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Abstract 25 

Fine particulate matter with aerodynamic diameters ≤ 2.5 μm (PM2.5) has adverse effects on human 

health and the atmospheric environment. The estimation of surface PM2.5 concentrations has made 

intensive use of satellite-derived aerosol products. However, most previous studies failed to monitor air 

pollution over small-scale areas, limited by the coarse spatial resolution (3–50 km) and the poor data 

quality of aerosol optical depth (AOD) products. Here, enhanced was the space-time extremely 30 

randomized trees (STET) model by integrating updated spatiotemporal information and additional 

auxiliary data to improve the spatial resolution and overall accuracy of PM2.5 estimates across China. To 
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this end, the newly released Moderate Resolution Imaging Spectroradiometer Multi-Angle 

Implementation of Atmospheric Correction AOD product along with meteorological, topographical, 

land-use data and pollution emissions were input to the STET model, and daily 1-km PM2.5 maps for 35 

2018 across mainland China were produced. The STET model performed well with a high out-of-

sample (out-of-station) cross-validation coefficient of determination (R2) of 0.89 (0.88), a low root-

mean-square error of 10.33 (10.93) μg/m3, a small mean absolute error of 6.69 (7.15) μg/m3, and a small 

mean relative error of 21.28 % (23.69%). In particular, the model captured well PM2.5 concentrations at 

both regional and individual site scales. The North China Plain, the Sichuan Basin, and Xinjiang 40 

province always featured high PM2.5 pollution levels, especially in winter. The STET model 

outperformed most models presented in previous related studies, with a strong predictive power (e.g., 

monthly R2 = 0.80) which can be used to estimate historical PM2.5 records. More importantly, this study 

provides a new approach toward obtaining high-resolution and high-quality PM2.5 data set in China (i.e., 

ChinaHighPM2.5), important for air pollution studies focused on urban areas. 45 

 

1. Introduction 

Atmospheric particulate matter is a general term describing all kinds of solid and liquid particles in the 

atmosphere. Fine particles are those particles in ambient air with aerodynamic diameters no more than 

2.5 micrometers (PM2.5). Compared to coarser particles, PM2.5 is rich in toxic and harmful substances 50 

and can directly enter the respiratory tract and alveoli of humans. Moreover, they have a long residence 

time and long transmission distance in the atmosphere (Aggarwal and Jain, 2015). Numerous studies 

have illustrated that high PM2.5 concentrations adversely affect human health (Peng et al., 2009; Bartell 

et al., 2013; Chowdhury and Dey, 2016; Crippa et al., 2019; Song et al., 2019), severely impairs the 

atmospheric environment (Z. Li et al., 2017), and significantly influences cloud and precipitation 55 

systems through aerosol radiative and microphysical effects (Koren et al., 2014; Seinfeld et al., 2016). 

Silva et al. (2013) have shown that about 2.1 million people have died each year, resulting from 

increasing PM2.5 concentrations around the world.  

Nowadays, air pollution is becoming more severe due to continuously increasing anthropogenic 

aerosols in developing countries, especially in China (He et al., 2011; Huang et al., 2014; M. Liu et al., 60 



3 
 

2017; Zhai et al., 2019). Fine particulate matter has become the primary pollutant in urban 

environments, garnering much scrutiny from the public (Han et al., 2014; L. Sun et al., 2016; Wu et al., 

2018). Therefore, the China Meteorological Administration established a ground PM2.5 observation 

network to monitor the urban air quality in 2004 (Guo et al., 2009), followed by a denser network 

established by the Chinese Ministry of Environmental Protection in 2013. However, station-based 65 

monitoring is largely limited by the instruments and climatic conditions and cannot completely 

characterize air pollution over large areas. Satellite remote sensing technology has led to a variety of 

operational aerosol optical depth (AOD) products (Levy et al., 2013; Lyapustin et al., 2018), leading to 

estimates of PM2.5 at large scales due to the positive relationship between AOD and PM2.5 concentration 

(Guo et al., 2017).  70 

Over the years, numerous approaches have been proposed to improve the PM2.5-AOD relationship. 

Physical models typically construct physical relationships between surface particulate matter 

concentrations and satellite AOD products through altitude and humidity corrections (Zhang and Li, 

2015). Statistical regression models, e.g., the multiple linear regression model, the linear mixed-effect 

model, the two-stage model, and the geographically weighted regression (GWR) model, have been 75 

widely used for applications due to their simplicity and versatility (Gupta and Christopher, 2009; Ma et 

al., 2014; Xiao et al., 2017; Yao et al., 2019). Artificial intelligence models mainly involve machine 

learning and deep learning models, e.g., the random forest (RF; Brokamp et al., 2018; G. Chen et al., 

2018; Wei et al., 2019a), the extreme gradient boosting model (XGBoost; Z. Chen et al., 2019), and the 

back-propagation and generalized regression neural networks (BRNN and GRNN; T. Li et al., 2017a).  80 

PM2.5 is jointly affected by numerous factors, e.g., meteorological conditions, human activities, and 

topography, showing great spatial and temporal heterogeneities. This makes it difficult for traditional 

physical and statistical regression approaches to accurately explain and construct PM2.5-AOD 

relationships, leading to poor PM2.5 estimates. Despite their stronger data mining ability, most artificial 

intelligence approaches have been simplistically adopted in PM2.5 predictions, neglecting the 85 

spatiotemporal characteristics of PM2.5 (Brokamp et al., 2018; G. Chen et al., 2018; Z. Chen et al., 2019; 

Li et al., 2017a; Xue et al., 2019). Furthermore, deep learning is highly dependent on the performance 

of a computer and is less computationally efficient. In addition, most widely used aerosol products are 
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generated at low spatial resolutions (3–50 km), a serious limitation for applications over small-scale 

regions such as urban areas. 90 

To account for the spatiotemporal heterogeneity of PM2.5, the space-time extremely randomized trees 

(STET) model developed in our previous study for estimating PM1 (Wei et al., 2019b) is adopted here 

with further refinements for improving the estimation of PM2.5 using the high-spatial-resolution (1 km) 

Moderate Resolution Imaging Spectroradiometer (MODIS) Multi-Angle Implementation of 

Atmospheric Correction  (MAIAC) AOD product. Note that PM1 and PM2.5 emission sources, 95 

formation and transport mechanisms, and health impacts differ. Their spatial patterns and distributions 

also differ, and their particle ratio varies greatly, ranging from less than 0.5 to greater than 0.9 at both 

spatial and temporal scales, especially in highly polluted regions as in China (Wei et al., 2019b). The 

STET model has been improved by using corrected AODs, adding pollutant emissions, updating the 

feature selection, and improving the determination of spatiotemporal information. Based on this, 100 

spatially continuous high-resolution and high-quality PM2.5 data set across mainland China (i.e., 

ChinaHighPM2.5) in 2018 are generated from the MODIS MAIAC AOD product at a 1-km resolution 

using meteorological, land-use, topographic, population, and emission parameters. Section 2 describes 

the data sources and integration. Section 3 introduces the enhanced STET model in detail, and section 4 

presents the validation and comparison of our PM2.5 estimates across China. Section 5 compares our 105 

model with those models developed in previous related studies, and Section 6 gives a summary and 

conclusions. 

 

2. Data sources 

2.1 PM2.5 ground measurements 110 

Hourly in situ PM2.5 observations at 1583 monitoring stations (Figure 1) across mainland China from 1 

January 2017 to 31 December 2018 were collected, then averaged to obtain daily mean PM2.5 

measurements. PM2.5 observations are measured using the tapered element oscillating microbalance 

approach or β-attenuation monitors that have undergone further calibration and strict quality control 

procedures (Guo et al., 2009). 115 

 



5 
 

[Please insert Figure 1 here] 

 

2.2 MAIAC AOD product 

The MAIAC algorithm was developed to generate MODIS aerosol products from the darkest to the 120 

brightest surfaces at a 1-km spatial resolution over land (Lyapustin et al., 2011). On 30 May 2018, 

official 1-km-resolution MAIAC aerosol products were released and made freely available to all users. 

