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Abstract. A transmission mode-direct analysis in real time-quadrupole time of flight-mass spectrometry (TM-DART-

QTOF-MS)-based analytical method coupled to multivariate statistical analysis was developed to interrogate lipophilic 

compounds in seawater samples without the need of desalinization. An untargeted metabolomics approach addressed here as 

seaomics was successfully implemented to discriminate sea surface microlayer (SML) from underlying water (ULW) 35 

samples (n=22, 10 paired samples) collected during a field campaign at the Cape Verde islands in September-October 2017. 

A panel of 11 ionic species detected in all samples allowed sample class discrimination by means of supervised multivariate 

statistical models. Tentative identification of these species suggest that saturated fatty acids, peptides, fatty alcohols, 

halogenated compounds, and oxygenated boron-containing organic compounds may be involved in water-air transfer 

processes and in photochemical reactions at the water-air interface of the ocean. A subset of SML samples (n=5) were 40 

subject to on-site experiments during the campaign using a lab-to-the-field approach to test their secondary organic aerosol 

(SOA) formation potency. Results from these experiments and the analytical seaomics strategy provide a proof of concept 

that organic compounds play a key role in aerosol formation processes at the water/air interface. 

 

 45 
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1 Introduction 

Oceans act as sinks and sources for gases and aerosol particles. The ocean surface chemical composition influences 50 

physicochemical processes occurring at the air-water interface by connecting the ocean biogeochemistry with the 

atmospheric chemistry in the marine boundary layer (MBL) (Donaldson and George, 2012). Therefore, understanding how 

organic compounds of marine origin are influencing the formation of secondary aerosols in the MBL with potential impacts 

on the radiative fluxes, aerosol hygroscopicity and subsequent cloud condensation nuclei properties is important. It has been 

suggested that complex photoactive compounds are enhanced at the air-sea interface (Reeser et al., 2009a;Reeser et al., 55 

2009b), inducing abiotic production of volatile organic compounds. For instance, experimental photosensitized reactions at 

the air-water interface using humic acids as a proxy of dissolved organic matter (DOM), have led to the chemical conversion 

of linear saturated fatty acids into unsaturated functionalized gas phase products (Ciuraru et al., 2015). Atmospheric 

photochemistry can even take place in the absence of photosensitizers if the air-water interface is coated with a fatty acid 

(Rossignol et al., 2016). On a global scale, interfacial photochemistry has recently been proven to serve as an abiotic source 60 

of volatile organic compounds comparable to marine biological emissions (Brüggemann et al., 2018).  

The sea surface microlayer (SML) covers up to 70 % of the Earth’s surface and is enriched in DOM, including organic 

compounds derived from oceanic biota, UV-absorbing humic-like substances, fatty acids, amino acids, proteins, lipids, 

phenolic compounds, particulate matter, microorganisms (Liss and Duce, 2009;Donaldson and George, 2012), colloids and 

phytoplankton-exuded aggregates, mainly constituted by lipopolysaccharides (Liss and Duce, 1997;Hunter and Liss, 65 

1977;Bayliss and Bucat, 1975;Liss, 1986;Hardy, 1982;Garabetian et al., 1993;Williams et al., 1986;Schneider and Gagosian, 

1985;Gershy, 1983;Guitart et al., 2004;Facchini et al., 2008;Kovac et al., 2002). While the identification of these classes of 

compounds has been achieved in the past, an improved chemical characterization of the SML and its chemical processing is 

highly desirable to understand its contribution into atmospheric composition, air quality and climate change (Liss and Duce, 

2009). 70 

Metabolomics is the comprehensive analysis and characterization of all small molecules (MW<1500) in a biological system, 

(Fiehn et al., 2000;Nicholson and Lindon, 2008) such as the marine metabolome. Mass spectrometry (MS) is one of the 

primary analytical techniques used to explore the metabolome, as it is highly sensitive and versatile for chemical analyses in 

targeted and untargeted studies (Clendinen et al., 2017;Weckwerth and Morgenthal, 2005). Targeted metabolomics focuses 

on detecting and quantifying a pre-selected set of metabolites. Conversely, untargeted metabolomics attempts to cover the 75 

broadest range of detectable compounds in a biological system (Viant et al., 2019), to subsequently extract chemical patterns 

or class fingerprints that can allow sample classification based on metabolite panels without any a priori hypotheses. 

Multivariate statistical techniques compute all compound features (variables) simultaneously with the aim of reducing data 

dimensionality, finding underlying trends, and isolating feature/metabolite panels relevant to class discrimination (Saccenti 
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et al., 2014). Following compound identification, relative changes of abundances can be analyzed for biological 80 

interpretation.  

 

Advancements in new, soft ambient ion generation techniques offer alternative MS-based applications for surface analysis 

with little to no sample preparation, addressing high-throughput analytical challenges in untargeted metabolomics workflows 

(Monge et al., 2013;Harris et al., 2011;Clendinen et al., 2017). In particular, direct analysis in real time (DART), (Cody et 85 

al., 2005;Gross, 2014;Jones et al., 2014a;Monge and Fernández, 2014) which is a plasma-based ambient ion source, has been 

successfully applied in untargeted metabolomics studies in different scientific fields (Salter et al., 2011;Ifa et al., 

2009;Steiner and Larson, 2009;Fernández et al., 2006;Chernetsova et al., 2010;Hajslova et al., 2011;Cajka et al., 2011;Dove 

et al., 2012;Jones and Fernández, 2013;Zang et al., 2017), though no studies have been reported up to date exploring oceanic 

biological systems. In DART-MS, a stream of metastable atomic or molecular species generated within the discharge heated 90 

