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Abstract. Open biomass burning (OBB) has large potential in triggering local and regional severe haze with elevated fine 35 

particulate matter (PM2.5) concentrations and could thus deteriorate ambient air quality and threaten human health. Open 

crop straw burning (OCSB), as a critical part of OBB, emits abundant gaseous and particulate pollutants, especially in fields 

with intensive agriculture, such as central and eastern China (CEC). However, there are high uncertainties in current OCSB 

and other types of OBB emissions that could drive chemical transport models (CTMs) to fail to evaluate their respective 

impacts on haze formations accurately. Satellite retrievals provide an attractive alternative that can be used to simultaneously 40 

quantify emissions of OCSB and other types of OBB, such as the Fire INventory from NCAR version 1.5 (FINNv1.5), 

which yet generally underestimate their magnitudes due to unresolved small fires. In this study, we selected June in 2014 as 

our study period, which exhibited a complete evolution process of OBB (from June 1 to 19) over CEC. During this period, 

OBB was dominated by OCSB in terms of the number of fire hotspot and associated emissions (74 ~ 94 %), most of which 

were located at Henan and Anhui (> 60 %) with intensive enhancements from June 5 to 14 (> 80 %). It is found that OCSB 45 

presented a generally strong spatiotemporal correlation with regional haze over the central part of CEC (Henan, Anhui, 

Hubei, and Hunan), while other types of OBB emissions had certain influences on Jiangxi, Zhejiang, and Fujian. Based on 

these analyses, we established a constraining method that integrates ground PM2.5 measurements with a state-of-art fully 

coupled regional meteorological and chemical transport model (the two-way coupled WRF-CMAQ) in order to derive 

optimal OBB emissions based on FINNv1.5. It is demonstrated that these emissions could allow the model to reproduce 50 

meteorological and chemical fields over CEC during the study period, whereas original FINNv1.5 underestimated OBB 

emissions by 2 ~ 7 times, depending on specific spatiotemporal scales. The results show that OBB had substantial impacts on 

surface PM2.5 concentrations over CEC. Most of  OBB contributions were dominated by OCSB, especially in Henan, Anhui, 

Hubei, and Hunan, while other types of OBB emissions also exerted certain influence in Jiangxi, Zhejiang, and Fujian. With 

the concentration-weighted trajectory (CWT) method, potential OCSB sources leading to severe haze in Henan, Anhui, 55 

Hubei, and Hunan were pinpointed. The results illustrated that the OCSB emissions in Henan and Anhui can cause haze not 

only locally but also regionally through regional transport. Combining with meteorological analyses, we can find that surface 

weather patterns played a cardinal role in reshaping spatial and temporal characteristics of PM2.5 concentrations. Stationary 

high-pressure systems over CEC enhanced local PM2.5 concentrations in Henan and Anhui. Then, with the evolution of 

meteorological patterns, Hubei and Hunan in the low-pressure system were forced to receive the pollution from areas (i.e., 60 

Henan and Anhui) enveloped in the high-pressure system. These results highlight that policymakers should strictly undertake 

interprovincial joint enforcement actions to prohibit irregular OBB, especially OCSB over CEC. By comparison, the 

constrained OBB emissions can, to a large extent, not only supplement insufficient estimations derived from satellite 

retrievals but also reduce overestimations of bottom-up methods. 
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1 Introduction 65 

Open biomass burning (OBB) has adverse impacts on ambient air quality and human health, owing to the fact that OBB 

generally emits abundant gaseous and particulate pollutants in a short period of time, particularly carbonaceous aerosols (e.g., 

black carbon (BC) and organic carbon (OC)) (Li et al., 2010; Rose et al., 2010; Cheng et al., 2013; Ding et al., 2013; Cheng 

et al., 2014; Saleh et al., 2014; Washenfelder et al., 2015; Vakkari et al., 2018; Bikkina et al., 2019). It has been estimated 

that OBB contributes approximately 65 % of global annual average primary OC emissions (Bond et al., 2013), and more 70 

than 40 % of fine particulate matter (PM2.5) concentrations in specific cases of regional haze (Zhang and Cao, 2015; Long et 

al., 2016; Gao et al., 2016; Sun et al., 2016; Li et al., 2017). In China, estimated growth rates of BC, OC and primary PM2.5 

emitted by OBB from 2002 to 2016 were 180 %, 191 %, and 192 %, respectively (Mehmood et al., 2018), suggesting an 

urgent need to control OBB emissions. 

