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Abstract 13 

The impact of biomass burning (BB) on atmospheric particulate matter of <2.5 m 14 

diameter (PM2.5) at Ulaanbaatar, Mongolia, was investigated using an optimized tracer-15 

based approach during winter and spring, 2017. Integrated 24 h PM2.5 samples were 16 

collected on quartz fiber filters using a 30 L min–1 air sampler at an urban site in 17 

Ulaanbaatar. The aerosol samples were analyzed for organic carbon (OC) and elemental 18 

carbon (EC), anhydrosugars (levoglucosan, mannosan, and galactosan), and water-19 

soluble ions. OC was found as the predominant species, contributing 64% and 56% to 20 

the quantified aerosol components in PM2.5 in winter and spring, respectively. BB was 21 

identified as a major source of PM2.5, followed by dust and secondary aerosols. 22 

Levoglucosan/mannosan and levoglucosan/K+ ratios indicate that BB in Ulaanbaatar 23 

was mainly originated from burning of softwood. Because of the large uncertainty 24 

associated with quantitative estimation of OC emitted from BB (OCBB), a novel 25 

approach was developed to optimize the OC/levoglucosan ratio for estimating OCBB. 26 

The optimum OC/levoglucosan ratio in Ulaanbaatar was obtained by regression analysis 27 

between OCnon-BB (OCtotal–OCBB) and levoglucosan concentrations that gives the lowest 28 

coefficient of determination (R2) and slope. The optimum OC/levoglucosan ratio was 29 

found to be 27.6 and 18.0 for winter and spring, respectively, and these values were 30 

applied in quantifying OCBB. It was found that 68% and 63% of the OC were emitted 31 

from BB during winter and spring, respectively. This novel approach can also be 32 

applied to other study sites to quantify OCBB using their own chemical measurements. 33 

In addition to OCBB, sources of OCnon-BB were also investigated through multivariate 34 

correlation analysis. It was found that OCnon-BB was originated mainly from coal burning, 35 

vehicles, and vegetative emissions. 36 
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1. Introduction 40 

Organic aerosol (OA) contributes a significant fraction (10%−90%) of atmospheric 41 

particulate matter (PM), which can affect human health and air quality (Jimenez et al., 42 

2009; Maenhaut et al., 2011; Fu et al., 2012; Allan et al., 2014; Chen et al., 2018). An 43 

understanding of the sources of PM is highly relevant for air-quality remediation. 44 

Biomass burning (BB) is a major source of organic carbon (OC) in PM2.5 (PM with 45 

aerodynamic diameter ≤2.5 µm) and it may become more significant in the future as air-46 

quality regulations restrict other anthropogenic emissions (Davy et al., 2011; Allan et al., 47 

2014; Sullivan et al., 2019). Coal combustion, thermal power plants, and traffic 48 

emissions also make potential contributions to the OC content of PM (Watson et al., 49 

2001a, b; Pei et al., 2016; Deshmukh et al., 2019; Haque et al., 2019), modifying PM 50 

characteristics such as hygroscopicity, light-attenuating properties, and health impacts 51 

(Jung et al., 2009; Sullivan et al., 2019). Previous studies have observed that the toxicity 52 

of PM2.5 increases with the oxidation potential of BB species because of the water-53 

soluble fraction of OC (Verma et al., 2014). 54 

Previous studies have identified and quantified OC emitted from BB (OCBB) using 55 

the BB tracers (levoglucosan, mannosan, galactosan, and K+). Levoglucosan is 56 

produced from the pyrolysis of cellulose at temperatures of >300°C (Simoneit et al., 57 

1999; Claeys et al., 2010; Maenhaut et al., 2011; Nirmalkar et al., 2015; Achad et al., 58 

2018); and two isomers of levoglucosan, mannosan and galactosan are produced by the 59 

burning of hemicellulose (Reche et al., 2012). The atmospheric concentration of 60 

levoglucosan is higher than that of the two isomers because of the lower content of 61 

hemicellulose (20%−30%, dry weight) than cellulose (40%−50%) in softwood and 62 

hardwood (Reche et al., 2012; Sharma et al., 2015). Water-soluble K+ can also be used 63 



 5 

as a BB tracer (Pio et al., 2008; Cheng et al., 2013; Nirmalkar et al., 2015; Chen et al., 64 

2018; Chantara et al., 2019). The proportion of these BB tracers in PM depends on 65 

various factors such as the type of biomass (softwood, hardwood, crop, grass, etc.), 66 

where it is burnt (traditional stoves, fireplaces, field burning, burning in closed 67 

chambers, etc.), the type of burning (smoldering, flaming, etc.), and the burning season 68 

(Fu et al., 2012; Cheng et al., 2013; Jung et al., 2014). Levoglucosan/mannosan, 69 

levoglucosan/K+, and OC/levoglucosan ratios were used to identify major biomass types 70 

and quantify OCBB (Reche et al., 2012; Cheng et al., 2013; Jung et al., 2014; Chen et al., 71 

2018). However, OC/levoglucosan ratios are quite variable even with the same type of 72 

BB because of variations in burning type, place, and season (Cheng et al., 2013; 73 

Thepnuan et al., 2019 and references therein). It is therefore essential to optimize the 74 

OC/levoglucosan ratio to better estimate OCBB. 75 

Ulaanbaatar, with a population of about 1 million, is an atmospheric pollution 76 

‘hotspot’ because of its topography, being situated in the Tuul river valley and 77 

surrounded by the Khentei mountains, with a high elevation (1300 m−1949 m above sea 78 

level) and large variations in temperature (–28°C to +16°C) and relative humidity 79 