He or N2, is directed at the sample, and ions are suctioned into the mass spectrometer (Cody et al., 2005). Thermally-

desorbed analytes having typically MW<1000, are ionized following atmospheric pressure chemical ionization-like 

pathways (Cody et al., 2005;Song et al., 2009a;Song et al., 2009b;McEwen and Larsen, 2009). An important advantage of 

DART compared to electrospray ionization for seawater analysis is that it is less affected by high salt levels (Kaylor et al., 

2014;Tang et al., 2004), avoiding desalinization processes that may lead to sample alteration. 95 

In the present work, a transmission mode (TM)-DART-quadrupole time-of-flight (QTOF)-MS-based analytical method was 

developed to interrogate seawater DOM composition in SML and underlying water (ULW) samples collected during a field 

campaign at the Cape Verde islands in September-October 2017. An untargeted metabolomics approach, addressed here as 

seaomics, was implemented to successfully discriminate SML from ULW samples based on a selected panel of 11 ionic 

species. Tentative identification of the discriminant panel provided insight into the family of compounds that may be 100 

involved in water-air transfer processes and photochemical reactions at the water-air interface of the ocean surface. In 

addition, secondary organic aerosol formation potency from SML interfacial photochemical products was explored during 

the field campaign using a lab-to-the-field approach. To our knowledge, this is the first study applying an untargeted TM-

DART-QTOF-MS-based seaomics analytical strategy coupled to multivariate statistical analysis to investigate DOM 

seawater composition.  105 

2 Experimental 

2.1 Chemicals 

LC-MS grade acetonitrile was purchased from Fisher Chemical (NC, USA). Ultrapure water with 18.2 MΩ∙cm resistivity 

(Thermo Scientific Barnstead Micropure UV ultrapure water system, USA) was used to prepare standard solutions. 

Commercial seawater (S9883), glucose, xylose, fructose, galactosamine, mannitol, L-glycine, L-alanine, GABA (γ-110 
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Aminobutyric acid), L-serine, L-proline, L-valine, L-threonine, L-isoleucine, L-leucine, L-asparagine, L-aspartic acid, L-

glutamine, L-glutamic acid, L-methionine, L-histidine, L-phenylalanine, L-arginine, L-tryptophan, 2-amino-4,5-

dimethoxybenzoic acid, 2-cyanoguanidine, flecainide acetate, lacosamide, enalapril maleate, 4-bromo-phenol, and 

mercaptosuccinic acid were purchased from Sigma-Aldrich (St. Louis, MO, USA). Decanoic acid, docosanoic acid, 

dodecanoic acid, eicosanoic acid, and octadecanoic acid were purchased from Loradan AB, Inc. (Solna, Sweden). KBr was 115 

purchased from Biopack (CABA, Argentina), and phenol was purchased from CARLO ERBA Reagents S.A (Sabadell, 

Spain).  

 

2.2 Sample Collection at the Cape Verde Field Campaign 

Sea Surface Microlayer (SML) samples were manually collected by the traditional glass plate (GP) method (van Pinxteren et 120 

al., 2012) and with an automatic catamaran using the same sampling principle as GP, named MarParCat (CAT). The 

MarPArCat is an autonomous catamaran for sampling the SML on rotating glass plates. Larger quantities of SML samples 

can be collected with this method in a shorter time. Underlying water (ULW) samples were collected from 1.0 m sea 

subsurface during the same time window as SML samples, using both strategies; i.e., manual sampling addressed as GP, and 

MarParCat (Supplementary Table S1). SML and ULW samples that were collected in the same site are addressed as paired 125 

samples (Supplementary Information, Table S1). The samples analyzed in the present study (n=22) were collected between 

18/09/2017 and 10/10/2017 and stored at -20 °C until processing. Information related to sampling conditions, sample 

salinity, pH, and temperature, is provided in Table S1. 

  

2.3 Aerosol Particle Formation Experiments at the Cape Verde Islands 130 

A subset of collected SML seawater samples were subject to on-site experiments using a lab-to-the-field approach to test 

whether they were photochemically active (Ciuraru et al., 2015). Before each experiment, 100 mL SML sample was 

conditioned to room temperature and divided into 12 aliquots. These were centrifuged at 3500 rpm and 4 oC for 25 min to 

exclude colloids and aggregates (particulate matter), using a 5702R centrifuge (Eppendorf Inc.). Subsequently, 2 mL surface 

solution was extracted from each centrifugal vessel to isolate closer representations of SML samples considering the dilution 135 

factor inherent to the collection process, i.e., SML diluted with ULW contribution, and leading to a total sample volume of 

24 mL for subsequent experiments.  

Sample irradiation was conducted using a cylindrical quartz cell reactor (2 cm diameter, 10 cm length, and 30 mL volume), 

half filled with 14 mL of SML solution, thereby recreating an air/water interface with a maximum area of 20 cm2. 

Experimental details of the reactor can be found elsewhere (Ciuraru et al., 2015). This quartz reactor was surrounded with 140 

UV lamps in a ventilated box, maintaining the system at a relatively constant room temperature. The interface was irradiated 
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by means of 210W actinic UV irradiation peaking at 350 nm (the spectrum is displayed in Fig. S1, Supporting Text 1) that 

was supplied by 7 low pressure mercury UV lamps (Philips) and one extra UV pen ray (UVP, Philips).  