Open crop straw burning (OCSB), as a crucial part of OBB, generally occurs on a large spatial scale during the harvest 75 

seasons in regions with intensive agriculture activities, because it is still the most effective, efficient and economical measure 

to dispose of open crop straw (Li et al., 2007; Qin and Xie, 2011; Zhang et al., 2017; Zhuang et al., 2018; Xu et al., 2019; 

Zhang et al., 2019). Previous studies illustrated that air pollutant emissions from OCSB accounted for more than 80% of 

those from OBB over China during the past decade. More importantly, emissions increased steadily during the past decade, 

thereby directly causing or substantially exacerbating regional haze (Wu et al., 2018). 80 

China is experiencing frequent and severe regional haze, partly resulting from substantial and extensive OBB (Bi et al., 2010; 

Huang et al., 2014; Andersson et al., 2015; Zhang et al., 2015; Zhang et al., 2015a; Hong et al., 2016; Chen et al., 2017; An 

et al., 2019). Open crop straws in China accounted for around 20 % of global production and rose with the average annual 

rate of 4 % during the past decade (Bi et al., 2010; Hong et al., 2016). Specifically, central and eastern China (CEC), as a 

cardinal granary in the world, was associated with large quantities of crop planting and thus played a crucial role in intensive 85 

OCSB, which has been suspected of causing rapid increases of PM2.5 concentrations in this region during the harvest seasons 

(Yamaji et al., 2010; Wang et al., 2015; Zhang et al., 2016; Ding et al., 2016; Liu et al., 2018; Wang et al., 2018; Yu et al., 

2019). Therefore, it is necessary to understand the effects of OBB and OCSB on haze formation over CEC in order to 

provide effective regulations on mitigating OBB activities. 

Current studies indicate, however, that high uncertainties exist in accurately quantifying impacts of OBB on a regional scale 90 

using chemical transport models (CTMs). This arises from two major reasons. First is the challenge of representing the 

magnitude and spatiotemporal distribution of OBB and OCSB emissions, despite the emergence of newly developed OBB 

emission inventories during the past decade (Streets et al., 2003; Liu et al., 2015; Zhang and Cao, 2015; Zhang et al., 2015a; 

Li et al., 2016; Qiu et al., 2016; Zhou et al., 2017; Zhao et al., 2017; Liu et al., 2018a; Liu et al., 2018b; Zhang et al., 2019; 

Dai et al., 2019). This is mainly because traditional bottom-up statistical methods cannot capture rapid outbreaks of OBB 95 

and OCSB and fail to produce reliable emission amounts and distributions. Moreover, few studies applied CTMs to evaluate 

these bottom-up emissions. Also, satellite-based top-down emission inventories cannot generally resolve small fire hotspots 
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(usually around large ones) and can underestimate OBB and OCSB emissions by 2 ~ 20 times (Wiedinmyer et al., 2011; 

Randerson et al., 2012; Uranishi et al., 2019). Several studies have attempted to improve the performance of CTMs by 

increasing OBB or OCSB emissions with a uniform proportion regardless of specific spatial and temporal scales (Chuang et 100 

al., 2015; Pimonsree et al., 2018; Uranishi et al., 2019). Recent studies used observed and simulated constraints to optimize 

OBB emissions (Hooghiemstra et al., 2012; Konovalov et al., 2014; Yang and Zhao, 2019). Nevertheless, this method still 

did not represent the spatiotemporal heterogeneity of uncertainties in OBB emissions and has never been used in CEC. 

Therefore, the constraining method combining sufficient observed and simulated results, as well as satellite-based fire 

information, could provide the prospective alternative to optimize OBB emissions. To support related policy-making more 105 

effectively, potential major OBB emission sources and corresponding meteorological drivers should also need to be 

identified. 