(17.7%–72.7%; Table 1; Batmunkh et al., 2013; Jung et al., 2014). As the world’s 80 

coldest capital city during winter, it requires additional fuel for space heating. The 81 

topography and low-temperature conditions cause an increase in PM concentrations, 82 

which are exacerbated by low wind speeds and atmospheric temperature inversions 83 

(Jung et al., 2010). 84 

Half of the residents in Ulaanbaatar lives in 160,000 Gers (traditional Mongolian 85 

dwellings) (Guttikunda and Jawahar, 2014). Biomass is used as fuel for cooking and 86 

heating in many of low-income Gers at Ulaanbaatar. The common tree species in 87 
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Mongolia are larch, pine, cedar, spruce, birch; these are mostly softwood 88 

(http://www.fao.org/3/w8302e/w8302e05.htm; http://www.fao.org/3/a-am616e.pdf, 89 

excess date 17-12-2019). Each Ger burns an average of 3 m3 of wood per year 90 

(Guttikunda, 2008; Zhamsueva et al., 2018). Organic carbon (OC) has severe effects on 91 

human health and global climate change (Sun et al., 2019). But there are very few 92 

estimates of OC emitted from biomass burning (OCBB) in Ulaanbaatar. Few studies have 93 

investigated the chemical characteristics of aerosol in Ulaanbaatar (Jung et al., 2010; 94 

Davy et al., 2011; Batmunkh et al., 2013), with none examining the contribution of 95 

OCBB and type of biomass. Therefore, this study estimated appropriate concentration of 96 

OCBB and identified the type of biomass at Ulaanbaatar, Mongolia. 97 

In this study, we quantified the BB tracers levoglucosan, mannosan, galactosan, K+, 98 

and other chemical species. Potential sources of PM2.5 were identified by principal 99 

component analysis (PCA), with levoglucosan/K+ and levoglucosan/mannosan ratios 100 

being used to identify major biomass types. OCBB can be quantified from 101 

OC/levoglucosan ratios and levoglucosan concentrations in PM. However, uncertainties 102 

of OCBB are high because OC/levoglucosan ratios can vary depending on fuel type, 103 

burning conditions, and burning place (Duan et al., 2004; Cheng et al., 2013; Jung et al., 104 

2014). Therefore, it is required to determine the most suitable OC/levoglucosan ratio of 105 

BB emissions for estimating appropriate concentration of OCBB. Here, for the first time, 106 

optimized OC/levoglucosan ratios were investigated for estimating concentrations of 107 

OCBB during winter and spring. OCnon-BB sources were also investigated using 108 

multivariate correlation analysis with ions and elemental carbon (EC). 109 

 110 

2. Methods 111 
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2.1 Sampling site and aerosol sampling 112 

Aerosol sampling was carried out in Ulaanbaatar during the winter (17 January to 113 

03 February) and spring (17 April to 4 May) of 2017, with 24 h periods commencing 114 

daily at 11:00 local time. An aerosol sampler was installed on the rooftop of the 115 

National Agency for Meteorology and Environmental Monitoring station in Ulaanbaatar 116 

(47°92’ N, 106°90’ E, Fig. 1), 10 m above ground level. The sampling site was located 117 

at 8 km–10 km far from two coal based thermal power plants to the west (Chung and 118 

Chon, 2014). PM2.5 samples were collected on 47 mm diameter quartz fiber filters (Pall-119 

Life Sciences, USA) using an aerosol sampler (Murata Keisokuki Service, Japan) at a 120 

flow rate of 30 L min–1. Field blank filter was collected during winter (n=1) and spring 121 

(n=1). The quartz fiber filter was loaded in the sampler for 5 minutes without operating 122 

a pump. The concentration of all chemical analytes has been corrected using blank 123 

filters concentration. Sampled filters were wrapped in aluminum foil and heated at 124 

550°C for 12 h to remove adsorbed impurities before use and stored at –20°C before 125 

and after sampling. 126 

 127 

2.2 Filter analysis 128 

A one-fourth part of each quartz fiber filter sample was extracted in 10 mL 129 

ultrapure water (resistivity 18.2 MΏ, total OC content < 1 ppb,) under ultrasonication 130 

for 30 min. The water extract was then filtered using a syringe filter (Millipore, 131 

Millex−GV, 0.45µm) and stored at 4°C pending analysis. Water-soluble cations (K+, 132 

Na+, Ca2+, Mg2+, and NH4
+) were quantified by an ion chromatograph (Dionex ICS 133 

5000, Thermo Fisher Scientific, USA). Water-soluble cations were separated using an 134 

IonPac CS−12A column (Thermo Fisher Scientific, USA) with 20 mM methanesulfonic 135 
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acid as eluent at a flow rate of 1.0 mL min–1. Water-soluble anions (Cl–, NO3
–, and 136 

SO4
2–) were separated using an IonPac AS−15 column (Thermo Fisher Scientific, USA) 137 

with 40 mM KOH as eluent at a flow rate of 1.2 mL min–1. The detection limits for 138 

major inorganic ions based on 3σ of blanks were 0.01 µg m–3, 0.01 µg m–3, and 0.03 µg 139 

m–3 for NO3
–, SO4

2–, and NH4
+, respectively.  140 

Levoglucosan, mannosan, and galactosan were measured by a high-performance 141 

anion-exchange chromatograph (Dionex, ICS−5000, Thermo Fisher Scientific, USA) 142 

with pulsed amperometric detection involving an electrochemical detector with a gold 143 

working electrode. Details of the method are given elsewhere (Jung et al., 2014). In 144 

brief, separation involved a CarboPak MA1 (4 × 250 mm, Thermo Fisher Scientific, 145 

