
Reviewer: 1 

 

This study built a new space-time extremely randomized trees model (STET), which 

integrates information from satellite-based aerosol optical depth (AOD) 

measurements, ground-based PM2.5 observations, and other auxiliary data (e.g., 

meteorological data), to retrieve daily surface PM2.5 concentrations over China. The 

newly-developed model outperforms most of the previously reported models in 

capturing the spatiotemporal variations in surface PM2.5 concentrations and in finer 

spatial resolution. Overall, this manuscript is well organized with extensive 

evaluations on the model performance.  

Response: We appreciate the time and effort you spent on this manuscript, and we 

have carefully revised our manuscript. The responses to the questions raised in your 

report are as follows. 

 

There are some minor concerns that should be addressed before publication. 

1. Eq. 1. It is not clear to me how the authors apply these equations. Did the authors 

apply the relationships between Terra- and Aqua-based AOD measurements to fill the 

missing AOD value for one sensor while another sensor has a valid measurement on 

the same day? Please clarify the usage of Eq. 1. 

Response: We have replaced the regression method with the average approach 

according to Reviewer#2’s suggestion, and we have clarified this in Section 3.1 of the 

revised manuscript as follows: 

“Terra and Aqua MAIAC AOD retrievals are thus averaged for each pixel on each day 

to form a new dataset and enlarge the spatial coverage.” 

 

2. L201-202. It is possible that the limited impact of precipitation on PM2.5 estimates 

can be attributed to the fact that there’s a high probability of missing AOD 

measurements on rainy days? 

Response: Yes, that’s the reason for the limited impact of precipitation on PM2.5 

estimates. We have added this as “This can be attributed to the high probability of 

missing AOD retrievals on rainy days.” in Section 3.3 of the revised manuscript. 

 

3. It is unclear to me how the authors compare monthly, seasonal, and annual mean 

PM2.5 retrievals with observed PM2.5 data. For example, for one grid with 100 days 

of valid daily PM2.5 retrieval, to compare annual mean PM2.5 retrieval with 

observation, did the authors calculate the corresponding 100-day mean PM2.5 

observation or the 365-day mean PM2.5 observation for comparison? 

Response: We compared the monthly, seasonal, and annual mean PM2.5 retrievals 

with PM2.5 observations using the same number of valid days. We have clarified this 

in the revised manuscript as follows: 

“Synthetized PM2.5 retrievals are validated against PM2.5 surface observations by 

calculating the effective values from the same number of valid days at monthly, 

seasonal, and annual time scales (Figure 10).” 

 



4. L247-248. What’s the reason for the overall underestimation of PM2.5 

concentration in high polluted days by the STET model? 

Response: We have discussed potential reasons in Section 5.1 in the revised 

manuscript as follows:  

“Potential causes are: 1) There are large estimation errors in AOD retrievals under 

severe pollution conditions in China (Wei et al., 2019c). This is further rooted to the 

fundamental limitations of satellite-based AOD retrievals, i.e., the non-linear to 

reflectance and the high sensitivity of the single-scattering albedo (Z. Li et al., 2009); 

2) High AOD does not correspond to high PM2.5 concentrations because their ratio is 

highly variable over space and time, affected by both natural and human factors; 3) 

The number of samples for high-pollution cases is small, hindering the ability to train 

the model.” 

 

5. L310-316. What’s the possible impact of variations in the valid sample number of 

AOD measurement across seasons on the differences in model performance at the 

seasonal level? 

Response: We have discussed the potential causes for the differences in the number 

of data samples and model performance at the seasonal level in Section 4.2.2 of the 

revised manuscript as follows: 

“Results suggest that there are clear differences in the number of valid data samples 

because of the long-term snow/ice cover in winter and more frequent clouds in 

summer, resulting in an overall smaller number of samples than in the other two 

seasons. … The differences in model performance among the seasons are mainly 

attributed to seasonal variations in natural conditions and human activities. 

Meteorological conditions in summer favor the diffusion of pollutants but complicate 

the PM2.5-AOD relationship (Su et al., 2018, 2020), whereas direct emissions of 

pollutants are greater in winter, resulting in severe air pollution.” 

 

6. L361-363. Results in this study cannot support the conclusion here (i.e., air quality 

improvement from clean air policies) as only one-year PM2.5 concentration data was 

developed. Please rephrase this sentence. 

Response: We have removed this sentence from the manuscript. 

 

7. The caption for Fig.9 is incorrect. 

Response: We have corrected the caption in the revised manuscript. 

 

8. L36. “cross-validation coefficient” is unclear here, please clarify whether it means 

correlation coefficient (R) or coefficient of determination (R2). 

Response: We have clarified this in the revised manuscript. 

 

9. Would suggest spelling out all statistical metrics (e.g., R2, RMSE, MAE, MRE) 

when you first mention them. 

Response: Done. 

 



10. Would suggest thoroughly checking the manuscript to avoid grammar errors and 

make the manuscript more readable. 

Response: The manuscript has been more carefully edited by a native speaker.  



Reviewer: 2 

 

Using the newly-developed space-time extremely randomized trees (STET) model, 

this study is aimed at estimating the 1-km-resolution PM2.5 surface concentrations 

across China. Besides meteorology, land surface conditions and population, a space 

term and a time term representing the spatial autocorrelation and temporal variation of 

PM2.5, respectively are also included to derive the PM2.5-AOD relationship. Overall 

this manuscript is well written, and potentially improves our understanding regarding 

how to retrieve the PM2.5 concentrations from AOD products and other auxiliary 

data. However, before I recommend this manuscript to be published, the authors 

should carefully address and clarify my several comments. 

Response: We appreciate the time and effort the reviewer spent on this manuscript 

and the insightful comments and constructive suggestions. In light of your opinion, 

we have carefully revised our manuscript. The responses to the questions raised in 

your report are as follows. 

 

General comments: 

1. The relationship between (surface layer) PM2.5 and AOD might largely depend on 

the compositions (including aerosol water, as Reddington et al. (2019) indicated that 

aerosol water uptake and hygroscopic growth would also impact the AOD), vertical 

profile and size distribution of PM2.5. Thus, I find that some results in Figure 2 are 

confusing, and needs further analysis and clarification: 1) In Section 3.2, it is unclear 

that how the importance scores of all selected independent variables and 

spatiotemporal information to PM2.5 estimates for the STET model are calculated.  

Response: We agree with you and we have mentioned this in the manuscript and 

cited the references. In addition, the importance score is described in more detail in 

the revised manuscript. The importance score of each independent variable used to 

estimate PM2.5 is calculated based on the Gini index (GI). We have added a more 

detailed description in Section 3.3 of the revised manuscript as follows: 

 

“ … the GI index is selected to calculate the importance score of each independent 

variable on PM2.5 estimates because of its higher accuracy and stability as a variable 

importance measure, especially for continuous variables with low signal-to-noise 

ratios (Jiang et al., 2009; Calle and Urrea, 2011), expressed as 

𝐺𝐼(𝜔) = ∑ 𝜔𝑛(1 − 𝜔𝑛) = 1 −
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where n represents the number of the categories (N = 1, …, n), and 𝜔𝑛 represents the 

sample weight of each category. The importance of one feature (Xj) on node m is that 

the GI changes before and after node m branching: 

∆𝐺𝐼𝑗𝑚 =  𝐺𝐼𝑚 − 𝐺𝐼𝑙 − 𝐺𝐼𝑟  , (3) 

where 𝐺𝐼𝑙 and 𝐺𝐼𝑟 represent the GI of two new nodes after branching. The 

importance score for one feature (ISj) in then the extra-trees with k trees (i = 1, …, k), 

calculated as 
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where ∆𝐺𝐼𝑖𝑗 represents the importance of Xi in the ith tree when the node of feature Xi 

in decision tree j belongs to set M. Finally, an additional normalization approach is 

performed to all obtained importance scores for each feature.” 

 

2) Why RH turns out to be a much less important parameter, and it has an importance 

score that is only slightly higher than those negligible parameters do. RH is an 

important factor determining the aerosol compositions and water uptake, and recent 

air quality studies (e.g., Sun et al., 2014; Zheng et al., 2015) showed that high RH 

conditions facilitate rapid production of secondary PM.  

Response: We agree with you that RH should have a large influence on the 

production of PM2.5. However, a potential reason why RH turns out to be less 

important is that high RH conditions are potentially highly related to cloudy/rainy 

days, especially in summer, when there is a high probability of missing AOD 

retrievals. In addition, this importance score only represents the importance of 

features in splitting during the extra-tree construction, not the contribution of features 

to PM2.5 in physical mechanisms. We have clarified these in in Section 3.3 of the 

revised manuscript as follows: 

“The PM2.5-AOD relationship might largely depend on the compositions (e.g., aerosol 

water, Reddington et al., 2019; Jin et al., 2020). High RH conditions and precipitation 

should have large influences on the production and removal of PM2.5 (Sun et al., 

2014; Zheng et al., 2015). However, RH and PRE turn to be less important with 

overall low importance scores in the STET model, which may be attributed to the fact 

that aerosol retrieval algorithms only work under cloud-free conditions when RH is 

relatively low. More importantly, the calculated importance score only represents the 

importance of features in splitting during the extra-tree construction, not the 

contribution of features to PM2.5 in physical mechanisms.” 

