Supplement of

Treatment of non-ideality in the multiphase model SPACCIM-Part2: Impacts on the multiphase chemical processing in deliquesced aerosol particles

Ahmad J. Rusumdar^{1,2}, Andreas Tilgner¹, Ralf Wolke¹, and Hartmut Herrmann¹

¹ Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, 04318, Germany
 ² Now at: FERCHAU Engineering, Niederlassung Karlsruhe, Karlsruhe 76185, Germany
 Correspondence to: Ralf Wolke (wolke@tropos.de) and Hartmut Herrmann (herrmann@tropos.de)

Figure S1. Schematic of multiphase mechanism employed in this study, including the number of processes, reactions, and phase transfer processes (modified from Deguillaume et al. (2009); Tilgner and Herrmann (2010)).

Figure S2. Modelled pH value (left) and ionic strength (I, right) as a function of simulation time for the different remote simulation cases (90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR).

Figure S3. Modelled Fe(II) aqueous-phase concentration in ng m⁻³ throughout the modelling time (left) and corresponding time evolution of activity coefficients (right) for the different remote simulation cases (90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR).

Figure S4. Modelled gas- and aqueous-phase concentration of H_2O_2 throughout the simulation time for the different remote simulation cases (90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR).

Figure S5. Modelled aqueous-phase OH concentration in mol l^{-1} throughout the simulation time for the different remote simulation cases (90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR).

Figure S6. Modelled aqueous-phase concentrations in ng $m^{-3}_{(air)}$ and corresponding activity coefficients for important C₂ oxidation products, (i) glycolic acid (top), (ii) glycoxylic acid (centre), and (iii) oxalic acid (down) throughout the simulation time for the different remote simulation cases (90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR). The plotted concentrations represent the sum of dissociated and undissociated forms of the carboxylic acids.

Figure S7. Modelled aqueous-phase concentrations in ng $m^{-3}_{(air)}$ and corresponding activity coefficients for important C₃ oxidation products, (i) pyruvic acid (top), (ii) 3-oxo-pyruvic acid (centre), and (iii) keto malonic acid (down) throughout the simulation time for the different remote simulation cases (90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR). The plotted concentrations represent the sum of dissociated and undissociated forms of the carboxylic acids.

Tables

Compound	Urban	Remote
$\mathrm{NH_{4}^{+}}$	1.00E-01	9.80E-02
NO ₃ -	2.49E-02	9.27E-02
SO_4^{2-}	2.61E-01	1.91E-01
Cl-	1.92E-02	9.70E-05
Br-	6.53E-04	1.77E-04
I-	1.23E-04	1.52E-07
Mn ³⁺	1.54E-04	1.15E-04
Fe ³⁺	1.46E-03	1.42E-03
Cu^{2+}	1.53E-04	1.08E-04
WSOM	1.51E-01	5.57E-02
HC_2O_4	4.38E-03	1.62E-03
HOOCCH ₂ COO ⁻	2.79E-03	1.03E-03
HOOCC ₂ H ₄ COO ⁻	1.59E-03	5.89E-04
WISOM	2.39E-01	8.83E-02
EC	1.56E-02	1.67E-01
Other anions	7.96E-05	1.89E-04
<i>Cations (+)</i>	3.26E-02	1.53E-02
Cations $(2+)$	1.49E-02	1.85E-02
Other metals	3.25E-02	4.05E-02
SiO2	9.53E-02	2.27E-01
Р	2.87E-03	2.73E-04

Table S1. Initial chemical aerosol particle composition (relative contributions to the total particulate non-water mass) for the urban and remote environmental model scenarios.

Remarks: Single species and compound groups marked in italics are treated in SPACCIM as non-reactive species. The respective ions are just considered for the charge balance.

5 **Table S2.** Parameters (N: Number, ρ : Density, r: Radius) of the mono-disperse aerosol particle initialisation for the urban and remote environmental model scenarios.

Parameter	Urban	Remote
N (#/cm ³)	7.0E+08	1.0E+08
ρ (kg/m ³)	1770	1770
r (m)	2.0E+07	2.0E+07

References

10

Deguillaume, L., Tilgner, A., Schrödner, R., Wolke, R., Chaumerliac, N., and Herrmann, H.: Towards an operational aqueous phase chemistry mechanism for regional chemistry-transport models: CAPRAM-RED and its application to the COSMO-MUSCAT model, J. Atmos. Chem., 64, 1-35, doi:10.1007/s10874-010-9168-8, 2009.

Tilgner, A., and Herrmann, H.: Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM, Atmos. Environ., 44, 5415-5422, doi:10.1016/j.atmosenv.2010.07.050, 2010.