OCO-2 realize more accurate estimates

of carbon dioxide. However, and despite these differences, both satellites on-orbit have atmospheric CO2 detection capabilities

to be used in regional atmospheric inversions to infer CO2 surface fluxes.5

Since 2013, several studies have used GOSAT retrievals to estimate CO2 fluxes over the globe using inverse modelling

(Basu et al., 2013; Chevallier et al., 2014; Deng et al., 2014; Maksyutov et al., 2013), while just a few have used OCO-

2 data (Basu et al., 2018; Crowell et al., 2019). Most of these studies use global models with a relatively coarse spatial

and temporal resolution. For instance, the set of global three-dimensional models included in Basu et al. (2018) typically

have horizontal resolutions in latitude-longitude grid-cells between 1◦ up to 5◦. Coarse-resolution models capture large-scale10

transport processes but do not take full advantage of high-frequency information collected in the continental interior (Geels

et al., 2004). Uncertainties related to the simulation of large-scale transport lead to poorly constrained flux estimates (Chevallier

et al., 2014). Several studies (e.g., Geels et al., 2004, 2006; Göckede et al., 2010; Broquet et al., 2011; Lauvaux et al., 2012)

indicate that errors in the simulation of large-scale atmospheric transport can be reduced if the transport model is run at

sufficiently high resolution. Some of these studies (e.g., Broquet et al., 2011) performed a regional-scale variational inversion15

of the European biogenic CO2 fluxes on a 50 km resolution. Finer resolution models have the potential to be more successful

since they can offer a better representation of surface CO2 fluxes and variability, as well as a better simulation of the processes

driving high-frequency variability of transport (Schuh et al., 2010).

In this study, we present a regional-scale, four-dimensional variational flux inversion system to assimilate OCO-2 retrievals.

The study area here is Australia, chosen for the following three reasons. First, the current estimate of Australian CO2 fluxes20

is highly uncertain, mainly due to the uncertainties in the net primary productivity (NPP) simulated by biosphere models

(Haverd et al., 2013b; Trudinger et al., 2016). In general, uncertainties in these NPP estimates are mainly driven by errors in

model parameters (e.g., parameters associated with the leaf maximum carboxylation rate or the amount of chlorophyll content

in plants; Norton et al., 2018). Second, Australia has a sparse in-situ CO2 monitoring network (four stations operating in

our study year of 2015), so the broader coverage offered by satellite data may help to constrain fluxes. Third, Australia has25

reasonable coverage of OCO-2 measurements due to relatively low cloud, and the presence of three Total Carbon Column

Observing Network sites in the region provides good calibration/validation for the OCO-2 data in the region.

This paper aims to assess the likely uncertainty reduction for CO2 fluxes over Australia using a series of observing system

simulation experiments (OSSEs) and to test our four-dimensional flux inversion scheme. The structure of this paper is as

follows. Section 2 describes the flux inversions system, the OSSEs and the datasets used. Section 3 presents the main results30

found for our ensemble of inversions, such as degree of freedom for signal, percentage of uncertainty flux reduction at grid-cell

scale and uncertainty flux reduction aggregated by land cover type over Australia. Section 4 describes seven different sensitivity

experiments to test the robustness and the performance of our inversion. In Section 5 we further evaluate our inversion by using

real data; essentially a consistency test, this is done by comparing the posterior CO2 concentrations with OCO-2 data for March

2015. Sections 6 and 7 discuss the sensitivity experiments and summarise our findings.35
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2 Methods and Data

The methodology to perform our OSSEs follows Chevallier et al. (2007). This randomization approach is illustrated in Fig. 1

and follows four successive steps. First, we need to specify fluxes (see Section 2.4), boundary conditions and initial conditions

as inputs to the forward model (see Section 2.5). These inputs define the “true” field that we attempt to recover in the inversion.

We run the Community Multiscale Air Quality (CMAQ) model forward with these inputs to generate a four-dimensional5

concentration field. We sample the concentration field with the OCO-2 observation operator to generate perfect observations

(see Section 2.3). The perfect observations are perturbed following the observational error statistics to generate the “pseudo-

observations” used in the inversion. Second, we perturb the “true” fluxes according to the prior uncertainty to generate the prior

fluxes. Third, we perform the Bayesian inversion (see Section 2.1), using the prior fluxes and pseudo-observations. Finally, we

repeat the process of adding random noise to generate prior fluxes and pseudo-observations, and then running the flux inversion;10

these random realisations represent a sampling of the posterior error, taken as the difference between the posterior and true

fluxes. It can be shown that this difference is a realisation of a Gaussian distribution with zero mean and covariance given by

the true posterior covariance.

In this study the OSSEs experiments were performed only for the months of March, June, September and December 2015.

We ran an ensemble of five inversions for each month using different perturbations, generating five samples of the posterior15

PDF. In the following subsections we describe the main ingredients of this procedure.

2.1 Inversion Scheme

The inversion scheme for optimizing CO2 surface fluxes over Australia involves a Bayesian four-dimensional variational assim-

ilation system. The system is a generalised minimisation-based inverse-modelling framework, which can be applied to several

potential models. We refer to it hereafter as ‘py4dvar’. py4dvar finds an optimal estimate of the CO2 surface fluxes (xa) that20

fits both observations (y) and the prior fluxes (xb) (Ciais et al., 2010; Rayner et al., 2019). Assuming Gaussian PDFs, finding

this maximum a posteriori estimate is equivalent to minimising the cost function J(x) shown in Eq. 1 (Rayner et al., 2019).

J(x) =
1

2

[
(x−xb)TB−1(x−xb)

]
+

1

2

[
(H(x)−y)TR−1(H(x)−y)

]
(1)

The first term in Eq. 1 represents the sum of squared differences between the control variable (x) and its prior or background

state (xb). The second term measures the sum-of-squared difference between the model simulation, H(x), and observations25

(y) during the time window of the assimilation. The term H(x) is the function composition of an atmospheric transport

operator and an observation operator. Both terms in Eq. 1 are weighted by their respective error covariance matrices (B and

R), and the errors are assumed to be Gaussian and bias-free. As mentioned in the previous paragraph, the minimum of J(x)

is found by an iterative process rather than by an analytical expression. The minimization inside py4dvar is performed using

the Limited-memory BFGS (L-BFGS-B) algorithm, as implemented in the scipy python module (Byrd et al., 1995). The30
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minimization algorithm L-BFGS-B requires values of the cost function and its gradient, which are calculated using the CMAQ

forward model and the adjoint model, as shown in the third step in Fig. 1.

∇xJ = B−1(x−xb) +HT (R−1 [H(x)−y)]) (2)

The gradient of the cost function in Eq. 2 is calculated using the adjoint of the CMAQ model (version 4.5.1; Hakami et al.,

2007). We can observe that in the second term in Eq. 2, the adjoint model (H(x)) is applied to the vector R−1 (H(x)−y),5

which is often called the “adjoint forcing”, or simply the “forcing”, and represents the error-weighted differences between the

forward model and the observed concentrations. Applying the adjoint model to the forcing, running backward in time from

ti−i to t0, allows us to construct the gradient of the cost function,∇xJ(x).
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Figure 1. Diagram representing an overview of the Observing System Simulation Experiments (OSSEs) and how the inversion is performed

using the L-BFGS-B minimisation algorithm.

2.2 Choice of Control variables

Our underlying physical variables are the monthly-averaged fluxes at the spatial resolution of CMAQ (≈81 km). We do not

split fluxes by day and night, consistent with only using daytime satellite observations, which not subject to much influence by

diurnal cycles in CO2 fluxes (e.g., Deng et al., 2014; Houweling et al., 2015). Like most previous studies (e.g., Chevallier et al.,

2007; Baker et al., 2010; Basu et al., 2013; Crowell et al., 2019) we use spatially correlated prior uncertainties to account for5

systematic errors in flux estimates. The variables exposed to the minimiser are not the fluxes themselves, but rather multipliers

for the principal eigenvectors of B. We truncate the eigen-spectrum at 99% of the total variance; doing this significantly

reduces the size of the control vector x (relative to if the control vector was comprised of the fluxes at each grid-cell). This
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requires a different number of eigenvectors for different months (Table 1). The length of the control variables for our sensitivity

experiments are defined in Table 6. Similar to Chevallier et al. (2005a), and because our inversion assimilation window is short,

we also include (in the state vector for the inversion) a perturbation to the initial conditions (ICONs) of the CO2 concentration

field. Because we are not interested on the analysis of this field, and in order not to significantly increase the size of the control

vector, we added a scaling factor for the ICONs to our control variables x = {i0,e0,e1, ...,en}, where i0 is the factor we solve5

for ICONs, en is the number of eigen-vectors. The scaling factor was applied to the full three-dimensional concentration field.