 

3) Furthermore, the parameter of precipitation could significantly impact the removal 

of PM, but is negligible in the STET model. Both RH and precipitation are associated 

with cloud, and what is the uncertainty for the predicted PM2.5-AOD relationship 

caused by the treatment of AOD data on cloudy dates? 

Response: We agree with you that the precipitation should have a large influence on 

the removal of PM2.5. However, it shows the lowest important score and is negligible 

because remote sensing aerosol retrieval algorithms cannot work when clouds are 

present, so there are no AOD retrievals on rainy days. Similarly, the importance score 

only refers to the importance of features in splitting during the extra-tree construction 

and not the contribution of features to PM2.5 in physical mechanisms. We have added 

this description to Section 3.3 of the revised manuscript (See above comment):  

 

2. The authors declared that STET model exhibited a strong predictive power and 

could be used to predict the historical PM2.5 records in the Abstract Section (in Line 



39). This conclusion could be inappropriate as the authors only tested the year of 

2017. Emissions were not expected to change greatly between 2017 and 2018. 

Actually, I doubt the applicability for the STET model. The space and time terms 

seem confusing to me, and the former term is represented by the geographical 

difference between two pixels, while the latter term is represented by the difference 

for a given pixel on different days in a year. I think they might be "residual terms" to 

implicitly resolve the "unknown parts" unexplained by other independent parameters. 

I mean, the authors need more independent parameters that could explicitly explain 

the PM2.5 compositions, vertical profile and size distribution. Why not emissions for 

different precursors (e.g., SO2, NOx and VOCs) as well as fine size dust are included 

as independent parameters?  

Response: PM2.5 changes dramatically in space, and varies over time, showing 

significant spatiotemporal heterogeneities and patterns. Thus, introducing the spatial 

and temporal terms account for the spatiotemporal autocorrelations of PM2.5 between 

different points for each day and between consecutive time series at the same place. In 

addition, per your suggestion, we have included emissions for main precursors and 

fine-sized dust as independent parameters to enhance the STET model and improve 

the estimation of PM2.5 in Section 3 of the revised manuscript as follows: 

“Different with our previous study (Wei et al., 2019b), pollutant emissions for 

different precursors (including SO2, NOx, CO, and volatile organic compounds) and 

fine-sized dust are also employed to help explicitly explain the PM2.5 composition, 

collected from a multi-resolution emission inventory for China (Zhang et al., 2007).” 

 

In addition, we have updated and re-described in detail all the results in Sections 3 

and 4. Results show that the model performance is overall improved.  

 

3. Equation 1 is confusing. What is the R2 for each linear regression? Are these two 

linear regressions consistent with each other? Why not to average the Terra and Aqua 

data directly? 

Response: We have replaced the regression method with the average approach per 

your suggestion and clarified this in the revised manuscript as follows: 

“Terra and Aqua MAIAC AOD retrievals are thus averaged for each pixel on each day 

to form a new dataset and enlarge the spatial coverage.” 

 

4. The description for the STET method in Section 3 is not readily to understand. 

Please add clarification (better to include a schematic) so that ACP readers with less 

experiences in machine learning could generally understand the fundamentals of the 

STET method. 

Response: We have added clarification and a schematic of the STET model in 

Section 3.4 of the revised manuscript as follows: 

“For the enhanced STET model, all the selected independent variables are first input 

into the ERT model, and the random splits (S, ai) are established according to the 

whole of training data samples; then totally different K attributes are selected 

randomly from all attributes according to spatial and temporal differences; then K 



random splits are generated (s1, …, sk), and a split (s*) is selected by calculating the 

score measure function, i.e., Score(s*, S); then split node (S) is completely randomly 

generated to establish an extra tree; last the extra tree ensemble is built using the 

similarity method. Detailed information on ERT algorithm can be found in Geurts et 

al. (2006). Figure 4 illustrates the schematic of the enhanced STET model.” 

 

 

Figure 4. Schematic of the enhanced STET model developed in our study. 

 

5. In Figure 7, what is surprising is that I see a good positive correlation pattern 

between R and RMSE. Generally, a good model performance is associated with a 

high R and a low RMSE against observations. Please check and clarify. 

Response: We have verified the numbers, which are correct. Mathematically 

speaking, R2 and RMSE are two independent measures of a correlation between two 

variables whose correlation depends on the slope of the regression between the two, 

higher for a regression slope closer to unity. Since the slope varies from site to site, 

they may not show the same spatial patterns. We have taken a closer look at the 

spatial patterns of these quantities and added the following text attempting to give a 

physical explanation (section 4.2.1 of the revised manuscript): 

“In general, high R2 with overall large RMSE but small MRE values are observed at 

the beginning and end of the year (in winter). This is because PM2.5 concentrations 

vary more and are always high due to the greater amount of pollutant emissions 

caused by heating or frequent dust storms. By contrast, lower R2 with overall small 

RMSE and large MRE values are observed in the middle of the year (in summer) 

because air pollution levels are lower.” 

 

Specific comments: 

1. Line 48, the "evenly dispersed" is confusing, and is conflict with the "PM2.5 shows 

great spatial and temporal heterogeneities" in Line 80. 

Response: Corrected. 

 

2. Line 175, better replace "differences" by variation. 



Response: Corrected.  

 

3. Line 227, typos: Figure 2 or Figure 3? 

Response: Corrected.  

 

4. Line 247, what is definition for MAE and MRE? 

Response: We have provided definitions of these evaluation indicators in the revised 

manuscript. 

 

5. Figure 9, typos: the year is 2018 or 2017? Also please add the season labels for 

each plot. 

Response: Corrected.  
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Reviewer: 3 

 

I noticed that the same authors published a very similar paper in ES&T, 

https://pubs.acs.org/doi/10.1021/acs.est.9b03258. The only difference is between 

PM2.5 and PM1.0. However, the ACP paper needs originality. 

Response: We would say that the two papers are similar but also differ in many 

regards that are grossly summarized as follows: 

(1) They deal with different pollution quantities: PM1 and PM2.5, whose emission 

sources, formation and transport mechanisms, and health impact are all 

different. As such, both the figures and text of the manuscripts differ 

considerably. Their ratio varies greatly, ranging from less than 0.5 to greater 

than 0.9 at both spatial and temporal scales, especially in heavily polluted 

regions due to different influential factors (Wei et al., 2019b). The two papers 

may thus be regarded as a series of companion studies that do not undermine 

their respective scientific originality. The reviewer is invited to compare them 

to see how different they are. 

(2) The estimation approaches used to derive PM1 and PM2.5 are similar but also 

differ in several aspects. While the same kind of machine learning method, 

namely, the space-time extra-trees (STET) model, is used for retrieving PM1 

and PM2.5, there are numerous differences in their applications. For retrieving 

PM2.5, we have 1) used different input parameters by adding the aerosol 

precursor gases (SO2, CO, NOx, VOC, fine-size dust) from pollutant emission 

inventories; 2) corrected the satellite retrievals of AOD with reference to 

ground-based measurements; 3) modified the feature selection approach using 

the Gini index; and 4) improved the determination of spatiotemporal 

information. We have clearly described these differences in Section 3 as well 

as in the introduction of the revised manuscript.  

 

Moreover, the manuscript has some fatal defects, (1) It does not work well with high 

pollution events, which is paid more attention.  

Response: Like similar studies, ours suffers from a limitation of having relatively 

large errors under severely polluted conditions whose causes are further explained, 

per the reviewer’s suggestion. This is a common problem reported in many previous 

studies. We have added the following text to the revised manuscript (Section 5.1): 

“We find that all traditional statistical regression models, and machine and deep 

approaches reported in previous studies underestimated PM2.5 concentrations under 

highly polluted conditions with poor regressions (i.e., slope < 0.9, and intercept > 6 

μg/m3) between measurements and retrievals of PM2.5 in China, a common problem. 

Potential causes are: 1) There are large estimation errors in AOD retrievals under 

severe pollution conditions in China (Wei et al., 2019c). This is further rooted to the 

fundamental limitations of satellite-based AOD retrievals, i.e., the non-linear to 

reflectance and the high sensitivity of the single-scattering albedo (Z. Li et al., 2009); 

2) High AOD does not correspond to high PM2.5 concentrations because their ratio is 

highly variable over space and time, affected by both natural and human factors; 3) 



The number of samples for high-pollution cases is small, hindering the ability to train 

the model.”  

 

It appears that all approaches suffer from this inherent limitation, which should thus 

not be regarded as a “fatal defect” of our study, more importantly, the comparison 

results suggest that our model can more accurately capture the high pollution events 

with a larger slope of 0.86 and a smaller intercept of 6.16 μg/m3 with reference to 

other models reported from previous studies (Table 2). 

