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Abstract 

Fine particulate matter with aerodynamic diameters ≤ 2.5 μm (PM2.5) shows adverse effects on human 

health and atmospheric environment. Satellite-derived aerosol products have been intensively adopted 

in estimating surface PM2.5 concentrations, but most previous studies failed to monitor air pollution over 

small-scale areas limited by coarse spatial-resolution (3–50 km) and low data-quality aerosol optical 30 

depth (AOD) products. Therefore, a new space-time extremely randomized trees (STET) model is 
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developed that integrates spatiotemporal information to improve PM2.5 estimates at both spatial 

resolution and overall accuracy across China. To this end, the newly released MODIS MAIAC AOD 

product, meteorological and other auxiliary data are inputs to the STET model. Daily 1-km PM2.5 maps 

in 2018 across mainland China are produced. The STET model performs well with a high out-of-sample 35 

(out-of-station) cross-validation coefficient of 0.89 (0.88), a low root-mean-square error of 10.35 

(10.97) μg/m3, a small mean absolute error of 6.71 (7.17) μg/m3, and a small mean relative error of 

21.37 % (23.77%), respectively. Particularly, it can well capture the PM2.5 concentrations at both 

regional and individual site scales. In addition, it posed a strong predictive power (e.g., monthly-R2 = 

0.80) and can be used to predict the historical PM2.5 records. The North China Plain, the Sichuan Basin, 40 

and Xinjiang Province always are featured with high PM2.5 pollution, especially in winter. The STET 

model outperforms most models presented in previous related studies. More importantly, our study 

provides a new approach to obtain high-quality PM2.5 estimates, which is important for air pollution 

studies over urban areas. 

 45 

1. Introduction 

Atmospheric particulate matter is a relatively stable suspension system with solid and liquid particulate 

matter evenly dispersed. Fine particles are those particles in ambient air with aerodynamic diameters no 

more than 2.5 micrometers (PM2.5). Compared to coarser particles, PM2.5 are rich in toxic and harmful 

substances and can directly enter the respiratory tract and alveoli of humans. Moreover, they have a 50 

long residence time and long transmission distance in the atmosphere (Aggarwal and Jain, 2015). 

Numerous studies have illustrated that high PM2.5 concentration adversely affects human health (Peng et 

al., 2009; Bartell et al., 2013; Chowdhury and Dey, 2016; Crippa et al., 2019; Song et al., 2019), 

severely impairs the atmospheric environment (Li et al., 2017), and even significantly influences the 

cloud and precipitation systems by aerosol radiative and microphysical effects (Koren et al., 2014; Li et 55 

al., 2016; Seinfeld et al., 2016; Ceca et al., 2018). Silva et al. (2013) have shown that about 2.1 million 

people have died each year, resulting from the increasing PM2.5 around the world.  

Nowadays, air pollution is becoming more severe due to continuously increasing anthropogenic 

aerosols in developing countries, especially in China (He et al., 2011; Huang et al., 2014; Liu et al., 
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2017; Zhai et al., 2019). Fine particulate matters have become the primary pollutant in urban 60 

environment, garnering much scrutiny from the public (Han et al., 2014; Sun et al., 2016; Wu et al., 

2018). Therefore, China Meteorological Administration began to establish ground PM2.5 observation 

network to monitor the urban air quality as early as 2004 (Guo et al., 2009), followed by a denser 

network established by the Chinese Ministry of Environmental Protection since 2013. However, station-

based monitoring is largely limited by the instruments and climatic conditions and cannot completely 65 

reflect air pollution over large areas. Satellite remote sensing technology has led to a variety of 

operational aerosol products using mature aerosol retrieval algorithms (Levy et al., 2013; Lyapustin et 

al., 2018), which allows the PM2.5 estimations at large scale due to their unanimously positive 

relationships (Guo et al., 2017).  

Over the years, numerous approaches have been proposed to improve the PM2.5-AOD relationship. 70 

Physical models typically construct physical relationships between surface particulate matter 

concentrations and satellite AOD products through altitude and humidity corrections (Zhang and Li, 

2015). Statistical regression models, e.g., the multiple linear regression model, the linear mixed-effect 

model, the two-stage model, the geographically weighted regression (GWR) model, have been widely 

used for applications due to their simplicity and versatility (Gupta & Christopher, 2009; Ma et al., 2014; 75 

Xiao et al., 2017; Yao et al., 2019). Artificial intelligence models mainly involve the machine learning 

and deep learning models, e.g., the random forest (RF; Brokamp et al., 2018; Chen et al., 2018; Hu et 

al., 2017), the extreme gradient boosting model (XGBoost, Chen et al., 2019), the back-propagation and 

generalized regression neural networks (BRNN and GRNN, Li et al., 2017a).  