Instantaneous emissions from OBB and OCSB are also poorly co-constrained because of the difficulty of distinguishing their 

measurements simultaneously with high spatial and temporal resolution (Yan et al., 2006; Tsao et al., 2012; Lei et al., 2013; 

Zhang et al., 2013; Cheng et al., 2013; Monks et al., 2015; Laing et al., 2016; Chen et al., 2017; Wu et al., 2018; Hamilton et 110 

al., 2018; Lee et al., 2018; Li et al., 2019; Uranishi et al., 2019; Yang and Zhao, 2019). Consequently, most of the previous 

studies focused only on individual biomass (e.g., corn, wheat, and rice) or total OBB. Hence, few findings could isolate 

spatial and temporal influences of OCSB from those of OBB in China, especially over CEC (Li et al., 2007; Cao et al., 2008; 

Fu et al., 2012; Cheng et al., 2014; Huang et al., 2014; Long et al., 2016; Zhang et al., 2019). Satellite observations by 

NASA’s moderate resolution imaging spectroradiometer (MODIS) or visible infrared imaging radiometer (VIIRS) offer an 115 

attractive alternative by providing fire information (e.g., burned areas, fire locations) that is able to distinguish OCSB from 

total OBB. Further, these observations can derivatively serve as the computational basis to yield products for their respective 

emissions, such as the Fire INventory from NCAR version 1.5 (FINNv1.5)  (Wiedinmyer et al., 2011).  

Comprehensive quantitative analyses of relative effects of OBB and OCSB on haze formation is of critical significance for 

CEC. In this study, we focus on June in 2014, when abundant PM2.5 with exceptionally high concentrations (e.g., the hourly 120 

peak surface PM2.5 concentration > 200 μg m-3) enveloped the CEC, potentially due to effects of intense OBB and OCSB 

emissions during this harvest season. To understand the evolution of regional haze over CEC, we analyzed spatial and 

temporal characteristics in the OBB and OCSB emissions in FINNv1.5, ground-measured PM2.5 concentrations, and satellite-

based aerosol optical depth (AOD). We have established a constraining method that integrates abundant ground-level PM2.5 

measurements with a state-of-art fully coupled regional meteorological and chemical transport model (i.e., the two-way 125 

coupled WRF-CMAQ) in order to derive optimal OBB emissions based on the original FINNv1.5 emissions. With these 

constrained emissions, the model reproduced spatiotemporal variations in chemical and meteorological fields well. Further, 

we applied the model to simultaneously quantify the relative contributions of OCSB and OBB emissions to surface PM2.5 

concentrations. The backward trajectory (HYSPLIT) and concentration-weighted trajectory (CWT) methods were integrated 

to pinpoint potential major OCSB sources. Corresponding meteorological patterns resulting in this regional haze event were 130 

also analysed. Finally, we compare the constrained OBB emissions as well as their associated effects with previous studies. 
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2 Methods and data 

2.1 The two-way coupled WRF-CMAQ model 

We utilize the two-way coupled Weather Research and Forecasting (WRF) model and Community Multiscale Air Quality 

(CMAQ) model (i.e., the two-way coupled WRF-CMAQ model, hereinafter as the WRF-CMAQ model) (Wong et al., 2012; 135 

Yu et al., 2013) to simulate meteorological and chemical fields over CEC (Yu et al., 2018). This fully-coupled model 

represents a significant advancement over the offline WRF-CMAQ system (Byun and Schere, 2006). That is mainly because 

the former expands to encompass aerosol-radiation interactions to which OBB and OCSB should be closely related (Wang et 

al., 2014; Huang et al., 2016; Baró et al., 2017; Li et al., 2017b; Singh et al., 2018; Malavelle et al., 2019). In addition, the 

newly developed coupler helps to improve the consistency between WRF and CMAQ with regard to meteorological 140 

characteristics (Wong et al., 2012). 

The WRF-CMAQ model was configured with the CB05 and AERO6 schemes for gas and aerosol chemistry simulations, 

respectively (Yarwood et al., 2005; Carlton et al., 2010); thus primary emissions (e.g., primary OC, BC, and dust) and 

secondary pollutants (e.g., secondary sulfate, nitrate, ammonium, and organic aerosols) are both considered. The 

classification of aerosols is described by three modes (Aitken, Accumulation, and Coarse) with a lognormal distribution 145 

(Seinfeld and Pandis, 2016). Additionally, the ISORROPIA II model was applied to perform thermodynamic equilibrium 

calculations for K+–Ca2+–Mg2+–NH4
+–Na+–SO4

2-–NO3
−–Cl−–H2O  aerosol systems among gas, liquid and particulate phases 

(Fountoukis and Nenes, 2007). In terms of meteorology simulations, we selected the two-moment Morrison cloud 

microphysics scheme (Morrison and Gettelman, 2008), the Kain-Fritsch cumulus cloud parameterization scheme (KF2) 