 

(2) Such method seems falling into a dead cycle, the results were compared by the 

observations which were used to fit the parameters. I do not think it works with 

another independent database. Some similar comments were pointed by the other two 

reviewers. 

Response: We do not think the method itself is a “dead cycle”, but do make more 

efforts to enhance the validity and effectiveness of the validation approach. Three 

independent validation methods are applied, ensuring that the training and validation 

data are independent, as described in Section 3.5, copied below: 

“Different from our previous study, three independent validation methods are 

performed to verify the model’s ability to estimate PM2.5 concentrations. The first 

independent validation method, i.e., the out-of-sample cross-validation (CV) 

approach, is performed by all data samples using the 10-fold CV procedure 

(Rodriguez et al., 2010). The data samples are divided into ten subsets randomly, and 

nine (one) of them are used as training (validation) data. This approach is repeated ten 

times, and error rates are averaged to obtain the final result. This is a common 

approach to evaluate the overall accuracy of a machine learning model, widely 

adopted in most satellite-derived PM studies (T. Li et al., 2017a, b; Ma et al., 2014, 

2019; Xiao et al., 2017; He and Huang, 2018; Chen et al., 2019; Wei et al., 2019b; 

Xue et al., 2019; Yao et al., 2019).  

The second independent validation method, i.e., out-of-station CV approach, is 

similar to the first one but performed using data from the monitoring stations to 

evaluate the spatial performance of the model. Data samples collected from different 

spatial points make up the training and testing data, and the relationship between 

spatial predictors and PM2.5 built from the training dataset is then estimated for each 

testing. The third independent validation approach tests the predictive power of the 

model. It is performed by applying the model built for one year to predict the PM2.5 

concentrations for other years, then validating the results against the corresponding 

ground measurements. This approach ensures that the data samples for model training 

and validation are completely independent on both spatial and temporal scales.” 
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Abstract 

Fine particulate matter with aerodynamic diameters ≤ 2.5 μm (PM2.5) showshas adverse effects on 

human health and the atmospheric environment. Satellite-derived aerosol products have been 

intensively adopted in estimatingThe estimation of surface PM2.5 concentrations, but has made intensive 

use of satellite-derived aerosol products. However, most previous studies failed to monitor air pollution 30 

over small-scale areas, limited by the coarse spatial- resolution (3–50 km) and lowthe poor data- quality 

of aerosol optical depth (AOD) products. Therefore, a newHere, enhanced was the space-time 



2 
 

extremely randomized trees (STET) model is developed that integratesby integrating updated 

spatiotemporal information and additional auxiliary data to improve PM2.5 estimates at boththe spatial 

resolution and overall accuracy of PM2.5 estimates across China. To this end, the newly released 35 

MODIS MAIACModerate Resolution Imaging Spectroradiometer Multi-Angle Implementation of 

Atmospheric Correction AOD product, along with meteorological and other auxiliary data are inputs, 

topographical, land-use data and pollution emissions were input to the STET model. Daily, and daily 1-

km PM2.5 maps infor 2018 across mainland China arewere produced. The STET model 

performsperformed well with a high out-of-sample (out-of-station) cross-validation coefficient of 40 

determination (R2) of 0.89 (0.88), a low root-mean-square error of 10.3533 (10.9793) μg/m3, a small 

mean absolute error of 6.7169 (7.1715) μg/m3, and a small mean relative error of 21.3728 % (23.77%), 

respectively. Particularly, it can well capture the69%). In particular, the model captured well PM2.5 

concentrations at both regional and individual site scales. In addition, it posed a strong predictive power 

(e.g., monthly-R2 = 0.80) and can be used to predict the historical PM2.5 records. The North China Plain, 45 

the Sichuan Basin, and Xinjiang Province always are featured with high PM2.5 pollution levels, 

especially in winter. The STET model outperformsoutperformed most models presented in previous 

related studies. , with a strong predictive power (e.g., monthly R2 = 0.80) which can be used to estimate 

historical PM2.5 records. More importantly, ourthis study provides a new approach to obtaintoward 

obtaining high-spatial-resolution and high-quality PM2.5 estimates, which is important for air pollution 50 

studies overfocused on urban areas. 

 

1. Introduction 

Atmospheric particulate matter is a relatively stable suspension system withgeneral term describing all 

kinds of solid and liquid particulate matter evenly dispersedparticles in the atmosphere. Fine particles 55 

are those particles in ambient air with aerodynamic diameters no more than 2.5 micrometers (PM2.5). 

Compared to coarser particles, PM2.5 areis rich in toxic and harmful substances and can directly enter 

the respiratory tract and alveoli of humans. Moreover, they have a long residence time and long 

transmission distance in the atmosphere (Aggarwal and Jain, 2015). Numerous studies have illustrated 

that high PM2.5 concentrationconcentrations adversely affectsaffect human health (Peng et al., 2009; 60 



3 
 

Bartell et al., 2013; Chowdhury and Dey, 2016; Crippa et al., 2019; Song et al., 2019), severely impairs 

the atmospheric environment (Z. Li et al., 2017), and even significantly influences the cloud and 

precipitation systems bythrough aerosol radiative and microphysical effects (Koren et al., 2014; 2016; 

Seinfeld et al., 2016; Ceca et al., 2018). Silva et al. (2013) have shown that about 2.1 million people 

have died each year, resulting from the increasing PM2.5 concentrations around the world.  65 

Nowadays, air pollution is becoming more severe due to continuously increasing anthropogenic 

aerosols in developing countries, especially in China (He et al., 2011; Huang et al., 2014; M. Liu et al., 

2017; Zhai et al., 2019). Fine particulate matters havematter has become the primary pollutant in urban 

environmentenvironments, garnering much scrutiny from the public (Han et al., 2014; L. Sun et al., 

2016; Wu et al., 2018). Therefore, the China Meteorological Administration began to 70 

establishestablished in 2004 a ground PM2.5 observation network to monitor the urban air quality as 

early as 2004 (Guo et al., 2009), followed by a denser network established by the Chinese Ministry of 

Environmental Protection sincein 2013. However, station-based monitoring is largely limited by the 

instruments and climatic conditions and cannot completely reflectcharacterize air pollution over large 

areas. Satellite remote sensing technology has led to a variety of operational aerosol optical depth 75 

(AOD) products using mature aerosol retrieval algorithms (Levy et al., 2013; Lyapustin et al., 2018), 

which allows the leading to estimates of PM2.5 estimations at large scalescales due to their unanimously 

the positive relationshipsrelationship between AOD and PM2.5 concentration (Guo et al., 2017; Wei et 

al., 2019a).  

Over the years, numerous approaches have been proposed to improve the PM2.5-AOD relationship. 80 

Physical models typically construct physical relationships between surface particulate matter 

concentrations and satellite AOD products through altitude and humidity corrections (Zhang and Li, 

2015). Statistical regression models, e.g., the multiple linear regression model, the linear mixed-effect 

model, the two-stage model, and the geographically weighted regression (GWR) model, have been 

widely used for applications due to their simplicity and versatility (Gupta &and Christopher, 2009; Ma 85 

et al., 2014; Xiao et al., 2017; Yao et al., 2019). Artificial intelligence models mainly involve the 

machine learning and deep learning models, e.g., the random forest (RF; Brokamp et al., 2018; G. Chen 

et al., 2018; HuWei et al., 20172019a), the extreme gradient boosting model (XGBoost,; Z. Chen et al., 



4 
 

2019), and the back-propagation and generalized regression neural networks (BRNN and GRNN,; T. Li 

et al., 2017a).  90 

However, PM2.5 is jointly affected by numerous factors, e.g., meteorological conditions, human 

activities, and topography, showing great spatial and temporal heterogeneities. This makes it difficult 

for above traditional physical and statistical regression approaches to accurately explain and construct 

PM2.5-AOD relationships, leading to poor PM2.5 estimates. Despite their stronger data mining ability, 

most artificial intelligence approaches have been simplistically adopted in PM2.5 predictions, neglecting 95 

their crucial the spatiotemporal characteristics (of PM2.5 (Brokamp et al., 2018; G. Chen et al., 2018,; Z. 

Chen et al., 2019; Hu et al., 2017; Li et al., 2017a; Brokamp et al., 2018; Xue et al., 2019). Furthermore, 

deep learning is highly dependent on the computer performance of a computer and is less 

computationally efficient. On the other handIn addition, most widely used aerosol products are 

generated withat low spatial resolutions (3–50 km), and thus are seriously limiteda serious limitation for 100 

applications over small-scale regions such as urban areas. 