This experimental approach allowed reproducing the air-sea exchanges under quiescent conditions and investigating particle 

formation potentially arising from the reaction between photochemically emitted gaseous products and OH radicals. For this 145 

purpose, the quartz cell was continuously flushed with 600 sccm purified air, entraining the air-water interfacial exchanged 

gaseous products to a Potential Aerosol Mass (PAM) oxidation flow reactor with 254 nm light supply, addressed as OFR254. 

Particle formation via OH radical photochemistry in the OFR254 was monitored using a scanning mobility particle sizer 

(SMPS, model 3976, TSI) and one extra ultrafine condensation particle counter (UCPC, TSI 3776, d50 > 2.5 nm). A 

description of the OFR254 operation and a scheme of the experimental setup are detailed in the Supplementary Information 150 

section (Fig. S2 and S3). Blank experiments were routinely conducted using ultrapure water (18.2 MΩ∙cm resistivity).    

  

2.4 Sample Preparation for DART-MS Analysis 

Samples were thawed at 4 °C for 5 h; neither desalination nor filtration was performed. Samples were split in 8 mL aliquots 

using 15 mL conical tubes and were subsequently frozen at -20 °C until lyophilization. Quality control (QC) samples were 155 

prepared by mixing equal volumes of all samples including both collection methods before sample lyophilization (QCALL) 

and after metabolite extraction and reconstitution in acetonitrile (QCMIX22). Chemical standard mixtures used for analytical 

method development and as system suitability samples (SSS) were prepared in ultrapure water for sugars, and amino acids, 

in methanol/water mixtures for lipids and by combining all standards from the three families of compounds (Supplementary 

Information, Table S2). The sample preparation blank was prepared with ultrapure water as follows: fresh ultrapure water 160 

was stored for 2 days at -20 °C in a new plastic bottle equivalent to those used for sample collection; subsequently thawed, 

split in 8 mL aliquots and stored in 15 mL conical tubes at -20 °C until lyophilization. This protocol was also implemented to 

prepare commercial seawater samples (CSW) that were used for analytical method development. Blanks, QCs, SSS, and 

samples were lyophilized at 0.280 mBar during 48 h using a Christ Alpha 1-4 Freeze dryer. SML samples, ULW samples, 

QCs, and SSS were lyophilized with sample blanks in different batches to evaluate possible cross-contamination. 165 

Lyophilized samples were shipped from TROPOS (Germany) to CIBION-CONICET (Argentina), where they were stored at 

-80 °C until TM-DART-QTOF-MS analysis. Metabolite extraction was performed using acetonitrile, and yielding a 

concentration factor of 6.67. Reconstituted samples were vortex-mixed during 5 min to guarantee efficient extraction, and 

centrifuged during 10 min at 4861 × g and 20 °C. For each sample, 500 µL of supernatant were collected for further analysis.  

 170 
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2.5 DART-MS Analysis 

A DART® SVP ionization source (IonSense Inc., MA, USA) was coupled to a Xevo G2S QTOF mass spectrometer (Waters 

Corporation, Manchester, UK) by means of a VAPUR® interface flange (IonSense Inc., MA, USA). The DART source was 

operated with He as the discharge gas heated at 300 °C, and data were acquired in negative ionization mode. A transmission 

mode (TM)-DART geometry was implemented for sample analysis, setting a distance of 2.5 cm in the rail holding the 175 

source. This allowed using the minimum possible DART-to-sample distance to provide the greatest sensitivity (Zang et al., 

2017;Jones and Fernández, 2013). Samples were deposited in a stainless-steel mesh that was subsequently placed in a linear 

rail-based sampler, which was digitally controlled to minimize variance in sample position. Fig. S4 illustrates the 

experimental design for depositing samples in different spots of the mesh to avoid cross-contamination. A protocol for 

calibrating the mass spectrometer across the range of m/z 50-850 using the DART source operated in TM was developed 180 

using a mixture of standards prepared in a water-methanol solution (1:1 v/v) that would provide almost equidistant m/z 

peaks. Signals of different adduct ions from 2-cyanoguanidine, enalapril maleate, mercaptosuccinic acid, 2-amino-4,5-

dimethoxybenzoic acid, flecainide acetate, and lacosamide were used for the TOF calibration (Supplementary Information, 

Table S3). Drift correction was performed after data acquisition using stearic acid present as an ambient contaminant. The 

[M-H]- adduct ion with m/z 283.2643 was chosen as a lock mass to have a high degree of accuracy in exact mass 185 

measurement. Data were acquired in continuum mode in the range of m/z 50-850, and the scan time was set to 1 s. A 

standard solution of enalapril 3.7 µM was used as an additional SSS and added to each mesh in spot #3 (Fig. S4) to evaluate 

mass accuracy of the [M-H]- ion at m/z 375.1925. The resolving power and mass accuracy of the TM-DART-QTOF-MS 

system were 23000 fwhm and 0.2 mDa at m/z 375.1925, respectively. Twelve spots per mesh were utilized for analysis. 