This dataset is produced using the revised MAIAC algorithm with continuous improvements in scale 

transition using spectral regression coefficients, cloud detection, determination of aerosol models, over-

water processing, and general optimization in the global aerosol retrieval process (Lyapustin et al., 125 

2018). MAIAC daily aerosol products from the Terra and Aqua satellites were collected from 2017 to 

2018 across China, and 550-nm AOD retrievals with high quality assurance (QACloudMask = Clear and 

QAAdjacencyMask = Clear) were used.  

Here, the MAIAC AOD retrievals were first evaluated against surface observations at 18 AERONET 

monitoring stations in China (Figure 1) using the spatiotemporal matching approach (Wei et al., 2019c, 130 

d). MAIAC AOD retrievals are highly accurate with small estimation errors across mainland China. 

More than 84% of the matchups satisfy the MODIS expected error (Levy et al., 2013) at the national 

scale (Figure 2a). Besides vegetated surfaces, e.g., cropland and grassland, the MAIAC algorithm shows 

considerable accuracy over heterogeneous urban surfaces (Figure 2b). MAIAC AOD products are more 

accurate and less biased than the widely used Dark Target (DT) and Deep Blue products at coarse 135 

spatial resolutions (N. Liu et al., 2019; Wei et al., 2019e; Tao et al., 2019; Z. Zhang et al., 2019). More 

importantly, the DT algorithm generates a large number of missing values over bright surfaces, and 

aerosol loadings are significantly overestimated over heterogeneous urban surfaces (Levy et al., 2013; 

Wei and Sun, 2017; Wei et al., 2018a, 2018b, 2019d). Therefore, higher data-quality and spatial-

resolution MAIAC products, which can generate more accurate and detailed PM2.5 estimates, are 140 

selected. 

 

[Please insert Figure 2 here] 
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2.3 Auxiliary data 145 

Auxiliary data include meteorological, land-cover, surface topographic, and population data. The 

meteorological variables are collected from ERA-Interim atmospheric reanalysis products, including the 

boundary layer height (BLH), evaporation (EP), temperature (TEM), precipitation (PRE), relative 

humidity (RH), surface pressure (SP), wind speed (WS), and wind direction (WD). Observations of 

meteorological variables made between 1000 to 1400 local time are averaged to be consistent with 150 

satellite overpass times. Land-cover data include the MODIS land use cover and normalized difference 

vegetation index (NDVI) products. Topographic data, i.e., the surface elevation, slope, aspect, and relief 

(Wei et al., 2019d), are calculated from the Shuttle Radar Topography Mission Digital Elevation Model 

(DEM) product, and the population data are from Visible Infrared Imaging Radiometer Suite nighttime 

lights (NTL) data. Different with our previous study (Wei et al., 2019b), pollutant emissions for 155 

different precursors (including SO2, NOx, CO, and volatile organic compounds) and fine-sized dust are 

also employed to help explicitly explain the PM2.5 composition, collected from a multi-resolution 

emission inventory for China (Zhang et al., 2007). Table 1 provides detailed information about the data 

sources.   

 160 

[Please insert Table 1 here] 

 

3. Methodology 

Here, a tree-based ensemble learning approach, called the extremely randomized trees (ERT; Geurts et 

al., 2006), is selected to deal with complex supervised regression issues and to construct robust PM2.5-165 

AOD relationships. This model splits nodes by randomly selecting cut-points and uses all training 

samples to grow trees instead of the bootstrap approach. The model efficiently solves variance problems 

and mines more valuable information compared to other widely used tree-based approaches, e.g., the 

decision tree and RF. 

Unlike the STET model used in our previous study for retrieving PM1 (Wei et al., 2019b), the current 170 

algorithm for retrieving PM2.5 is partly based on the STET model that is enhanced by a series of 

refinements to further optimize and strengthen the model capacity to improve the estimation accuracy, 
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including 1) using aerosol precursor gases (SO2, CO, NOx, VOC, fine-sized dust) from pollutant 

emission inventories as additional input; 2) correcting satellite retrievals of AOD with reference to 

ground-based measurements; 3) modifying the feature selection approach using the Gini index (GI); and 175 

4) improving the determination of spatiotemporal information.  

 

3.1 Data correction and integration 

Although the MAIAC algorithm performs generally well in China with a mean absolute error (MAE) of 

0.06 and a root-mean-square error (RMSE) of 0.121 (Figure 2), a systematic error in the AOD retrievals 180 

(𝜏௦) can be corrected by linear regression between in situ AOD measurements collected at all 

AERONET sites in China matched with the MAIAC retrievals as follows: 

𝜏 ൌ 0.911 ∙ 𝜏௦   0.018;  𝑅 ൌ 0.963 .    ሺ1ሻ 

Due to the difference in cloud distributions at their respective imaging times, the spatial coverages of 

Terra and Aqua MAIAC AOD products differ. Terra and Aqua MAIAC AOD retrievals are thus 185 

averaged for each pixel on each day to form a new dataset and enlarge the spatial coverage. By 

integrating the two datasets, the spatial coverage increased by more than 15% over most areas in China, 

leading to PM2.5 maps with wider spatial coverages. The number of valid data samples also significantly 

increased by approximately 25–32%, improving the model training ability. Due to different spatial 

resolutions, all auxiliary variables were uniformly aggregated to a 1-km spatial resolution using the 190 

bilinear interpolation approach. After removing invalid or unrealistic values, there are 167,716 matched 

PM2.5-AOD samples and independent variables collected for 2018 in China. 

 

3.2 Potential effects of variables on PM2.5 

The potential relationships between all selected independent variables and PM2.5 measurements are first 195 

investigated (Figure 3). AOD is highly positively related to PM2.5 measurements (R = 0.54), and all 

pollutant emissions, nighttime lights, and land use cover show positive effects on PM2.5. By contrast, all 

topographical variables and NDVI are negatively related to PM2.5. Moreover, except for ET (R = 0.24) 

and SP (R = 0.16), the other meteorological variables show opposite negative effects on PM2.5, 

especially for BLH (R = -0.22) and TEM (R = -0.17). In general, all the selected variables are 200 
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significantly correlated to PM2.5 measurements at the confidence level of 0.01 or 0.05 (two sides), so 

they are used as inputs to the STET model for preliminary training. 

 

3.3 Updated feature selection 

Due to the large number of independent variables considered, over-fitting will occur during the model 205 

training process. The model thus needs further adjustment by selecting the most important variables 

rather than all variables to overcome this issue and improve the model efficiency. In this study, the GI 

index is selected to calculate the importance score of each independent variable on PM2.5 estimates 

because of its higher accuracy and stability as a variable importance measure, especially for continuous 

variables with low signal-to-noise ratios (Jiang et al., 2009; Calle and Urrea, 2011), expressed as 210 

𝐺𝐼ሺ𝜔ሻ ൌ  𝜔ሺ1 െ 𝜔ሻ ൌ 1 െ

ே

ୀଵ

 𝜔
ଶ

ே

ୀଵ

  , ሺ2ሻ 

where n represents the number of the categories (N = 1, …, n), and 𝜔 represents the sample weight of 

each category. The importance of one feature (Xj) on node m is that the GI changes before and after 

node m branching: 

∆𝐺𝐼 ൌ  𝐺𝐼 െ  𝐺𝐼 െ 𝐺𝐼  , ሺ3ሻ 215 

where 𝐺𝐼 and 𝐺𝐼 represent the GI of two new nodes after branching. The importance score for one 

feature (ISj) in then the extra-trees with k trees (i = 1, …, k), calculated as 

𝐼𝑆 ൌ  ∆𝐺𝐼



ୀଵ

ൌ    ∆𝐺𝐼
∈ெ



ୀଵ

 , ሺ4ሻ 

where ∆𝐺𝐼 represents the importance of Xi in the ith tree when the node of feature Xi in decision tree j 

belongs to set M. Finally, an additional normalization approach is performed to all obtained importance 220 

scores for each feature. 

