Supplementary material to "Stratospheric impact on the Northern Hemisphere winter and spring ozone interannual variability in the troposphere"

Junhua Liu¹², Jose M. Rodriguez², Luke D. Oman², Anne R., Douglass², Mark A. Olsen³⁴, Lu Hu⁵

⁵ Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA

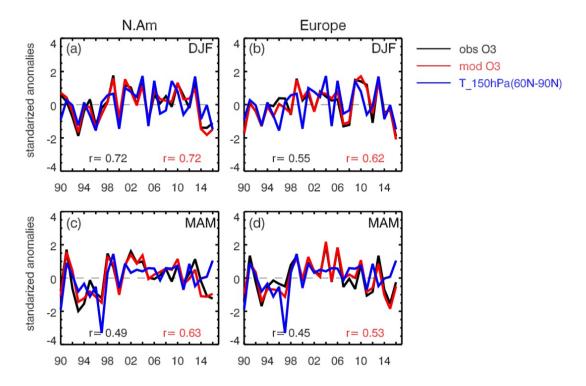


Figure S1: Standardized anomalies of observed (black) and simulated (red) O_3 averaged over the North American stations (left) and over the European stations (right) at 200 hPa with averaged temperature around the polar cap for latitudes north of 60°N (blue), which is a good measure of the overall temperature in the polar vortex. Correlation coefficient between observed O_3 and temperature (black), simulated O_3 and temperature (red) is shown in each panel.

¹ Universities Space Research Association (USRA), GESTAR, Columbia, MD, USA

² NASA Goddard Space Flight Center, Greenbelt, MD, USA

³ TriVector Services Inc., Huntsville, AL, USA

⁴ NOAA/OAR/Office of Weather and Air Quality

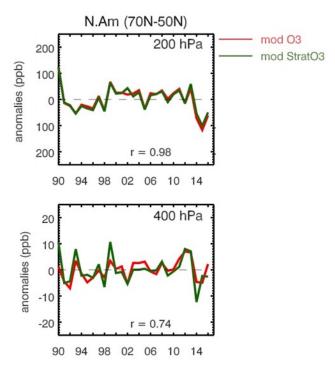


Figure S2: Time series plots of simulated ozone (red) and StratO₃ (green) anomalies (unit: ppb) at 200 hPa (top), 400hPa (bottom) averaged from the selected ozonesonde sites over the 50°N - 70°N sub-region of North America in winter from 1990 to 2016.

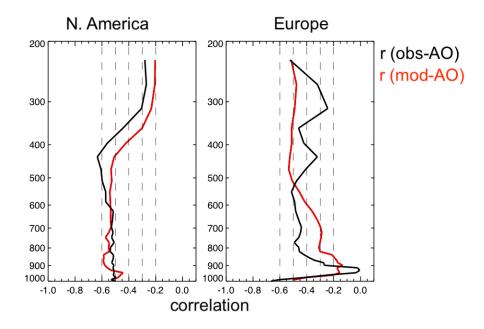


Figure S3: Profiles of correlations between O_3 and AO index in winter from 1990 to 2016 averaged over the North American and the European stations.