However, PM2.5 is jointly affected by numerous factors, e.g., meteorological conditions, human 80 

activities, and topography, showing great spatial and temporal heterogeneities. This makes it difficult 

for above traditional physical and statistical regression approaches to accurately explain and construct 

PM2.5-AOD relationships, leading to poor PM2.5 estimates. Despite stronger data mining ability, most 

artificial intelligence approaches have been simplistically adopted in PM2.5 predictions, neglecting their 

crucial spatiotemporal characteristics (Chen et al., 2018, 2019; Hu et al., 2017; Li et al., 2017a; 85 

Brokamp et al., 2018; Xue et al., 2019). Furthermore, deep learning is highly dependent on the 

computer performance and is less computationally efficient. On the other hand, most widely used 
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aerosol products are generated with low spatial resolutions (3–50 km), and thus are seriously limited for 

applications over small-scale regions such as urban areas. 

Focus on these problems, to address the spatiotemporal heterogeneity and improve PM2.5 estimates, a 90 

new space-time extremely randomized trees (STET) model is developed using the MODIS MAIAC 

AOD product at 1-km resolution associated with meteorological, land-use, topographic, and population 

parameters. Then the space continuous 1-km PM2.5 maps at different temporal scales covering mainland 

China in 2018 are generated. Section 2 describes the data sources and integration. Section 3 introduces 

the space-time extremely randomized trees (STET) model, and section 4 presents the validation and 95 

comparison of our PM2.5 estimates across China. Section 5 gives a summary and conclusion. 

 

2. Data sources 

2.1 PM2.5 ground measurements 

In this study, the hourly in-situ PM2.5 observations at 1583 monitoring stations (Figure 1) across 100 

mainland China from 1, January 2017 to 31, December 2018 are collected, and they are then averaged 

to obtain the daily PM2.5 measurements. The PM2.5 observations are measured using the tapered element 

oscillating microbalance approach method or β-attenuation monitors that have undergone further 

calibration and strict quality control procedures (Guo et al., 2009). 

[Please insert Figure 1 here] 105 

 

2.2 MAIAC AOD product 

The MAIAC algorithm was developed and applied to generate MODIS aerosol products from darkest to 

brightest surfaces at a 1-km spatial resolution over land (Lyapustin et al., 2011). On 30 May 2018, 

official 1-km-resolution MAIAC aerosol products were released and made freely available to all users. 110 

This dataset is produced using the revised MAIAC algorithm with continuous improvements in scale 

transition using spectral regression coefficients, cloud detection, determination of aerosol models, over-

water processing, and general optimization in the global aerosol retrieval process (Lyapustin et al., 

2018). MAIAC daily aerosol products from Terra and Aqua satellites are collected in 2018 across 
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China, and the 550-nm AOD retrievals with high quality assurance (QACloudMask = Clear and 115 

QAAdjacencyMask = Clear) are used.  

 

2.3 Auxiliary data 

The auxiliary data mainly includes meteorological, land-cover, surface topographic, and population 

data. The meteorological variables are collected from ERA-Interim atmospheric reanalysis products, 120 

including the boundary layer height (BLH), evaporation (EP), temperature (TEM), precipitation (PRE), 

relative humidity (RH), surface pressure (SP), wind speed (WS), and wind direction (WD). For 

meteorological variables, the observations between 1000 to 1400 local time are averaged to be 

consistent with satellite overpass times. The land-cover data include the MODIS land use cover and 

NDVI products. The topographic data include the surface elevation, slope, aspect, and relief (Wei et al., 125 

2019a), are calculated from the SRTM DEM product, and the population derived from VIIRS nighttime 

lights data. Table 1 provides detailed information about the data sources.  

[Please insert Table 1 here] 

 

2.4 Data integration 130 

Terra and Aqua MAIAC AOD products have different spatial coverages due to frequent clouds and 

difference in their respective imaging times. Therefore, both Terra and Aqua MAIAC datasets are 

combined and merged through the linear regression approach (Eq. 1) to reduce the systematic 

differences and enlarge the spatial coverage. By integrating the two datasets, the spatial coverage is 

greatly increased by more than 15% over most areas across China, which can lead to wider spatial-135 

coverage PM2.5 maps. More importantly, the number of valid data samples has significantly increased 

by approximately 25–32% after combination than just using Terra or Aqua MAIAC products, which can 

improve the model training ability.  

൝
𝜏் ൌ 𝑘ଵ ∙ 𝜏   𝑏ଵ
𝜏 ൌ 𝑘ଶ ∙ 𝜏்   𝑏ଶ

𝜏  ൌ  meanሺ𝜏், 𝜏ሻ
   (1) 

where τT, τA, and τC denote the Terra, Aqua, and combined AODs.  140 
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In addition, due to different spatial resolutions, all the 16 auxiliary variables are uniformly aggregated to 

a 1-km (≈ 0.01° × 0.01°) spatial resolution using the bilinear interpolation approach. After removing 

invalid or unrealistic values, there are 167,716 matched PM2.5-AOD samples and independent variables 

are collected for 2018 in China. 