The results suggest that AOD is the most influential variable, contributing ~32.5% toward daily PM2.5 

estimates (Figure 3). Most meteorological variables contribute more to PM2.5 estimates, especially BLH, 

EP, and TEM, with an average important score of 9.6%, 7.7%, and 7.3%, respectively. The PM2.5-AOD 

relationship might largely depend on the compositions (e.g., aerosol water, Reddington et al., 2019; Jin 225 

et al., 2020). High RH conditions and precipitation should have large influences on the production and 
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removal of PM2.5 (Sun et al., 2014; Zheng et al., 2015). However, RH and PRE turn to be less important 

with overall low importance scores in the STET model, which may be attributed to the fact that aerosol 

retrieval algorithms only work under cloud-free conditions when RH is relatively low. More 

importantly, the calculated importance score only represents the importance of features in splitting 230 

during the extra-tree construction, not the contribution of features to PM2.5 in physical mechanisms. 

Two main land-use variables, i.e., NDVI and DEM, are also important to PM2.5 estimates, while the 

pollutant emissions show different effects on PM2.5 with varying importance scores, especially for NH3, 

CO, SO2, and fine-sized dust. The eight least important variables with low important scores of < 2% are 

excluded from the STET model, and the remaining 14 more important variables are selected as inputs to 235 

build the PM2.5-AOD relationship. 

 

[Please insert Figure 3 here] 

 

3.4 Improved spatiotemporal information 240 

Spatiotemporal heterogeneities, i.e., strong spatial autocorrelations and clear temporal variations, are the 

key characteristics of PM2.5, presenting great challenges and usually neglected in most regression and 

artificial intelligence models. Therefore, in this study, the STET model is further enhanced to solve this 

problem by more accurately determining the spatial and temporal information. For this purpose, the 

Haversine approach is selected to calculate the great-circle distance between two points on a sphere 245 

specified by their latitudes and longitudes (Eqs. 5–7). This approach can avoid the problem of 

insufficient effective numbers due to the short distance between two points by using sines, used to 

represent the space term (𝑃௦). In addition, instead of using the day of the year (DOY), the time radian 

difference for each point on different days in a year is calculated (Eq.8) to minimize the impact of the 

seasonal cycle and is selected to represent the time term (𝑃்). These two improved space-time terms can 250 

account for the spatiotemporal autocorrelations of PM2.5 between different points for each day and 

between consecutive time series at the same place. 

ℎ ൌ 𝑓ሺ𝐿𝑜𝑛,,௧, 𝐿𝑎𝑡,,௧ሻ ൌ ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛ሺ𝛼ଵ െ 𝛼ଶሻ  cosሺ𝛼ଵሻ cosሺ𝛼ଶሻ ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛ሺ𝛽ଵ െ 𝛽ଶሻ ,  (5) 

ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛ሺ𝜃ሻ ൌ 𝑠𝑖𝑛ଶሺ𝜃/2ሻ ൌ ሾ1 െ cosሺ𝜃ሻሿ/2 ,  (6) 
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𝑃ௌሺ,,௧ሻ ൌ 2 ∗ 𝑟 ∗ asin ሺ𝑠𝑞𝑟𝑡ሺℎሻሻ , (7) 255 

𝑃்ሺ,,௧ሻ ൌ cos ሺ2𝜋
ௗ,ೕ,

்
ሻ ,  (8) 

where 𝛼ଵand 𝛼ଶ denote the latitudes of two points, β1 and β2 denote the longitudes of two points in 

space, r denotes the radius (in km) of the earth, d represents the DOY, and T represents the total number 

of days in the year in question.  

For the enhanced STET model, all the selected independent variables are first input into the ERT model, 260 

and the random splits (S, ai) are established according to the whole of training data samples; then totally 

different K attributes are selected randomly from all attributes according to spatial and temporal 

differences; then K random splits are generated (s1, …, sk), and a split (s*) is selected by calculating the 

score measure function, i.e., Score(s*, S); then split node (S) is completely randomly generated to 

establish an extra tree; last the extra tree ensemble is built using the similarity method. Detailed 265 

information on ERT algorithm can be found in Geurts et al. (2006). Figure 4 illustrates the schematic of 

the enhanced STET model. 

 

[Please insert Figure 4 here] 

 270 

3.5 Model validation approach 

Different from our previous study, three independent validation methods are performed to verify the 

model’s ability to estimate PM2.5 concentrations. The first independent validation method, i.e., the out-

of-sample cross-validation (CV) approach, is performed by all data samples using the 10-fold CV 

procedure (Rodriguez et al., 2010). The data samples are divided into ten subsets randomly, and nine 275 

(one) of them are used as training (validation) data. This approach is repeated ten times, and error rates 

are averaged to obtain the final result. This is a common approach to evaluate the overall accuracy of a 

machine learning model, widely adopted in most satellite-derived PM studies (T. Li et al., 2017a, b; Ma 

et al., 2014, 2019; Xiao et al., 2017; He and Huang, 2018; Chen et al., 2019; Wei et al., 2019a, 2019b; 

Xue et al., 2019; Yao et al., 2019).  280 

The second independent validation method, i.e., out-of-station CV approach, is similar to the first one 

but performed using data from the monitoring stations to evaluate the spatial performance of the model. 
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Data samples collected from different spatial points make up the training and testing data, and the 

relationship between spatial predictors and PM2.5 built from the training dataset is then estimated for 

each testing. The third independent validation approach tests the predictive power of the model. It is 285 

performed by applying the model built for one year to predict the PM2.5 concentrations for other years, 

then validating the results against the corresponding ground measurements. This approach ensures that 

the data samples for model training and validation are completely independent on both spatial and 

temporal scales. Several traditional statistical metrics are selected to describe the model performance, 

including the correlation coefficient (R), R2, RMSE, MAE, and the mean relative error (MRE).  290 

 

4. Results 

4.1 Validation at the spatial scale 

4.1.1 National-scale validation 

Figure 5 shows the out-of-sample sample and out-of-station 10-CV results of daily PM2.5 estimates for 295 

the traditional ERT model and our enhanced STET model at the national scale in 2018. The original 

ERT model works well in estimating PM2.5 concentrations with an average out-of-sample CV-R2 of 

0.84 and overall small estimation uncertainties. However, when considering spatiotemporal 

information, the model performance significantly improves with a sample-based CV-R2 of 0.89, a 

stronger regression line, and a decreasing RMSE of 10.33 μg/m3, MAE of 6.69 μg/m3, and MRE of 300 

21.28%. Regarding the spatial performance, compared to the original ET model, the enhanced STET 

model shows a stronger spatial predictive power with a higher out-of-station CV-R2 of 0.88, a lower 

RMSE of 10.93 μg/m3, MAE of 7.15 μg/m3, and MRE of 23.69%. In addition, compared to the sample-

based validation, the out-of-station accuracy changes little, suggesting that the enhanced STET model 

can well estimate daily PM2.5 concentrations. Moreover, these results illustrate that spatiotemporal 305 

information is crucial in improving PM2.5-AOD relationships and should be carefully considered when 

introducing statistical regression models using remote sensing techniques.  

 

[Please insert Figure 5 here] 

 310 



12 
 

4.1.2 Regional-scale validation 

Figure 6 shows the sample-based 10-CV results of the enhanced STET model in PM2.5 daily estimates 

over eastern and western China (according to the widely used Heihe-Tengchong line), and four typical 

regions (Figure 1). The enhanced STET model performs differently over eastern and western China, 

mainly due to significant differences in land cover and climate conditions. There are 1289 uniformly 315 

distributed PM2.5 stations in eastern China, and 127,241 daily samples were collected. The model 

performs well in eastern China with a high sample-based CV-R2 equal to 0.90 and low estimation 

uncertainties, i.e., RMSE = 9.72 μg/m3, MAE = 6.41 μg/m3, and MRE = 19.16%. By contrast, there are 

294 unevenly and sparsely distributed PM2.5 stations in western China, with about three times fewer 

daily PM2.5 estimates collected. The model performance is overall poorer (e.g., CV-R2 = 0.85, RMSE = 320 

12.04 μg/m3, MAE = 7.56 μg/m3) than over eastern China. This is mainly attributed to brighter surfaces 

(e.g., desert and bare land) with little vegetation and harsh meteorological conditions over western 

China. 

