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Figures 

 

Figure S1. Schematic of multiphase mechanism employed in this study, including the number of processes, reactions, and phase transfer 
processes (modified from Deguillaume et al. (2009); Tilgner and Herrmann (2010)). 
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Figure S2. Modelled pH value (left) and ionic strength (I, right) as a function of simulation time for the different remote simulation cases 
(90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR). 
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Figure S3. Modelled Fe(II) aqueous-phase concentration in ng m-3 throughout the modelling time (left) and corresponding time evolution 
of activity coefficients (right) for the different remote simulation cases (90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR). 
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Figure S4. Modelled gas- and aqueous-phase concentration of H2O2 throughout the simulation time for the different remote simulation cases 
(90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR). 
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Figure S5. Modelled aqueous-phase OH concentration in mol l-1 throughout the simulation time for the different remote simulation cases 
(90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR). 
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Figure S6. Modelled aqueous-phase concentrations in ng m−3
(air) and corresponding activity coefficients for important C2 oxidation 

products, (i) glycolic acid (top), (ii) glyoxylic acid (centre), and (iii) oxalic acid (down) throughout the simulation time for the different 
remote simulation cases (90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR). The plotted concentrations represent the sum of dissociated 
and undissociated forms of the carboxylic acids.  5 
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Figure S7. Modelled aqueous-phase concentrations in ng m−3

(air) and corresponding activity coefficients for important C3 oxidation 
products, (i) pyruvic acid (top), (ii) 3-oxo-pyruvic acid (centre), and (iii) keto malonic acid (down) throughout the simulation time for the 
different remote simulation cases (90 %-IDR/90 %-NIDR and 70 %-IDR/70 %-NIDR). The plotted concentrations represent the sum of 5 
dissociated and undissociated forms of the carboxylic acids.  
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Tables 

Table S1. Initial chemical aerosol particle composition (relative contributions to the total particulate non-water mass) for the urban and 
remote environmental model scenarios. 

Compound Urban Remote 
   

NH4
+ 1.00E-01 9.80E-02 

NO3
- 2.49E-02 9.27E-02 

SO4
2- 2.61E-01 1.91E-01 

Cl- 1.92E-02 9.70E-05 
Br- 6.53E-04 1.77E-04 
I- 1.23E-04 1.52E-07 
Mn3+ 1.54E-04 1.15E-04 
Fe3+ 1.46E-03 1.42E-03 
Cu2+ 1.53E-04 1.08E-04 
WSOM 1.51E-01 5.57E-02 
HC2O4

- 4.38E-03 1.62E-03 
HOOCCH2COO- 2.79E-03 1.03E-03 
HOOCC2H4COO- 1.59E-03 5.89E-04 
WISOM 2.39E-01 8.83E-02 
EC 1.56E-02 1.67E-01 
Other anions 7.96E-05 1.89E-04 
Cations (+) 3.26E-02 1.53E-02 
Cations (2+) 1.49E-02 1.85E-02 
Other metals 3.25E-02 4.05E-02 
SiO2 9.53E-02 2.27E-01 
P 2.87E-03 2.73E-04 

   
Remarks: Single species and compound groups marked in italics are treated in SPACCIM 
as non-reactive species. The respective ions are just considered for the charge balance. 

 

Table S2. Parameters (N: Number, ρ: Density, r: Radius) of the mono-disperse aerosol particle initialisation for the urban and remote 5 
environmental model scenarios. 

Parameter Urban Remote 
   

N (#/cm3) 7.0E+08 1.0E+08 
ρ (kg/m3) 1770 1770 

r (m) 2.0E+07 2.0E+07 
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