Some freedom in the initial condition avoids fluxes being unduly influenced by a mismatch in the initial concentrations. We

assumed 1% (≈4 ppm) uncertainties for the scaling factor.

Table 1. Number of eigen-vectors in-

cluded in our control vector (x)

Months Control variables (x)

2015-03 811

2015-06 822

2015-09 745

2015-12 716

2.3 Observations and their Uncertainties

We used OCO-2 level 2 satellite data (Lite file version 9) distributed by the National Aeronautics and Space Administration10

(NASA) (available for download from https://oco2.gesdisc.eosdis.nasa.gov/data/s4pa/OCO2_DATA/). We used the column-

averaged dry air mole fraction of CO2, referred to as XCO2. We selected bias-corrected data, as described by Kiel et al. (2019).

We used nadir and glint soundings over land that were flagged as good quality except in some of our sensitivity experiments

(described in Section 4), in which we excluded glint mode data. We computed a weighted average for all OCO-2 measurements

using a two-step process similar to Crowell et al. (2019). The first step is to average all the soundings into 1-second intervals15

and the second is to average these 1-second averages into the CMAQ vertical columns (81 km × 81 km) for each satellite

pass, where the transit time over the CMAQ grid-cell is about 11 seconds. For the 1-second averaging process, the weighted

averaging is defined in Eq. 3.

x̂CO2
=

∑n
i=1wi×xCO2, i∑n

i=1wi
(3)
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where wi = 1
σ2
i

is the squared reciprocal of the OCO-2 uncertainties (σi). To get the uncertainties of these averaged soundings,

we considered 3 different forms of uncertainty calculation (similar to Crowell et al. (2019)). First if we assumed that all errors

are entirely correlated in a 1-second span, we can define the uncertainties as shown in Eq. 4.

σ2
s =

1

N

[
N∑
i=1

σi

]2
(4)

However, and because the average shown in Eq. 4 is sometimes low, we also considered the standard deviation of the XCO25

measurements (here referred to as the spread, or σr, of the OCO-2 measurements). In other words, if the spread (σr) of the

XCO2 measurements were higher than the XCO2 uncertainty (σi), we used the spread value as shown in Eq. 5. We did this

because the spread in OCO-2 measurements may reflect real differences across the field within a 1-second timespan.

σ2
r =

1

N

N∑
i=1

[x̄CO2 −xCO2, i]
2 (5)

Third, we also considered a baseline uncertainty (σb), based on an error floor (ε) over land and ocean, as shown in Eq. 6. We10

did this because sometimes we did not have enough OCO-2 soundings to compute a realistic spread. The values for our baseline

uncertainties were taken to be 0.8 and 0.5 ppm over land and ocean, respectively. Finally, and after defining the uncertainties

for the 1-second averages, we choose the maximum value between σs, σr and σb.

σ2
b =

[
ε2base

N

]
(6)

The second step was to take these 1-second averages and average them within the CMAQ vertical columns using Eq. 7.15

x̄CO2
=

∑J
j=1wj × x̂CO2∑J

j=1wj
(7)

where wj = 1
σ2
j

represents the squared reciprocal of the uncertainties average in the 1-second span (σj) and J is the number

of those 1-second values. The average uncertainty over the CMAQ domain (Eq. 8) was similar to the procedure outlined for

1-second average in Eq. 4. However, we also added a term to represent the contribution of the model uncertainty (σm). We

assumed that the model had a uncertainty of about 0.5 ppm. The observational error covariance matrix R was assumed to be20

diagonal.

σ̄2 =
1

J

 J∑
j=1

σj

2

(8)

After averaging the OCO-2 sounding over the CMAQ domain, we generated a set of pseudo-observations as described in step

1 of Fig. 1. In this process, we run the CMAQ model forward. We start with an assumed set of CMAQ inputs, which includes
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fossil fuel emissions, fires, land and ocean fluxes (see Section 2.4 for a description of these fluxes). Our py4dvar system takes

in a vector x representing perturbations to the assumed emission profile, which is set to all be zeros in the “true case”, and

converts it into a format accessible to CMAQ model (e.g., copying the monthly average values into the hourly resolution CMAQ

model is configured to run with). These perturbations to the emissions (zero values in the “true” case) are then added to the

assumed emission profile for CMAQ before the model is run to produce a four-dimensional CO2 concentration field, as is in5

step 2 of Fig. 1. Fourth, this modelled CO2 concentration field is then transformed using the OCO-2 observation space. Once

is transformed, we perturbed the “true observations” with Gaussian random noise to generate pseudo-observations as follows.

y′ = ysim +R1/2 ·p (9)

The first term of Eq. 9, ysim, represents the OCO-2 simulated observations using the “true” fluxes. The second term of Eq. 9

p is a vector with the same size as ysim and contains normally distributed random numbers with mean zero and variance one.10

Scaling p by the square root of R ensures that the resulting realisation has the assumed error distribution.
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Figure 2. Spatial distribution of OCO-2 soundings (Land nadir and glint data) over the CMAQ domain for March, June, September and

December 2015.

2.4 Prior CO2 fluxes and their uncertainties

As is stated in Section 2.5, the CMAQ model needs hourly emissions to run forward in time. We use the atmospheric convention

that a negative flux value indicates an uptake by the surface and a positive value means a release of carbon to the atmosphere.

Our total fluxes were comprised of four datasets representing elements of the CO2 fluxes: terrestrial biospheric exchange,

fossil-fuel, fires and air-sea exchange. Hourly biosphere CO2 fluxes were calculated by combining two data sets: The Net5

Ecosystem Exchange (NEE) at 0.5◦ × 0.5◦ and daily resolution and the Gross Primary Production (GPP) at 0.5◦ × 0.5◦ and

3-hourly resolution from the Community Atmosphere Biosphere Land Exchange (CABLE) model (Harverd, 2018).
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The post-processing of 3-hourly NEE data involved four steps. First, we calculated daily GPP. Then we used daily GPP to

estimate the daily Ecosystem Respiration (ER); in terms of carbon balance, the ER can be calculated as ER = GPP − NEE.

Finally, daily ER was assumed equal throughout the day and subtracted from 3-hourly GPP to obtain 3-hourly NEE. These

3-hourly NEE fluxes were interpolated to hourly resolution. Recall that for our OSSEs, only the uncertainties, not the values

themselves, are used. Given that the optimization was performed to optimize monthly fluxes, the uncertainties were computed5

with monthly resolution. We assumed that the biosphere flux uncertainties were equal to the Net Primary Production (NPP)

simulated by CABLE, with a ceiling of 3 gC m−1 day−1 following Chevallier et al. (2010a).

Fossil-fuel CO2 emissions were obtained from the Fossil Fuel Data Assimilation System (FFDAS) (Rayner et al., 2010;

Asefi-Najafabady et al., 2014). For this study, we used the 2015 FFDAS dataset (Gurney, 2018). The FFDAS uncertainty

estimates were created by multiplying the FFDAS emissions dataset with a factor of 0.44. This factor was calculated by linear10

regression between the mean fluxes and the spread of an ensemble of 25 realizations of posterior CO2 fluxes, following Asefi-

Najafabady et al. (2014). We did not directly use those realizations to get the posterior FFDAS uncertainties, because the

realizations only contained emissions over land (i.e., excluding domestic, aviation, and maritime emissions). These “missing”

emissions were taken from the Emissions Database for Global Atmospheric Research (EDGAR) (Olivier et al., 2005). The

highest value of FFDAS uncertainty over land was 2.3 gC m−2 day−1 and over ocean 0.5 gC m−2 day−1. This surprisingly15

large value over the ocean was a coastal point coinciding with Perth (Western Australia), where one of the largest and busiest

general cargo ports in Australia is located.

Fire emissions were taken from the Global Fire Emission Database, version 4 (GFEDv4). This version of GFEDv4 provides

gridded monthly fire emissions at 0.25◦ (van der Werf et al., 2017). The GFEDv4 product combines four satellite datasets: the

Moderate Resolution Imaging Spectroradiometer (MODIS) burned area data product with active fires, data from the Tropical20

Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR).