There were 33,733, 15,199, 6,209, and 6,470 daily samples collected from 233, 184, 95, and 107 

uniformly distributed PM2.5 monitoring stations in the North China Plain (NCP), the Yangtze River 325 

Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin (SCB), respectively. Estimated PM2.5 

concentrations in the typical urban agglomerations of the NCP, YRD, and PRD are highly consistent 

with surface measurements (CV-R2 = 0.86–0.92), with overall low estimation uncertainties (i.e., RMSE 

= 8–12 μg/m3, MAE = 5–8 μg/m3, and MRE = 15–19%). The new model also performs well over the 

Sichuan Basin with an average CV-R2 value equal to 0.87 and comparable estimation uncertainties to 330 

those from the NCP. Overall, despite some differences in model performance, the enhanced STET 

model shows an overall good ability in estimating PM2.5 concentrations at the regional scale. 

 

[Please insert Figure 6 here] 

 335 

4.1.3 Site-scale validation 

National- and regional-scale aggregated evaluations mainly illustrate the overall performance of the 

model in estimating PM2.5 concentrations. However, due to the inhomogeneity of PM2.5 monitoring 
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stations, an additional validation for each monitoring station in China is performed (Figure 7). For 

statistical significance, plotted are only these monitoring stations with more than ten data samples. 340 

Daily PM2.5 estimates relate well to surface measurements at most individual stations across China. The 

average sample-based CV-R2 is 0.84, and CV-R2 values are greater than 0.8 at more than 73% of the 

monitoring stations, especially in eastern China. However, observed are relatively poorer performances 

(CV-R2 < 0.6) at some scattered sites located in southwest and southeast China. In general, the new 

model shows overall low estimation uncertainties at most sites with average RMSE and MAE values of 345 

9.2 and 6.5 μg/m3, especially in southern China. Moreover, ~94% of the monitoring stations in China 

have mean RMSE and MAE values less than 15 μg/m3 and 10 μg/m3, respectively. Note that these 

stations have larger RMSE values (> 10 μg/m3) in central China, mainly due to the high pollution levels. 

The average MRE value in China is 20.8%, and most stations (> 86% of them) have MRE values less 

than 30%, especially at sites located in eastern and southern China. 350 

 

[Please insert Figure 7 here] 

 
4.2 Performance at the temporal scale 

4.2.1 Daily-scale validation 355 

Figure 8 shows the model performance from all available monitoring stations in China as a function of 

the DOY. The number of data samples in one day ranges from 54 to 1155, with an average of 466 in 

2018. In general, the new model performs well (average CV-R2 = 0.77) on most days in the year, and 

more than 77% of these days have CV-R2 values greater than 0.7. Two main uncertainty metrics, i.e., 

RMSE and MAE, show similar temporal variations during the year, first decreasing until around day 360 

250, then gradually increasing. Approximately 91% and 92% of the days have low RMSE and MAE 

values of less than 15 and 10 μg/m3, respectively, over the year. MRE is relatively stable, ranging from 

13% to 49% with an average value of 23.2%, and more than 87% of the days have MRE values of less 

than 30% in China. In general, high R2 with overall large RMSE but small MRE values are observed at 

the beginning and end of the year (in winter). This is because PM2.5 concentrations vary more and are 365 

always high due to the greater amount of pollutant emissions caused by heating or frequent dust storms. 
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By contrast, lower R2 with overall small RMSE and large MRE values are observed in the middle of the 

year (in summer) because air pollution levels are lower. Nevertheless, these results illustrate that the 

enhanced STET model captures well PM2.5 concentrations on most days of the year. 

 370 

[Please insert Figure 8 here] 

 

4.2.2 Seasonal-scale validation 

Figure 9 shows sample-based CV results for PM2.5 daily estimates according to the season in 2018 in 

China. Results suggest that there are clear differences in the number of valid data samples because of 375 

the long-term snow/ice cover in winter and more frequent clouds in summer, resulting in an overall 

smaller number of samples than in the other two seasons. The enhanced STET model performs best in 

autumn with the highest CV-R2 value of 0.90 and the strongest regression line (i.e., slope = 0.88, and 

intercept = 4.85 μg/m3). Mean RMSE, MAE, and MRE values in autumn are 8.97 μg/m3, 5.84 μg/m3, 

and 21.02%, respectively. By contrast, the new model performs the worst in summer with the lowest 380 

CV-R2 of 0.79 and a less steep slope of 7.37, indicating clear underestimations. However, summer 

experiences the least amount of air pollution with most daily PM2.5 values < 50 μg/m3, leading to the 

smallest RMSE and MAE values but the largest MRE values. Air quality is about two or three times 

worse in spring and winter with wider PM2.5 ranges and larger standard deviations. The model 

performance in these seasons is similar, with almost equal CV-R2 and slope values, and close estimation 385 

uncertainties. The differences in model performance among the seasons are mainly attributed to 

seasonal variations in natural conditions and human activities. Meteorological conditions in summer 

favor the diffusion of pollutants but complicate the PM2.5-AOD relationship (Su et al., 2018, 2020), 

whereas direct emissions of pollutants are greater in winter, resulting in severe air pollution.   

 390 

[Please insert Figure 9 here] 

 

4.2.3 Synthetic-scale validation 



15 
 

Synthetized PM2.5 retrievals are validated against PM2.5 surface observations by calculating the effective 

values from the same number of valid days at monthly, seasonal, and annual time scales (Figure 10). 395 

Monthly PM2.5 estimates and ground measurements (N = 12,410) are highly correlated (R2 = 0.93), with 

a steep slope of 0.91. Mean RMSE, MAE, and MRE values are 5.63 μg/m3, 4.08 μg/m3, and 11.59%, 

respectively. Seasonal mean PM2.5 estimates (N = 5,231) have a good accuracy (i.e., R2 = 0.93, RMSE = 

5.00 μg/m3, MAE = 3.69 μg/m3, and MRE = 10.31%). Annual mean PM2.5 estimates (N = 1,462) agree 

well with ground measurements (R = 0.91), with small uncertainties (i.e., RMSE = 4.11 μg/m3, MAE = 400 

3.12 μg/m3, and MPE = 8.58%). This illustrates that the synthetic dataset can more accurately reflect the 

spatiotemporal PM2.5 loadings and variations across China. 

 

[Please insert Figure 10 here] 

 405 

4.3 Predicted PM2.5 maps across China 

Monthly PM2.5 maps are thus synthesized and averaged from at least 20% of available daily PM2.5 

estimates for each grid in a month, and annual PM2.5 maps are generated from monthly PM2.5 maps if 

there are more than eight available values for each grid across China (Hsu et al., 2012; Wei et al., 

2019f). The spatial coverage of monthly PM2.5 maps varies from 73% to 92%, with an average of 83% 410 

across mainland China. The maximum coverage occurs in April, and the minimum coverage occurs in 

January. The monthly mean PM2.5 values vary conversely from 24.4 μg/m3 to 42.9 μg/m3, where the 

highest (lowest) PM2.5 concentration is observed in December (August) of the year.  