Each spot contained 3 droplets of 20 µL of sample, which were dried at room temperature before analysis. The mesh holder 190 

was moved at a speed of 0.2 mm s-1 for data acquisition. Mesh #1-11 included a solvent (SV) blank (acetonitrile); a 

commercial seawater control; a sample preparation blank (using ultrapure water); a QCMIX22 (pooled QC sample from all 

reconstituted samples: 10 SML + 12 ULW), and technical triplicates of all samples (Fig. S4).  As indicated in Fig. S4, mesh 

#12 included QCALL samples (pooled QC sample from all samples before lyophilization: 10 SML + 12 ULW samples). For 

TM-DART-QTOF-MS/MS experiments, the product ion mass spectra were acquired with collision cell voltages between 10 195 

and 40 V, depending on the analyte. Ultra-high-purity argon (≥99.999 %) was used as the collision gas. Data acquisition and 

processing were carried out using MassLynx version 4.1 (Waters Corp., Milford, MA, USA). Data were acquired for each 

spot, and acquisition over each mesh was automatically performed through synchronization between the DART software 

(IonSense Inc.) and MassLynx (Waters Corp.). System suitability procedures were performed to verify that the method and 

associated instrumentation were fully functioning before and during the analysis of experimental samples.  200 
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2.6 Seaomics Data Analysis 

Progenesis Bridge (Waters Corp., Milford, MA, USA) was used for data pre-processing. This software allowed defining the 

lock mass for drift correction after acquisition; and merged the original data into a Gaussian profile. Spectral features (m/z 

values) were further extracted from TM-DART-QTOF-MS data using Progenesis QI version 2.1 (Nonlinear Dynamics, 205 

Waters Corp., Milford, MA, USA). An absolute ion intensity filter was applied in the peak picking process for integration, 

defining a threshold for the aggregate run. Only SML and ULW samples were considered for peak picking. This process 

yielded 889 features (m/z) detected within samples. Subsequently, six features were removed due to high mass defect 

(potential salts clusters). For correction of inter-mesh effects, a quality control sample-based robust locally estimated 

scatterplot smoothing (LOESS) signal correction method (Dunn et al., 2011) was applied using QCMIX22 samples. This 210 

strategy allowed correcting for temporal signal fluctuation of each feature along the total acquisition time. Subsequently, 

features with relative standard deviation (RSD) >30 % in QCMIX22 were discarded, and only those with 5-fold average 

intensity in samples compared to blanks (i.e., sample preparation blanks and solvent blanks) were retained. Manual curation 

of features was also performed to eliminate redundancy (isotopic peaks from the same feature), to retain signals with a 

detected isotopic pattern, and to account for resolution limitations in the peak picking process. Moreover, only those 215 

monoisotopic peaks with intensity >103 in the continuum spectra were retained. The final curated matrix comprised of 51 

features (m/z values) was normalized by total ion area. Abundance values from technical triplicates were averaged, except 

for SML GP2 sample, for which only two replicates were considered. The matrices obtained before and after averaging 

technical replicates (Data Set S1 in the Supplementary Information) were utilized to build unsupervised and supervised 

multivariate statistical analysis models using MATLAB R2015a (The MathWorks, Natick, MA, USA) with the PLS Toolbox 220 

version 8.1 (Eigenvector Research, Inc., Manson, WA, USA). Principal component analysis (PCA) (Richard A. Johnson) 

and t-distributed stochastic neighbor embedding (t-SNE) (Van Der Maaten and Hinton, 2008) techniques were used to track 

data quality, reduce the data dimensionality, identify potential outliers in the dataset, as well as to identify sample clusters 

and evaluate the analytical method reproducibility. Orthogonal projection to latent structures-discriminant analysis (oPLS-

DA) (Trygg et al., 2007;Bylesjö et al., 2006;Trygg and Wold, 2002;Shrestha and Vertes, 2010) coupled with a genetic 225 

algorithm (GA) variable selection method was applied to find a feature panel that maximized classification accuracy for the 

binary comparison of SML and ULW samples. The selected group of discriminant features had the lowest root-mean-square 

error of cross-validation (RMSECV) at the conclusion of the GA variable selection process. This process was performed five 

different times and the selected panel yielded the lowest RMSECV and exhibited largest feature overlap with the other four 

panels. The parameters for GA were as follows: population size: 64, variable window width: 1, % initial terms (variables): 230 

15, target minimum # of variables: 5, target maximum # of variables: 15, penalty slope: 0.03, maximum generations: 100, % 

at convergence: 50, mutation rate: 0.005, crossover: double, regression choice: PLS, # of latent variables: 5, cross-validation: 

contiguous, # of splits: 10, # of iterations: 10, replicate runs: 10. The oPLS-DA model was cross-validated using venetian 

blinds with 4 data splits, and 1 sample per blind to account for overfitting. Data were preprocessed by autoscaling prior to 

https://doi.org/10.5194/acp-2019-852
Preprint. Discussion started: 10 December 2019
c© Author(s) 2019. CC BY 4.0 License.



9 
 

PCA or oPLS-DA analysis. PCA was also performed to inspect data before and after GA variable selection (i.e., on the 235 

curated spectral feature matrix and on the discriminant feature panel). Fold changes were calculated for paired samples for 

each discriminant feature by comparing sample replicate average values for SML and ULW samples. Wilcoxon Paired 

Signed Rank Test was used to compare SML with ULW samples (p <0.05). Median fold changes were calculated for each 

discriminant feature (Supplementary Information, Table S4).     

 240 

2.7 Metabolite Identification Procedure 

Metabolite identification was attempted for the discriminant features resulting from the GA variable selection process. 

Elemental formulae were generated based on accurate masses and isotopic patterns, taking into account stringent conditions 

for isotope ratios. For those cases in which there was overlap between isotopic peaks of different features, the isotopic 

pattern was not considered for molecular formula generation. In addition, fragmentation patterns obtained from TM-DART-245 

QTOF-MS/MS experiments were used for tentative identification.  