 145 

3. Space-time extremely randomized trees 

In this study, a tree-based ensemble learning approach, called the extremely randomized trees (ET), is 

selected to deal with complex supervised regression issues and to construct robust PM2.5-AOD 

relationships. Compared to other tree-based ensemble approaches (e.g., RF), this model splits nodes by 

completely randomly selecting cut-points and uses all the training sample learning sample (instead of 150 

the bootstrap approach) to grow trees. Therefore, it is with stronger randomness and can efficiently 

solves variance problems and mines valuable information (Geurts et al., 2006). There are four key steps 

during the splitting process with the training dataset S: 

(a) Split a node (S). K attributes (a1, …, aK) are selected from all independent attributes in the local 

training subset S; and then K splits (s1, …, sk) are drawn;  155 

(b) Pick a random split. A subset S and an attribute a are used as inputs to calculate the maximum (amax) 

and minimum (amin) value; then a random cut-point ac uniformly in (amax, amin) is drawn; and if a < 

ac, the split si (i = [1, k]) is returned; 

(c) Calculate the score. The score for a split si in a subset S is measured by Equation 2. If the split si 

satisfy that Score(s*, S) = max{Score(si, S)}, the split s* is returned. 160 

(d) Stop the spilt. If |S| < nmin, or all attributes or the output are constant in in subset S, then output a 

Boolean (i.e., TRUE). 

𝑆𝑐𝑜𝑟𝑒ሺs, 𝑆ሻ ൌ
𝑣𝑎𝑟ሼ𝑦|𝑆ሽ െ

|𝑆|
𝑆 𝑣𝑎𝑟ሼ𝑦|𝑆ሽ െ

|𝑆|
𝑆 𝑣𝑎𝑟ሼ𝑦|𝑆ሽ

𝑣𝑎𝑟ሼ𝑦|𝑆ሽ
       ሺ2ሻ 

where Sl and Sr represents two subsets related to the two outcomes of a split (s), and var{} represents 

the variance of the output y in the training set S.  165 
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In the splitting process of the ET model for numerical attributes, K and nmin are the two main 

parameters, which represents the number of attributes randomly selected at each node and the minimum 

sample size for splitting a node (Geurts et al., 2006), respectively. They are used to establish an 

ensemble model with the full training samples by building numerous extra-trees. Last, the estimations 

of these extra-trees are summarized through the arithmetic average in regression problems to obtain the 170 

result. 

 

3.1 Model development 

Specifically, spatiotemporal heterogeneities, i.e., strong spatial autocorrelation and obvious temporal 

differences, is the key characteristic of PM2.5, presenting great challenges and usually neglected in most 175 

regression and artificial intelligence models. Therefore, in this study, a new space-time extremely 

randomized trees (STET) model, which introduces both the spatial and temporal information, is 

developed to solve this problem. The spatial (Space) information is represented by the geographical 

difference between two pixels calculated using the Haversine approach based on their longitude and 

latitude information (Eq.3), and the temporal (Time) information is represented by the time difference 180 

for a given pixel on different days in a year (Eq.5). These two space-time terms can better distinguish 

and represent the spatiotemporal autocorrelations of PM2.5 between different pixels on different polluted 

days.  

𝑃ௌሺ,,௧ሻ ൌ 𝑓ሺ𝐿𝑜𝑛,,௧, 𝐿𝑎𝑡,,௧ሻ ൌ ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛ሺ△ 𝛼ሻ  cosሺ𝛼ଵሻ cosሺ𝛼ଶሻ ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛ሺ△ 𝛽ሻ   (3) 

ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛ሺ𝜃ሻ ൌ 𝑠𝑖𝑛ଶሺ𝜃/2ሻ ൌ ሾ1 െ cosሺ𝜃ሻሿ/2   (4) 185 

𝑃்ሺ,,௧ሻ ൌ 𝐷𝑂𝑌,,௧   (5) 

where 𝑃௫ሺ,,௧ሻ represents a given pixel at location (i, j) in the year t, and DOY represents the day of 

year; 𝛼ଵand 𝛼ଶ denote the latitude of two points, and △ 𝛼 and △ 𝛽 denote the latitude and longitude 

difference between two points in space. Therefore, surface measured PM2.5 concentrations, MAIAC 

AODs, meteorological conditions, land cover, topographic conditions, population, and spatiotemporal 190 

information are used as preliminary inputs for the STET model.  