The satellite-derived 1-km-resolution PM2.5 map in 2018 covers almost the full scene (spatial coverage 

= 99%) across mainland China (Figure 11a) and is highly consistent in spatial pattern with the 415 

corresponding in situ measurements (Figure 11b). The average PM2.5 concentration is 32.7±13.6 μg/m3 

in 2018 across mainland China. In general, the most severe PM2.5 pollution occurs in the Taklamakan 

Deseret, where most areas are exposed to high PM2.5 concentrations of > 80 μg/m3. There are also high 

pollution levels over the NCP, the SCB, and the YRD, with annual mean PM2.5 values of 46.7±10.5, 

39.8±9.9, and 38.4±8.3 μg/m3, respectively, arising from intensive human activities, and special 420 

topographic and meteorological conditions. By contrast, the annual mean PM2.5 loading is overall low 
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over the rest of China, e.g., the PRD (33.4±3.9 μg/m3). However, there may be poor representativeness 

for areas in western China with few ground monitoring stations. More than 34% of mainland China 

experienced high PM2.5 levels in 2018 exceeding the international and national recommended air quality 

level (PM2.5 > 35 μg/m3). 425 

 

[Please insert Figure 11 here] 

 

Figure 12 shows seasonal mean PM2.5 maps, averaged from available monthly values for each grid, in 

2018 across China. The average PM2.5 concentration (spatial coverage) is 37.2±20.7 μg/m3 (~ 96%), 430 

25.5±12.1 μg/m3 (~ 92%), 29.5±11.5 μg/m3 (~ 97%), and 41.3±15.4 μg/m3 (~ 88%) for spring, summer, 

autumn, and winter, respectively. There are noticeable spatial differences in PM2.5 distributions on the 

seasonal scale. In winter and spring, more than 49% and 42% of mainland China were exposed to high 

PM2.5 levels > of 30 μg/m3, resulting in poor quality. By contrast, PM2.5 pollution is lower in summer 

and autumn, with more than 90% and 74% of mainland China, respectively, experiencing PM2.5 levels 435 

below the acceptable air quality level. Note that in spring, PM2.5 concentrations are particularly high in 

Xinjiang province due to frequent sand and dust episodes in 2018. 

 

[Please insert Figure 12 here] 

 440 

5. Discussion 

5.1 Model accuracy 

There is an increasing number of studies on estimating PM2.5 using satellite AOD products from local to 

national scales across China. However, limited by the operational satellite aerosol products, PM2.5 can 

only be estimated at coarse spatial resolutions of approximately 6–10 km (Fang et al., 2016; T. Li et al., 445 

2017b; Yu et al., 2017; Chen et al., 2018; Ma et al., 2019; Yao et al., 2019). Recently, with the release 

of MODIS 3-km DT aerosol products, PM2.5 estimates can be improved to a 3-km spatial resolution 

across China (You et al., 2016; T. Li et al., 2017a; He and Huang, 2018; Chen et al., 2019; Xue et al., 
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2019). This study improves the spatial resolution of PM2.5 estimates across mainland China to 1 km 

based on the newly released high-quality MAIAC products.  450 

Regarding model performance, our newly developed STET model is more accurate with higher CV-R2 

values, and smaller RMSE and MAE values than those from statistical regression models (Table 2), 

e.g., the timely structure adaptive model (TSAM; Fang et al., 2016), the Generalized Additive Model 

(GAM; Chen et al., 2018) model, the GWR model (Ma et al., 2014; You et al., 2016), and the 

geographically and temporally weighted regression model (GTWR; He and Huang, 2018). The 455 

enhanced STET model can also outperform most machine learning (ML) and deep learning approaches 

including the Gaussian model (Yu et al., 2017), the Random Forest model (Chen et al., 2018; Wei et al., 

2019a), the XGBoost model (Chen et al., 2019), the GRNN and deep brief network (DBN) models (T. 

Li et al., 2017a, b), and some optical combined models, e.g., the Daily-GWR model (D-GWR; He and 

Huang, 2018), the two-stage model (He and Huang, 2018; Ma et al., 2019; Yao et al., 2019), and the 460 

ML + GAM model (Xue et al., 2019).  

We find that all traditional statistical regression models, and machine and deep approaches reported in 

previous studies underestimated PM2.5 concentrations under highly polluted conditions with poor 

regressions (i.e., slope < 0.9 and intercept > 6 μg/m3) between measurements and retrievals of PM2.5 in 

China, a common problem. Potential causes are: 1) There are large estimation errors in AOD retrievals 465 

under severe pollution conditions in China (Wei et al., 2019c). This is further rooted to the fundamental 

limitations of satellite-based AOD retrievals, i.e., the non-linear to reflectance and the high sensitivity 

of the single-scattering albedo (Z. Li et al., 2009); 2) High AOD does not correspond to high PM2.5 

concentrations because their ratio is highly variable over space and time, affected by both natural and 

human factors; 3) The number of samples for high-pollution cases is small, hindering the ability to train 470 

the model. Therefore, our model also tends to underestimate PM2.5 concentrations on highly polluted 

days (PM2.5 > 150 μg/m3), however, it can more accurately capture the high pollution events with a 

stronger slope of 0.86 and a smaller intercept of 6.16 μg/m3 with reference to other models reported 

from previous studies (Table 2). 

 475 

[Please insert Table 2 here] 



18 
 

 

Furthermore, compared with daily PM1 estimates using the STET model in our previous study (CV-R2 

= 0.76 and slope = 0.70; Wei et al., 2019b), the overall accuracy of daily PM2.5 estimates using the 

enhanced STET model has improved significantly with a much higher CV-R2 of 0.89 and a steeper 480 

slope of 0.86, based on data from 2018 in China. Continuous improvements of the model can further 

improve the determination of the relationship between fine particulate matter and AOD so as to improve 

the model performance. More data samples may also help improve the training ability of the model. 

 

5.2 Predictive power  485 

To test the predictive power of the enhanced STET model, the model built for the year of 2018 was 

used to predict daily PM2.5 concentrations in 2017, validated against the ground measurements from 

2017. Results suggest that our new model can correctly capture more than 65% of the historical daily 

PM2.5 concentrations (N = 177,616). Monthly (N = 12,408), seasonal (N = 5,227), and annual (N = 

1,461) mean PM2.5 predictions across China are highly correlated with surface observations with R2 490 

values of 0.80, 0.81, and 0.82, respectively, having overall small estimation uncertainties (i.e., RMSE < 

12 μg/m3, MAE < 9 μg/m3, and MRE < 26 μg/m3). There are only a handful of studies examining the 

predictive powers of models estimating PM2.5 concentrations in China. Comparisons show that the 

enhanced STET model is superior to those reported in previous studies, i.e., the two-stage model (Ma et 

al., 2019), the GTWR model (He and Huang, 2018), the ML + GAM model (Xue et al., 2019), and the 495 

space-time RF model (Wei et al., 2019a). The enhanced STET model has a strong predictive power and 

can be used to estimate historical PM2.5 concentrations in China. 

 

6. Summary and conclusions 

With the increase in air pollution over recent years, abundant studies on estimating PM2.5 have been 500 

performed using satellite remote sensing. However, most of the PM2.5 estimates are reported at spatial 

resolutions of 3–10 km, which is inadequate for monitoring air quality in urban areas. Traditional 

models also limit the accuracy of PM2.5 estimates. Here, we present spatially continuous high-resolution 

(1 km) and high-quality PM2.5 data set across mainland China (i.e., ChinaHighPM2.5). For this, an 
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enhanced STET model was developed to minimize spatiotemporal heterogeneities and improve the 505 

overall estimate accuracy of ground-level PM2.5 concentrations. 

Our results suggest that the enhanced STET model estimates well daily PM2.5 concentrations at the 

national scale with a relatively high sample-based cross-validation coefficient of 0.89, low RMSE of 

10.35 μg/m3, MAE of 6.71 μg/m3, and MRE of 21.37%. Comparisons illustrate that spatiotemporal 

information is important and should be carefully considered during model development. The enhanced 510 

STET model estimates PM2.5 concentrations well at most monitoring stations and individual days in the 

year. The North China Plain and the Sichuan Basin regions, under the influence of intense human 

activities and poor dispersion conditions, have high PM2.5 loadings. The enhanced STET model can 

outperform most models presented in previous related studies in terms of spatial resolution, model 

accuracy, and predictive power. This study suggests that the ChinaHighPM2.5 data set will be useful in 515 

future atmospheric pollution studies focused on medium- or small-scale areas. The enhanced STET 

model may be applied in the future to produce historical PM2.5 datasets for China because the MODIS 

data record extends back 20 years. 

 

Data availability 520 

The ChinaHighPM2.5 data set are available by contacting the first author (weijing_rs@163.com; 

weijing.rs@gmail.com). 