Focus on these problems, to addressTo account for the spatiotemporal heterogeneity and improveof 

PM2.5 estimates, a new, the space-time extremely randomized trees (STET) model is developed in our 

previous study for estimating PM1 (Wei et al., 2019b) is adopted here with further refinements for 

improving the estimation of PM2.5 using the high-resolution (1 km) Moderate Resolution Imaging 105 

Spectroradiometer (MODIS ) Multi-Angle Implementation of Atmospheric Correction  (MAIAC) AOD 

product at 1-km resolution associated with . Note that PM1 and PM2.5 emission sources, formation and 

transport mechanisms, and health impacts differ. Their spatial patterns and distributions also differ, and 

their particle ratio varies greatly, ranging from less than 0.5 to greater than 0.9 at both spatial and 

temporal scales, especially in highly polluted regions as in China (Wei et al., 2019b). The STET model 110 

has been improved by using corrected AODs, adding pollutant emissions, updating the feature selection, 

and improving the determination of spatiotemporal information. Based on this, spatially continuous 1-

km PM2.5 maps covering mainland China in 2018 are generated from the MODIS MAIAC AOD 

product at a 1-km resolution using meteorological, land-use, topographic, and population, and emission 

parameters. Then the space continuous 1-km PM2.5 maps at different temporal scales covering mainland 115 

China in 2018 are generated. Section 2 describes the data sources and integration. Section 3 introduces 
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the space-time extremely randomized trees (enhanced STET) model in detail, and section 4 presents the 

validation and comparison of our PM2.5 estimates across China. Section 5 compares our model with 

those models developed in previous related studies, and Section 6 gives a summary and 

conclusionconclusions. 120 

 

2. Data sources 

2.1 PM2.5 ground measurements 

In this study, the hourlyHourly in- situ PM2.5 observations at 1583 monitoring stations (Figure 1) across 

mainland China from 1, January 2017 to 31, December 2018 arewere collected, and they are then 125 

averaged to obtain the daily mean PM2.5 measurements. The PM2.5 observations are measured using the 

tapered element oscillating microbalance approach method or β-attenuation monitors that have 

undergone further calibration and strict quality control procedures (Guo et al., 2009). 

 

2.2 MAIAC AOD product 130 

The MAIAC algorithm was developed and applied to generate MODIS aerosol products from the 

darkest to the brightest surfaces at a 1-km spatial resolution over land (Lyapustin et al., 2011). On 30 

May 2018, official 1-km-resolution MAIAC aerosol products were released and made freely available 

to all users. This dataset is produced using the revised MAIAC algorithm with continuous 

improvements in scale transition using spectral regression coefficients, cloud detection, determination 135 

of aerosol models, over-water processing, and general optimization in the global aerosol retrieval 

process (Lyapustin et al., 2018). MAIAC daily aerosol products from the Terra and Aqua satellites 

arewere collected infrom 2017 to 2018 across China, and the 550-nm AOD retrievals with high quality 

assurance (QACloudMask = Clear and QAAdjacencyMask = Clear) arewere used.  

Here, the MAIAC AOD retrievals were first evaluated against surface observations at 18 AERONET 140 

monitoring stations in China (Figure 1) using the spatiotemporal matching approach (Wei et al., 2019c). 

MAIAC AOD retrievals are highly accurate with small estimation errors across mainland China. More 

than 84% of the matchups satisfy the MODIS expected error (Levy et al., 2013) at the national scale 

(Figure 2a). Besides vegetated surfaces, e.g., cropland and grassland, the MAIAC algorithm shows 
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considerable accuracy over heterogeneous urban surfaces (Figure 2b). MAIAC AOD products are more 145 

accurate and less biased than the widely used Dark Target (DT) and Deep Blue products at coarse 

spatial resolutions (N. Liu et al., 2019; Wei et al., 2018, 2019d; Tao et al., 2019; Z. Zhang et al., 2019). 

More importantly, the DT algorithm generates a large number of missing values over bright surfaces, 

and aerosol loadings are significantly overestimated over heterogeneous urban surfaces (Levy et al., 

2013; Wei et al., 2018, 2019d). Therefore, higher data-quality and spatial-resolution MAIAC products, 150 

which can generate more accurate and detailed PM2.5 estimates, are selected. 

 

2.3 Auxiliary data 

The auxiliaryAuxiliary data mainly includesinclude meteorological, land-cover, surface topographic, 

and population data. The meteorological variables are collected from ERA-Interim atmospheric 155 

reanalysis products, including the boundary layer height (BLH), evaporation (EP), temperature (TEM), 

precipitation (PRE), relative humidity (RH), surface pressure (SP), wind speed (WS), and wind 

direction (WD). ForObservations of meteorological variables, the observations made between 1000 to 

1400 local time are averaged to be consistent with satellite overpass times. The landLand-cover data 

include the MODIS land use cover and normalized difference vegetation index (NDVI) products. The 160 

topographicTopographic data include, i.e., the surface elevation, slope, aspect, and relief (Wei et al., 

2019a2019e), are calculated from the SRTM Shuttle Radar Topography Mission Digital Elevation 

Model (DEM) product, and the population deriveddata are from VIIRSVisible Infrared Imaging 

Radiometer Suite nighttime lights data.(NTL) data. Different with our previous study (Wei et al., 

2019b), pollutant emissions for different precursors (including SO2, NOx, CO, and volatile organic 165 

compounds) and fine-sized dust are also employed to help explicitly explain the PM2.5 composition, 

collected from a multi-resolution emission inventory for China (Zhang et al., 2007). Table 1 provides 

detailed information about the data sources.   

 

3. Methodology 170 

Here, a tree-based ensemble learning approach, called the extremely randomized trees (ERT; Geurts et 

al., 2006), is selected to deal with complex supervised regression issues and to construct robust PM2.5-
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AOD relationships. This model splits nodes by randomly selecting cut-points and uses all training 

samples to grow trees instead of the bootstrap approach. The model efficiently solves variance problems 

and mines more valuable information compared to other widely used tree-based approaches, e.g., the 175 

decision tree and RF. 

Unlike the STET model used in our previous study for retrieving PM1 (Wei et al., 2019b), the current 

algorithm for retrieving PM2.5 is partly based on the STET model that is enhanced by a series of 

refinements to further optimize and strengthen the model capacity to improve the estimation accuracy, 

including 1) using aerosol precursor gases (SO2, CO, NOx, VOC, fine-sized dust) from pollutant 180 

emission inventories as additional input; 2) correcting satellite retrievals of AOD with reference to 

ground-based measurements; 3) modifying the feature selection approach using the Gini index (GI); and 

4) improving the determination of spatiotemporal information.  

 

2.43.1 Data correction and integration 185 

Although the MAIAC algorithm performs generally well in China with a mean absolute error (MAE) of 

0.06 and a root-mean-square error (RMSE) of 0.121 (Figure 2), a systematic error in the AOD retrievals 

(𝜏௦) can be corrected by linear regression between in situ AOD measurements collected at all 

AERONET sites in China matched with the MAIAC retrievals as follows: 

𝜏 ൌ 0.911 ∙ 𝜏௦   0.018;  𝑅 ൌ 0.963 .    ሺ1ሻ 190 

Due to the difference in cloud distributions at their respective imaging times, the spatial coverages of 

Terra and Aqua MAIAC AOD products have different spatial coverages due to frequent clouds and 

difference in their respective imaging times. Therefore, bothdiffer. Terra and Aqua MAIAC 

datasetsAOD retrievals are combined and merged through the linear regression approach (Eq. 1) to 

reduce the systematic differencesthus averaged for each pixel on each day to form a new dataset and 195 

enlarge the spatial coverage. By integrating the two datasets, the spatial coverage is greatly increased by 

more than 15% over most areas acrossin China, which can leadleading to PM2.5 maps with wider 

spatial-coverage PM2.5 maps. More importantly, the  coverages. The number of valid data samples 

hasalso significantly increased by approximately 25–32% after combination than just using Terra or 

Aqua MAIAC products, which can improve the %, improving the model training ability.  200 
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൝
𝜏் ൌ 𝑘ଵ ∙ 𝜏   𝑏ଵ
𝜏 ൌ 𝑘ଶ ∙ 𝜏்   𝑏ଶ

𝜏  ൌ  meanሺ𝜏், 𝜏ሻ
   (1) 

where τT, τA, and τC denote the Terra, Aqua, and combined AODs.  

In addition, dueDue to different spatial resolutions, all the 16 auxiliary variables arewere uniformly 

aggregated to a 1-km (≈ 0.01° × 0.01°) spatial resolution using the bilinear interpolation approach. After 

removing invalid or unrealistic values, there are 167,716 matched PM2.5-AOD samples and independent 205 

variables are collected for 2018 in China. 

 

3.2 Potential effects of variables on PM2.5 

The potential relationships between all selected independent variables and PM2.5 measurements are first 

investigated (Figure 3). AOD is highly positively related to PM2.5 measurements (R = 0.54), and all 210 

pollutant emissions, nighttime lights, and land use cover show positive effects on PM2.5. By contrast, all 

topographical variables and NDVI are negatively related to PM2.5. Moreover, except for ET (R = 0.24) 

and SP (R = 0.16), the other meteorological variables show opposite negative effects on PM2.5, 

especially for BLH (R = -0.22) and TEM (R = -0.17). In general, all the selected variables are 

significantly correlated to PM2.5 measurements at the confidence level of 0.01 or 0.05 (two sides), so 215 

they are used as inputs to the STET model for preliminary training. 