3 Results and Discussion 

3.1 TM-DART-QTOF-MS-based Method Optimization 

Figure 1 illustrates the untargeted TM-DART-QTOF-MS seaomics analytical workflow implemented for the analysis of 

seawater samples collected during the Cape Verde field campaign. A TM geometry was implemented to analyze samples in 250 

a flow-through fashion to increase reproducibility with lower risk of cross contamination (Zhou et al., 2010a;Zhou et al., 

2010b;Jones and Fernández, 2013;Perez et al., 2010;Zang et al., 2017;Jones et al., 2014b). The analytical method 

development involved optimization of the ion source stabilization time, accomplished in 60 seconds; the synchronization 

between data acquisition and the linear rail control; the selection of He over N2 to generate the plasma, based on higher 

sensitivity obtained with the former; the optimization of He temperature set at 300 °C; the selection of acetonitrile for 255 

metabolite extraction; the optimization of the solvent volume required for extraction to allow i) maximum metabolite 

concentration considering that the seawater metabolome is comprised of organic compounds with a wide range of 

physicochemical properties and levels; and ii) enough sample volume for technical replicates, QCs and tandem MS analysis; 

and the sample volume deposited on the mesh to maximize signal-to-noise ratio (number of sample droplets and droplet 

volume). The selected OM extraction method with acetonitrile as extracting solvent favored the analysis of lipophilic 260 

compounds. In addition, to enhance the detection of organic acids, the analytical method was optimized operating the DART 

ion source in negative ionization mode. 
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3.2 Seawater Sample Fingerprinting 

The curated data matrix, comprised of 51 features i.e., m/z values, and all sample replicates (Data Set S1 in the 265 

Supplementary Information), was used to build a PCA model that accumulated 62.29 % of the total variance in the first two 

principal components (PCs) (Fig. 2). The 2D scores plot illustrated in Fig. 2A shows distinguishable separation between 

acetonitrile blanks, sample preparation blanks, commercial seawater samples and seawater samples collected during the field 

campaign. Since the maximum data variance in a PCA model is in the direction of the base of eigenvectors of the covariance 

matrix, the largest differences are given by seawater samples compared to blanks. However, seawater samples from the Cape 270 

Verde islands were discriminated from commercial seawater samples. In addition, QCMIX22 replicates clustered together, 

indicating reproducibility in the sample preparation method, high data quality, and adequate performance of the analytical 

platform. Moreover, overlapping of both type of QC samples (QCMIX22 and QCALL) suggested reproducibility in the 

sample extraction protocol. Solvent blanks from different mesh and different positions (spots) were clustered together, 

suggesting negligible cross-contamination in the analysis. Results provided by the t-SNE model (Fig. 2B), which is a 275 

nonlinear dimensionality reduction technique, were in agreement with those provided by the linear transformation-based 

technique of PCA and emphasize the reproducibility of the developed analytical method for seawater sample analysis. This 

was further evidenced by the visualization of sample replicate clusters in a t-SNE model that only included SML and ULW 

samples (Fig. S5).  

To investigate the possibility of seawater sample clustering, a PCA model was built with the 51 extracted and curated 280 

features for averaged technical replicates of SML and ULW samples. Fig. 3A shows the PCA scores plot including the first 

three principal components that accounted for 43.93 %, 25.08 %, and 8.40 % variance, respectively. No outliers were 

detected by this analysis and no sample clustering was visualized in the score plot. Thus, sample discrimination was further 

attempted by means of oPLS-DA coupled to a GA variable selection method to find a reduced set of features that would 

allow sample classification and class membership prediction. A panel of 11 features with the lowest RMSECV was selected 285 

through the GA process. Fig. 3B shows the cross-validated prediction plot using the selected feature panel by means of a 

model that consisted of 5 latent variables that interpreted 82.19 % and 95.41 % variance from the X- (feature abundances) 

and Y- (class membership) blocks, respectively. This oPLS-DA model resulted in 100 % cross-validated accuracy, 

sensitivity, and specificity; therefore, there was no sample misclassification. Sample classification was further evaluated by 

means of a non-supervised method using the 11 discriminant features to discard possible overfitting by the supervised 290 

multivariate model. Fig. 3C shows certain degree of sample separation into clusters in the PC3 dimension according to the 

seawater sample collection depth, i.e., SML or ULW.  
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3.3 SOA formation potency from SML samples  

A subset of SML samples (CAT 8, GP 10, CAT 6, CAT 3 and CAT 4) that were analyzed by the TM-DART-QTOF-MS 295 

seaomics strategy were also subject to on-site experiments during the field campaign using a lab-to-the-field approach to test 

their SOA formation potency. The outcome of a typical SML irradiation experiment is illustrated for sample CAT 8 in Fig. 

4. Different time periods (P) during which experimental parameters were modified along the experiment are indicated in the 

figure. In the absence of light (before P1), no particle formation was detected downstream of the preconditioned OFR (5.0 

ppmv initial O3 and half-power UV light supply). However, when SML samples were exposed to actinic irradiation (periods 300 

P1-P4), particle formation was detected in the OFR254. Moreover, the particle number concentration exhibited OH exposure 

(OHexp)-dependent trends (P2-P3). Gaseous products were probably generated from photosensitized reactions at the SML 

interface, and subsequently reacted with OH radicals in the OFR254, leading to particle formation.   

Because of the difficulty associated to on-site measuring total OHR (OH radical reactivity) from the cell reactor or tracing 

OHexp in the OFR, we only qualitatively tested the particle generation rates with respect to various oxidation degrees by 305 

changing the UV light intensity or O3 concentration in the OFR. Assuming that photochemistry occurring at the SML 

interface was at steady-state, air-water exchanged gaseous products were constantly entrained into the OFR, and the 

estimated particle generation rates/OHexp for each period followed the trend: P1<P4<P2<P3. During P1, particle 

concentration gradually increased with SML illumination, and final number concentration exceeded 8×103 cm-3. These 

particles exhibited a median diameter of several nanometers at the edge of the lower 10 nm size limit of the SMPS detection 310 

system, thus measuring the particle size distribution was not possible. During P2, UV light intensity was doubled in the OFR 

by turning all lamps on. A particle burst was detected with the UCPC, with a shift towards larger particle sizes. The 

oxidation capacity in the OFR was further enhanced by supplying additional external O3 (initial mixing ratio of 7.0 ppmv). 