 

Author contribution 

ZL designed the research, and JW carried out the research and wrote the initial draft of this manuscript. 525 

All authors made substantial contributions to this work. 

 

Competing interests 

The authors declare that they have no conflict of interest. 

 530 



20 
 

Acknowledgements 

The in situ PM2.5 measurements are available from the China National Environmental Monitoring 

Center (http://www.cnemc.cn). The MODIS series products are available at 

https://search.earthdata.nasa.gov/, and the ERA-Interim reanalysis products are available at 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim. The AERONET 535 

measurements are available at https://aeronet.gsfc.nasa.gov/. We would like to thank Dr. Qiang Zhang 

at Tsinghua University for providing MEIC pollution emission data in China. 

 

Financial support 

This research has been supported by the National Key R&D Program of China (2017YFC1501702), the 540 

National Natural Science Foundation of China (91544217), the U.S. National Science Foundation 

(AGS1534670), and the BNU Interdisciplinary Research Foundation for First-Year Doctoral Candidates 

(BNUXKJC1808). 

 

References 545 

Aggarwal, P., and Jain, S.: Impact of air pollutants from surface transport sources on human health: a 

modeling and epidemiological approach, Environ. Int., 83, 146–157, 2015.  

Bartell, S. M., Longhurst, J., Tjoa, T., Sioutas, C., and Delfino, R. J.: Particulate air pollution, 

ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with 

coronary artery disease, Environ. Health Persp., 121(10), 1135–1141, 2013.  550 

Brokamp, C., Jandarov, R., Hossain, M., and Ryan, P.: Predicting daily urban fine particulate matter 

concentrations using a random forest model, Environ. Sci. Tech., 52 (7), 4173–4179, 2018. 

Calle, M., and Urrea, V.: Letter to the editor: satiability of random forest importance measures, 

Briefings Bioinform., 12(1), 86–89, 2011. 

Chen, G., Li, S., Knibbs, L., Hamm, N., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M., and Guo, Y.: 555 

A machine learning method to estimate PM2.5 concentrations across China with remote sensing, 

meteorological and land use information, Sci. Total Environ., 636, 52–60, 2018. 



21 
 

Chen, Z., Zhang, T., Zhang, R., Zhu, Z., Yang, J., Chen, P., Ou, C., and Guo, Y.: Extreme gradient 

boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China, Atmos. 

Environ., 202, 180–189, 2019. 560 

Chowdhury, S., and Dey, S.: Cause-specific premature death from ambient PM2.5 exposure in India: 

estimate adjusted for baseline mortality, Environ. Int., 91, 283–290, 2016. 

Crippa, M., Janssens-Maenhout, G., Guizzardi, D., Van Dingenen, R., and Dentener, F.: Contribution 

and uncertainty of sectorial and regional emissions to regional and global PM2.5 health impacts, 

Atmos. Chem. Phys., 19, 5165–5186, 2019. 565 

Fang, X., Zou, B., Liu, X., Sternberg, T., and Zhai, L.: Satellite-based ground PM2.5 estimation using 

timely structure adaptive modeling. Remote Sens. Environ., 186, 152–163, 2016. 

Geurts, P., Ernst, D., and Wehenkel, L.: Extremely randomized trees, Mach. Learn., 63(1), 3–42, 2006. 

Guo, J., Xia, F., Zhang, Y., Liu, H., Li, J., Lou, M, He, J., Yan, Y., Wang, F., Min, M., and Zhai, P.: 

Impact of diurnal variability and meteorological factors on the PM2.5-AOD relationship: 570 

implications for PM2.5 remote sensing, Environ. Pollut., 221(94), 94, 2017. 

Guo, J., Zhang, X., Che, H., Gong, S., An, X., Cao, C., Guang, J., Zhang, H., Wang, Y., Zhang, X., 

Xue, M., and Li, X.: Correlation between PM concentrations and aerosol optical depth in eastern 

China, Atmos. Environ., 43(37), 5876–5886, 2009. 

Gupta, P., and Christopher, S.: Particulate matter air quality assessment using integrated surface, 575 

satellite, and meteorological products: multiple regression approach, J. Geophys. Res. 

Atmos., 114(D14205), https://doi.org/10.1029/2008JD011496, 2009. 

Han, L., Zhou, W., Li, W., and Li, L.: Impact of urbanization level on urban air quality: a case of fine 

particles (PM2.5) in Chinese cities, Environ. Pollut., 194, 163–170, 2014. 

He, K., Hong Huo, A., and Zhang, Q.: Urban air pollution in China: current status, characteristics, and 580 

progress, Annu. Rev. Energ. Env., 27(1), 397–431, 2011. 

He, Q., and Huang, B.: Satellite-based mapping of daily high-resolution ground PM2.5 in China via 

space-time regression modelling, Remote Sens. Environ., 206, 72–83, 2018.  



22 
 

Hsu, N., Gautam, R., Sayer, A., Bettenhausen, C., Li, C., Jeong, M. J., Tsay, S., and Holben, B.: Global 

and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements 585 

from 1997 to 2010, Atmos. Chem. Phys., 12, 8037–8053, 2012.  

Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K., Slowik, J., Platt, S., 

Canonaco, F., Zotter, P., Wolf, R., Pieber, S., Bruns, E., Cripa, M., Ciarelli, G., Piazzalunga, A., 

Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat., S., 

Baltensperger, U., Haddad, I., and Prévôt, A.: High secondary aerosol contribution to particulate 590 

pollution during haze events in China, Nature, 514(7521), 218–222, 2014. 

Jiang, R., Tang, W., Wu, X., and Fu, W.: A random forest approach to the detection of epistatic 

interactions in case-control studies, BMC Bioinformatics, 10(2), 135–135, 2009. 

Jin, X., Wang, Y., Li, Z., Zhang, F., Xu, W., Sun, Y., Fan, X., Chen, G., Wu, H., Ren, J., Wang, Q., and 

Cribb, M.: Significant contribution of organics to aerosol liquid water content in winter in Beijing, 595 

China, Atmos. Chem. Phys., 20, 901–914, https://doi.org/10.5194/acp-20-901-2020, 2020. 

Koren, I., Dagan, G., and Altaratz, O.: From aerosol-limited to invigoration of warm convective clouds, 

Science, 344, 1143–1146, 2014.  

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The 

Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, 600 

2013.  

Li, T., Shen, H., Zeng, C., Yuan, Q., and Zhang, L.: Point-surface fusion of station measurements and 

satellite observations for mapping PM2.5 distribution in China: methods and assessment, Atmos. 

Environ., 152, 477–489, 2017a.  

Li, T., Shen, H., Yuan, Q., Zhang, X., and Zhang, L.: Estimating ground-level PM2.5 by fusing satellite 605 

and station observations: a geo-intelligent deep learning approach, Geophys. Res. Lett., 44(23), 

11,985–11,993, 2017b. 

Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, 

B.: Aerosol and boundary-layer interactions and impact on air quality, Natl. Sci. Rev., 4(6), 810–

833, 2017. 610 



23 
 

Liu, M., Huang, Y., Ma, Z., Jin, Z., Liu, X., Wang, H., Liu, Y., Wang, J., Jantunen, M., Bi, J., Kinney, 

P. L.: Spatial and temporal trends in the mortality burden of air pollution in China: 2004-2012, 

Environ. Intl., 98, 75–81, 2017. 

Liu, N., Zou, B., Feng, H., Wang, W., Tang, Y., and Liang, Y.: Evaluation and comparison of 

multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue 615 

aerosol products over China, Atmos. Chem. Phys., 19, 8243–8268, 2019. 

Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC algorithm, Atmos. 

Meas. Tech., 11, 5741–5765, 2018. 

Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy, R., and Reid, J.: Multiangle 

implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, J. Geophys. Res. 620 

Atmos., 116, https://doi.org/10.1029/2010JD014985, 2011. 

Ma, Z., Hu, X., Huang, L., Bi, J., and Liu, Y.: Estimating ground-level PM2.5 in China using satellite 

remote sensing, Environ. Sci. Tech., 48(13), 7436–7444, 2014. 