 

3.3 Updated feature selection 

Due to the large number of independent variables considered, this will lead to the unavoidable over-

fitting issuewill occur during the model training process. Therefore, theThe model need bethus needs 220 

further adjustedadjustment by selecting morethe most important variables rather than all variables to 

overcome this issue and improve the model efficiency. For this purpose,Instead of using the default out-

of-bag error rate (Wei et al., 2019b), the GI index is selected to calculate the importance scoresscore of 

all selectedeach independent variables and spatiotemporal information to variable on PM2.5 estimates 

because of its higher accuracy and stability as a variable importance measure, especially for the STET 225 

model arecontinuous variables with low signal-to-noise ratios (Jiang et al., 2009; Calle and Urrea, 

2011), expressed as 
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where n represents the number of the categories (N = 1, …, n), and 𝜔 represents the sample weight of 

each category. The importance of one feature (Xj) on node m is that the GI changes before and after 230 

node m branching: 

∆𝐺𝐼 ൌ  𝐺𝐼 െ  𝐺𝐼 െ 𝐺𝐼  , ሺ3ሻ 

where 𝐺𝐼 and 𝐺𝐼 represent the GI of two new nodes after branching. The importance score for one 

feature (ISj) in then the extra-trees with k trees (i = 1, …, k), calculated in China (Figure 2). as 

𝐼𝑆 ൌ  ∆𝐺𝐼
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∈ெ



ୀଵ

 , ሺ4ሻ 235 

where ∆𝐺𝐼 represents the importance of Xi in the ith tree when the node of feature Xi in decision tree j 

belongs to set M. Finally, an additional normalization approach is performed to all obtained importance 

scores for each feature. 

The results suggest that AOD is the most influential variable, contributing ~3132.5% toward daily PM2.5 

estimates. Because there is little precipitation on most days throughout the year, PRE contributes little 240 

to PM estimates, by contrast, most other (Figure 3). Most meteorological variables contribute more to 

PM2.5 estimates, especially BLH, EP, and TEM, with an average importance score of 9%, 8%, and.6%, 

7.7%, and 7.3%, respectively. The PM2.5-AOD relationship might largely depend on the compositions 

(e.g., aerosol water, Reddington et al., 2019; Jin et al., 2020). High RH conditions and precipitation 

should have large influences on the production and removal of PM2.5 (Sun et al., 2014; Zheng et al., 245 

2015). However, RH and PRE turn to be less important with overall low importance scores in the STET 

model, which may be attributed to the fact that aerosol retrieval algorithms only work under cloud-free 

conditions when RH is relatively low. More importantly, the calculated importance score only 

represents the importance of features in splitting during the extra-tree construction, not the contribution 

of features to PM2.5 in physical mechanisms. Two main land-use variables, i.e., NDVI and DEM, are 250 

also important to PM2.5 estimates, while the pollutant emissions show different effects on PM2.5 with 

varying importance scores, especially for NH3, CO, SO2, and fine-sized dust. The eight least important 
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variables with low important scores of < 2% are excluded from the STET model, and the remaining 14 

more important variables are selected as inputs to build the PM2.5-AOD relationship. 

 255 

3.4 Improved spatiotemporal information 

Spatiotemporal heterogeneities, i.e., strong spatial autocorrelations and clear temporal variations, are the 

key characteristics of PM2.5, presenting great challenges and usually neglected in most regression and 

artificial intelligence models. Therefore, in this study, the STET model is further enhanced to solve this 

problem by more accurately determining the spatial and temporal information. For this purpose, the 260 

Haversine approach is selected to calculate the great-circle distance between two points on a sphere 

specified by their latitudes and longitudes (Eqs. 5–6). This approach can avoid the problem of 

insufficient effective numbers due to the short distance between two points by using sines, used to 

represent the space term (𝑃௦). In addition, instead of using the day of the year (DOY), the time radian 

difference for each point on different days in a year is calculated (Eq.8) to minimize the impact of the 265 

seasonal cycle and is selected to represent the time term (𝑃்). These two improved space-time terms can 

account for the spatiotemporal autocorrelations of PM2.5 between different points for each day and 

between consecutive time series at the same place. 

ℎ ൌ 𝑓ሺ𝐿𝑜𝑛,,௧, 𝐿𝑎𝑡,,௧ሻ ൌ ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛ሺ𝛼ଵ െ 𝛼ଶሻ  cosሺ𝛼ଵሻ cosሺ𝛼ଶሻ ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛ሺ𝛽ଵ െ 𝛽ଶሻ ,  (5) 

ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛ሺ𝜃ሻ ൌ 𝑠𝑖𝑛ଶሺ𝜃/2ሻ ൌ ሾ1 െ cosሺ𝜃ሻሿ/2 ,  (6) 270 

𝑃ௌሺ,,௧ሻ ൌ 2 ∗ 𝑟 ∗ asin ሺ𝑠𝑞𝑟𝑡ሺℎሻሻ , (7) 

𝑃்ሺ,,௧ሻ ൌ cos ሺ2𝜋
ௗ,ೕ,

்
ሻ ,  (8) 

where 𝛼ଵand 𝛼ଶ denote the latitudes of two points, β1 and β2 denote the longitudes of two points in 

space, r denotes the radius (in km) of the earth, d represents the DOY, and T represents the total number 

of days in the year in question.  275 

For the enhanced STET model, all the selected independent variables are first input into the ERT model, 

and the random splits (S, ai) are established according to the whole of training data samples; then totally 

different K attributes are selected randomly from all attributes according to spatial and temporal 

differences; then K random splits are generated (s1, …, sk), and a split (s*) is selected by calculating the 
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score measure function, i.e., Score(s*, S); then split node (S) is completely randomly generated to 280 

establish an extra tree; last the extra tree ensemble is built using the similarity method. Detailed 

information on ERT algorithm can be found in Geurts et al. (2006). Figure 4 illustrates the schematic of 

the enhanced STET model. Figure 4 illustrates the schematic of the enhanced STET model. 

 

2.53.5 Model validation approach 285 

In this study, the widely used 10-fold Different from our previous study, three independent validation 

methods are performed to verify the model’s ability to estimate PM2.5 concentrations. The first 

independent validation method, i.e., the out-of-sample cross-validation (10-CV) CV) approach, is 

performed by all data samples using the 10-fold CV procedure (Rodriguez et al., 2010) is selected for 

model validation, where all). The data samples are divided into ten subsets randomly, and nine (one) of 290 

them are used as the training data and the remaining is the testing data, indicating that the training and 

testing(validation) data are totally independent.. This approach is repeated in turn for ten times. Then 

the, and error rate of each test is calculated, and the mean error rate from ten tests determinesrates are 

averaged to obtain the final result. Here, the out-of-sample and out-of-station 10-CV procedures are 

involved, which the former one is performed based on the observations and usedThis is a common 295 

approach to evaluate the overall accuracy of a machine learning model, widely adopted in most 

satellite-derived PM studies (T. Li et al., 2017a, b; Ma et al., 2014, 2019; Xiao et al., 2017; He and 

Huang, 2018; Chen et al., 2019; Wei et al., 2019b; Xue et al., 2019; Yao et al., 2019).  

The second independent validation method, i.e., out-of-station CV approach, is similar to the first one 

isbut performed based onusing data from the monitoring stations and used to evaluate the model spatial 300 

performance. This means that of the model. Data samples collected from different spatial points make 

up the training and testing are made of different spatial points, data, and the relationship between spatial 

predictors and PM2.5 concentrations estimated in the training dataset is then predicted on the 

testing.built from the training dataset is then estimated for each testing. The third independent validation 

approach tests the predictive power of the model. It is performed by applying the model built for one 305 

year to predict the PM2.5 concentrations for other years, then validating the results against the 

corresponding ground measurements. This approach ensures that the data samples for model training 
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and validation are completely independent on both spatial and temporal scales. Several traditional 

statistical metrics are selected to describe the model performance, including the correlation coefficient 

(R), R2, RMSE, MAE, and the mean relative error (MRE).  310 

 

4. Results 

2.64.1 Validation at the nationalspatial scale 

4.1.1 National-scale validation 

Figure 45 shows the out-of-sample-based sample and out-of-station-based 10-CV results of daily PM2.5 315 

estimates for the traditional ETERT model and our new developedenhanced STET model at the national 

scale in 2018. The results suggest that the original ETERT model works well in estimating PM2.5 

concentrations with an average out-of-sample CV-R2, of 0.84 and overall small estimation uncertainties. 

However, when consider theconsidering spatiotemporal information, the model performance has been 

significantly improvedimproves with an increasinga sample-based CV-R2 equal toof 0.89, a stronger 320 

regression line (e.g., slope = 0.86),, and a decreasing RMSE (~12.46of 10.33 μg/m3),, MAE (~8.26of 

6.69 μg/m3),, and MRE (~of 21.28%. Regarding the spatial performance, compared to the original ET 

model, the enhanced STET model shows a stronger spatial predictive power with a higher out-of-station 

CV-R2 of 0.88, a lower RMSE of 10.9793 μg/m3, MAE of 7.1715 μg/m3, and MRE of 23.77%. 