(Kain, 2004), the Rapid Radiative Transfer Model for General circulation models (RRTMG) (Clough et al., 2005), the 150 

Pleim-Xiu land surface scheme (PX) (Xiu and Pleim, 2001) and the asymmetric convective model (ACM2) (Pleim, 2007a; 

Pleim, 2007b) for the cloud physics, radiative transfer, land surface energy balance and planetary boundary layer simulations, 

respectively. 

Meteorological initial and lateral boundary conditions were derived from the ERA interim reanalysis dataset operated by the 

European Centre for Medium-Range Weather Forecasts (ECMWF) with spatial resolution of 1º × 1º and temporal resolution 155 

of 6 hours (http://www.ecmwf.int/products/data, last access: 2 August 2019). The CMAQ-default initial and boundary 

chemical conditions were used. A spin-up period of seven days was used to minimize the influence of initial chemical 

conditions (Liu et al., 2010; Wang et al., 2012; Liu et al., 2018b). To eliminate numerical artifacts that commonly occur in 

WRF external boundary relaxation zones, we trimmed off seven grid cells on each edge of the domain (Wong et al., 2012; 

Yu et al., 2012). In addition, meteorological fields were reinitialized by reanalysis data every 48 hours in order to constrain 160 

corresponding simulated results (Lo et al., 2008; Zhao et al., 2010; Zhang et al., 2016b). 

In this study, the Multi-resolution Emission Inventory for China version 1.2 (MEICv1.2) (http://www.meicmodel.org, last 

access: 2 August 2019) mainly implemented by Tsinghua University was used for anthropogenic emissions (Li et al., 2015a). 

This inventory comprises five anthropogenic sectors (i.e., industry, power plants, residential and transport and agriculture) 
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for PM2.5 and its major precursors (e.g., CO, SO2, NOX, primary PM2.5). It also builds a framework to speciate the non-165 

methane volatile organic compounds (NMVOCs) and further establish model-ready NMVOC emissions in accordance with 

the CB05 mechanism. Anthropogenic emissions outside China were derived from the Task Force Hemispheric Transport of 

Air Pollution version 2 (HTAPv2) (Janssens-Maenhout et al., 2015; Li et al., 2017b), which includes two additional sectors 

(i.e., aircrafts and ships). These two additional sectors were then aggregated to the transport sector so as to remain 

compatible with MEICv1.2 with regard to anthropogenic sectors. Unlike off-line anthropogenic emissions, natural sources 170 

for biogenic and dust emissions were calculated inline using the Biogenic Emission Inventory System version 3.14 

(BEISv3.14) (Carlton and Baker, 2011) and a windblown dust scheme embedded in CMAQ (Choi and Fernando, 2008), 

respectively. 

To examine OBB and OCSB impacts over CEC, we conducted the simulations in a domain covering most of China with a 12 

km horizontal resolution (Fig. 1). There were 31 sigma-pressure vertical layers ranging from the surface to the top pressure 175 

of 100 hPa, 20 of which are located below around 3 km to achieve finer meteorological and chemical characteristics within 

the planetary boundary layer. It should be noted that CEC in this study comprises 10 provinces, including Anhui (AH), 

Hubei (HB), Henan (HEN), Hunan (HUN), Shandong (SD), Zhejiang (ZJ), Jiangsu (JS), Shanghai (SH), Fujian (FJ) and 

Jiangxi (JX), which are underlined with black thick outlines in Fig. 1. 

2.2 OBB and OCSB emissions 180 

In this study, we used FINNv1.5 to characterize spatiotemporal features of OCSB and other types of OBB emissions. 