USA) analytical column and NaOH eluent (360 mM, 0.4 mL min–1). Limits of detection 146 

were 3.0 ng m–3, 0.7 ng m–3, and 1.0 ng m–3
 for levoglucosan, mannosan, and galactosan, 147 

respectively. 148 

Aerosol samples were analyzed for OC and EC using a thermal optical OC/EC 149 

analyzer (Sunset Laboratory Inc. Forest Grove, OR, USA) with laser transmittance-150 

based correction of pyrolysis. Details of the analyzer and quality-control parameters are 151 

reported elsewhere (Jung et al., 2014). In brief, 1.5 cm2 punch samples of the quartz 152 

fiber filter were placed in a quartz dish inside the thermal desorption oven of the 153 

analyzer. OC and EC were quantified using a temperature program developed by the US 154 

National Institute for Occupational Safety and Health (NIOSH) in an inert atmosphere 155 

(100% He) and in an oxidizing atmosphere (98% He + 2% O2), respectively. Detection 156 

limits of OC and EC were 0.04 and 0.01 µg C m–3, and analytical uncertainties of them 157 

were 1.3% and 3.7%, respectively. 158 

 159 
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2.3. Conditional Probability Function 160 

The Conditional Probability Function (CPF) calculates the probability that a source 161 

is located within a particular wind direction sector, ΔΘ: 162 

𝐶𝑃𝐹 =
𝑚ΔΘ

𝑛ΔΘ
 163 

where nΔΘ is the number of times that the wind passed through direction sector ΔΘ, 164 

and mΔΘ is the number of times that the source contribution peaked while the wind 165 

passed through sector ΔΘ (Ashbaugh et al., 1985). To use CPF with the Ulaanbaatar 166 

data, the 24 h averaged source contribution data have been applied to all 1 h wind 167 

direction averages recorded at the site for each date. The angular interval ΔΘ was set at 168 

10°. To calculate mΔΘ, the 75th percentiles of source contribution concentrations were 169 

counted. CPF is useful in determining the direction of a source from a receptor site; 170 

however, it cannot determine the actual location of the source. 171 

 172 

2.4 Principal component analysis 173 

In order to identify the source groupings of chemical species in PM2.5, principal 174 

component analysis (PCA) was applied. PCA is done using a commercially available 175 

software package (SPSS, version 10.0). PCA applies projection dimension reduction 176 

methods, converting several concentrations sets into significant sets of columns 177 

(principal components, PCs) without damaging the original data. PCA is a widely used 178 

statistical technique to quantitatively identify a small number of independent factors 179 

among the species concentrations, which can explain the variance of the data, by using 180 

the eigenvector decomposition of a matrix of pair-wise correlations. PCA with varimax 181 

rotation and retention of principal components having eigenvalues >1.0 was used to 182 
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identify major species associated with different sources. It was widely used for 183 

identification of pollution sources in the atmosphere (Fang et al., 2003, Nirmalkar et al., 184 

2015).  185 

 186 

3. Results and Discussion 187 

3.1 Chemical characteristics of PM2.5 and source identification 188 

Mass concentrations of carbonaceous aerosol, BB tracers, and water-soluble ions in 189 

PM2.5 samples collected at Ulaanbaatar during winter and spring of 2017 are 190 

summarized in Table 1. OC contributed 64 ± 5.1% and 56 ± 6.0% of the quantified 191 

aerosol components in PM2.5 in winter and spring, respectively (Table 1). Average 192 

concentrations of OC during winter were five times those obtained in spring (Fig. 2). 193 

Previously, OC has been observed as major component in PM2.5 in Ulaanbaatar during 194 

winter period (Jung et al., 2010; Batmunkh et al., 2013). This may be attributed to 195 

additional BB emission for home heating, and temperature inversions with low wind 196 

speeds (average wind speed of 1.43 ± 0.73 m s–1; Table 1 and Fig. 3a). OC 197 

concentrations decreased with increasing wind speed during winter (Fig. 3a) and spring 198 

(Fig. 3b), over all air temperature ranges. The inverse relationship between OC and 199 

wind speed during winter (Fig. 3a) and spring (Fig. 3b) suggests a predominance of 200 

local sources, with higher wind speeds flushing air pollutants out of the area whereas 201 

low wind speeds allow them to accumulate (Khan et al., 2010; Wang et al., 2018). 202 

Average concentration of EC during winter (1.71 ± 0.58 µg m–3) was higher than 203 

that in spring (1.11 ± 0.42 µg m–3) (Table 1), consistent with general urban observations 204 

in cities of China (Ji et al., 2016) and India (Panda et al., 2016). During both winter and 205 

spring, EC concentrations at the study site were lower and having different trends 206 
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compared to those observed in a suburban site (2.3 ± 1.0 μg m–3 and 3.1 ± 1.5 μg m–3, 207 

respectively) and an urban site (2.3 ± 1.0 μg m–3 and 3.3 ± 1.2 μg m–3, respectively) in 208 

Shanghai, China (Feng et al., 2009).  209 

The potential source direction of EC during winter and spring was west as shown in 210 

Fig. 5; this can be explained by the influence of emission from thermal power plants. 211 

Correlation of EC was strong with Ca2+ during spring as shown in Fig. 4. CPF analysis 212 

suggested that potential source direction of EC and Ca2+ was similar (Fig. 5). High 213 

abundances of Ca2+ and EC is observed from stack emission of coal fired thermal power 214 

plants (Pei et al., 2016; Zhang et al., 2015). Thus, EC and Ca2+ in Ulaanbaatar might be 215 

strongly related to emission from thermal power plants.  216 

Daily concentrations of levoglucosan, mannosan and galactosan have similar trends 217 

during winter and spring (Fig. 2), possibly because of combustion of similar biomass 218 

fuels in both seasons. Changes in concentrations of these BB tracers might be attributed 219 

to changes in relative proportions of cellulose and hemicellulose in different biomass 220 

fuels (Zhu et al., 2015; Nirmalkar et al., 2015). Concentrations of anhydrosugars were 221 

four times higher in winter than in spring (Table 1) due to increased heating 222 

requirements in winter. The higher relative humidity (58.5%–72.7%) and lower 223 

temperature (–10.5°C to –27.8°C; Table 1) in winter can also contribute to longer 224 

atmospheric residence times due to increased levoglucosan stability (Lai et al., 2014). 225 