These69%. In addition, compared to the sample-based validation, the out-of-station accuracy changes 325 

little, suggesting that the enhanced STET model can well estimate daily PM2.5 concentrations. 

Moreover, these results illustrate that spatiotemporal information areis crucial in improving the PM2.5-

AOD relationships and should be carefully considered when introducing statistical regression models 

using remote sensing techniques.  

 330 

4.1.2 Regional-scale validation 

Figure 6 shows the sample-based 10-CV results of the enhanced STET model in PM2.5 daily estimates 

over eastern and western China (according to the widely used Heihe-Tengchong line), and four typical 

local regions (Figure 1). The enhanced STET model performs differently over eastern and western 

China, mainly due to significant differences in land cover and climate conditions. There are 1289 335 
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uniformly distributed PM2.5 stations in eastern China, and 127,241 daily samples were collected. The 

STET model performs well in eastern China with a high sample-based CV-R2 equal to 0.90 and low 

estimation uncertainties, i.e., RMSE = 9.7772 μg/m3, MAE = 6.4441 μg/m3, and MRE = 19.2416%. By 

contrast, there are 294 unevenly and sparsely distributed PM2.5 stations in western China, thuswith 

about three times fewer daily PM2.5 estimates were collected. The model performance is overall poorer 340 

(e.g., CV-R2 = 0.86, and85, RMSE = 11.9912.04 μg/m3, MAE = 7.56 μg/m3) than over eastern China. 

This is mainly contributedattributed to brighter surfaces (e.g., desert and bare land) with little vegetation 

coverage and harsh meteorological conditions over western China. 

There were 33,733, 15,199, 6,209, and 6,470 daily samples collected from 233, 184, 95, and 107 

uniformly distributed PM2.5 monitoring stations in the North China Plain (NCP), the Yangtze River 345 

Delta (YRD), the Pearl River Delta (PRD)), and the Sichuan Basin (SCB), respectively. For former 

threeEstimated PM2.5 concentrations in the typical urban agglomerations where people closely 

concerned, the estimated PM2.5 concentrations of the NCP, YRD, and PRD are highly consistent with 

surface measurements (CV-R2 = 0.8986–0.92)), with overall low estimation uncertainties (i.e., RMSE = 

78–12 μg/m3, MAE = 5–8 μg/m3, and MRE = 15–19%). In addition, the STETThe new model also 350 

performs well over the Sichuan Basin with an average CV-R2 value equal to 0.87 and comparable 

estimation uncertainties to North China Plain. In generalthose from the NCP. Overall, despite some 

differences in model performance, the enhanced STET model shows an overall good ability in 

estimating PM2.5 estimatesconcentrations at the regional scale. 

 355 

4.1.3 Site-scale validation 

National- and regional-scale aggregated evaluations mainly illustrate the overall performance of the 

STET model in estimating PM2.5 estimates, howeverconcentrations. However, due to the inhomogeneity 

of PM2.5 monitoring stations, an additional validation for each monitoring station in China is performed 

(Figure 67). For statistical significance, plotted are only these monitoring stations with more than ten 360 

data samples are plotted. The daily. Daily PM2.5 estimations areestimates relate well related to surface 

measurements at most individual stations across China. The average sample-based CV-R2 is 0.84, and 

the CV-R2 values are highergreater than 0.8 at more than 73% of the monitoring stations, especially 
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forin eastern China. However, observed are relatively poorer performances (CV-R2 < 0.6) are observed 

at some scattered sites located in southwesternsouthwest and southeasternsoutheast China. In general, 365 

the STETnew model shows overall low estimation uncertainties at most sites with average RMSE and 

MAE values of 9.32 and 6.5 μg/m3, especially forin southern China. Moreover, the average RMSE and 

MAE values are < 10 μg/m3 at more than 68% and 93~94% of the monitoring stations across China.in 

China have mean RMSE and MAE values less than 15 μg/m3 and 10 μg/m3, respectively. Note that 

these stations showhave larger RMSE values (> 10 μg/m3) in central China, mainly due to the high 370 

pollutedpollution levels. In addition, theThe average MRE value in China is 20.888%, and most stations 

(> 86%)% of them) have low MRE values <less than 30% in PM2.5 estimations in China,%, especially 

for thoseat sites located in eastern and southern China. 

 
4.2 Performance at the temporal scale 375 

4.2.1 Daily-scale validation 

Figure 78 shows the STET model performance from all available monitoring stations in China as a 

function of the day of yearDOY. The number of data samples in one day ranges from 54 to 1155, with 

an average of 466 in 2018. In general, the STETnew model shows great performanceperforms well 

(average CV-R2 = 0.76) at77) on most days in the year, and more than 7677% of thethese days have 380 

CV-R2 values greater than 0.7. Two main uncertainty metrics, i.e., RMSE and MAE, show similar 

temporal variations during the year, first decreasing until around day 250, then gradually increasing. In 

general, approximately equal Approximately 91% and 92% of the days have low RMSE and MAE 

values of less than 15 and 10 μg/m3, respectively, over the year. Large estimation uncertainties always 

occur at the beginning and end of the year mainly due to intense human activities and harsh natural 385 

environment. Furthermore, MRE is relatively stable, ranging from 13% to 5249% with an average value 

of 23.292%, and more than 87% of the days yield lowhave MRE values of less than 30% in China. 

These results illustrate that the STET model show great performance in capturingIn general, high R2 

with overall large RMSE but small MRE values are observed at the beginning and end of the year (in 

winter). This is because PM2.5 concentrations on most days of the year.vary more and are always high 390 

due to the greater amount of pollutant emissions caused by heating or frequent dust storms. By contrast, 
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lower R2 with overall small RMSE and large MRE values are observed in the middle of the year (in 

summer) because air pollution levels are lower. Nevertheless, these results illustrate that the enhanced 

STET model captures well PM2.5 concentrations on most days of the year. 

 395 

4.2.2 Seasonal-scale validation 

Figure 9 shows sample-based cross-validationCV results for PM2.5 daily estimates divided by four 

seasonsaccording to the season in 2018 acrossin China. The resultsResults suggest that there are 

obviousclear differences in model performance at the seasonal level. Thethe number of valid data 

samples because of the long-term snow/ice cover in winter and more frequent clouds in summer, 400 

resulting in an overall smaller number of samples than in the other two seasons. The enhanced STET 

model performs best in autumn with the highest CV-R2 value of 0.90 and the strongest regression line 

(i.e., slope = 0.88, and intercept = 4.8885 μg/m3). The averageMean RMSE, MAE, and MRE values in 

autumn are 9.018.97 μg/m3, 5.8784 μg/m3, and 21.10 02%, respectively. By contrast, the STETnew 

model performs the worst in summer with the lowest CV-R2 of 0.7679 and smallesta less steep slope of 405 

0.747.37, indicating obviousclear underestimations. However, summer showsexperiences the least 

amount of air pollution with most daily PM2.5 values < 8050 μg/m3, leading to smallest estimation 

uncertainties. The main reason is that the meteorological conditions in place in summer accelerated the 

diffusion of pollutants but complicated the PM2.5-AOD relationships. The airthe smallest RMSE and 

MAE values but the largest MRE values. Air quality is about two or three times worse in spring and 410 

winter than in winter with wider PM2.5 ranges and larger standard deviations. Moreover, the STETThe 

model showsperformance in these seasons is similar performances in these two seasonal, with almost 

equal CV-R2 and slope values, as well asand close estimation uncertainties. The differences in model 

performance among the seasons are mainly attributed to seasonal variations in natural conditions and 

human activities. Meteorological conditions in summer favor the diffusion of pollutants but complicate 415 

the PM2.5-AOD relationship (Su et al., 2018, 2020), whereas direct emissions of pollutants are greater in 

winter, resulting in severe air pollution.   

 

4.2.3 Synthetic-scale validation 
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Synthetized PM2.5 retrievals are validated against PM2.5 surface observations by calculating the effective 420 

values from the same number of valid days at monthly, seasonal, and annual time scales (Figure 10). 

Monthly PM2.5 estimates and ground measurements (N = 12,410) are highly correlated (R2 = 0.93), with 

a steep slope of 0.91. Mean RMSE, MAE, and MRE values are 5.63 μg/m3, 4.08 μg/m3, and 11.59%, 

respectively. Seasonal mean PM2.5 estimates (N = 5,231) have a good accuracy (i.e., R2 = 0.93, RMSE = 

5.00 μg/m3, MAE = 3.69 μg/m3, and MRE = 10.31%). Annual mean PM2.5 estimates (N = 1,462) agree 425 

well with ground measurements (R = 0.91), with small uncertainties (i.e., RMSE = 4.11 μg/m3, MAE = 

3.12 μg/m3, and MPE = 8.58%). This illustrates that the synthetic dataset can more accurately reflect the 

spatiotemporal PM2.5 loadings and variations across China. 