FINNv1.5 provides an unique chance to characterize spatial and temporal estimations of trace gas and particle emissions 

from seven types of OBB, including savannas, grasslands, woody savannas, shrublands, tropical forests, temperate forests, 

boreal forests, and croplands (Wiedinmyer et al., 2011). Its distinctive advantages include global coverage, high temporal 

and spatial resolutions (daily and 1km), and adequate land use types, mainly due to the utilization of MODIS NRT active fire 185 

products (MCD14DL, https://firms.modaps.eosdis.nasa.gov, last access: 5 August 2019), which are processed with the 

standard MOD14/MYD14 fire and thermal anomalies. Nevertheless, several critical weaknesses originating from satellite 

retrievals are present, as mentioned above. Thus, the corresponding OBB emissions are prone to be largely underestimated 

(Chuang et al., 2015; Pimonsree et al., 2018; Uranishi et al., 2019). Some previous studies indicated that the actual total 

amount of primary PM2.5 emissions over Northeast China was nearly 20 times higher than that estimated by FINNv1.5 190 

(Uranishi et al., 2019). Additionally, the lack of local emission information (e.g., local biomass loading data, emission 

factors) could introduce extra uncertainties. Therefore, FINNv1.5 utilized in this study should require further adjustments to 

achieve more accurate estimates for OBB and OCSB emissions. 

It is important to represent injection heights of OBB in CTMs, which could significantly affect its regional transport. 

Previous studies demonstrated that different injection heights could lead to distinct PM2.5 responses (Freitas et al., 2006; 195 

Leung et al., 2007) and pressure-weighted injections within the troposphere is a reliable alternative (Hyer et al., 2007). In 

this study, we determined heights of the hourly top ( ௧ܲ) and bottom ( ܲ௧௧ሻ of the OBB plume using a quick plume rise 
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model (Eq. (1) and Eq. (2)) based on the buoyant efficiency (ܤ) available from the corresponding hourly and size class tables 

(Tai et al., 2008; Fu et al., 2012a) as follows: 

௧ܲ ൌ ሺܤ௨ሻଶ ൈ ሺܤ௦௭ሻଶ ൈ ௧ܲ௫,                                                                                                                                     (1) 200 

ܲ௧௧ ൌ ሺܤ௨ሻଶ ൈ ሺܤ௦௭ሻଶ ൈ ܲ௧௧௫                                                                                                                           (2) 

where ௧ܲ௫ and ܲ௧௧௫ are parameters that define the potential max plume heights for ௧ܲ and ܲ௧௧, respectively. 

2.3 Analysis of backward trajectories and concentration-weighted trajectories 

The Hybrid Single-Particle Lagrangian Integrated Trajectory version 4 (HYSPLIT4) model developed by National Oceanic 

and Atmospheric Administration Air Resources Laboratory (NOAA ARL) was employed to predict regional transport 205 

pathways arriving at receptor cities of interest (Stein et al., 2015). HYSPLIT4 was driven by the final global meteorology 

analysis data obtained from the National Centers for Environmental Prediction’s Global Data Assimilation System 

(https://ready.arl.noaa.gov/archives.php, last access: 5 August 2019) with a 1◦ × 1◦ latitude–longitude grid, and was run four 

times per day at starting times (i.e., 00:00, 06:00, 12:00 and 18:00 LT) with the starting height of 100 m above ground level. 

In this study, the 48 h back trajectories of air masses were used for further analyses. More details about the HYSPLIT4 210 

model can be found at http://www.arl.noaa.gov/ready/open/hysplit4.html (last access: 2 August 2019). 

We adopted the concentration-weighted trajectory (CWT) method to pinpoint potential major OBB sources affecting 

regional surface PM2.5 concentrations during the study period based on above HYSPLIT analysis and surface PM2.5 

observations (Wang et al., 2009; Yu et al., 2014; Li et al., 2015b). The CWT method collected all concentrations of 

trajectories in an individual grid (C୪) to calculate the corresponding average CWT value (C୧୨) for each grid cell (i,	j) by the 215 

following Eq. (3) (Hsu et al., 2003): 

C୧୨ ൌ
ଵ

 ౠౢ


ౢసభ

 C୪T୧୨୪


୪ୀଵ
 ,                                                                                                                                                         (3)   

where l and M denote the index and the total number of the trajectories, respectively, and  T୧୨୪ represent the residence time for 

the trajectory l spent in the grid (i,	j). The relatively higher CWT values imply high potential contributions to elevated PM2.5 

values at the receptor site. Thus, the weighted concentration fields can be utilized to determine the relative significance of 220 

potential sources for regional haze in CEC. 