 

3.2 Model adjustment 
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However, due to a large number of independent variables considered, this will lead to the unavoidable 

over-fitting issue during the model training process. Therefore, the model need be further adjusted by 195 

selecting more important variables rather than all variables to overcome this issue and improve the 

model efficiency. For this purpose, the importance scores of all selected independent variables and 

spatiotemporal information to PM2.5 estimates for the STET model are calculated in China (Figure 2). 

The results suggest that AOD is the most influential variable, contributing ~31% toward daily PM2.5 

estimates. Time and space terms are the other two important factors, contributing about 9–10%. This 200 

further illustrates the importance of spatial and temporal information on PM2.5 estimates. Because there 

is little precipitation on most days throughout the year, PRE contributes little to PM estimates, by 

contrast, most other meteorological variables contribute more to PM2.5 estimates, especially BLH, EP, 

and TEM with average importance scores of 9%, 8%, and 7%, respectively. The contributions of 

surface conditions (i.e., LUC, relief, aspect, and slope) and NTL to PM2.5 estimates are generally less 205 

than 2%. Therefore, these six less important variables are excluded from the STET model and the 

remaining variables are used to construct the finial PM2.5 estimated model. 

[Please insert Figure 2 here] 

 

3.3 Model validation 210 

In this study, the widely used 10-fold cross-validation (10-CV) procedure (Rodriguez et al., 2010) is 

selected for model validation, where all data samples are divided into ten subsets randomly, and nine of 

them are used as the training data and the remaining is the testing data, indicating that the training and 

testing data are totally independent. This approach is repeated in turn for ten times. Then the error rate 

of each test is calculated, and the mean error rate from ten tests determines the final result. Here, the 215 

out-of-sample and out-of-station 10-CV procedures are involved, which the former one is performed 

based on the observations and used to evaluate the overall accuracy of the STET model. However, the 

later one is performed based on the monitoring stations and used to evaluate the model spatial 

performance. This means that training and testing are made of different spatial points, and the 
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relationship between spatial predictors and PM2.5 concentrations estimated in the training dataset is then 220 

predicted on the testing. 

 

4. Results and discussion 

4.1 Validation of MAIAC product 

MAIAC AOD retrievals are first evaluated with surface observations using the spatiotemporal matching 225 

approach (Wei et al., 2019b) at 18 AERONET monitoring stations in China (Figure 3). The MAIAC 

AOD retrievals show great performance with small estimation errors across mainland China (Figure 2a) 

and more than 84% of the matchups satisfy the MODIS expected errors (Levy et al., 2013) at the 

national scale. Besides vegetated surfaces, e.g., cropland and grassland, the MAIAC algorithm shows a 

considerable accuracy over heterogeneous urban surfaces (Figure 2b). MAIAC AOD products are more 230 

accurate and less biased than the widely used Dark Target (DT) and Deep Blue products at coarse 

spatial resolutions (N. Liu et al., 2019; Wei et al., 2018; Tao et al., 2019; Zhang et al., 2019). More 

importantly, the DT algorithm cannot be applied with a large amount of missing values over bright 

surfaces, and aerosol loadings are significantly overestimated over heterogeneous urban surfaces (Levy 

et al., 2013; Wei et al., 2018; 2019c). Therefore, the higher data-quality and spatial-resolution MAIAC 235 

products, which can generate more accurate and detailed PM2.5 estimates, are selected in this study. 

[Please insert Figure 3 here] 

 
4.2 Model performance 

4.2.1 Spatial-scale validation 240 

Figure 4 shows the sample-based and station-based 10-CV results of daily PM2.5 estimates for the 

traditional ET model and our new developed STET model at the national scale in 2018. The results 

suggest that the original ET model works well in estimating PM2.5 concentrations with an average out-

of-sample CV-R2, of 0.84 and overall small estimation uncertainties. However, when consider the 

spatiotemporal information, the model performance has been significantly improved with an increasing 245 

sample-based CV-R2 equal to 0.89, a stronger regression line (e.g., slope = 0.86), and decreasing RMSE 
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(~12.46 μg/m3), MAE (~8.26 μg/m3), and MRE (~28.09%) values. Nevertheless, the PM2.5 

concentrations tend to be overall underestimated at high polluted days (PM2.5 > 100 μg/m3) by the 

STET model. For the spatial performance, compared to the original ET model, the STET model shows a 

stronger spatial predictive power with a higher out-of-station CV-R2 of 0.88, a lower RMSE of 10.97 250 

μg/m3, MAE of 7.17 μg/m3, and MRE of 23.77%. These results illustrate that spatiotemporal 

information are crucial in improving the PM2.5-AOD relationships and should be carefully considered 

when introducing statistical regression models using remote sensing techniques. 