 

2.74.3 Predicted PM2.5 maps across China 430 

The monthlyMonthly PM2.5 maps are thus synthesized and averaged from at least 20% of available 

daily PM2.5 estimates for each grid in a month in 2018 , and annual PM2.5 maps are generated from 

monthly PM2.5 maps if there are more than eight available values for each grid across China (Hsu et al., 

2012; Wei et al., 2019f). The spatial coverage of monthly PM2.5 maps varies from 73% to 92%, with an 

average of 83% across mainland China. The highest (lowest) spatialmaximum coverage occcurs around 435 

October (occurs in April, and the minimum coverage occurs in January) of the year. Similarly, the. The 

monthly mean PM2.5 values vary conversely from 21.224.4 μg/m3 to 45.142.9 μg/m3 with, where the 

highest (lowest) PM2.5 concentration occurring around Marchis observed in December (August) of the 

year.  

The satellite-derived 1-km-resolution PM2.5 map in 2018 covers almost the full scene (spatial coverage 440 

= 99%) across mainland China (Figure 11a) and is highly consistent in spatial patterns are similar 

between the STET-derived 1-km PM2.5 map and calculated in-pattern with the corresponding in situ 

measurements (Figure 11b). The average PM2.5 concentration is 32.7±13.6 μg/m3 in 2018 across 

mainland China. In general, the most severe PM2.5 pollution occurs in the Taklamakan Deseret, where 

most areas expose are exposed to high PM2.5 concentrations of > 80 μg/m3. There are also high-polluted 445 

pollution levels over the North China Plain, Sichuan Basin, and Yangtze River DeltaNCP, the SB, and 

the YRD, with annual mean PM2.5 values of 46.8±11.8, 38.37±10.35, 39.8±9.9, and 37.6±938.4±8.3 
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μg/m3, respectively. These mainly contributed to, arising from intensive human activities, and special 

topographic and meteorological conditions. By contrast, the annual mean PM2.5 loadings areloading is 

overall low inover the rest areas of China, e.g., the PRD (33.4±3.9 μg/m3). However, there may be poor 450 

representativeness for these areas overin western China with few ground monitoring stations. In general, 

we have to say that the PM2.5 pollution has been significantly reduced in 2018 across China due to the 

effective emission control measures implemented by the Chinese government (Fang et al., 2019; Ma et 

al., 2019). However, moreMore than 3034% of mainland China still experienced high PM2.5 levels in 

2018 exceeding the international and national recommended air quality level (PM2.5 > 35 μg/m3). 455 

Figure 12 shows seasonal mean PM2.5 maps, which are averaged from the available monthly values for 

each grid, in 2018 across China. The average PM2.5 concentration (spatial coverage) is 37.2±20.7 μg/m3 

(~ 96%), 25.5±12.1 μg/m3 (~ 92%), 29.5±11.5 μg/m3 (~ 97%), and 41.3±15.4 μg/m3 (~ 88%) for spring, 

summer, autumn, and winter, respectively. There are noticeable spatial differences in PM2.5 

distributions on the seasonal scale. In winter and spring, more than 7749% and 6642% of mainland 460 

China exposing thewere exposed to high PM2.5 levels > of 30 μg/m3, yielding poorer airresulting in poor 

quality. By contrast, PM2.5 pollution is slighterlower in summer and autumn, with more than 9190% and 

8174% of mainland China, respectively, experiencing low PM2.5 levels below the acceptable air quality 

level. Note that in spring, PM2.5 concentrations are particularly high in Xinjiang province due to 

frequent sand and dust episodes in 2018. 465 

 

5. Discussion 

5.1 Model accuracy 

There is an increasing number of studies on estimating PM2.5 using satellite AOD products from local to 

national scales across China. However, limited by the operational satellite aerosol products, PM2.5 can 470 

only be estimated at coarse spatial resolutions of approximately 6–10 km (Fang et al., 2016; T. Li et al., 

2017b; Yu et al., 2017; Chen et al., 2018; Ma et al., 2019; Yao et al., 2019). Recently, with the release 

of MODIS 3-km DT aerosol products, the PM2.5 estimates can be improved to a 3-km spatial resolution 

across China (You et al., 2016; T. Li et al., 2017a; He &and Huang, 2018; Chen et al., 2019; Xue et al., 

2019). Therefore, in ourThis study, improves the spatial resolution of PM2.5 estimates has been 475 
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significantly improved by 3–10 timesacross mainland China to 1 km based on the newly released high-

quality MAIAC products across mainland China.  

ForRegarding model performance, our newly developed STET model shows much higher accuracyis 

more accurate with higher CV-R2 values, and smaller RMSE and MAE values than thethose from 

statistical regression models (Table 2), e.g., the timely structure adaptive model (TSAM,; Fang et al., 480 

2016) model, the Gaussian model (Yu et al., 2017), the Generalized Additive Model (GAM,; Chen et 

al., 2018) model, and the GWR model (Ma et al., 2014; You et al., 2016), and the geographically and 

temporally weighted regression model (GTWR model (; He and Huang, 2018). The enhanced STET 

model can also outperform most machine learning (ML) and deep learning approaches including the 

RFGaussian model (Yu et al., 2017), the Random Forest model (Chen et al., 2018; Wei et al., 2019e), 485 

the XGBoost model (Chen et al., 2019), the Geo- BPNN, GRNN and deep brief network (DBN) models 

(T. Li et al., 2017a, 2017bb), and some optical combined models, e.g., the Daily-GWR model (D-GWR) 

model (; He and Huang, 2018), the two-stage model (He and Huang, 2018; Ma et al., 2019; Yao et al., 

2019), and the ML + GAM model (Xue et al., 2019).  

We find that all traditional statistical regression models, and machine and deep approaches reported in 490 

previous studies underestimated PM2.5 concentrations under highly polluted conditions with poor 

regressions (i.e., slope < 0.9 and intercept > 6 μg/m3) between measurements and retrievals of PM2.5 in 

China, a common problem. Potential causes are: 1) There are large estimation errors in AOD retrievals 

under severe pollution conditions in China (Wei et al., 2019c). This is further rooted to the fundamental 

limitations of satellite-based AOD retrievals, i.e., the non-linear to reflectance and the high sensitivity 495 

of the single-scattering albedo (Z. Li et al., 2009); 2) High AOD does not correspond to high PM2.5 

concentrations because their ratio is highly variable over space and time, affected by both natural and 

human factors; 3) The number of samples for high-pollution cases is small, hindering the ability to train 

the model. Therefore, our model also tends to underestimate PM2.5 concentrations on highly polluted 

days (PM2.5 > 150 μg/m3), however, it can more accurately capture the high pollution events with a 500 

stronger slope of 0.86 and a smaller intercept of 6.16 μg/m3 with reference to other models reported 

from previous studies (Table 2). 
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Furthermore, compared with daily PM1 estimates using the STET model in our previous study (CV-R2 

= 0.76 and slope = 0.70; Wei et al., 2019b), the overall accuracy of daily PM2.5 estimates using the 

enhanced STET model has improved significantly with a much higher CV-R2 of 0.89 and a steeper 505 

slope of 0.86, based on data from 2018 in China. Continuous improvements of the model can further 

improve the determination of the relationship between fine particulate matter and AOD so as to improve 

the model performance. More data samples may also help improve the training ability of the model. 

 

5.2 Predictive power  510 

To test the predictive power in PM2.5 concentrations of the enhanced STET model, the model built for 

the year of 2018 was used to predict daily PM2.5 concentrations in 2017, validated against the ground 

measurements from 2017. Results suggest that our new model can correctly capture more than 65% of 

the historical daily PM2.5 concentrations (N = 177,616). Monthly (N = 12,408), seasonal (N = 5,227), 

and annual (N = 1,461) mean PM2.5 predictions across China. The comparison results are highly 515 

correlated with surface observations with R2 values of 0.80, 0.81, and 0.82, respectively, having overall 

small estimation uncertainties (i.e., RMSE < 12 μg/m3, MAE < 9 μg/m3, and MRE < 26 μg/m3). There 

are only a handful of studies examining the predictive powers of models estimating PM2.5 

concentrations in China. Comparisons show that ourthe enhanced STET model is superior to those 

results reported byin previous studies, i.e., the two-stage model (Ma et al., 2019), the GTWR model (He 520 

and Huang, 2018), the ML + GAM model (Xue et al., 2019), and the STRFspace-time RF model (Wei 

et al., 2019e). The enhanced STET model has a strong predictive power and can be used to estimate 

historical PM2.5 concentrations in China. 