2.4 Observational data 

The hourly mass concentrations of surface PM2.5 and other chemical species (i.e., CO, NO2, SO2, O3, and PM10) were 

continuously measured by the Ministry of Ecological Environment of China (http://www.cnemc.cn/, last access: 2 August 

2019), including 340 monitoring sites in 65 cities during the study period over CEC. These monitoring data were used to 225 

accomplish four tasks. (1) According to the evolution of surface PM2.5 concentrations over CEC, we can characterize 

changes in spatial and temporal patterns of regional haze induced by OBB. (2) We compared simulated chemical and 
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meteorological fields with surface observations to evaluate model performance. (3) The data were used to estimate potential 

sources by the CWT method. Daily mean values of AOD at 550 nm retrieved from multiple satellite platforms were 

examined during the target period to highlight significant spatial and temporal variabilities of regional haze in CEC. Here 230 

episode-averaged AOD products from MODIS (MOD08_D3) at 550 nm and OMI (OMERUVd v003) at 500 nm were both 

utilized (https://giovanni.sci.gsfc.nasa.gov/giovanni/, last access: 5 August 2019). 

To present OBB and OCSB emissions, daily fire products generated by MODIS (MCD14DL) and corresponding emissions 

were collected to exhibit explicit spatial and temporal evolutions of OBB. Along with the HYSPLIT4 and CWT method, 

integrated analyses of surface weather patterns from the Korea Meteorological Administration 235 

(http://www.kma.go.kr/eng/weather/images/analysischart.jsp) were conducted to illustrate meteorological fields triggering 

the regional haze over CEC. 

3 Results and discussion 

3.1 OBB and OCSB information in FINNv1.5 

We collected monthly OCSB and other types of OBB information estimated by FINNv1.5 over CEC throughout 2014. From 240 

the perspective of the monthly variation in numbers of fire hotspots (Fig. 2), total OBB exhibited a notable seasonal pattern 

with one distinct peak in summer, especially in June (19 % of the yearly total value). We further examined each type of OBB 

classified by seven land use categories (i.e., Croplands, Grass land/savanna, Woody savanna/shrublands, Tropical forest, 

Temperate forest, Boreal forest, and Temperate evergreen forest) and found that the relative contribution of OCSB ranged 

from 13 % to 86 % and also peaked in June of 2014. This presented a highly consistent trend with that of OBB, indicating 245 

that OCSB might be the leading contributor of OBB sources over CEC. Therefore, to simultaneously investigate OCSB and 

other types of OBB effects over CEC, June 2014 should be the best target period on which to focus. 

Figure 3 shows a remarkable variation in spatiotemporal distributions of daily OCSB and other types of OBB fire hotspots 

over CEC from June 1 to 19, exhibiting a complete OBB evolutionary process. An OBB outbreak event occurred from June 

5 to 14 with the maximum number of fire hotspots (more than 800). To the contrary, there existed much fewer fire hotspots 250 

in the other periods. Hence this period can, in turn, be divided into the following three episodes: EP1 (from June 1 to 4), EP2 

(from June 5 to 14) and EP3 (from June 15 to 19), which represented the pre-OBB, OBB and post-OBB stages, respectively. 

It should be noted that OCSB makes uniformly much larger relative contributions to total OBB than other types in terms of 

the number of fire hotspots for the study period with more than 80 % during EP2. 

During EP1 and EP3, limited OBB fire hotspots were sparsely distributed over CEC, as shown in Fig. 3. For the period of 255 

the OBB outbreak (EP2), most of the OCSB fire hotspots concentrated in Henan (32 %) and Anhui (41 %), where thereby 

local OCSB emissions might play a key role in shaping spatiotemporal distributions of PM2.5 concentrations. Owing to 

regional transport, surrounding areas, such as Hubei, Hunan, and Jiangxi, might be significantly influenced by OCSB, 

depending on meteorological conditions. The activity levels of other types of OBB during EP2 also increased by 250 % 
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compared to normal situations, particularly in Anhui, Zhejiang, and Jiangxi, although it was still significantly lower than 260 

those of OCSB, as indicated in Fig. 3. 