Ma, Z., Liu, R., Liu, Y., and Bi, J.: Effects of air pollution control policies on PM2.5 pollution 

improvement in China from 2005 to 2017: a satellite-based perspective, Atmos. Chem. Phys., 19, 625 

6861–6877, 2019. 

Peng, R. D., Bell, M. L., Geyh, A. S., McDermott, A., Zeger, S. L., Samet, J. M., and Dominici, F.: 

Emergency admissions for cardiovascular and respiratory diseases and the chemical composition 

of fine particle air pollution, Environ. Health Persp., 117(6), 957–963, 2009.  

Reddington, C. L., Morgan, W. T., Darbyshire, E., Brito, J., Coe, H., Artaxo, P., Scott, C. E., Marsham, 630 

J., and Spracklen, D. V.: Biomass burning aerosol over the Amazon: analysis of aircraft, surface 

and satellite observations using a global aerosol model, Atmos. Chem. Phys., 19, 9125-9152, 

10.5194/acp-19-9125-2019, 2019. 

Rodriguez, J. D., Perez, A., and Lozano, J. A.: Sensitivity analysis of k-fold cross validation in 

prediction error estimation, IEEE T. Pattern Anal., 32(3), 569–575, 2010. 635 

Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., Demott, P. J., Dunlea, E. J., Feingold, G., Ghan, 

S., Chan, S., Guenther, A., Kahn, R., Kredenweis, S., Molina, M., Nenes, A., Penner, J., Prather, 

K., Ramanathan, V., Ramaswamy, V., Rashch, P., and Ravishankara, A.: Improving our 



24 
 

fundamental understanding of the role of aerosol-cloud interactions in the climate system, P. Natl. 

Acad. Sci. USA, 113(21), 5781–5790, 2016. 640 

Silva, R., West, J., Zhang, Y., Anenberg, S., Lamarque, J., Shindell, D., Collins, W., Dalsøren, S., 

Faluvegi, G., Folberth, G., Horowitz, L., Nagashima, T., Naik, V., Rumbold, S., Skeie, R., Sudo, 

K., Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R., Eyring, V., Josse, B., 

MacKenzie, I., Plummer, D., Righi, M., Stevenson, D., Strode, S., Szopa, S., and Zeng, G.: Global 

premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate 645 

change, Environ. Res. Lett., 8(3), 034005, 2013. 

Song, Y., Huang, B., He, Q., Chen, B., Wei, J., and Mahmood, R.: Dynamic assessment of PM2.5 

exposure and health risk using remote sensing and geo-spatial big data, Environ. Pollut., 253, 288–

296, 2019. 

Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height and surface 650 

pollutants derived from lidar observations over China: regional pattern and influencing 

factors, Atmos. Chem. Phys., 18(21), 15,921–15,935, 2018. 

Su, T., Li, Z., and Kahn, R.: A new method to retrieve the diurnal variability of planetary boundary 

layer height from lidar under different thermodynamic stability conditions. Remote Sens. Environ., 

237, 111519, 2020. 655 

Sun, L., Wei, J., Duan, D., Guo, Y., Yang, D., Jia, C. and Mi, X.: Impact of land-use and land-cover 

change on urban air quality in representative cities of China, J. Atmos. Sol.-Terr. Phys., 142, 43–

54, 2016. 

Sun, Y., Jiang, Q., Wang, Z., Fu, P., Li, J., Yang, T., and Yin, Y.: Investigation of the sources and 

evolution processes of severe haze pollution in Beijing in January 2013, J. Geophys. Res. Atmos., 660 

119, 4380–4398, 2014. 

Tao, M., Wang, J., Li, R., Wang, L., Wang, L., Wang, Z., Tao, J., Che, H., and Chen, L.: Performance 

of MODIS high-resolution MAIAC aerosol algorithm in China: characterization and limitation, 

Atmos. Environ., 213, 159–169, 2019. 



25 
 

Wei, J., and Sun, L.: Comparison and evaluation of different MODIS aerosol optical depth products 665 

over Beijing-Tianjin-Hebei region in China. IEEE J. Sel. Top. Appl. 10 (3), 835–844. 

https://doi.org/10.1109/JSTARS.2016.2595624, 2017. 

Wei, J., Sun, L., Huang, B., Bilal, M., Zhang, Z., and Wang, L.: Verification, improvement and 

application of aerosol optical depths in China. Part 1: Inter-comparison of NPP-VIIRS and Aqua-

MODIS, Atmos. Environ., 175, 221–233, 2018a. 670 

Wei, J., Sun, L., Peng, Y., Wang, L., Zhang, Z., Bilal, M., Ma, Y.: An improved high-spatial-resolution 

aerosol retrieval algorithm for MODIS images over land. J. Geophys. Res. Atmos. 123, 12,291–

12,307. https://doi.org/10.1029/2017JD027795, 2018b. 

Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., and Cribb, M.: Estimating 1-km-resolution 

PM2.5 concentrations across China using the space-time random forest approach, Remote Sens. 675 

Environ., 231, 111221, https://doi.org/10.1016/j.rse.2019.111221, 2019a. 

Wei, J., Li, Z., Guo, J., Sun, L., Huang, W., Xue, W., Fan, T, and Cribb, M.: Satellite-derived 1-km-

resolution PM1 concentrations from 2014 to 2018 across China, Environ. Sci. Tech., 53(22), 

13,265–13,274, https://doi.org/10.1021/acs.est.9b03258, 2019b. 

Wei, J., Li, Z., Peng, Y., and Sun, L.: MODIS Collection 6.1 aerosol optical depth products over land 680 

and ocean: validation and comparison, Atmos. Environ., 201, 428–440, 2019c. 

Wei, J., Li, Z., Sun, L., Peng, Y., Wang, L.: Improved merge schemes for MODIS Collection 6.1 Dark 

Target and Deep Blue combined aerosol products, Atmos. Environ., 202, 315–327, 2019d.  

Wei, J., Li, Z., Peng, Y., Sun, L., and Yan, X.: A regionally robust high-spatial-resolution aerosol 

retrieval algorithm for MODIS images over Eastern China, IEEE T. Geosci. Remote, 57(7), 4748–685 

4757, 2019e. 

Wei, J., Peng, Y., Mahmood, R., Sun, L., and Guo, J.: Intercomparison in spatial distributions and 

temporal trends derived from multi-source satellite aerosol products, Atmos. Chem. Phys., 19, 

7183–7207, 2019f. 

Wu, J., Zheng, H., Zhe, F., Xie, W., and Song, J.: Study on the relationship between urbanization and 690 

fine particulate matter (PM2.5) concentration and its implication in China, J. Clean. Prod., 182, 

872–882, 2018. 



26 
 

Xiao, Q., Wang, Y., Chang, H. H., Meng, X., Geng, G., Lyapustin, A., and Liu, Y.: Full-coverage high-

resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of 

China, Remote Sens. Environ., 199, 437–446, 2017.  695 

Xue, T., Zheng, Y., Tong, D., Zheng, B., Li, X., Zhu, T., and Zhang, Q.: Spatiotemporal continuous 

estimates of PM2.5 concentrations in China, 2000–2016: a machine learning method with inputs 

from satellites, chemical transport model, and ground observations, Environ. Intl., 123, 345–357, 

2019. 

Yao, F., Wu, J., Li, W., and Peng, J.: A spatially structured adaptive two-stage model for retrieving 700 

ground-level PM2.5 concentrations from VIIRS AOD in China, ISPRS J. Photogramm., 151, 263–

276, 2019. 

You, W., Zang, Z., Zhang, L., Li, Y., Pan, X., and Wang, W.: National-scale estimates of ground-level 

PM2.5 concentration in China using geographically weighted regression based on 3-km resolution 

MODIS AOD, Remote Sens., 8(3), 184, 2016. 705 

Yu, W., Liu, Y., Ma, Z., and Bi, J.: Improving satellite-based PM2.5 estimates in China using Gaussian 

processes modeling in a Bayesian hierarchical setting, Sci. Rep., 7(1), 

https://doi.org/10.1038/s41598-017-07478-0, 2017. 