 

3.6.Summary and conclusions 525 

With the increase in air pollution over recent years, abundant studies on estimating PM2.5 have been 

performed using satellite remote sensing. However, most of the PM2.5 estimates are reported at spatial 

resolutions of 3–10 km, which is inadequate for monitoring air quality atin urban areas. The Traditional 

models also limit the accuracy of PM2.5 estimates is also limited by traditional models. Therefore. Here, 

we try to generatepresent spatially continuous high-quality PM2.5 maps at a 1-km higher spatial 530 
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resolution across China. For this, a new space-time extremely randomized trees (an enhanced STET) 

approach is model was developed to minimize the spatiotemporal heterogeneities in PM2.5 and improve 

the overall estimate accuracy of ground-level PM2.5 concentrations. 

Our results suggest that the enhanced STET model shows great performance in estimatingestimates well 

daily PM2.5 concentrations at the national scale with a relatively high sample-based cross-validation 535 

coefficient of 0.89, low RMSE of 10.35 μg/m3, MAE of 6.71 μg/m3, and MRE of 21.37% at the national 

scale.%. Comparisons illustrate that spatiotemporal information is of great importanceimportant and 

should be carefully considered during model development. The enhanced STET model shows better 

performanceestimates PM2.5 concentrations well at most monitoring stations and individual days in the 

year. The North China Plain and the Sichuan Basin regions, under the influence of intense human 540 

activities and poor dispersion conditions, have high PM2.5 loadings. Moreover, theThe enhanced STET 

model can outperform most models presented in previous related studies in terms of spatial resolution, 

model accuracy, and predictive power. This study suggests that the 1-km-resolution PM2.5 dataset will 

be of great importanceuseful in future atmospheric pollution studies focused on medium- or small-scale 

areas. In addition, the The enhanced STET model willmay be applied in the future to produce the 545 

historical PM2.5 dataset acrossdatasets for China in our future studies since because the MODIS can 

cover global observations nearly over the pastdata record extends back 20 years. 
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Table 1. Summary of the data sources used in this study. 

Dataset Variable Content Unit 
Spatial 
Resolution 

Temporal 
Resolution 

Data source 

PM2.5 PM2.5 
PM2.5Particulate 
matter ≤ 2.5 μm 

μg/m3 -in situ Hourly CNEMC 

AOD AOD MAIAC AOD  - 1 km ×1 km Daily MCD19A2 

Meteorological 
dataMeteorology 

BLH 
Boundary layer 
height 

m 

0.125°×0.125° 

3-hour 

ERA-Interim 
reanalysis 
product 

PRE Total precipitation mm 3-hour 

EP Evaporation mm 3-hour 

RH Relative humidity % 3-hour 

TEM 2-m air temperature K 6-hour 

SP Surface pressure hPa 6-hour 

WS 10-m wind speed m/s 6-hour 

WD 10-m wind direction m/s 6-hour 

Land coveruse 
NDVI NDVI - 

500 m × 500 m
Monthly MOD13A3 

LUC Land use cover - Annually MCD12Q1 

Topography 

DEM DEM m 

90 m × 90 m - SRTM 
Relief Surface relief m 

Aspect Surface aspect degree 

Slope Surface slope degree 

Emission 

SO2 Sulfur dioxide 

Mg/grid 0.25°×0.25° Monthly MEIC 

NOx Nitrogen oxide 

CO Carbon monoxide 

VOC 
Volatile organic 
compounds 

Dust Fine-sized dust 

Population NTL Night lights W/cm2/sr 500 m × 500 m Monthly VIIRS 
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Table 2. Comparison between model performances of the enhanced STET model and other models from 
previous related studies focused on China. 

Model Resolution 
Model Validation   Predictive power 

R2 RMSE MAE Slope Intercept Daily Monthly Literature 

GWR 10 km 0.64 32.98 21.25 -0.67 -21.22 - - Ma et al.,. (2014) 

TSAM 10 km 0.80 22.75 15.99 -0.79 -15.31 - - Fang et al. (2016) 

Gaussian 10 km 0.81 21.87 - -0.73 -17.97 - - Yu et al. (2017) 

RF 10 km 0.83 18.08 - - - - - Chen et al. (2018) 

GAM  0.55 29.13 - - - - -  

DBN 10 km 0.54 25.86 18.10 -0.55 -24.56   Li et al. (2017b) 

Geo-DBN  0.88 13.03 08.54 -0.86 -6.39 - -  

Two-stage 10 km 0.77 17.10 11.51 0.76 11.64 0.41 0.73 Ma et al. (2019) 

Two-stage 6 km 0.60 21.76 14.41 -0.85 -8.63 - - Yao et al. (2019) 

GRNN 3 km 0.67 20.93 13.90 -0.62 -22.90 - - Li et al. (2017a) 

GWR 3 km 0.81 21.87 - -0.83 -9.44 - - You et al. (2016) 

D-GWR  3 km 0.72 21.01 14.59 -0.79 -12.92 - - 
He &and Huang 
(2018) 

Two-stage  0.71 21.21 13.50 -0.73 -16.67 - -  

GTWR  0.80 18.00 12.03 0.81 11.69 0.41 -  

XGBoost 3 km 0.86 14.98 - - - - - Chen et al. (2019) 

ML 3 km 0.53 30.40 19.60 0.53 25.3   Xue et al. (2019) 

ML + GAM  0.61 27.80 17.70 0.61 21.2 0.57 0.74  

MLR 1 km 0.41 20.04 30.03 0.41 30.03 0.38 - Wei et al. (2019e) 

GWR  0.53 23.28 19.26 0.61 20.93 0.44 -  

Two-stage  0.71 18.59 14.54 0.71 15.10 0.35 -  

RF  0.81 17.91 11.50 0.77 12.56 0.53 -  

STRF  0.85 15.57 9.77 0.82 9.64 0.55 0.73  

STET 1 km 0.89 10.35 6.71 
0.608
6 

6.16 0.65 0.80 OurThis study 
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Figure 1. Spatial distributions of PM2.5 and AERONET monitoring stations in China. The Heihe-750 

Tengchong line (orange line) shows the boundary between Easterneastern and Westernwestern China.  
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Figure 2. Scatter plots of MAIAC AOD retrievals versus AERONET AODs at 550 nm in (a) China, and 
(b) urban, (c) cropland, and (d) grassland areas. The dotted lines represent the upper and lower 755 

boundaries of the expected error (EE). Statistical metrics are given in each panel: the number of samples 
(N), the correlation coefficient (R), the mean absolute error (MAE), and the root-mean-square error 

(RMSE). 
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 760 
Figure 3. Potential effects and importance scores (blue bars; unit: %) of independent variables to PM2.5 

estimates for the STET model. 

  



33 
 

  

Figure 4. Schematic of the enhanced STET model developed in our study. 765 
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Figure 5. Density scatter plots of out-of-sample-based (top row) and out-of-station-based (bottom row) 

10-CV results for the ETERT (left column) and STET (right column) models at the daily level (N = 
167,692) in 2018 acrossfor mainland China. Statistical metrics are given in each panel, along with the 

linear regression relation: the correlation of determination (R2), the root-mean-square error (RMSE), the 770 

mean absolute error (MAE), and the mean relative error (MRE).  
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Figure 6. Density scatter plots of out-of-sample-based 10-CV results for (a) eastern China (ECH), (b) 775 

western China (WCH), (c) the North China Plain (NCP), (d) the Yangtze River Delta (YRD), (e) the 
Pearl River Delta (PRD), and (f) the Sichuan Basin (SCB) in 2018. Statistical metrics are given in each 

panel, along with the linear regression relation: the number of samples (N), the correlation of 
determination (R2), the root-mean-square error (RMSE), the mean absolute error (MAE), and the mean 

relative error (MRE). 780 
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Figure 7. Spatial distributions of the site-scale performance of the STET model for (a) the sample-based 785 

CV-R2,cross-validation coefficient of determination (R2), (b) RMSE,the root-mean-square error 

(RMSE), (c) MAE,the mean absolute error (MAE), and (d) the mean relative error (MRE) in 2018 

across China.  
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Figure 8. Time series of the daily performance of the STET model in terms of (a) sample-based CV-790 

R2,cross-validation coefficient of determination (R2), (b) RMSE,the root-mean-square error (RMSE), 
(c) MAE,the mean absolute error (MAE), and (d) the mean relative error (MRE) in 2018 across China. 
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 795 
Figure 9. Density scatter plots of sample-based 10-CV results for the STET model for four seasonsthe 

four seasons in 2018 across China. Statistical metrics are given in each panel, along with the linear 
regression relation: the number of samples (N), the correlation of determination (R2), the root-mean-

square error (RMSE), the mean absolute error (MAE), and the mean relative error (MRE). 
 800 
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Figure 10. Validation of (a) monthly, (b) seasonal, and (c) annual PM2.5 estimates in 2018 acrossin 

China. Statistical metrics are given in each panel, along with the linear regression relation: the number 

of samples (N), the correlation of determination (R2), the root-mean-square error (RMSE), the mean 

absolute error (MAE), and the mean relative error (MRE).   805 
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Figure 11. Spatial distributions of annual mean (a) PM2.5 estimates and (b) surface observations in 2018 

across China.   
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Figure 12. Spatial distributions of seasonal mean 1-km-resolution PM2.5 concentrations in 2018 across 810 

China. 
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