We used biomass-burning carbon emissions, a product based on GFEDv4 and the Carnegie Ames Stanford Approach (CASA)

biosphere model (Randerson et al., 1996). Within the CASA model fire carbon losses are calculated for each grid cell and

month, based on fire carbon emissions based on burned area from the GFED dataset. We assumed uncertainties for GFEDv4

corresponding to 20% of the biomass burning carbon emissions.25

Ocean CO2 fluxes were derived from the Copernicus Atmospheric Monitoring Service (CAMS) version 15r2 (Chevallier,

2016). The CAMS dataset is a global retrieval product, with a horizontal resolution of 3.75◦ in longitude and 1.875◦ in latitude

at 3-hourly temporal resolution. Prior ocean fluxes estimated by CAMS were based on Takahashi et al. (2009). We assumed

that the error statistics were uniform 0.2 gC m−2 day−1 over ocean, as in Chevallier et al. (2010a).
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Figure 3. Monthly mean of CO2 prior uncertainties accounting for the major terms in the CO2 budget (anthropogenic fluxes, fires, land and

ocean exchange), in units of gC m−2 day−1.

After defining the emission profiles and their uncertainties, we incorporated spatial correlations into our prior error covari-

ance matrix B. We assume no temporal correlations. This differs from Chevallier et al. (2010a) who used a temporal correlation

length of four weeks, though this would only introduce weak correlations among our monthly-averaged fluxes. Following (Basu

et al., 2013, section 3.1.1), the spatial correlation between grid-points r1 and r2 was defined as:

C(r1, r2) = exp−d(r1,r2)/L (10)5

where d(r1, r2) is the distance (in km) between the two grid-points, and L, the correlation length, was assumed to be 500 km

over land and 1000 km over ocean following Basu et al. (2013).
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After defining B, we performed an eigen-decomposition, B = WTwW, where W is a matrix of eigen-vectors and w is a

diagonal matrix of corresponding eigenvalues. Figure 4a shows the cumulative percentage variance and demonstrates that 20

eigenvectors account for about 60% of the variance in B. We truncate the eigen-spectrum to retain 99% of the overall variance.

The number required varied each month but was at most 400, compared to approximately 6,700 grid-points. The main reason

for this strong truncation is the large correlation length relative to the CMAQ grid resolution. We will test and discuss this later.5

We solve the minimization with a change of variable xb. Given that our control vector x depends on the size of the multipliers

of the principal eigenvectors of B, our vector xb was reconstructed (as is given in Eq. 11). This reconstruction includes a new

vector q, which is normalized by the square-root of the eigenvalues of B; this transformation involves minimization with

respect to q, rather than xp.

This step (often called pre-conditioning) accelerates convergence. It also simplifies the system since, all target variables have10

unit standard deviation. In our case, where we solve for perturbations around a background state, they also have a true value of

zero. Generating our prior flux for the inversion is achieved by defining a vector of normally distributed random numbers with

unit standard deviation and zero mean. The process to generate the pseudo prior is represented in Eq. 11.

xb = xp +WTw1/2q (11)

a b

Figure 4. The cumulative percentage variance explained (a) and the eigenvalues (b) in the prior error covariance matrix.

2.5 CMAQ Model Configuration15

We used the CMAQ modelling system and its adjoint (version 4.5.1; Hakami et al., 2007) to conduct numerical simulation of the

atmospheric CO2 concentration over the Australian region. The CMAQ modelling system is an Eulerian (gridded) mesoscale

Chemical Transport Model (CTM), initially created for air quality studies. It has been previously used to characterise the
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variability of CO2 at fine spatial and temporal scales (Liu et al., 2014). The choice of an older version of the CMAQ modelling

system (cf. the latest version, v5.3) relates to the requirement of the model adjoint (needed to calculate the gradient of the cost

function in the inversion).

We treat CO2 as an inert tracer, neglecting its chemical production (Folberth et al., 2005; Suntharalingam et al., 2005).

Thus modelled concentrations are determined only by emissions, the atmospheric transport (horizontal and vertical advection5

and diffusion), and initial and boundary conditions. Initial and boundary conditions were interpolated from atmospheric CO2

concentration data from the Copernicus Atmospheric Monitoring Service (CAMS) global CO2 atmospheric flux inversions

Chevallier et al. (2010a). These data have a resolution of 3.75◦ in longitude and 1.875◦ in latitude with 39 vertical layers

in the atmosphere; this dataset was also the basis for the oceanic fluxes used in the prior. The CMAQ chemical transport

model (or CCTM) also requires 24-hourly three-dimensional emission data (recall that in our py4dvar system we solve for a10

perturbation around these background CO2 fluxes). Here our background CO2 fluxes were generated by adding the four CO2

flux fields described in Section 2.4: carbon exchange between biosphere and atmosphere, carbon exchange between ocean and

atmosphere, fossil-fuel emissions, and biomass burning emissions.

The CMAQ model is an off-line model, and thus requires three-dimensional meteorological fields as inputs for the transport

calculations. We simulated meteorological data using the Weather Research and Forecast model (WRF) Advance Research15

Dynamical Core WRF-ARW (henceforth, WRF) version 3.7.1 (Skamarock et al., 2008). Details on the physics schemes used

in our WRF configuration are shown in Table 2. Our domain has a horizontal resolution of 81 km and 32 vertical layers from

the surface up to 50 hPa. The numerical simulation was carried out on a single domain (i.e., non-nested) of 89 × 99 grid-cells.

The meteorological initial conditions were based on the ERA-Interim global atmospheric reanalysis (Dee et al., 2011), which

has a resolution of approximately 80 km on 60 vertical levels from the surface up to 0.1 hPa. Sea surface temperatures were20

obtained from the National Centers for Environmental Prediction/Marine Modeling and Analysis Branch (NCEP/MMAB).

The WRF model was run with a spin-up period of 12 hours. The initial spin-up period stabilizes the model, that is, the

inconsistencies between the initial and boundary conditions diminish in this period.

The WRF modelled meteorology was nudged towards the global analysis fields above the boundary layer. The default grid-

nudging configuration was used; that is, nudging coefficients were assumed to be 10−4 s−1 for wind and temperature and 10−525

s−1 for moisture, as suggested by Deng and Stauffer (2006). Nudging has been widely used in mesoscale modelling as an

effective and efficient method to reduce model errors (Stauffer and Seaman, 1990). It relaxes the model simulations of wind,

temperature and moisture towards driving conditions, preventing model drift over a long-term integration.
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Table 2. Physics parameterisations used in WRF model setup

Category Selected schemes

Microphysics Morrison double-moment (Morrison et al., 2009)

Short wave radiation Rapid Radiative Transfer Model (RRTMG) scheme (Iacono et al., 2008)

Long-wave radiation Rapid Radiative Transfer Model (RRTMG) scheme (Iacono et al., 2008)

Surface layer Monin-Obukhov (Monin and Obukhov, 1954)

Land/water surface The NOAH land-surface model and the urban canopy model (Tewari et al., 2007)

Planetary Boundary Layercs (PBL) Mellor–Yamada–Janjic scheme (Janjić, 1994))

Cumulus The Grell-Devenyi ensemble scheme (Grell and Dévényi, 2002)

The WRF model output was post-processed by the Meteorology-Chemistry Interface Processor (MCIP) version 4.2 (Otte

and Pleim, 2010). MCIP prepares the meteorological fields in a form required by CMAQ and performs horizontal and vertical

coordinate transformation. In this process, we removed the outermost six rows and columns from each edge of the WRF model

domain, so the horizontal CMAQ domain was set up (with 77× 87 grid cells). This was done to prevent numerical instabilities

in the “relaxation zone” (the exterior rows and columns of the horizontal domain), where the lateral meteorological boundary5

conditions and the WRF model’s internal physical processes both contribute.

2.6 Observation Operator: CMAQ CO2 simulations and OCO-2 measurements

As is seen in Eq. 1, we need to compare the CMAQ simulated CO2 concentration with OCO-2 satellite retrievals. As outlined

in Section 2.3, we averaged observations to approximate the observed XCO2 for any CMAQ grid-cell observed by OCO-2.

To compare modelled and observed concentrations, we used the Eq. 12 (Rodgers and Connor, 2003; Connor et al., 2008)) to10

convolve the simulated CO2 concentration with the relevant averaging kernels, as follows:

xmCO2
= xaCO2

−
∑
j

hjaCO2,jxa +
∑
j

hjaCO2,jx
m
j , (12)

where xa is the OCO-2 a priori, h is a vector of pressure weights, hj is the mass of dry air in layer j divided by the mass of

dry air in the total column, aCO2
is the averaging kernel of OCO-2, xa is the OCO-2 a priori profile, and xm is the simulated

profile from the CMAQ model. In our py4dvar system, the first and second terms in Eq. 12 represent an “offset term”. The15

OCO-2 averaging kernel is defined on 20 pressure levels and we interpolate these to the CMAQ vertical levels.