Zhai, S., Jacob, D., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhang, T., and Liao, H.: Fine 

particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from 710 

anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11,031–11,041, 2019. 

Zhang, Q., Streets, D., He, K., and Klimont, Z.: Major components of China’s anthropogenic primary 

particulate emissions, Environ. Res. Lett., 2(4), 045027, 2007.  

Zhang, Y., and Li, Z.: Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration 

near the ground from satellite observations, Remote Sens. Environ., 160, 252–262, 2015. 715 

Zhang, Z., Wu, W., Fan, M., Wei, J., Tan, Y., and Wang, Q.: Evaluation of MAIAC aerosol retrievals 

over China, Atmos. Environ., 202, 8–16, 2019. 

Zheng, G., Duan, F., Su, H., Ma, Y., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., and 

Chang, D.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional 

transport and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969–2983, 2015. 720 



27 
 

Table 1. Summary of the data sources used in this study. 

Dataset Variable Content Unit 
Spatial 
Resolution 

Temporal 
Resolution 

Data source 

PM2.5 PM2.5 
Particulate matter ≤ 
2.5 μm 

μg/m3 in situ Hourly CNEMC 

AOD AOD MAIAC AOD  - 1 km ×1 km Daily MCD19A2 

Meteorology 

BLH Boundary layer height m 

0.125°×0.125° 

3-hour 

ERA-Interim

PRE Total precipitation mm 3-hour 

EP Evaporation mm 3-hour 

RH Relative humidity % 3-hour 

TEM 2-m air temperature K 6-hour 

SP Surface pressure hPa 6-hour 

WS 10-m wind speed m/s 6-hour 

WD 10-m wind direction degree 6-hour 

Land use 
NDVI NDVI - 

500 m × 500 m 
Monthly MOD13A3 

LUC Land use cover - Annually MCD12Q1 

Topography 

DEM DEM m 

90 m × 90 m - SRTM 
Relief Surface relief m 

Aspect Surface aspect degree 

Slope Surface slope degree 

Emission 

SO2 Sulfur dioxide 

Mg/grid 0.25°×0.25° Monthly MEIC 

NOx Nitrogen oxide 

CO Carbon monoxide 

VOC 
Volatile organic 
compounds 

Dust Fine-sized dust 

Population NTL Night lights W/cm2/sr 500 m × 500 m Monthly VIIRS 

  



28 
 

Table 2. Comparison between model performances of the enhanced STET model and other models from 
previous related studies focused on China. 

Model Resolution 
Model Validation   Predictive power 

R2 RMSE MAE Slope Intercept Daily Monthly Literature 

GWR 10 km 0.64 32.98 21.25 0.67 21.22 - - Ma et al. (2014) 

TSAM 10 km 0.80 22.75 15.99 0.79 15.31 - - Fang et al. (2016) 

Gaussian 10 km 0.81 21.87 - 0.73 17.97 - - Yu et al. (2017) 

RF 10 km 0.83 18.08 - - - - - Chen et al. (2018) 

GAM  0.55 29.13 - - - - -  

DBN 10 km 0.54 25.86 18.10 0.55 24.56   Li et al. (2017b) 

Geo-DBN  0.88 13.03 08.54 0.86 6.39 - -  

Two-stage 10 km 0.77 17.10 11.51 0.76 11.64 0.41 0.73 Ma et al. (2019) 

Two-stage 6 km 0.60 21.76 14.41 0.85 8.63 - - Yao et al. (2019) 

GRNN 3 km 0.67 20.93 13.90 0.62 22.90 - - Li et al. (2017a) 

GWR 3 km 0.81 21.87 - 0.83 9.44 - - You et al. (2016) 

D-GWR  3 km 0.72 21.01 14.59 0.79 12.92 - - 
He and Huang 
(2018) 

Two-stage  0.71 21.21 13.50 0.73 16.67 - -  

GTWR  0.80 18.00 12.03 0.81 11.69 0.41 -  

XGBoost 3 km 0.86 14.98 - - - - - Chen et al. (2019) 

ML 3 km 0.53 30.40 19.60 0.53 25.3   Xue et al. (2019) 

ML + GAM  0.61 27.80 17.70 0.61 21.2 0.57 0.74  

MLR 1 km 0.41 20.04 30.03 0.41 30.03 0.38 - Wei et al. (2019a) 

GWR  0.53 23.28 19.26 0.61 20.93 0.44 -  

Two-stage  0.71 18.59 14.54 0.71 15.10 0.35 -  

RF  0.81 17.91 11.50 0.77 12.56 0.53 -  

STRF  0.85 15.57 9.77 0.82 9.64 0.55 0.73  

STET 1 km 0.89 10.35 6.71 0.86 6.16 0.65 0.80 This study 
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Figure 1. Spatial distributions of PM2.5 and AERONET monitoring stations in China. The Heihe-
Tengchong line (orange line) shows the boundary between eastern and western China.  
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 730 

Figure 2. Scatter plots of MAIAC AOD retrievals versus AERONET AODs at 550 nm in (a) China, and 
(b) urban, (c) cropland, and (d) grassland areas. The dotted lines represent the upper and lower 

boundaries of the expected error (EE). Statistical metrics are given in each panel: the number of samples 
(N), the correlation coefficient (R), the mean absolute error (MAE), and the root-mean-square error 

(RMSE). 735 
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Figure 3. Potential effects and importance scores (blue bars; unit: %) of independent variables to PM2.5 

estimates for the STET model. 
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  740 
Figure 4. Schematic of the enhanced STET model developed in our study. 
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Figure 5. Density scatter plots of out-of-sample (top row) and out-of-station (bottom row) 10-CV results 

for the ERT (left column) and STET (right column) models at the daily level in 2018 for mainland 
China. Statistical metrics are given in each panel, along with the linear regression relation: the 745 

correlation of determination (R2), the root-mean-square error (RMSE), the mean absolute error (MAE), 
and the mean relative error (MRE).  
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Figure 6. Density scatter plots of out-of-sample 10-CV results for (a) eastern China (ECH), (b) western 
China (WCH), (c) the North China Plain (NCP), (d) the Yangtze River Delta (YRD), (e) the Pearl River 750 

Delta (PRD), and (f) the Sichuan Basin (SCB) in 2018. Statistical metrics are given in each panel, along 
with the linear regression relation: the number of samples (N), the correlation of determination (R2), the 
root-mean-square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE). 
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Figure 7. Spatial distributions of the site-scale performance of the STET model for (a) the sample-based 
cross-validation coefficient of determination (R2), (b) the root-mean-square error (RMSE), (c) the mean 

absolute error (MAE), and (d) the mean relative error (MRE) in 2018 across China. 
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 760 

Figure 8. Time series of the daily performance of the STET model in terms of (a) sample-based cross-
validation coefficient of determination (R2), (b) the root-mean-square error (RMSE), (c) the mean 

absolute error (MAE), and (d) the mean relative error (MRE) in 2018 across China. 
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 765 
Figure 9. Density scatter plots of sample-based 10-CV results for the STET model for the four seasons 

in 2018 across China. Statistical metrics are given in each panel, along with the linear regression 
relation: the number of samples (N), the correlation of determination (R2), the root-mean-square error 

(RMSE), the mean absolute error (MAE), and the mean relative error (MRE). 
 770 



38 
 

  

Figure 10. Validation of (a) monthly, (b) seasonal, and (c) annual PM2.5 estimates in 2018 in China. 
Statistical metrics are given in each panel, along with the linear regression relation: the number of 
samples (N), the correlation of determination (R2), the root-mean-square error (RMSE), the mean 

absolute error (MAE), and the mean relative error (MRE). 775 
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Figure 11. Spatial distributions of annual mean (a) PM2.5 estimates and (b) surface observations in 2018 
across China. 
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Figure 12. Spatial distributions of seasonal mean 1-km-resolution PM2.5 concentrations in 2018 across 
China. 