[Please insert Figure 4 here] 

 255 

Figure 5 shows the sample-based 10-CV results of the STET model in PM2.5 daily estimates over 

eastern and western China (according to the widely used Heihe-Tengchong line), and four typical local 

regions (Figure 1). The STET model performs differently over eastern and western China mainly due to 

significant differences in land cover and climate conditions. There are 1289 uniformly distributed PM2.5 

stations in eastern China, and 127,241 daily samples were collected. The STET model performs well 260 

eastern China with a high sample-based CV-R2 equal to 0.90 and low estimation uncertainties, i.e., 

RMSE = 9.77 μg/m3, MAE = 6.44 μg/m3, and MRE = 19.24%. By contrast, there are 294 unevenly and 

sparsely distributed PM2.5 stations in western China, thus about three times fewer daily PM2.5 estimates 

were collected. The model performance is overall poorer (e.g., CV-R2 = 0.86, and RMSE = 11.99 

μg/m3) than over eastern China. This mainly contributed to brighter surfaces (e.g., desert and bare land) 265 

with little vegetation coverage and harsh meteorological conditions over western China. 

There were 33,733, 15,199, 6,209, and 6,470 daily samples collected from 233, 184, 95, and 107 

uniformly distributed PM2.5 monitoring stations in North China Plain (NCP), Yangtze River Delta 

(YRD), Pearl River Delta (PRD) and Sichuan Basin (SCB), respectively. For former three typical urban 

agglomerations where people closely concerned, the estimated PM2.5 concentrations are highly 270 

consistent with surface measurements (CV-R2 = 0.89–0.92) with overall low estimation uncertainties 

(i.e., RMSE = 7–12 μg/m3, MAE = 5–8 μg/m3, and MRE = 15–19%). In addition, the STET model also 

performs well over Sichuan Basin with an average CV-R2 value equal to 0.87 and comparable 
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estimation uncertainties to North China Plain. In general, despite some differences in model 

performance, the STET model shows an overall good ability in PM2.5 estimates at the regional scale. 275 

[Please insert Figure 5 here] 

 

The national- and regional-scale aggregated evaluations mainly illustrate the overall performance of the 

STET model in PM2.5 estimates, however, due to the inhomogeneity of PM2.5 monitoring stations, an 

additional validation for each monitoring station in China is performed (Figure 6). For statistical 280 

significance, only these monitoring stations with more than ten data samples are plotted. The daily 

PM2.5 estimations are well related to surface measurements at most individual stations across China. 

The average sample-based CV-R2 is 0.84, and the CV-R2 values are higher than 0.8 at more than 73% 

of the monitoring stations, especially for eastern China. However, relatively poorer performances (CV-

R2 < 0.6) are observed at some scattered sites located in southwestern and southeastern China. In 285 

general, the STET model shows overall low estimation uncertainties at most sites with average RMSE 

and MAE values of 9.3 and 6.5 μg/m3, especially for southern China. Moreover, the average RMSE and 

MAE values are < 10 μg/m3 at more than 68% and 93% of the monitoring stations across China. Note 

that these stations show larger RMSE values (> 10 μg/m3) in central China mainly due to high polluted 

levels. In addition, the average MRE value is 20.88%, and most stations (> 86%) have low MRE values 290 

< 30% in PM2.5 estimations in China, especially for those located in eastern and southern China. 

[Please insert Figure 6 here] 

 
4.2.2 Temporal-scale validation 

Figure 7 shows the STET model performance from all available monitoring stations in China as a 295 

function of the day of year. The number of data samples in one day ranges from 54 to 1155 with an 

average of 466 in 2018. In general, the STET model shows great performance (average CV-R2 = 0.76) 

at most days in the year, and more than 76% of the days have CV-R2 values greater than 0.7. Two main 

uncertainty metrics, i.e., RMSE and MAE, show similar temporal variations during the year, first 

decreasing until around day 250 then gradually increasing. In general, approximately equal 92% of the 300 
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days have low RMSE and MAE values less than 15 and 10 μg/m3 over the year. Large estimation 

uncertainties always occur at the beginning and end of the year mainly due to intense human activities 

and harsh natural environment. Furthermore, MRE is relatively stable ranging from 13% to 52% with an 

average value of 23.29%, and more than 87% of the days yield low MRE values less than 30% in 

China. These results illustrate that the STET model show great performance in capturing PM2.5 305 

concentrations on most days of the year. 

[Please insert Figure 7 here] 

 

Figure 8 shows sample-based cross-validation results for PM2.5 daily estimates divided by four seasons 

in 2018 across China. The results suggest that there are obvious differences in model performance at the 310 

seasonal level. The STET model performs best in autumn with the highest CV-R2 value of 0.90 and 

strongest regression line (i.e., slope = 0.88, and intercept = 4.88 μg/m3). The average RMSE, MAE and 

MRE values are 9.01 μg/m3, 5.87 μg/m3, and 21.10 %, respectively. By contrast, the STET model 

performs worst in summer with the lowest CV-R2 of 0.76 and smallest slope of 0.74, indicating obvious 

underestimations. However, summer shows the least amount of air pollution with most daily PM2.5 315 

values < 80 μg/m3, leading to smallest estimation uncertainties. The main reason is that the 

meteorological conditions in place in summer accelerated the diffusion of pollutants but complicated the 

PM2.5-AOD relationships. The air quality is about two or three times worse in spring and winter than in 

winter with wider PM2.5 ranges and larger standard deviations. Moreover, the STET model shows 

similar performances in these two seasonal with almost equal CV-R2 and slope values, as well as close 320 

estimation uncertainties.  