3 Results

In this section, we present an assessment of the uncertainty reduction resulting from the flux-inversion process. First, we present

an analysis of the convergence of our minimization and evaluate the information content (degrees of freedom for signal) of
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our OSSE simulation experiments. This is followed by an analysis of the uncertainty reduction categorized by MODIS land

coverage. Finally, we present seven sensitivity experiments to determine the robustness and consistency of our inversions.

3.1 Convergence Diagnostic

One interesting diagnostic of the convergence is to compare the cost function at the end of the optimization to its expected

theoretical value. In a consistent system, the theoretical value of the cost function at its minimum should be close to half5

the number of assimilated observations, assuming all error statistics are correctly specified (Tarantola, 1987, p. 211). Table 3

shows the mean (across our five realisations) of the cost function J(x) and its gradient norm ∇xJ . For example, with 842

observations, the theoretical value should be 421. We see that the theoretical value is reached to within a few percent for all

months. We see a corresponding decrease in the gradient norm by about 99%.

Table 3. Convergence diagnostics of the inversion system using an ensemble of five independent OSSEs for March, June, September and

December 2015.

Months Mean J0(x) Mean ∇xJ0 Mean Jf(x) Mean ∇xJf % reduction ∇xJ Mean DFS N/2

2015-03 2481.65 5365.17 418.51 71.59 98.67 38.66 421

2015-06 3099.77 4447.81 353.57 46.16 99.96 33.29 347

2015-09 6679.85 9158.88 508.77 58.25 99.36 30.30 501

2015-12 3318.09 4839.83 355.89 33.70 99.30 27.36 358

3.2 Degrees of Freedom for Signal10

The number of degrees of freedom for signal (DFS) in our OSSEs is another useful diagnostic of the inversion (Rodgers, 2000,

Eq. 2.46). The DFS quantifies the number of independent pieces of information that the OCO-2 measurements can provide

given the prior information. In our experimental framework, we computed the DFS following (Chevallier et al., 2007, section

3.4.):

J(xa) = (xa−xb)TB−1(xa−xb), (13)15

where xa represents our posterior estimates. Table 3 shows that on average the DFS in the prior for our four months is about

30. This value is consistent with Fig. 4a and b, which shows that only about 20 eigenvalues account for 60% of the variance in

our prior error covariance matrix. The inversion cannot add much information to other components, limiting the DFS. Australia

is a special case in this respect since most of the continent comprises semi-arid and arid regions. We assumed that land flux

uncertainties are driven by NPP, as simulated by CABLE. Thus, the prior uncertainty will be small in arid and semi-arid20

regions.
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3.3 Spatial distribution of uncertainty reduction

The uncertainty reduction between the posterior and prior fluxes is a useful way to evaluate the potential of satellite data to

constrain CO2 fluxes. We calculated the percentage uncertainty reduction following (Chevallier et al., 2007, section 3.5.), as

follows:

U =

(
1− σa

σb

)
× 100% (14)5

where σa and σb are the posterior and prior standard deviations, respectively. Figure 5 displays the monthly uncertainty re-

duction in CO2 fluxes for (a) March, (b) June, (c) September and (d) December 2015. We have masked areas with σb < 10−7

mol m−2 s−2. We also mask areas with negative uncertainty reduction. Such uncertainty increase is simply a result of the

small number of realisations. We will now describe the magnitude and spatial patterns in the uncertainty reduction, and in

Section (3.4) we will discuss the uncertainty reduction aggregated by land cover class.10

In March, the largest uncertainty reductions (Fig. 5a) are located in the north of Australia. In this area, the uncertainty

reduction is greater than 30%, reaching values up to 80%. We note that the regions with the largest reduction in uncertainty

coincide with the locations with high prior uncertainty (Fig. 3). In June 2015 (Fig. 5b), for instance, the largest uncertainty

reduction was found in the north, north-east, east and south-east of Australia, where values range between 70−80% and

60−70% respectively. Uncertainty reduction in September (Fig. 5c) are higher compared to June in the south-east of the15

country, ranging between 70−80%. This is consistent with the fact that September is in the middle of the growing season in

this part of Australia and our prior uncertainties are driven by NPP. Also, more satellite soundings are available for this region

in September compared to other months. The uncertainty reduction in December (Fig. 5d) decreases in the north of Australia

to 20−30%. This is likely due to the fact that relatively few OCO-2 soundings are available in that month (Fig. 2), due to

increased cloud coverage during the wet season in northern Australia. This is discussed further in the next section.20
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Figure 5. The percentage error reduction of the monthly mean CO2 surface fluxes for March, June, September and December 2015 over the

CMAQ model domain. The percentage of error reduction is defined as (1−σa/σb), with σa and σb representing, respectively, the posterior

and prior uncertainties of the CO2 fluxes emissions.

3.4 Uncertainty reduction over Australia by MODIS land cover classification

To get a better understanding of the constraint on CO2 surface fluxes provided by OCO-2, we aggregated the prior and pos-

terior fluxes into six categories over Australia: grasses and cereal (GS), shrubs (SH), evergreen needle-leaf forest (ENF),

savannah (SAV), evergreen broadleaf forest (EBF), and unvegetated land (UN). We used the MODIS Land Cover Type Prod-

uct (MCD12C1) Version 6 data product. The distribution is shown in Fig. 6. After aggregating fluxes for each realisation we5

calculated standard deviations and uncertainty reductions following Eq. 14.
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Figure 6. Aggregation of land cover classes over CMAQ domain using MODIS Land Cover Type Product (MCD12C1) Version 6 data

product. Color bars represent each category: (0) ocean, (1) grasses and cereal, (2) shrubs, (3) evergreen needle-leaf forest, (4) savannah, (5)

evergreen broadleaf forest, (6) unvegetated land.

The bar chart in Fig. 7 shows the prior (green bar) and the posterior (orange bar) uncertainties of our five realizations (in PgC

y−1) split into six land-use classes for (a) March, (b) June, (c) September, and (d) December 2015. The uncertainty reduction

for each land-use class and each month are represented by circles. Also shown is a second estimate of the prior uncertainties,

comprising 100 realizations (purple bar). The prior of 100 realizations is plotted to assess the representativity of the five random

prior realizations of the prior uncertainties. We see clearly in each figure that with only five realizations we can represent quite5

well our assumed prior uncertainties (we should also note that, due to computational limitation, the uncertainty reduction is

based only on these five realizations).

The largest uncertainty reduction in March is over SH (81%). The large uncertainty reduction is likely due to the large

number of OCO-2 soundings in this region (464 observations). The next largest uncertainty reductions are over GC (78%) and

ENF forest (68%) likely due to the relatively large NPP in these regions (Fig. 3a).10

June shows less uncertainty reduction for GS (51%) compared to March likely due to the smaller number (one third as many)

of OCO-2 soundings (Fig. 2) in southern Australia. similarly, uncertainty reduction over the SH ecotype decreases. Due to the

small number of realizations, however, this percentage of reduction might not be representative of this region. For this category

we can see that the prior uncertainty with 5 realizations is about 0.1 PgC y−1 whereas with 100 realizations it is about 0.25

PgC y−1. Uncertainty reduction over SAV is about 31%, similar to the percentage of reduction found in March. Even though15

we found relatively few soundings over EBF and ENF forest in June, uncertainty reductions for these regions are 47% and 7%,

respectively. The reduction over UN areas is about 39%, again demonstrating the potential of OCO-2 data to constrain fluxes.

In September the most significant uncertainty reduction was found over EBF (74%) and GC (68%) compared with all other

months, associated with the peak of the growing season in much of Australia. Uncertainty reductions in these categories are
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much larger due to the increase of OCO-2 soundings in south-eastern Australia (see Fig. 2c). The uncertainty reduction over

areas designated as SAV and ENF forest is about 53% and 30% respectively. Over areas classified as SH and UN, we see a

weaker uncertainty reduction of 22% and 33%.

Similar to September, in December we found the largest uncertainty reductions over EBF (72%) in line with the structure of

the uncertainties seen in southern-east of Australia in (Fig. 3c). The percentage of uncertainty reduction found over GC (77%)5

may not represent the precise percentage for this category (given the small number of realisations used). For this category,

we see that the prior uncertainties of 100 realizations is about 0.17 PgC y−1, whereas with five realizations it is about 0.28

PgC y−1. We would expect to have a smaller uncertainty reduction for this category due to scarcity of soundings available

in the North and north-eastern Australia for this month, likely due to cloudiness associated with the wet season. Uncertainty

reductions found over areas classified as SH, SAV and ENF were 56%, 62%, and 36% respectively. Different to other months,10

the uncertainty reduction over UN are about (58%).