Higher concentrations of BB tracers in winter than spring have previously been 226 

observed in Beijing, China, (Liang et al., 2016) and were attributed to meteorological 227 

conditions similar to those of Ulaanbaatar. Further it was observed that during winter 228 

the ambient temperature was consistently low (less than -10 °C, Fig. 3a) in Ulaanbaatar 229 

therefore residential biomass burning occurred continuously for space heating. Thus, 230 
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there would be no dependence of emission rates of levoglucosan and mannosan with 231 

ambient temperature during the sampling period. The concentration of levoglucosan and 232 

mannosan may be influenced by local wind speed as shown in Fig. 3a rather than 233 

ambient temperature. Average K+ concentration (0.08±0.05 μg m-3) in this study is 234 

significantly lower than the K (0.32 μg m-3) observed in Ulaanbaatar during 2004-2008 235 

(Davy et al., 2011). 236 

Among water-soluble ions, SO4
2– (9.7 ± 3.4 µg m–3) was the most dominant PM2.5 237 

species during winter, followed by NH4
+ (6.2 ± 2.4 µg m–3) and NO3

– (4.2 ± 1.7 µg m–3), 238 

whereas SO4
2– (1.9 ± 0.5 µg m–3) was the dominant species during spring, followed by 239 

Ca2+ (0.9 ± 0.4 µg m–3) and NH4
+ (0.7 ± 0.3 µg m–3). The total SO4

2– + NH4
+ + NO3

– 240 

content accounted for 27% and 23% of the total measured chemical species during 241 

winter and spring, respectively (Fig. 2 and Table 1). SO4
2– is the most prevalent water-242 

soluble ion in PM2.5 in Wuhan, Guangzhou, and Tianjin (China) due to industrial 243 

emissions and coal burning (Gu et al., 2011; Tao et al., 2014; Huang et al., 2016; Pei et 244 

al., 2016). This suggests that the higher SO4
2– concentration in Ulaanbaatar may be 245 

attributable to emissions from the three major coal-fired thermal power plants near the 246 

study site. 247 

The atmospheric concentrations of OC (11–17 µg m–3) and levoglucosan (0.46–248 

0.73 µg m–3) were higher for samples collected during 27–30 April 2017 than on almost 249 

all remaining days in spring (Fig. 2b). Backward atmospheric trajectories based on the 250 

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model provided by 251 

the US National Oceanic and Atmospheric Administration (NOAA) Air Resources 252 

Laboratory (ARL) indicate that during those days’ air masses originated from a region 253 

where a significant number of fires were detected [US Fire Information for Resource 254 
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Management System (FIRMS); National Aeronautics and Space Administration 255 

(NASA); Fig. 6a, b)]. Thus, the elevated OC and levoglucosan concentrations during 256 

27–30 April might be influenced by long-range transport of BB from north of Mongolia. 257 

 258 

3.2 Principal Component Analysis 259 

Principal component analysis (PCA) is a useful tool for reducing the dimensionality 260 

of large aerosol datasets to principal components using varimax rotation for source 261 

identification (Cao et al., 2005; Lin et al., 2018; Nirmalkar et al., 2019). Four principal 262 

components (PCs) in winter and three in spring were identified with eigenvalues ˃1 263 

after varimax rotation explaining 96% and 92%, respectively, of the total variance 264 

(Tables 2 and 3). The PCs were categorized on the basis of loadings of chemical 265 

components as follows. In winter, PC1 includes BB characterized by high loadings of 266 

levoglucosan, mannosan, and galactosan; PC2 includes dust characterized by Ca2+ and 267 

Mg2+ content; PC3 includes secondary formation characterized by SO4
2–, NO3

–, and 268 

NH4
+ content; and PC4 includes fossil fuel combustion characterized by EC. In spring, 269 

PC1 includes BB (levoglucosan, mannosan, and galactosan); PC2 includes dust (Ca2+ 270 

and Mg2+) and fossil fuel combustion (EC); and PC3 includes secondary formation 271 

(SO4
2–, NO3

–, and NH4
+). The PCA results show that the chemical components of PM2.5 272 

in Ulaanbaatar were mainly affected by BB during winter and spring. Further, OC was 273 

primarily influenced by BB because it correlated well with the total variance of PC1 274 

during winter (0.82; Table 2) and spring (0.77; Table 3).  275 

 276 

3.3 Relationship among BB tracers 277 

The correlations among the three BB tracers levoglucosan, mannosan, and 278 
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galactosan are shown in Fig. 7a (winter) and 7b (spring). The correlations between 279 

levoglucosan and mannosan and between levoglucosan and galactosan are strong during 280 

winter (R2 = 0.99 for both pairs) and spring (R2 = 0.95 and 0.83, respectively; Fig. 7a, b). 281 

Concentrations of levoglucosan and OC are strongly correlated during both winter (R2 = 282 

0.78) and spring (R2 = 0.86; Fig. 8a), suggesting that a major fraction of OC might be 283 

originated from BB in Ulaanbaatar. The similar strong correlation and steep slope 284 

observed in OC–levoglucosan plots for PM collected in Chiang Mai Province (Thailand) 285 

and Daejeon (Korea) were attributed mainly to BB (Jung et al., 2014; Thepnuan et al., 286 