[Please insert Figure 8 here] 

 

4.2.3 Predictive power  

To test the predictive power of the STET model, the model built for the year of 2018 is used to predict 325 

the daily PM2.5 concentrations in 2017, then validated against the ground measurements from 2017. 

This approach can ensure the data samples for model training and validation are completely 
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independent in both spatial and temporal scales. Figure 9 shows the validation of PM2.5 predictions in 

2017 at different temporal scales across China. The results show that the STET model can correctly 

capture more than 60% of the historical daily PM2.5 concentrations (N = 17,7616). The monthly (N = 330 

12,408), seasonal  (N = 5,227) and annual  (N = 1,461) means of PM2.5 predictions are highly correlated 

with the surface observations with R2 value of 0.79, 0.81, and 0.82, respectively, showing overall small 

estimation uncertainties (i.e., RMSE < 11.2 μg/m3, MAE < 8.6 μg/m3, MRE < 25.8 μg/m3) across 

China. These results illustrate that the STET model has a strong predictive power and can well capture 

the historical PM2.5 concentrations across China. 335 

 [Please insert Figure 9 here] 

 

4.3 Predicted PM2.5 maps across China 

The monthly PM2.5 maps are synthesized and averaged from at least 20% available daily PM2.5 

estimates for each grid in a month in 2018 across China (Hsu et al., 2012). The monthly PM2.5 estimates 340 

and ground measurements (N = 12,411) are highly correlated (R2 = 0.94) with a stronger slope of 0.94. 

The average RMSE and MAE are 5.35 and 3.87 μg/m3, respectively. The monthly spatial coverage 

varies from 73 to 92%, with an average of 83% across China. The highest (lowest) spatial coverage 

occcurs around October (January) of the year. Similarly, the monthly mean PM2.5 values vary 

conversely from 21.2 to 45.1 μg/m3 with the highest (lowest) PM2.5 concentration occurring around 345 

March (August) of the year. 

Figure 10a shows the annual PM2.5 maps across China which are generated from monthly PM2.5 maps if 

there are more than eight available values for each grid in 2018 (Wei et al., 2019d). The spatial patterns 

are similar between the STET-derived 1-km PM2.5 map and calculated in-situ measurements (Figure 

10b). In addition, validation results suggest that the annual mean PM2.5 estimates (N = 1,461) are highly 350 

consistent with ground measurements (R = 0.93) with small uncertainties (i.e., RMSE = 3.82 and MAE 

= 2.90 μg/m3). This illustrate that the synthetic dataset can more accurately reflect the annual PM2.5 

loadings across China.  

The average PM2.5 concentration is 33.9±16.3 μg/m3 in 2018 across mainland China. In general, the 

most severe PM2.5 pollution occurs in the Taklamakan Deseret, where most areas expose high PM2.5 355 
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concentrations > 80 μg/m3. There are also high-polluted levels over the North China Plain, Sichuan 

Basin, and Yangtze River Delta, with annual mean PM2.5 values of 46.8±11.8, 38.3±10.3, and 37.6±9.4 

μg/m3, respectively. These mainly contributed to intensive human activities, special topographic and 

meteorological conditions. By contrast, the annual mean PM2.5 loadings are overall low in the rest areas 

of China, e.g., Pearl River Delta (30.5±5.0 μg/m3). However, there may be poor representativeness for 360 

these areas over western China with few ground monitoring stations. In general, we have to say that the 

PM2.5 pollution has been significantly reduced in 2018 across China due to the effective emission 

control measures implemented by the Chinese government (Fang et al., 2019; Ma et al., 2019). 

However, more than 30% of mainland China still experienced high PM2.5 levels exceeding the 

recommended air quality level (PM2.5 > 35 μg/m3). 365 

[Please insert Figure 10 here] 

 

Figure 11 shows seasonal mean PM2.5 maps, which are averaged from the available monthly values for 

each grid, in 2018 across China. Preliminary validation against surface measurements suggest that the 

seasonal mean PM2.5 estimates are in good accuracy (i.e., R2 = 0.94, RMSE = 4.72 μg/m3, and MAE = 370 

3.49 μg/m3), which can better describe the seasonal variations in PM2.5 concentrations across China. 