Figure 7. Prior and posterior uncertainties in PgC y−1 aggregated over five different classes over Australia domain using MODIS Land

Cover Type Product (MCD12C1). Green and orange bar represent the prior and posterior uncertainties of five realizations, while the purple

bar represents prior uncertainties of 100 realizations. Circles show the percentage of uncertainty reduction by each category.
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3.5 Uncertainty reduction in the total Australian CO2 flux

Table 4 shows the standard deviation of the total CO2 flux uncertainty over Australia for the four months in which inversions

were run. Months with the largest uncertainty reductions are found in December (80%), March (76%) and September (70%).

In contrast with these results, the smallest reduction is found in June (31%). The last of these results is not surprising, since

June is the month with the smallest number of OCO-2 soundings (for this month we only find 694 observations compared to5

September and March, with 1002 and 842 soundings, respectively).

Differences in the uncertainty reduction between months not only depend on the number of soundings and the structure of

the uncertainty but also other variables (e.g. wind direction). Coastal grid-points present a problem for our inversion when the

wind direction comes from the ocean because our system only assimilates data over land). Prevailing winds in this coastal zone

restrict the ability of OCO-2 to constrain surface fluxes (Supplementary Figs. S1-S3).10

Table 4. Prior and posterior uncertainties in PgC y−1 for an ensemble of five realizations aggregated over the Australia continent.

Months
Prior Posterior Reduction Prior Reduction

(PgC y−1) (PgC y−1) % (PgC y−1)

2015-03 0.62 0.15 76 0.47

2015-06 0.49 0.34 31 0.16

2015-09 0.55 0.17 70 0.39

2015-12 0.63 0.12 80 0.51

4 Sensitivity Experiments

To assess the robustness and consistency of the previous results, we performed seven different sensitivity experiments (S1,

S2, S3, S4, S5, S6-A, S6-B), which are summarized in Table ??. These experiments follow the same randomisation approach

shown in Section 2, but with the following changes:

– S1: Test the effect of reducing the correlation lengths in our prior error covariance matrix B. The correlation length was15

changed from 500 km to 50 km over land, and from 1000 km to 100 km over the ocean. By reducing the correlation

length, the number of retained eigenvectors increased from 811 (control experiment) to 4101. The shorter correlation

lengths allow a larger selection of possible flux structures, requiring more eigenvalues to capture the possible variance.

– S2: Assess what percentage of uncertainty reduction of the Australian flux is affected by excluding glint land observations

from our inversion. Our control cases treat land nadir and glint data as one single dataset because of the small offset20

between them. The number of observations influences the footprint coverage, and therefore, the number of fluxes we

can solve. In this particular experiment, we would expect a smaller uncertainty reduction of Australian flux because the

number of observations has been reduced from 842 to 419.
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– S3: Evaluate the effect of having uniform uncertainties over land and a simplified structure of B. In this case, we assumed

uncertainties of 3 gC day−1 over land with correlation lengths of 5 km over land and 10 km over ocean. This change

effectively transforms B into a diagonal matrix.

– S4: Test the impact of adding a bias of 3.3 ppm to the OCO-2 observations. Here, biases were calculated by taking the

differences between the raw and bias-corrected XCO2 values found in the OCO-2 retrieval product. We performed this5

experiment because some studies (e.g., Chevallier et al., 2007) indicate that just a few tenths of a part per million bias in

the observations are enough to prevent the inversions from converging on optimal fluxes.

– S5: Test the impact of introducing a mean absolute bias of 0.21 PgC y−1 to prior fluxes. In this experiment, the prior bias

were created using a normal Gaussian random perturbation of the prior uncertainty. For all five realization, biases were

introduced as constant component.10

– S6-A: Test the impact of adding bias in the boundary conditions (BCs). We increased the BCs simulated by adding a

uniform offset of 0.5 ppm on each grid cell. In this case, we did not solve for BCs in the inversion.

– S6-B: Assess the impact of incorporating BCs in the inversion system to deal with the bias introduced in S6-A. BCs

were introduced to the control vector x = {i0,e0,e1, ...,en, b0, ..., b7} as eight boundary regions b0, ..., b7 (representing

the upper and lower areas of the North, South, East and West sides of the rectangular domain). We did not solved the15

BCs in the same way that we solve for the surface fluxes, as they are not among the key results (i.e., BCs were treated as

nuisance variable). In this case, we gave the optimizer the ability to modify the BCs while it is optimizing surface fluxes.

For this test, we assumed uniform uncertainty of 1 ppm s−1. This is applied as an additive perturbation to temporally

and spatially varying concentration boundary conditions based on the CAMS global CO2 simulations.

4.1 Degrees of Freedom for Signal20

Table 6 shows the number of retained eigenvalues from B and the DFS for sensitivity experiments S1, S2, S3 and control

cases. Experiment S1 shows that merely reducing correlation lengths does not lead to extra information being resolved by

the observations. S2 shows that, as expected, subtracting observations from our inversion resolves less information on fluxes.

Experiment S3 (in which we reduce correlation lengths but also increase the uncertainty on many grid points) demonstrates

an increase in the number of components resolved by the observations. The comparison of S1 and S3 suggests it is the low25

uncertainty rather than the smoothness imposed by the uncertainty correlations that limits the DFS.
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Table 5. A brief description of the sensitivity OSSEs performed for March 2015.

Case Lland Locean LN LNG Uniform Mean obs bias Mean prior bias BC bias Solve for BC bias

(km) (km) uncertainties (B) (ppm) (PgC y−1) (ppm)

Control 500 1000 N Y N 0 0 0 N

S1 50 100 N Y N 0 0 0 N

S2 500 1000 Y N N 0 0 0 N

S3 5 10 N Y Y 0 0 0 N

S4 500 1000 N Y N 3.3 0 0 N

S5 500 1000 N Y N 0 0.21 0 N

S6-A 500 1000 N Y N 0 0 0.5 N

S6-B 500 1000 N Y N 0 0 0.5 Y

Land nadir data is defined as (LN), and land nadir and glint data as (LNG).

Table 6. Number of degrees of freedom for signal (DFS) in the prior flux uncertainty and the number the principal eigenvector in the prior

error covariance matrix for sensitivity experiments S1, S2 and S3.

Sensitivity Experiments Mean DFS Principal Eigenvectors

Control 38.66 811

S1 34.38 4101

S2 35.32 811

S3 96.56 3456

4.2 Spatial distribution of uncertainty reduction over Australia

Figure 8 shows the spatial distribution of the uncertainty reduction at grid-scale over Australia for sensitivity experiments S1,

S2 and S3. These figures should be compared to Fig. 5a (control case). Experiment S1 shown in Fig. 8a demonstrates that the

correlation length plays a significant role in the uncertainty reduction. A lower correlation length yields a lower reduction of

the uncertainties. For example, the error reduction over the productive areas in northern and north-eastern Australia is between5

0−20% compared to the control experiment’s 40−80%. This implies that longer correlation length-scales allow for information

to be effectively “transferred” in space, thus pooling data over a wider region and magnifying the benefit from the assimilation.
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Experiment S2 (Fig. 8b) illustrates that decreasing the number of observations, also reduces the percentage of reduction per

grid-cell. The uncertainty reduction (40−60%) is much weaker than the control experiment. These results complement Table 6,

where the DFS decrease from 38.66 (control experiment) to 34.38 (S2).

Experiment S3 (Fig. 8c) shows how the structure and magnitude of the prior uncertainty influence uncertainty reduction.

The uncertainty reductions are distributed almost uniformly across Australia and their values range between 0−20%. Our as-5

sumption of a linear relationship between uncertainty and NPP means much of Australia has negligible impact on the prior

uncertainty in the control case. This result shows the importance of that assumption. Assuming equal uncertainty across Aus-

tralia may have a significant impact on the final total flux estimate, because most of the continent is largely composed of arid

and semi-arid land. The small percentage of uncertainty reduction is due to the negligible correlation length assumed in the

prior error covariance matrix.10
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(c) Sensitivity case S3
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Figure 8. Maps of the percentage of error reduction for the three sensitivity cases. (a): using only nadir OCO-2 sounding and correlation

lengths 50 km and 100 km. (b): using “nadir” and “glint” OCO-2 sounding and correlation lengths of 500 km and 1000 km. (c): uniform

uncertainties over land and ocean, and correlation lengths 5 km and 10 km.
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4.3 Uncertainty reduction over Australia by MODIS land cover classification

Fig. 9 shows the uncertainty reduction for the sensitivity cases S1, S2, and S3 aggregated by ecotype. There is good consistency

between the geographical distribution (Fig. 8) and these spatial aggregates. Thus for case S1, the uncertainty reductions were

found to be small compared to the results in the control experiment (Fig. 7a). For example, the sensitivity case S1 in Fig. 9a

shows uncertainty reductions over GS and UN are about 30% and 1%, respectively. No uncertainty reductions are observed5

over SH, SAV, EBF and ENF. Because of an insufficient number of realizations, for these particular categories, we found a

negative error reduction. In these land-use classes, we display the posterior to be equal to the prior uncertainty.