2019).  287 

Fine mode K+ is considered as biomass burning tracer in previous studies (Louie et 288 

al., 2005; Deshmukh et al., 2011; Cheng et al., 2013). The moderate correlation between 289 

levoglucosan and K+ concentrations (R2 = 0.68) in winter indicates that they are 290 

produced from similar sources (Fig. 8b), with BB contributing most of the K+. However, 291 

the correlation between levoglucosan and K+ was weak in spring (R2 = 0.49; Fig. 8b). 292 

Because K+ is typically emitted at a higher mass fraction in flaming phase combustion 293 

compared to smoldering (Lee et al., 2010), smoldering combustion tends to have higher 294 

levoglucosan/K+ emission ratio compared to flaming combustion (Schkolnik et al., 2005; 295 

Gao et al., 2003). High levoglucosan/K+ ratio was observed during winter (8.92) 296 

compared to spring (4.21) in this site. Thus, week correlation between levoglucosan and 297 

K+ concentrations at Ulaanbaatar in spring can be explained by mixed burning condition 298 

such as smoldering and flaming. 299 

OC and K+ concentrations correlated well during winter (R2 = 0.79; Fig. 9a) and 300 

spring (R2 = 0.73; Fig. 9b), suggesting that they might be originated from similar 301 

sources. Because most of the aerosol particles emitted from BB belong to PM2.5, the 302 
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correlation between OC and K+ as well as levoglucosan suggests that BB is one of the 303 

potential sources of OC in winter and spring. Because biomass fuel is burned in 304 

traditional stoves with no pollution control devices in Ulaanbaatar (Batmunkh et al., 305 

2013), soil and ash particles are entrained in convective processes and uplifted in the 306 

atmosphere together with smoke particles (Deshmukh et al., 2011; Nirmalkar et al., 307 

2019). 308 

 309 

3.4 Tracing the source of BB aerosol 310 

OC is a major contributor of the quantified aerosol components in PM2.5 in 311 

Ulaanbaatar during spring and winter (Table 1). To quantify the OCBB, it is necessary to 312 

identify the BB fuel type. Several investigators used levoglucosan/mannosan and 313 

levoglucosan/K+ ratios to identify BB fuel types (Puxbaum et al., 2007; Cheng et al., 314 

2013; Jung et al., 2014; Chen et al., 2018; Thepnuan et al., 2019). 315 

The levoglucosan/mannosan ratio is source-specific and can be used to identify BB 316 

fuel types due to the unique cellulose and hemicellulose compositions of different 317 

biomass fuels (Zhang et al., 2007; Cheng et al., 2013). A previous study suggested that 318 

the levoglucosan/mannosan ratio is strongly dependent on wood type, rather than on the 319 

site where the wood is grown (Cheng et al., 2013). Therefore, the 320 

levoglucosan/mannosan ratio was used to trace the type of wood burnt during winter 321 

and spring for indoor heating and cooking purposes. Previous studies have used 322 

levoglucosan/mannosan ratios to investigate the BB fuel types (Cheng et al., 2013; Jung 323 

et al., 2014).  324 

However, the levoglucosan/mannosan ratio can’t distinguish crop residuals (29 ± 15) 325 

(Sheesley et al., 2003, Sullivan et al., 2008, Engling et al., 2009, Oanh et al., 2011) and 326 
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hardwood (28 ± 28) (Fine et al. 2001, 2002, 2004a, b; Engling et al., 2006; Schmidl et 327 

al., 2008; Bari et al., 2009; Goncalves et al., 2010) due to the overlap of ratios between 328 

these fuel types (Cheng et al., 2013; Fine et al. 2001, 2002, 2004a, b; Engling et al., 329 

2006). However, levoglucosan/K+ ratio can distinguish between the two groups (Jung et 330 

al., 2014, Chen et al., 2018). Both levoglucosan/mannosan and levoglucosan/K+ ratios 331 

are therefore useful in distinguishing various types of fuel (Cheng et al., 2013; Puxbaum 332 

et al., 2007). 333 

A levoglucosan/mannosan–levoglucosan/K+ scatter plot based on results of the 334 

present and previous studies is shown in Fig. 10, using data from Schauer et al. (2001), 335 

Fine et al. (2001, 2002, 2004a, b), and Engling et al. (2006) for hardwood grown in the 336 

USA; Schauer et al. (2001), Hays et al. (2002), Fine et al. (2001, 2002, 2004a, b), and 337 

Engling et al. (2006) for US softwood; Schmidl et al. (2008), Bari et al. (2009) and 338 

Goncalves et al. (2010) for hardwood grown in Europe; Iinuma et al. (2007), Schmidl et 339 

al. (2008), and Goncalves et al. (2010) for European softwood; Engling et al. (2006) and 340 

Sullivan et al. (2008) for needles and duff found in the USA; Sullivan et al. (2008) for 341 

US grass; and from Sheesley et al. (2003), Sullivan et al. (2008), Engling et al. (2009) 342 

and Oanh et al. (2011) for Asian rice straw. 343 

The average levoglucosan/mannosan ratio was 3.6 ± 0.2 (range: 3.4 − 4.1) in winter 344 

and 4.1 ± 1.0 (2.12 − 7.05) in spring, whereas the levoglucosan/K+ ratio was 8.9 ± 1.8 345 

(5.5 − 12.4) in winter and 4.2 ± 2.1 (0.58 – 7.49) in spring at the study site (Fig. 10), 346 

within the ranges reported for softwood burning sources (2.5 − 6.7 and 4.6 − 261, 347 

respectively) (Fine et al., 2001; Schauer et al., 2001; Fine et al., 2002, 2004a, b; Hays et 348 

al., 2002; Engling et al., 2006; Iinuma et al., 2007; Schmidl et al., 2008; Goncalves et al., 349 