There are noticeable spatial differences in PM2.5 distributions on the seasonal scale. In winter and 

spring, more than 77% and 66% of mainland China exposing the high PM2.5 levels > 30 μg/m3, yielding 

poorer air quality. By contrast, PM2.5 pollution is slighter in summer and autumn with more than 91% 

and 81% of mainland China experiencing low PM2.5 levels below the acceptable air quality level. Note 375 

that in spring, PM2.5 concentrations are particularly high in Xinjiang province due to frequent sand and 

dust episodes in 2018. 

[Please insert Figure 11 here] 

4.4 Comparison with related studies 

There is an increasing number of studies on estimating PM2.5 using satellite AOD products from local to 380 

national scales across China. However, limited by the operational satellite aerosol products, PM2.5 can 

only be estimated at coarse spatial resolutions of approximately 6–10 km (Fang et al., 2016; Li et al., 
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2017b; Yu et al., 2017; Chen et al., 2018; Ma et al., 2019; Yao et al., 2019). Recently, with the release 

of MODIS 3-km DT aerosol products, the PM2.5 estimates can be improved to 3-km spatial resolution 

across China (You et al., 2016; Li et al., 2017a; He & Huang, 2018; Chen et al., 2019; Xue et al., 2019). 385 

Therefore, in our study, the spatial resolution of PM2.5 estimates has been significantly improved by 3–

10 times to 1 km based on the newly released high-quality MAIAC products across mainland China.  

For model performance, our newly developed STET model shows much higher accuracy with higher 

CV-R2 values, smaller RMSE and MAE values than the statistical regression models (Table 2), e.g., the 

timely structure adaptive model (TSAM, Fang et al., 2016) model, the Gaussian model (Yu et al., 2017), 390 

the Generalized Additive Model (GAM, Chen et al., 2018) model, and the GWR model (Ma et al., 

2014; You et al., 2016), and the GTWR model (He and Huang, 2018). The STET model can also 

outperform most machine learning (ML) and deep learning approaches including the RF model (Chen et 

al., 2018; Wei et al., 2019e), the XGBoost model (Chen et al., 2019), the Geo- BPNN, GRNN and deep 

brief network (DBN) models (Li et al., 2017a, 2017b), and some optical combined models, e.g., the 395 

Daily-GWR (D-GWR) model (He and Huang, 2018), the two-stage model (He and Huang, 2018; Ma et 

al., 2019; Yao et al., 2019), and the ML + GAM model (Xue et al., 2019). In addition, there are only a 

hanful of studies on the predictive power in PM2.5 concentrations across China. The comparison results 

show that our STET model is superior to those results reported by previous studies, i.e., the two-stage 

model (Ma et al., 2019), the GTWR model (He and Huang, 2018), the ML + GAM model (Xue et al., 400 

2019), and the STRF model (Wei et al., 2019e). 

[Please insert Table 2 here] 

 

5. Summary and conclusion 

With the increase in air pollution over recent years, abundant studies on estimating PM2.5 have been 405 

performed using satellite remote sensing. However, most of the PM2.5 estimates are reported at spatial 

resolutions of 3–10 km, which is inadequate for monitoring air quality at urban areas. The accuracy of 

PM2.5 estimates is also limited by traditional models. Therefore, we try to generate high-quality PM2.5 

maps at 1-km higher spatial resolution across China. For this, a new space-time extremely randomized 
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trees (STET) approach is developed to minimize the spatiotemporal heterogeneities in PM2.5 and 410 

improve the estimate accuracy. 

Our results suggest that the STET model shows great performance in estimating daily PM2.5 

concentrations with a relatively high sample-based cross-validation coefficient of 0.89, low RMSE of 

10.35 μg/m3, MAE of 6.71 μg/m3 and MRE of 21.37% at the national scale. Comparisons illustrate that 

spatiotemporal information is of great importance and should be carefully considered during model 415 

development. The STET model shows better performance at most monitoring stations and individual 

days in the year. The North China Plain and the Sichuan Basin regions, under the influence of intense 

human activities and poor dispersion conditions, have high PM2.5 loadings. Moreover, the STET model 

can outperform most models presented in previous related studies in terms of spatial resolution, model 

accuracy and predictive power. This study suggests that the 1-km-resolution PM2.5 dataset will be of 420 

great importance in future atmospheric pollution focused on medium- or small-scale areas. In addition, 

the STET model will be applied to produce the historical PM2.5 dataset across China in our future 

studies since MODIS can cover global observations nearly over the past 20 years. 
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Table 1. Summary of the data sources used in this study. 595 