Similarly, case S2 (Fig. 9b) displays significantly weaker uncertainty reductions for some of the six land-use classifications

compared to the control experiments ((Fig. 7a). For instance, the fractional uncertainty reductions over GC and SH reach values

of about 51% and 57%, respectively. In the control experiment in (Fig. 7a) these values were 78% and 81% respectively. As10

mentioned in the previous section, the stronger posterior reduction is due to the correlation length in the prior covariance and

an increase of the OCO-2 soundings over Australia. Findings in the sensitivity case S3 (Fig. 9c) shows similar results to those

found in sensitivity case S1: the smaller the correlation length, the less efficient the inversion.
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Figure 9. Sensitivity experiments for the prior and posterior uncertainties in PgC y−1 aggregated over six different classes over Australia

domain using MODIS Land Cover Type Product (MCD12C1)

4.4 Uncertainty reduction in the total Australia CO2 flux uncertainty

Uncertainty reduction of the total Australian CO2 flux for sensitivity experiments S1, S2 and S3 are shown in Table 7. Exper-

iment S1 shows that the regional flux uncertainty in Australia was only reduced by (∼ 9%) compared to control case (which

was 76%). In this test, we can see again the importance of the choices of the correlation length in B. We saw in Table 6 that

by decreasing the spatial correlation to 5 km over land, we increase the number of principal components. Given the small5

number of realizations and an increase in the number of components in the prior, we expect that this estimate of the uncertainty

reduction may be less representative using our randomization approach.

Experiment S2 shows an uncertainty reduction over Australia from 73% compared to 76% (control case). This small shift in

the percentage of reduction is related to the number of soundings found in the northern region of Australia. By removing glint

land data from our observations, we are reducing the coverage of surface flux footprints.10

Experiment S3 demonstrates the same artefact as S1, though the generally higher prior uncertainties in S3 result in a higher

uncertainty reduction for the total Australian flux. In this case, the assimilation reduce the total uncertainty to 34%.
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Table 7. Prior and posterior uncertainties in PgC y−1 for an ensemble of five realizations

Sensitivity Experiments
Prior Posterior Reduction Prior Reduction

(PgC y−1) (PgC y−1) % (PgC y−1)

Control 0.62 0.15 76 0.47

1 0.13 0.12 9 0.01

2 0.52 0.15 72 0.37

3 0.22 0.15 34 0.08

4.5 Impact of OCO-2 biases on the posterior fluxes

We mentioned in Section 4 that potential biases in the observations prevent the inversions from converging on optimal fluxes.

The results of Experiment S4 confirms that biases in the observations do indeed affect the resulting posterior fluxes. After

adding biases of about 3.3 ppm our inversion produced a posterior flux, which was bias by approximately 5.0 PgC y−1 over

Australia. This value indicates that in order to obtain an accuracy of 0.1 PgC y−1 in the total Australian flux, bias in the5

observation must be reduce roughly to 0.07 ppm. This sensitivity case shows us the importance of minimising biases in the

observations, if the goal is to estimate accurately CO2 fluxes. Figure 10 illustrates the impact of the observational biases on the

posterior mean fluxes in each of the 6 MODIS land-use categories. Significant biases are observed over SH (1.7 PgC y−1), GS

(1.4 PgC y−1), and EBF (0.9 PgC y−1). For each category, the inversion system only generates positive flux biases, consistent

with the direction of the bias in the observations. Our results are mainly due to large biases we prescribed in the observations.10

Finally, we found that uncertainty of prior and posterior were 0.68 and 0.25 PgC y−1, respectively. Given the magnitudes of

the prior uncertainties (and hence biases in this case) this result is consistent with the control case.

Figure 10. Posterior bias of monthly CO2 flux induced by OCO-2 bias categorized by MODIS ecotype.
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4.6 Unbiased Prior CO2 flux

Results of experiment S5 are illustrated in Figure 11. This figure shows the monthly mean biases (black diamonds) added to our

prior true fluxes (assumed to be 0.0 PgC y−1) categorized by MODIS ecotype. In this Figure, we can see that after performing

the inversion we can recover successfully the mean of our true fluxes (dashed grey line). On average the total biases added

to our Australian prior flux was about 0.21 PgC y−1 (using a conversion factor of 2.12 PgC/ppm, this value is equivalent to5

adding 0.1 ppm bias). After performing the inversion the posterior mean bias was reduced to 0.024 PgC. The distribution of

the fluxes across the different land-use classes (centred around zero; Fig. 11) reflects the fact that biases added to our prior were

randomly distributed. We added negative biases to GC and SH (-0.12, -0.05 PgC y−1) and positive bias to SAV, EBF (-0.05,

0.05 PgC y−1). We can see clearly in this figure that the inversion system is able to handle negative and positive biases.

Figure 11. Prior (blue) and posterior (red) monthly mean CO2 flux of a ensemble of five realizations and monthly mean prior bias (black)

added to the true prior fluxes (dashed grey line). Note: results are shown for adding the same biases to our five realizations.

4.7 Impact of boundary condition biases on the posterior fluxes10

Unlike global flux inversions, regional flux inversions are sensitive to lateral boundary conditions (BCs). To explore how

sensitive is our system to biased BCs, we ran two further sensitivity experiments (collectively termed ‘S6’). In sensitivity

experiment S6-A we increased the BCs by adding 0.5 ppm to each boundary grid cell. Findings of this experiment show that

our system is indeed sensitive to the altered BCs. Adding an extra 0.5 ppm to the BCs yields a posterior bias in Australia of

about −0.7 PgC y−1. These findings are in line with the values found in sensitivity case S4, but in a opposite direction. The15

negative value of the bias means the inversion system is trying to reduce the fluxes to compensate for the positive bias in the

BCs. The mean posterior bias flux for each land category are shown in Fig. 12.
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4.8 Solving for the boundary condition in the inversion

Experiment S6-B was designed to see if the inversion could correct for biases in the boundary conditions given additional

parameters to optimize. After solving for BCs in the inversion, the biases introduced to BCs in S6-A were corrected. We

analyzed the corrections, looking at the bias of the posterior flux for each land-use category. Figure 12 shows that the decrease

of biases over GC was significant. In this category biases were reduce from -0.11 to -0.019 PgC y−1. Similar results were5

found over SAV, EBF, ENF, where biases were also reduced. Biases over SH does not show much improvement. In this category

biases decreased only from -0.30 to -0.20 PgC y−1. After a wind-rose analysis for 10 selected locations around the coast in

west Australia (Supplementary Figs. S1-S3) we found that the small reduction of the biases in this category is explained by the

orientation of the wind in March. When winds come from ocean, the inversion loses the ability to correct the wrong BCs. The

treatment of the bias in BCs is relatively simple, with a goal of introducing relatively few additional parameters into the control10

vector. The experimental design assumes that these biases are constant in time and across large areas of the domain. The biases

in the BCs were generated with the same framework as was used to solve for them (i.e. fully specified by eight parameters).

In reality, error in BCs will vary in both space and time. Thus, the results here are indicative and but suggest that biases (as

opposed to fluctuations) at least can be accounted for in such a system.
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Figure 12. Posterior bias of monthly CO2 concentration induced by changes in the lateral boundary conditions categorized by MODIS

ecotype.

5 Comparison between CMAQ simulations and OCO-2 observations15

One key uncertainty in any OSSE is the realism of the observational uncertainties. One simple test involves performing a

limited inversion of data and assessing whether the cost function (Eq. 1) is consistent with the number of observations. Unlike

the OSSE, this is not guaranteed; in the ‘real-data’ inversion, there are likely errors in the atmospheric transport and the initial
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and boundary conditions. To test this, we performed an inversion for March 2015 using nadir and glint data. As mention in

Section 2.2, we added a scaling factor for the initial condition to our target variables for test the inversion.

Fig. 13 shows a histogram of residuals between the CMAQ model simulations using optimised fluxes and OCO-2 observa-

tions. We can see that the monthly mean bias was reduced from 0.49 to -0.01 ppm, with a decrease in the root mean square

error (RMSE) from 1.08 to 0.89 ppm. While these are based on the same data that were assimilated and do not necessarily5

show that the posterior fluxes are closer to the truth, it does show that our system is self-consistent. The cost function J(xa) at

its minimum is 418.52, close to half the number of observations (842).