Total particle concentration decreased while larger particles were formed. During P4, one UV lamp in the OFR was turned 

off, and a sharp decrease in particle concentration was observed, but the final concentration was still higher than during P1 315 

(Fig. 4). Particle formation was observed for CAT 8 and GP 10 SML samples. Results from the atmospheric simulation 

experiments conducted on SML samples were in agreement with previous laboratory studies that demonstrated air-sea 

interfacial driven chemistry as a source of marine secondary aerosol (Roveretto et al., 2019;Ciuraru et al., 2015;Fu et al., 

2015). 

 320 

3.4 Discriminant Compound Identification & Role in Aerosol Particle Formation 

Compound identification was attempted for the 11 features of the discriminant panel. The coupling of the DART source to a 

high-resolution mass spectrometer allowed generating elemental formulae for unknown compounds, which together with 

tandem MS capability contributed to their identification. Figure S6 shows the high resolution continuum mass spectra 
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obtained for each of the discriminant features detected in all samples and obtained from the GA selection process. The 325 

analysis of fragment ions detected in tandem MS experiments together with neutral loss analysis provided information 

regarding functional groups and contributed to filter molecular formulae obtained by accurate mass, and isotopic pattern 

analysis. Table 1 describes the ionic species associated to the discriminant features and their corresponding molecular 

formulae, and provides information of product ions, and neutral and/or radical losses identified in TM-DART-QTOF-

MS/MS experiments. In addition, the table includes the family of compounds identified with a certain confidence level. In 330 

general, discriminant features comprised saturated fatty acids, fatty alcohols, peptides, brominated compounds and boron-

containing organic compounds.   

An expected limitation of TM-DART-QTOF-MS analysis was associated to spectral overlap; thus, in some cases the isotopic 

pattern was not considered for compound identification. However, two different quadrupole mass windows of 6 and 1 Da 

were used in tandem MS experiments to mitigate this problem. The mass window of 6 Da allowed investigating the complete 335 

isotopic profile with high sensitivity at expense of lower selectivity than the narrower mass window. In contrast, the mass 

window of 1 Da provided more confidence in the identification of product ions with higher selectivity at the expense of 

lower sensitivity than the broader mass window. In cases of low precursor ion intensity or quadrupole co-selection, MS/MS 

spectra were not collected (Table 1).  

Different types of species were generated for desorbed and ionized analytes (M) by the plasma-based source operated in 340 

negative mode, including [M-H]-, [M]- and    [M]-• ionic species. The generation of a radical anion, [M]-•, was suggested 

for feature # 4 based on the product ions detected in tandem MS experiments and the generated molecular formulae. Based 

on the tentative identification of feature # 4, additional experiments were performed with chemical standards including a 

dicarboxylic acid (succinic acid) and saturated fatty acids under the same experimental conditions as for seawater sample 

analysis. Different ionic species were detected in these experiments except for radical anions. However, literature evidence 345 

suggests the production of radical anions based on electron capture mechanisms occurring in He-based plasma sources 

(Cody and Dane, 2016;Bridoux and Machuron-Mandard, 2013;Jorabchi et al., 2013).  

Based on the analysis of the isotopic patterns and tandem MS results, several features were identified as oxygenated boron-

containing organic compounds. In these compounds, the boron atom is speculated to be functionalized with saturated fatty 

acids yielding tetra coordinated boron esters that would generate [M]- anions. Boron-containing compounds are known to be 350 

ubiquitous in vascular plants, marine algal species, and microorganisms (Dembitsky et al., 2002). Four out of five features 

identified as boron-containing organic compounds functionalized with saturated fatty acids as well as features identified as 

fatty alcohols were enriched in SML samples compared to ULW samples (Table S4).    

Compounds having a bromine atom in their molecular formula were also tentatively identified in the discriminant panel and 

are suggested to be halogenated compounds rather than bromine adduct ions. This hypothesis is based on the results yielded 355 

by the comparative analysis of a saturated acetonitrile solution with KBr and 2 mM phenol and the analysis of an acetonitrile 

solution of 4-bromo-phenol (Fig. S7), used as model compounds. The [M-H]- ion was detected in the analysis of 4-bromo-

phenol, but the [M+Br]- adduct ion was not observed for the KBr saturated solution containing phenol. The two features (# 
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21 and 34) that were identified as halogenated compounds were enriched in SML samples (Table S4). Possible sources of 

halogenated compounds in SML samples are photochemical reactions occurring at the water/air interface (Roveretto et al., 360 

2019;Donaldson and George, 2012). It is worth noting that organic compounds identified in the discriminant panel may have 

derived both from the secreted (exometabolome) and/or intracellular metabolites (endometabolome) of biological organisms 

such as algal species and microorganisms present in seawater.   