2010; Cheng et al., 2013). During winter and spring, the levoglucosan/K+ and 350 
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levoglucosan/mannosan ratios in Ulaanbaatar appeared in the softwood region (Fig. 10).  351 

Therefore, softwood burning seems to be the major source of BB aerosol in 352 

Ulaanbaatar during both winter and spring, consistent with previously reported 353 

softwood-burning emissions from fireplaces of northern and southern regions of the 354 

USA (Fine et al., 2001, 2002), from household combustion in Zhengzhou, China (Chen 355 

et al., 2018), and from stove wood combustion in the mid-European region (Austria; 356 

Schmidl et al., 2008). 357 

 358 

3.5 Optimization of OC/levoglucosan ratio for estimating OCBB emission 359 

OCBB was estimated by multiplying OC/levoglucosan ratio and levoglucosan 360 

concentration. Previous studies have used the OC/levoglucosan ratio obtained from 361 

sources of BB aerosol to estimate OCBB. A ratio of 7.35 reported for burning of four 362 

types of US hardwood (Fine et al., 2002) was used for estimating OCBB at four 363 

background sites in Europe (Puxbaum et al., 2007). Later, mean value of 11.2 of 364 

OC/levoglucosan ratio derived from ratios ranged between 4.5 – 24.6 was used for 365 

estimating OCBB in the UK (Harrison et al., 2012). However, such estimates may not be 366 

accurate as the OC/levoglucosan ratio is highly variable in BB emissions. For example, 367 

the average OC/levoglucosan ratio from softwood burning (23.8) is much higher than 368 

that of hardwood burning (7.35) (Fine et al., 2002; Schmidl et al., 2008), differences are 369 

more than ten-fold among studies of softwood-burning OC/levoglucosan ratios (Fine et 370 

al., 2002; Hays et al., 2002; Engling et al., 2006; Iinuma et al., 2007; Goncalves et al., 371 

2010). Combustion conditions may also significantly influence OC/levoglucosan ratios. 372 

For example, the OC/levoglucosan ratio varied by a factor of about seven between 373 

burning the same wood (Loblolly pine) in a fireplace (27.6; Fine et al., 2002) and in a 374 
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stove (3.4; Fine et al., 2004b). Therefore, it is necessary to optimize the 375 

OC/levoglucosan ratio for use in estimating OCBB.  376 

This study has used an optimized OC/levoglucosan ratio to estimate precise 377 

concentration of OCBB for the Ulaanbaatar study site. We have used a range of different 378 

OC/levoglucosan ratios obtained from previous literatures (Fig. 11) for regression 379 

analysis with measured levoglucosan concentrations to estimate optimum 380 

OC/levoglucosan ratio (Fig. 12a, b). First, candidate OCBB (Fig. 11) in this study was 381 

estimated from OC/levoglucosan ratios for softwood burning in a previous chamber 382 

experiments (Cheng et al., 2013; Schauer et al., 2001; Hays et al., 2002; Fine et al., 383 

2001, 2002, 2004a, b; Engling et al., 2006; Iinuma et al., 2007; Schmidl et al., 2008; 384 

Goncalves et al., 2010, Fig 11) and measured levoglucosan concentration at this site. 385 

Second, OCnon-BB concentration was calculated by subtracting OCBB from corresponding 386 

total OC. If calculated OCnon-BB doesn’t contain OCBB, both regression slope and R2 387 

between OCnon-BB versus levoglucosan will be close to zero. As shown in Fig. 12a and 388 

12b, the lowest R2 and regression slope were observed when OC/levoglucosan ratios of 389 

27.6 and 18.0 in winter and spring, respectively. Thus, the optimized OC/levoglucosan 390 

ratios for our site were determined to be 27.6 and 18.0 in winter and spring, respectively. 391 

During winter higher optimum ratio of OC/levoglucosan might be due to 392 

incomplete combustion during smoldering phenomena. As smoldering fires are 393 

characterized by lower temperatures and thus have lower combustion efficiency, they 394 

release more un-combusted condensable products, resulting in the production of more 395 

unbroken organic compounds (Engling et al., 2006). Smoldering combustion generally 396 

leads to increased emissions of volatile organic compounds (VOCs) and particulate 397 

organic matter (OM) (Obrist et al., 2007). In contrast, the relatively lower optimum ratio 398 
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of OC/levoglucosan during spring might be due to the higher combustion efficiency 399 

during flaming phenomena. 400 

The OCBB concentrations at the Ulaanbaatar study site were calculated from the 401 

optimized OC/levoglucosan ratios (winter: 27.6 and spring: 18.0) and measured 402 

levoglucosan concentrations. The OCBB concentration was estimated to be 33.1 ± 11.9 403 

µg C m–3 (range 16.0−58.5 µg C m-3) and 5.64 ± 3.29 µg C m–3 (range 0.57−13.1 µg C 404 

m-3), accounting for 68% and 63% of the total OC in winter and spring, respectively 405 

(Fig. 13). The average of previously published OC/levoglucosan ratios, 10.1 ± 7.9 406 

(range 1.90 − 27.6), gives an estimated OCBB concentration of 12.1 ± 4.4 µg C m–3 407 

(range 5.9−21.4 µg C m–3) and 3.2 ± 1.8 µg C m–3 (0.32−7.34 µg C m–3) in winter and 408 

spring, respectively. Their values are 2.7 (winter) and 1.8 (spring) times lower than 409 

values estimated using our optimized OC/levoglucosan ratio.  410 

Our estimated contribution of OCBB was higher than that in Daejeon, South Korea 411 

(24%–68% of total OC, mean 45% ± 12%; Jung et al., 2014) and Beijing, China (50% 412 

of total OC; Cheng et al., 2013), where BB aerosols are produced mainly by the burning 413 

of crop residues. The contribution of OCBB to total OC is 57% and 31% during heating 414 