Figure 13. The distribution of the difference between simulated and observed XCO2 in ppm. The red histogram presents the prior XCO2

simulated minus the observed XCO2, whereas the blue histogram presents the posterior XCO2 simulated minus the observed XCO2. Mean

differences and standard deviations are indicated in the legend.

6 Discussion

In this paper, we quantified the potential uncertainty reduction in monthly CO2 fluxes when assimilating OCO-2 satellite

retrievals with a regional-scale model at approximately 80 km grid-resolution. If we compare our results shown in Fig. (5)10

against, for example, Figure 2 of Chevallier et al. (2007) we see that our grid-scale uncertainty reductions are higher than

those of Chevallier et al. (2007) by almost a factor of 2, using nadir and glint data over land. In Chevallier et al. (2007)

uncertainty reductions in Australia are about 30−50% over productive areas while in this study they reach 60−80%. One

possible explanation for this is the lower observational uncertainty assumed in our study, averaging 0.6 ppm compared with

2 ppm assumed by Chevallier et al. (2007) before OCO-2 was launched. We can also compare our results with those for the15

in-situ network studied by Ziehn et al. (2014). At the national scale, Ziehn et al. (2014) suggested an uncertainty reduction of

30% while we see 76% for our control case.
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Our results must be interpreted with caution because, like all OSSEs, they depend strongly on assumed inputs (such as B and

R), which are difficult to characterize. In particular, we have assumed that the CABLE NPP (Haverd et al., 2013a) is a good

proxy for biospheric net flux uncertainty, following Chevallier et al. (2010a). Chevallier et al. (2010a) used a different model

and a different domain, so these assumptions may require further testing in our model configuration and region of interest.

In future, we could compare CABLE simulations against eddy-covariance CO2 flux measurements following Chevallier et al.5

(2012). Characterization of the prior biospheric flux over semi-arid regions in Australia is critical to account for the inter-

annual variability of these ecosystems (Poulter et al., 2014). Recent studies (e.g., Poulter et al., 2014) have suggested that the

semi-arid regions in Australia could become an important driver of the carbon cycle in comparison with ecosystems dominated

by tropical rainforests.

Sensitivity experiments S1 and S3 show that the uncertainty reduction in CO2 surface fluxes over Australia is sensitive to a10

combination of both magnitude and spatial distribution of the uncertainty, as well as the choice of the correlation length-scale.

We saw in case S1, for example, that by reducing the correlation length in B, we do not necessarily increase the number of

degrees of freedom (DFS) in our prior compared to the control. These findings suggest that the number of DFS in our prior

fluxes depends more on the spatial distribution of error variance than on the assumed correlation length-scale. These results are

much clearer in experiments S3, where the distribution of the uncertainty is uniform across Australia. In this case, we see that15

the number of DFS increases by increasing the magnitude of the uncertainty across Australia. In sensitivity case S2, we saw

that by subtracting glint data, our system was able to solve for fewer DFS in the fluxes compared to the control experiment.

Sensitivity experiment S4 shows that the existence of biases in the observations has a significant impact on our posterior flux

estimate. Adding biases to our simulated OCO-2 observation prevents our inversion from converging on optimal fluxes. We

saw in Section 4.5 that adding biases (corresponding to an average increase of 3.3 ppm) to the observation, the posterior flux20

is also bias by about 5.0 PgC y−1. Our results are in agreement with Chevallier et al. (2007, 2010a), and shows that regional

biases in column-averaged CO2 can significantly bias our posterior fluxes. Similar results are found in experiment S6-A, which

looked at biases in boundary conditions. Adding 0.5 ppm to the boundary conditions also has an impact on our posterior

fluxes. Increased BCs resulted in negative bias in the posterior fluxes, and to a degree that was consistent with sensitivity case

S4. These findings suggests that our regional flux inversion is sensitive to boundary conditions, therefore, in a real inversion25

controls on boundary conditions should be included them in the state vector, in addition to the surface fluxes.

Results in sensitivity case S5 shows that biased prior fluxes satisfy the theoretical assumption in the variational optimization

similar to using an unbiased prior case. We demonstrated that our system is able to handle the impact of possible biases in the

CMAQ model that might contaminate the resulting posterior fluxes.

Another direction for future work would be to explore the impact of a finer temporal and horizontal on the resulting fluxes.30

Model simulations at higher spatio-temporal resolutions have been shown to have better agreement with observations, partly

on account of allowing for a better representation of the measurements. (Law et al., 2004; Peylin et al., 2005; Patra et al., 2008).

However, as we saw in Section 2.3, we found it necessary to average OCO-2 soundings before assimilating in the system. To

simplify this process, the averaging process removed any 1-second soundings that spanned multiple grid-cells in the CMAQ
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domain. This is about 7 km in along-track distance. If we use a finer resolution than 80 km, we could remove more soundings

and thus weaken our constraint.

We emphasise again that our study quantifies the uncertainty but not the realism of our posterior flux estimates. The assess-

ment of posterior fluxes from assimilation of real data will be the subject of an upcoming paper. This requires comparison with

independent concentration data or, if available, flux estimates at comparable scales.5

7 Conclusion

We have performed an observing system simulation experiment for the retrieval of CO2 fluxes over Australia using OCO-2 data

and a regional-scale flux inversion system. The main findings indicate that OCO-2 nadir and glint (version 9) data can provide

a moderate (≈ 30%) to significant (>70%) constraint on the Australian CO2 flux uncertainty in 2015 (for most months studied).

We saw that these reductions at a grid-point resolution reached values of about 90%, with the largest uncertainty reductions10

being observed over biologically productive areas. Small uncertainty reductions are found over arid and semi-arid ecosystem,

where we assumed the prior uncertainties where small. These reductions only become significant when aggregating by land-

use classifications (e.g. shrubs 20%-80% ). For future work, it is relevant to consider a better characterization of our prior

uncertainties in this region to account for the inter-annual variability of the carbon cycle in these semi-arid regions. Sensitivity

experiments show that uncertainty reductions are quite sensitive to the assumed prior correlations but less sensitive to the15

spatial distribution of prior uncertainties. Moreover, we also saw that by excluding glint data from the assimilated observations,

we reduce the coverage of the surface flux footprint, and therefore, the uncertainty reduction of the total Australian flux. It

seems likely, therefore, that this combination of land and glint data can help quantify the Australian carbon cycle, provided

simulations are sufficiently realistic. Finally, we showed that such OSSE experiments are useful to test the potential of the

inversion to possible biases in the observation, prior and boundary conditions. Our future work will focus on the application of20

this assimilation system to estimate CO2 surface fluxes in Australia as a contribution to the Regional Carbon Cycle Assessment

and Processes (RECCAP) project.

Code availability. The py4dvar code was written by Steven Thomas and Peter Rayner and it can be found on GitHub. The code is available

upon request from the authors.
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Appendix A: Convergence Diagnostic

Table A1. Convergence diagnostic of the inversion system using an ensemble of five independent OSSEs for March 2015 (∇xJ0 and∇xJ0

represents the initial cost function and its gradient at the beginning of the optimization, and∇xJf and∇xJf at the end of the optimization.

March, 2015

Realizations J0(x) ∇xJ0 N iterations Jf(x) ∇xJf % reduction∇xJ DFS

1 1415.69 4289.81 32 422.12 47.04 98.9 39.45

2 4237.71 7888.37 36 438.47 55.31 99.3 54.43

3 3967.27 7452.77 28 426.24 143.48 98.1 31.10

4 877.09 2393.33 25 405.86 54.11 97.7 27.79

5 1910.48 4801.56 30 399.88 58.01 98.8 40.54

Table A2. Convergence diagnostic of the inversion system using an ensemble of five independent OSSEs for June 2015 (∇xJ0 and ∇xJ0

represents the initial cost function and its gradient at the beginning of the optimization, and∇xJf and∇xJf at the end of the optimization.

June, 2015

Realizations J0(x) ∇xJ0 N iterations Jf(x) ∇xJf % reduction∇xJ DFS

1 694.59 1425.53 21 353.60 21.61 98.5 28.49

2 5015.57 6436.36 21 342.48 91.79 98.6 26.52

3 5771.21 6928.37 21 374.91 37.70 99.5 45.99

4 3230.98 5853.03 22 327.08 42.00 99.3 37.23

5 786.51 1595.78 22 369.78 37.68 97.6 28.23
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Table A3. Convergence diagnostic of the inversion system using an ensemble of five independent OSSEs for September 2015 (∇xJ0 and

∇xJ0 represents the initial cost function and its gradient at the beginning of the optimization, and ∇xJf and ∇xJf at the end of the

optimization.