Putative identification of the discriminant panel capable of differentiating SML from ULW samples provides further 

evidence to support secondary organic aerosol (SOA) formation detected with the lab-to-the-field approach during the 365 

campaign. The PCA scores plot illustrated in Fig. 5 shows that SML samples were not distinguished based on the collection 

method, i.e., GP or CAT, and points out those SML samples that were also evaluated for SOA formation during the field 

campaign. As previously discussed, two of these SML samples (CAT8 and GP10) yielded SOA formation (Fig. 4). Further 

analysis on samples analyzed by both TM-DART-QTOF-MS and the lab-to-the-field approach suggest differences in 

compound concentration levels between SML samples that led to SOA formation from those that did not (Fig. S8, Table S5). 370 

Figure S8A shows that PC2 clearly separates samples according to SOA formation. Those features that mainly contribute to 

sample class separation with largest absolute values in the loadings plot associated to PC2, and illustrated in Fig. S8B, were 

putatively identified as boron-containing organic compounds (Table S5). Despite the limitations associated with the low 

number of samples used to perform statistical analysis, results suggest that SML samples that led to particle formation were 

enriched on boron-containing organic compounds and other unidentified molecules (Table S5). These results provide a proof 375 

of concept that organic compounds play a key role in aerosol formation process at the water/air interface.     

4 Conclusions 

An untargeted TM-DART-QTOF-MS-based analytical method coupled to multivariate statistical analysis allowed analyzing 

organic compounds present in SML and ULW seawater samples collected during a field campaign at the Cape Verde islands, 

without the need of desalinization. This seaomics approach was successfully implemented to discriminate SML from ULW 380 

samples. Tentative identification of the discriminant metabolite panel suggests that halogenated compounds, fatty alcohols, 

and oxygenated boron-containing organic compounds may be involved in water-air transfer processes and in photochemical 

reactions at the water-air interface of the ocean. Combined results from TM-DART-QTOF-MS and on-site SOA formation 

testing experiments on SML samples, suggest that organic compounds enriched at the water/air interface play a key role in 

aerosol formation process. This strategy, implemented for the first time in this collaborative study, provides new 385 

opportunities for improving the characterization of seawater OM content, and discovering compounds involved in aerosol 

formation processes.    
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Table 1: Identification of discriminant features based on accurate mass (a), isotopic pattern (b), and MS/MS experiments (c). Features with p 

<0.05 are highlighted in red (Wilcoxon Paired Signed Rank Test). Fold change trends in binary comparisons are indicated with arrows, (↑): 

increased levels, and (↓): decreased levels. 

ID1 m/z2 
Ion 

type 

MS Tandem MS Experiments 

 Tentative MF 

for Detected 

Ionic Species; 

Δm/mDa 

Criteria to 

obtain MF: 

 a) exact 

mass             

b) isotopic 

pattern  

c) MS/MS 

information 

Tentative 

ID: Main 

Class (Sub 

Class) 

Fold 

Change 

Trend Experimental 

m/z 

m/z of Ions detected in 

MS/MS spectra (MF3 of 

fragment ion; Δm/mDa) 

Mass Loss4 (MF; 

Δm/mDa) 

Quadrupole 

mass window 

4 258.1835 
[M]-. / 

[M-H]- 
258.1794 

258.1794 (C14H26O4; -6.5) 
16.9991 (OH; -3.6) 

43.9925 (CO2; -2.7) 

~ 6 Da & 1 Da 
1:C14H26O4; -6.5 

2:C12H24N3O3; 1.7 
a, c 

1:Fatty Acids 

and 

Conjugates 

(Dicarboxyli

c Acid) 

2:Dipeptide 

↓ 

241,1805 (C14H25O3; 0.1)  43.9890 (CO2; -0.8) 

225.1861 (C14H25O2; 0.6) 42.0467 (C3H6; -0.3) 

214.1868 (C13H26O2; -6.5)   

197.1915 (C13H25O; 1.0)   

183.1402 (C11H19O2; 1.7)   

169.1218 (C10H17O2; -1.1) 

155.1105 (C9H15O2; 3.3) 

141.0933 (C8H13O2; 1.7) 

127.0738 (C7H11O2; -2.1) 

113.0614 (C6H9O2; 1.1) 

99.0463 (C10H17O2; 1.7) 

14.0109 - 14.0195   

 (CH2, -4.8 - 3.8) 

5 275.1652 [M-H]- 275.1640 

275.1652 (C17H23O3; 0.5) 43.9899 (CO2; 0.1) 

~ 6 Da & 1 Da C17H23O3; 0.5 a, b, c 
Fatty 

Alcohols 
↑ 231.1741 (C16H23O; -0.8) 56.0633 (C4H8; 0.7) 

175.1153   

17 455.4106 [M-H]- 455.4122 

Co-selection in quadrupole (1 

Da mass window) limits 

interpretation 

- - 
1:C28H55O4; 2.2 

2:C24H51N6O2; 3.3 
a, b NO ID ↑ 

21 512.2138 
[M]- / 

[M-H]- 
512.2135 

283.2629 (C18H35O2; -0.8) 

- ~ 6 Da & 1 Da 

CxHyOzBNwFdPjSk

ClrBr 

x:[31-12];y:[34-

47];z:[0-7];w:[1-

9];d:[0-6];j:[0-

3];k:[0-2];r:[0-1]; 

2.6 

a, b, c 
Brominated 

compound 
↑ 

255.2317 (C16H31O2; -0.7) 

227.2007 (C14H27O2; -0.4) 

78,9186 (Br, 0.4) 

25 557.4069 [M-H]- 557.4033 

Co-selection in quadrupole (1 

Da mass window) limits 

interpretation 

- - C31H57O8; 1.6 a, b NO ID 
↓ 

 

28 639.4312 [M]- 639.4299 

400.2036/401.2002 

(C22H30BO4S; 4.4)  

- ~ 6 Da & 1 Da C38H60BO5S; 4.4 a, b, c 

Boron-

containing 

organic 

compound 

↑ 
283.2672 (C18H35O2; 3.5)  