(average temperature 0.6°C) and non-heating (average temperature 14°C) seasons in 415 

Krynica Zdroj, Poland (Klejnowski et al., 2017), significantly lower than that of 416 

Ulaanbaatar during both winter (average temperature –21°C) and spring (average 417 

temperature 6°C). Such high concentrations of OCBB in Ulaanbaatar and Krynica Zdroj 418 

are likely due to intense wood burning for heating during winter. 419 

 420 

3.6 Tracing sources of OCnon-BB 421 

High concentration of OCnon-BB was found during winter compared to spring (Fig. 422 
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13). Elevated OCnon-BB could be attributed to enhanced emission from combustions and 423 

favorable meteorological conditions (cold temperatures and inversion conditions, etc.) 424 

during the winter. There is strong correlation between OCnon-BB and SO4
2–, NH4

+, and K+ 425 

in winter and OCnon-BB and NO3
–, Na+, K+, Mg2+, Ca2+, and EC in spring (Table 4). 426 

Residential combustion of coal emits significant amounts of OC, EC, and inorganic 427 

species (SO4
2– and metals) due to incomplete combustion and lack of pollution control 428 

devices (Garcia et al., 1992; Li et al., 2016; Watson et al., 2001a, b). Garcia et al. (1992) 429 

studied emissions of volatile organic compounds from coal burning and vehicle engines.  430 

In Ulaanbaatar, the use of wood and coal for cooking and heating, and emissions 431 

from old vehicles are reported as potential sources of OC (Batmunkh et al., 2013; 432 

Zhamsueva et al., 2018). The three thermal power plants in Ulaanbaatar are point 433 

sources for emissions of carbonaceous aerosol (Batmunkh et al., 2013), burning ~5 434 

million tons of coal per year (Batmunkh et al., 2013). High concentrations of anions 435 

(SO4
2– and NO3

–) and cations (NH4
+ and Na+) are reported in China (Zhou et al., 2003), 436 

the USA (Caiazzo et al., 2013), Brazil (Flues et al., 2002), India (Guttikunda and 437 

Jawahar, 2014), Korea (Park and Kim, 2004; Park et al., 2015), and Spain (Alastuey et 438 

al., 1999) near coal-fired thermal power plants. Emissions of volatile organic 439 

compounds from vegetation have also been observed in previous studies (Fehsenfeld et 440 

al., 1992; Shao et al., 2001; Acton et al., 2016). The correlations of OCnon-BB with ions 441 

and EC are thus likely due to volatile organic compounds emitted from coal-burning 442 

and vehicles, and vegetative emissions. 443 

 444 

4. Conclusions 445 

BB was identified as a major source of the quantified aerosol components in PM2.5 446 
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in Ulaanbaatar, Mongolia, during the winter and spring of 2017, based on PCA. OC was 447 

the major component of the quantified aerosol components during the entire sampling 448 

period, winter and spring. For determination of OCBB, the fuel type must be identified 449 

and levoglucosan/mannosan and levoglucosan/K+ ratios obtained from previous studies 450 

and our on-site measurements were used for this purpose. 451 

Softwood burning was identified as a major source of OCBB. However, 452 

OC/levoglucosan ratios from softwood burning are highly variable, and an optimum 453 

ratio was derived by regression analysis between daily concentrations of OCnon-BB and 454 

levoglucosan, yielding values of 27.6 and 18.0 for winter and spring, respectively. The 455 

application of these ratios indicates that 68% and 63% of the OC originated from BB 456 

during winter and spring, respectively, which is about double that estimated using 457 

average values of previous studies. The atmospheric concentration of OCBB was higher 458 

in winter than in spring mainly due to additional BB for heating and cooking. BB 459 

aerosols in Ulaanbaatar originate mainly from local softwood burning. The approach 460 

developed here may be applied elsewhere for screening region-specific 461 

OC/levoglucosan ratios for estimating atmospheric appropriate concentrations of OCBB, 462 

aiding the establishment of BB control measures. 463 
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 836 

Table 1. Concentrations (µg m–3) of organic carbon, elemental carbon, levoglucosan, mannosan, galactosan, and water-soluble ions in 837 

PM2.5 samples collected from Ulaanbaatar, Mongolia, during the winter (n = 17) and spring (n = 17) of 2017. 838 

 839 

  840 

 OC EC Levoglucosan Mannosan Galactosan Cl- SO4
2- NO3

- Na+ NH4
+ K+ Mg2+ Ca2+ 

Temperature 

(°C) 

Wind 

Speed 

(m sec-1) 

RH 

(%) 

Winter                 

Mean 49.06 1.71 1.20 0.33 0.24 1.69 9.74 4.17 0.64 6.18 0.13 0.05 0.60 -20.8 1.36 66.1 

SD 17.32 0.58 0.43 0.13 0.09 0.76 3.37 1.69 0.44 2.42 0.04 0.02 0.24 4.74 0.73 4.56 

Min 24.62 0.79 0.58 0.15 0.10 0.26 2.17 0.76 0.10 3.16 0.08 0.02 0.22 -27.8 0.41 58.5 

Max 79.07 3.34 2.12 0.61 0.43 2.89 16.06 7.51 1.34 11.59 0.18 0.08 1.04 -10.5 3.55 72.7 

Spring                 

Mean 8.50 1.11 0.31 0.08 0.04 0.30 1.90 0.70 0.13 0.74 0.08 0.04 0.93 6.11 2.60 35.1 

SD 3.55 0.42 0.18 0.04 0.02 0.11 0.50 0.32 0.04 0.28 0.05 0.02 0.36 6.16 0.79 13.9 

Min 2.80 0.60 0.03 0.01 0.00 0.11 1.04 0.10 0.07 0.33 0.02 0.02 0.48 -1.52 1.64 17.8 