Dataset Variable Content Unit 
Spatial 
Resolution 

Temporal 
Resolution 

Data source 

PM1 PM2.5 PM2.5 μg/m3 - Hourly CNEMC 

AOD AOD MAIAC AOD  - 1 km ×1 km Daily MCD19A2 

Meteorological 
data 

BLH Boundary layer height m 0.125°×0.125° 3-hour 

ERA-Interim 
reanalysis 
product 

PRE Total precipitation mm 0.125°×0.125° 3-hour 

EP Evaporation mm 0.125°×0.125° 3-hour 

RH Relative humidity % 0.125°×0.125° 3-hour 

TEM 2-m air temperature K 0.125°×0.125° 6-hour 

SP Surface pressure hPa 0.125°×0.125° 6-hour 

WS 10-m wind speed m/s 0.125°×0.125° 6-hour 

WD 10-m wind direction m/s 0.125°×0.125° 6-hour 

Land cover NDVI NDVI - 500 m × 500 m Monthly MOD13A3 

 LUC Land use cover - 500 m × 500 m Annually MCD12Q1 

Topography DEM DEM m 90 m × 90 m - 

SRTM 
 Relief Surface relief m 90 m × 90 m - 

 Aspect Surface aspect degree 90 m × 90 m - 

 Slope Surface slope degree 90 m × 90 m - 

Population NTL Night lights W/cm2/sr 500 m × 500 m Monthly VIIRS 
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Table 2. Comparison between model performances of the STET model and other models from previous 
related studies focused on China. 

Model Resolution
Model Validation Predictive power 

Literature 
R2 RMSE MAE Daily Monthly 

GWR 10 km 0.64 32.98 21.25 - - Ma et al., (2014) 

TSAM 10 km 0.80 22.75 15.99 - - Fang et al. (2016) 

Gaussian 10 km 0.81 21.87 - - - Yu et al. (2017) 

RF 10 km 0.83 18.08 - - - Chen et al. (2018) 

GAM  0.55 29.13 - - -  

Geo-BPNN 10 km 0.84 15.23 10.34 - - Li et al. (2017b) 

Geo-GRNN  0.82 16.93 12.34 - -  

Geo-DBN  0.88 13.03 08.54 - -  

Two-stage 10 km 0.77 17.10 11.51 0.41 0.73 Ma et al. (2019) 

Two-stage 6 km 0.60 21.76 14.41 - - Yao et al. (2019) 

GRNN 3 km 0.67 20.93 13.90 - - Li et al. (2017a) 

GWR 3 km 0.81 21.87 - - - You et al. (2017) 

D-GWR  3 km 0.72 21.01 14.59 - - He & Huang (2018) 

Two-stage  0.71 21.21 13.50 - -  

GTWR  0.80 18.00 12.03 0.41 -  

XGBoost 3 km 0.86 14.98 - - - Chen et al. (2019) 

ML + GAM 3 km 0.61 27.80 17.70 0.57 0.74 Xue et al. (2019) 

STRF 1 km 0.85 15.57 9.77 0.55 0.73 Wei et al. (2019e) 

STET 1 km 0.89 10.35 6.71 0.60 0.80 Our study 

  600 
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Figure 1. Spatial distributions of PM2.5 and AERONET monitoring stations in China. The Heihe-
Tengchong line (orange line) shows the boundary between Eastern and Western China.  
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 605 

Figure 2. Importance score (%) of independent variables to PM2.5 estimates for the STET model. 
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Figure 3. Scatter plots of MAIAC AOD retrievals versus AERONET AODs at 550 nm in (a) China, and 
(b) urban, (c) cropland, and (d) grassland. The dotted lines represent the upper and lower boundaries of 

the expected error (EE). 610 
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Figure 4. Density scatter plots of sample-based (top row) and station-based (bottom row) 10-CV results 

for the ET and STET models at the daily level (N = 167,692) in 2018 across mainland China. 
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Figure 5. Density scatter plots of sample-based 10-CV results for (a) eastern China (ECH), (b) western 
China (WCH), (c) North China Plain (NCP), (d) Yangtze River Delta (YRD), (e) Pearl River Delta 

(PRD), and (f) Sichuan Basin (SCB) in 2018. 
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Figure 6. Spatial distributions of the site-scale performance of the STET model for (a) the sample-based 620 

CV-R2, (b) RMSE, (c) MAE, and (d) MRE in 2018 across China. 
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Figure 7. Time series of the daily performance of the STET model in terms of (a) sample-based CV-R2, 
(b) RMSE, (c) MAE, and (d) MRE in 2018 across China 
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Figure 8. Density scatter plots of sample-based 10-CV results for the STET model for four seasons in 

2018 across China. 
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Figure 9. Density scatter plots of sample-based 10-CV results for the STET model for four seasons in 
2018 across China. 630 
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Figure 10. Spatial distributions of annual mean (a) PM2.5 estimates and (b) surface observations in 2018 
across China.   
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Figure 11. Spatial distributions of seasonal mean 1-km-resolution PM2.5 concentrations for four seasons 635 

in 2018 across China. 
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