September, 2015

Realizations J0(x) ∇xJ0 N iterations Jf(x) ∇xJf % reduction∇xJ DFS

1 669.74 1521.91 17 479.81 60.71 96.01 26.68

2 18748.00 18536.18 25 546.29 63.93 99.66 33.25

3 2397.70 5277.01 24 506.13 45.56 99.14 33.49

4 7732.10 12490.83 21 499.07 48.87 99.61 35.79

5 3851.70 7968.45 26 512.57 72.19 99.09 22.31

Table A4. Convergence diagnostic of the inversion system using an ensemble of five independent OSSEs for December 2015 (∇xJ0 and

∇xJ0 represents the initial cost function and its gradient at the beginning of the optimization, and ∇xJf and ∇xJf at the end of the

optimization.

December, 2015

Realizations J0(x) ∇xJ0 N iterations Jf(x) ∇xJf % reduction∇xJ DFS

1 11361.12 12893.66 23 344.26 47.22 99.63 35.33

2 1844.17 4600.57 18 352.94 31.99 99.30 31.05

3 385.52 413.49 21 365.55 22.48 94.56 24.62

4 394.00 497.57 26 341.68 37.96 92.37 22.91

5 2605.66 5793.86 22 374.99 28.87 99.50 22.91
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Appendix B: Uncertainty reduction over Australia classified by MODIS ecotype

Table B1. Uncertainty reduction of total CO2 Australian flux in PgC y−1 classified by MODIS ecotype (March, 2015).

March, 2015

Land Cover type
Prior Posterior Reduction Prior Reduction

(PgC y−1) (PgC y−1) % (PgC y−1)

Grasses/Cereal 0.402 0.088 78 0.314

Shrubs 0.243 0.046 81 0.197

Savannah 0.068 0.039 43 0.029

Evergreen broadleaf forest 0.087 0.045 48 0.042

Evergreen needleleaf forest 0.010 0.003 68 0.007

Unvegetated 0.003 0.002 30 0.001

Table B2. Uncertainty reduction of total CO2 Australian flux in PgC y−1 classified by MODIS ecotype (June, 2015).

June, 2015

Land Cover type
Prior Posterior Reduction Prior Reduction

(PgC y−1) (PgC y−1) % (PgC y−1)

Grasses/Cereal 0.382 0.188 51 0.194

Shrubs 0.101 0.074 26 0.026

Savannah 0.104 0.072 31 0.032

Evergreen Broadleaf Forest 0.066 0.035 47 0.031

Evergreen Needleleaf Forest 0.007 0.006 7 0.000

Unvegetated 0.004 0.002 39 0.002
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Table B3. Uncertainty reduction of total CO2 Australian flux in PgC y−1 classified by MODIS ecotype (September, 2015).

June, 2015

Land Cover type
Prior Posterior Reduction Prior Reduction

(PgC y−1) (PgC y−1) % (PgC y−1)

Grasses/Cereal 0.265 0.086 68 0.179

Shrubs 0.072 0.056 22 0.015

Savannah 0.133 0.062 53 0.070

Evergreen Broadleaf Forest 0.089 0.023 74 0.066

Evergreen Needleleaf Forest 0.008 0.006 30 0.003

Unvegetated 0.003 0.002 33 0.001

Table B4. Uncertainty reduction of total CO2 Australian flux in PgC y−1 classified by MODIS ecotype (December, 2015).

December, 2015

Land Cover type
Prior Posterior Reduction Prior Reduction

(PgC y−1) (PgC y−1) % (PgC y−1)

Grasses/Cereal 0.288 0.066 77 0.222

Shrubs 0.141 0.062 56 0.078

Savannah 0.105 0.040 62 0.065

Evergreen Broadleaf Forest 0.135 0.037 72 0.097

Evergreen Needleleaf Forest 0.015 0.010 36 0.006

Unvegetated 0.007 0.003 58 0.004
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Appendix C: Sensitivity cases: Convergence Diagnostic

Table C1. Convergence diagnostic of sensitivity case (1) after the inversion using an ensemble of five independent OSSEs for March 2015

(∇xJ0 and∇xJ0 represents the initial cost function and its gradient at the beginning of the optimization, and∇xJf and∇xJf at the end of

the optimization.

March, 2015

Realizations J0(x) ∇xJ0 N iterations Jf(x) ∇xJf % reduction∇xJ DFS

1 612.84 1628.22 22 433.04 23.00 98.59 41.15

2 498.35 1265.62 22 386.30 28.49 97.75 19.80

3 3378.61 6958.64 25 405.56 23.84 99.66 37.42

4 5528.23 9084.95 20 440.52 24.40 99.73 38.02

5 565.93 1554.60 15 398.93 116.29 92.52 14.39

Table C2. Convergence diagnostic of sensitivity case (2) after the inversion using an ensemble of five independent OSSEs for Marc 2015

(∇xJ0 and∇xJ0 represents the initial cost function and its gradient at the beginning of the optimization, and∇xJf and∇xJf at the end of

the optimization.

March, 2015

Realizations J0(x) ∇xJ0 N iterations Jf(x) ∇xJf % reduction∇xJ DFS

1 1270.51 2933.40 34 200.29 17.63 99.40 29.08

2 1288.23 2599.04 30 208.81 17.34 99.33 29.97

3 1079.26 2457.01 18 209.84 46.81 98.09 37.43

4 1980.78 3621.05 29 212.17 25.51 99.30 41.05

5 2526.50 3767.30 21 237.34 70.15 98.14 39.08
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Table C3. Convergence diagnostic of sensitivity case (3) after the inversion using an ensemble of five independent OSSEs for March 2015

(∇xJ0 and∇xJ0 represents the initial cost function and its gradient at the beginning of the optimization, and∇xJf and∇xJf at the end of

the optimization.

March, 2015

Realizations J0(x) ∇xJ0 N iterations Jf(x) ∇xJf % reduction∇xJ DFS

1 533.99 1169.34 25 410.42 60.22 94.85 91.13

2 463.93 235.66 19 413.91 73.63 68.76 67.80

3 556.02 1279.81 31 426.40 127.93 90.00 132.58

4 2986.13 6426.37 28 446.52 252.70 96.07 75.39

5 6262.08 9885.14 27 414.45 53.01 99.46 115.91
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Appendix D: Sensitivity cases: Uncertainty reduction of the total CO2 Australian flux classified by MODIS ecotype

Table D1. Sensitivity Case (1): Uncertainty reduction of total CO2 Australian flux in PgC y−1 classified by MODIS ecotype (March, 2015).

March, 2015

Land Cover type
Prior Posterior Reduction Prior Reduction

(PgC y−1) (PgC y−1) % (PgC y−1)

Grasses/Cereal 0.101 0.071 30 0.030

Shrubs 0.039 0.039 0 0.000

Savannah 0.047 0.047 0 0.000

Evergreen Broadleaf Forest 0.012 0.012 0 0.000

Evergreen Needleleaf Forest 0.006 0.006 0 0.000

Unvegetated 0.004 0.004 1 0.000

Table D2. Sensitivity Case (2): Uncertainty reduction of total CO2 Australian flux in PgC y−1 classified by MODIS ecotype (March, 2015).

March, 2015

Land Cover type
Prior Posterior Reduction Prior Reduction

(PgC y−1) (PgC y−1) % (PgC y−1)

Grasses/Cereal 0.226 0.110 51 0.116

Shrubs 0.190 0.082 57 0.108

Savannah 0.081 0.016 81 0.065

Evergreen Broadleaf Forest 0.146 0.038 74 0.108

Evergreen Needleleaf Forest 0.020 0.007 62 0.012

Unvegetated 0.004 0.003 27 0.001
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Table D3. Sensitivity Case (3): Uncertainty reduction of total CO2 Australian flux in PgC y−1 classified by MODIS ecotype (March, 2015).

March, 2015

Land Cover type
Prior Posterior Reduction Prior Reduction

(PgC y−1) (PgC y−1) % (PgC y−1)

Grasses/Cereal 0.155 0.129 17 0.026

Shrubs 0.153 0.133 13 0.020

Savannah 0.094 0.088 6 0.006

Evergreen Broadleaf Forest 0.051 0.049 4 0.002

Evergreen Needleleaf Forest 0.004 0.004 0 0.000

Unvegetated 0.025 0.025 0 0.000
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