281.2526 (C18H33O2; 4.5)  

255.2368 (C16H31O2; 4.4)  
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227.2048 (C14H27O2; 3.7)  

31 653.5088 [M]- 653.5186 

428.3046/429.3061    

~ 6 Da & 1 Da C37H70BO8; 2.2 a, b, c 

Boron-

containing 

organic 

compound 

↑ 

382.2994/383.2968 

(C21H40BO5; -0.1)  

270.2196 (C16H30O3; 

0.1) 

368.2353   

354.2714/355.2659 

(C19H36BO5; 0.3)  

298.2505 (C18H34O3; 

-0.3) 

326.2000/327.1988   

297.2426 (C18H33O3; -0.4)    

283.2637 (C18H35O2; 0.0)    

269.2120 (C16H29O3; 0.3)    

255.2327 (C16H31O2; 0.3)   

241.1799 (C14H25O3; -0.5)   

227.2015 (C14H27O2; 0.6)    

116.0399/117.0365 (C3H6BO4; 

0.7)  
  

71.0142 (C3H3O2; 1.6)    

33           667.5346 [M]- 667.5333 

400.2886/401.2694 

(C20H38BO7; -1.7)  
  

~ 6 Da & 1 Da C38H72BO8; 1.9 a, b, c 

Boron-

containing 

organic 

compound 

↑ 

428.3062/429.3033 

(C22H42BO7; 0.9)  
  

410.2963/411.2922 

(C22H40BO6; 0.4)  

256.2422 (C16H32O2; 

2.0) 

400.2017/401.1998 

(interference) 
  

370.2647/371.2611 

(C19H36BO6; 0.6)  
  

283.2643 (C18H35O2; 0.6)    

255.2328 (C16H31O2; 0.7)    

227.2014 (C14H27O2; 0.4)    

116.0400/117.0365 (C3H6BO4; 

0.6)  
  

117.0134 (C4H5O4; -5.4)    

78.9189/80.9168 (Br; 0.7)   

75.0083 (C2H3O3; -0.2)    

71.0138 (C3H3O2; 0.6)    

34 675.4587 [M-H]- 675.4571 

315.2525  

- ~ 6 Da & 1 Da  C41H72SBr; 3.3 a, b, c 
Brominated 

compound 
↑ 283.2677 (C18H35O2; 0.4)  

78.9205 (Br; 0.3) 

43 751.6276 [M]- 751.6260 

Co-selection in quadrupole (1 

Da mass window) limits 

interpretation 

- - C44H84BO8; 1.8 a, b 

Boron-

containing 

organic 

compound 

↓ 

49 795.7092 [M-H]- 795.7068 

Co-selection in quadrupole (1 

Da mass window) limits 

interpretation 

- - C49H95O7; 0.4 a, b  NO ID ↓ 

1Feature code, 2m/z value obtained from Progenesis QI, 3Molecular Formula, 4Possible neutral losses are indicated in parentheses 
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Figure 1. Scheme illustrating the analytical strategy implemented at CIBION-CONICET for the analysis of seawater samples using TM-

DART-QTOF-MS. 
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Figure 2. (a) PCA scores plot showing the first two principal components, and (b) bi-dimensional t-SNE plot of seawater samples (circles) 

and solvent blanks (squares). WB: sample preparation blanks using ultrapure water (green), QCALL: Pooled sample from all seawater 

samples before lyophilization (purple), QCMIX22: Pooled sample from all reconstituted seawater samples (pink), SML: Sea surface 

microlayer water samples (light blue), ACN: Acetonitrile (orange), CSW: Commercial seawater samples (gold), ULW: Underlying water 

samples (black). PCA and t-SNE models were built using the 51 extracted features and all replicates were included. 
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Figure 3. (a) PCA scores plot showing the first three principal components of sea surface microlayer samples (SML, light blue) and 

ultralow seawater samples (ULW, black). PCA was done based on 51 extracted features with averaged values from technical replicates. 

Accounted variance: PC 1, 43.93 %; PC 2, 25.08 %; PC 3, 8.40 %. (b) Cross-validated (CV) prediction plot of orthogonal projection to 

latent structures-discriminant analysis (oPLS-DA) model of SML samples (light blue) and ULW samples (black). The model consisted of 

5 LVs with 82.19 % and 95.41 % total captured X-block and Y-block variances, respectively. The CV accuracy, sensitivity and specificity 

were 100 %. (c) PCA scores plot showing the first three principal components of SML samples (light blue) and ULW samples (black). 

PCA was done based on 11 discriminant features selected by the genetic algorithm. Variance accounted for PC 1, 44.22 %; PC 2, 17.44 %; 

and PC 3, 11.92 %. 
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Figure 4. Irradiation experiment for SML CAT 8 sample in a quartz cell and subsequent particle formation from the SML interfacial 

gaseous products via OH radical photochemistry in the OFR. (a) O3 mixing ratio and humidity in the OFR, (b) particle concentration 

measured by CPC, and (c) particle size distribution profiles scanned by SMPS downstream of the OFR. The yellow shaded area represents 

the time period in which the quartz cell containing the concentrated SML sample was illuminated. P1-P4 corresponds to different 

operations to the OFR in varying oxidation degrees to the gaseous products from the quartz cell. 
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Figure 5. Bi-dimensional PCA score plot for SML samples using the matrix with 51 features for averaged technical replicates. Samples 

that were evaluated for particle formation during the Cape Verde field campaign are indicated with circles (led to SOA formation) and 

rectangles (did not lead to SOA formation).  
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