Max 16.63 2.03 0.73 0.15 0.08 0.51 3.02 1.40 0.21 1.47 0.22 0.08 1.61 15.9 4.56 65.2 
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Table 2. Source identification of chemical species using principal component (PC) analysis and varimax rotation at Ulaanbaatar, 841 

Mongolia, during winter of 2017.  842 

Winter Component 

Chemical species 

PC1 

(Biomass Burning) 

PC2 

(Dust) 

PC3 

(Secondary formation) 

PC4 

(Fossil fuel 

combustion) 

Levoglucosan 0.96 −0.06 0.24 0.06 

Mannosan 0.95 −0.08 0.27 0.06 

Galactosan 0.95 −0.07 0.28 0.04 

Cl– 0.19 0.94 −0.05 −0.07 

SO4
2– 0.43 0.01 0.88 0.09 

NO3
– 0.28 0.20 0.87 0.20 

Na+ −0.27 0.87 −0.33 −0.17 

NH4
+ 0.48 −0.12 0.86 0.07 

K+ 0.70 0.11 0.61 0.25 

Mg2
+ −0.15 0.90 0.25 0.26 

Ca2
+ −0.12 0.92 0.19 0.24 

OC 0.82 −0.17 0.47 0.07 

EC 0.14 0.14 0.19 0.95 

Eigenvalues 4.54 3.44 3.30 1.20 

% of Variance 34.95 26.49 25.37 9.21 

Cumulative % 34.95 61.44 86.81 96.02 

 843 

  844 
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Table 3. Source identification of chemical species using PCA and varimax rotation at Ulaanbaatar, Mongolia, during spring of 2017.  845 

Spring Component 

Chemical species 

PC1 

(Biomass Burning) 

PC2 

(Dust and Fossil fuel 

combustion) 

PC3  

(Secondary formation) 

Levoglucosan 0.88 0.13 0.39 

Mannosan 0.94 0.00 0.30 

Galactosan 0.95 −0.11 0.20 

Cl– 0.81 0.32 −0.03 

SO4
2– 0.18 0.12 0.93 

NO3
– 0.59 0.54 0.52 

Na+ 0.08 0.91 −0.09 

NH4
+ 0.44 0.05 0.88 

K+ 0.41 0.67 0.55 

Mg2+ 0.05 0.90 0.35 

Ca2+ 0.10 0.97 0.15 

OC 0.77 0.41 0.46 

EC 0.10 0.94 0.01 

Eigenvalues 4.59 4.53 2.87 

% of Variance 35.30 34.84 22.04 

Cumulative % 35.30 70.14 92.18 

  846 
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 847 

Table 4. Correlation coefficients (r) from Spearman correlation analysis for OCnon-BB and water-soluble ions during winter 

and spring of 2017 at Ulaanbaatar, Mongolia. 

  Cl– SO4
2– NO3

– Na+ NH4
+ K+ Mg2+ Ca2+ EC 

OCnon-BB Winter −0.26 0.71** 0.44 −0.58* 0.72** 0.64** −0.16 −0.16 0.15 

 Spring 0.29 0.37 0.59* 0.74** 0.23 0.65** 0.78** 0.77** 0.74** 

*Correlation is significant at the .05 level (2-tailed); **Correlation is significant at the .01 level (2-tailed).  
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 848 

Figure captions 849 

Fig. 1 Sampling site in Ulaanbataar, Mongolia (https://www.google.com/earth/versions/#earth-pro, © Google Earth). 850 

Fig. 2 Daily variations in atmospheric concentrations (µg m–3) of chemical species in Ulaanbaatar during winter (a) and spring (b) of 851 

2017. 852 

Fig. 3 Daily atmospheric concentrations of OC (µg C m–3) as a function of wind speed (m s–1) and temperature (°C) during winter (a) 853 

and spring (b) of 2017.  854 

Fig. 4 Relationship between PM2.5 concentrations of Ca2+and EC (µg m–3) during spring of 2017. 855 

Fig. 5 Conditional Probability Function (CPF) of levoglucosan (levo), OC, K+, EC, Ca2+ during winter (a) and spring (b) of 2017. 856 

Fig. 6 (a) Five-day backward air-mass trajectories (https://ready.arl.noaa.gov/HYSPLIT.php) and (b) FIRMS fire counts 857 

(https://firms.modaps.eosdis.nasa.gov/alerts/) around Ulaanbaatar during spring of 2017. 858 

Fig. 7 Correlations of PM2.5 concentrations (µg m–3) of mannosan and galactosan with levoglucosan during winter (a) and spring (b) of 859 

2017. 860 

Fig. 8 Correlation between PM2.5 concentrations of (a) OC (µg C m–3) and levoglucosan (µg m–3) and (b) K+ and levoglucosan (µg m–3) 861 

during winter and spring of 2017. 862 

Fig. 9 Correlation between PM2.5 concentrations of OC (µg C m–3) and K+ (µg m–3) during winter (a) and spring (b) of 2017. 863 
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Fig. 10 Scatter plot of levoglucosan/K+ versus levoglucosan/mannosan from different types of BB emissions, including those measured 864 

in Ulaanbaatar (blue circles and red squares).  865 

Fig. 11 Comparison of previously reported OC/levoglucosan ratios for softwood burning. 866 

Fig. 12 Graphical determination of optimized OC/levoglucosan ratios used to estimate PM2.5 concentrations of OCBB in Ulaanbaatar in 867 

winter (a) and spring (b) of 2017.  868 

Fig. 13 Relative contributions (µg C m–3) of OCBB and OCnon-BB to PM2.5 in Ulaanbaatar during winter and spring of 2017. 869 
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