Table S1 summarizes original provincial emissions of gaseous and particulate species for OCSB and total OBB during the 

study period based on the FINNv1.5 emission estimations. Most (85 %) of OBB emissions came from those occurring during 

EP2. As expected, OCSB dominated OBB emissions (74 % ~ 94 %) by totally producing 3040, 17, 10781, 367, and 399 

million moles of NMVOCs, SO2, CO, NH3, and NOX, respectively, and 1877, 8977, 15778, 19097 tons of EC, OC, primary 265 

PM2.5 and PM10, respectively. During EP2, Henan and Anhui were the top two contributors over CEC and totally accounted 

for 66 ~ 76 % of OBB emissions. Specifically, from the perspective of total OBB emissions in Henan and Anhui, OCSB 

emissions in these two provinces contributed 94 % of NMVOCs, 72 % of SO2, 87 % of CO, 88 % of NH3, 90 % of NOX, 89 % 

of EC, 76 % of OC, 74 % of PM2.5 and 75 % of PM10, respectively. Other types of OBB emissions mainly occurred in Anhui 

(29 %), Zhejiang (28 %) and Jiangxi (14 %). It should be pointed out that OBB emissions mainly associated with OCSB 270 

estimated in the original FINNv1.5 were projected to be substantially underestimated due to a variety of satellite-based 

limitations, such as unresolved small and ephemeral agricultural fires, occlusion effects of prevalent cloud cover, or 

discontinuous time spans (Streets et al., 2003;Wiedinmyer et al., 2011; Randerson et al., 2012; Zhou et al., 2018; Uranishi et 

al., 2019) . 

3.2 Characteristics of observed regional haze pollution 275 

Both ground and space observations were used to diagnose this OBB event and its associated regional haze (Fig. 4, 5, and 6). 

Figure 4 shows the magnitudes and spatial distributions of observed episode-averaged PM2.5 concentrations over CEC for 

EP1, EP2, and EP3. Before the OBB outbreak (EP1), there were no extreme PM2.5 concentrations, all of which were 

generally lower than 75 μg m-3. For EP2, elevated PM2.5 concentrations (> 115 μg m-3) were observed in Henan and Anhui. 

Apparently, this was highly consistent with spatiotemporal distributions of OCSB (Fig. 3), which was thus anticipated to 280 

cause potential prominent impacts on local haze formation. On the other hand, regional haze also occurred in Hubei and 

Hunan, where no extensive high-intensity OCSB emissions were observed during the study period (Fig. 3). This means that 

not only OCSB emissions but also regional transport played a key role in giving rise to regional haze. It should be noted that 

limited emissions from other types of OBB also have a certain impact. With the sudden decline in OBB and PM2.5 

concentrations over CEC during EP3, however, moderate regional haze (PM2.5 concentrations >75 μg m-3) lingered in Henan 285 

and Anhui. In addition to a certain degree of anthropogenic contributions, this phenomenon is probably due to unfavorable 

meteorological conditions, which trapped previously generated emissions during EP2. 

Figure 5 shows spatial distributions of episode-averaged AOD observed by MODIS (MOD08_D3) at 550 nm and OMI 

(OMERUVd v003) at 500 nm during EP2. They are in good agreement with each other and spatial distributions of surface 

average PM2.5 concentrations. For instance, much higher AOD values were mostly detected in Henan, Anhui, Hubei, and 290 

Hunan, associated with relatively high surface observed PM2.5 concentrations and substantial OCSB emissions as shown in 

Figs. 3 and 4. In addition, both satellite-based products detected that spatial distributions of high AOD values covered wider 
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areas than the ground measurements, such as in Jiangxi, Zhejiang and Fujian. This was possibly due to the fact that PM 

suspended in the upper troposphere was more easily transported than that on the ground. This phenomenon further illustrates 

that OBB dominated by OCSB is not only a significant local pollution source but also an important regional pollution source. 295 

Collectively, seven provinces (i.e., Henan, Anhui, Hubei, Hunan, Jiangxi, Zhejiang, and Fujian) are the focal areas affected 

by OBB. To further understand the evolution of regional haze characteristics, we focused on these seven provinces to 

analyze time series of provincial hourly PM2.5 concentrations during the study period (Fig. 6). Correspondingly, the observed 

trends were also divided into three distinct stages on the basis of PM2.5 concentrations. For EP1, hourly PM2.5 concentrations 

over CEC were relatively low and almost never exceeded 75 μg m-3. Specifically, the average values in these seven 300 

provinces during this episode were 50 μg m-3, 59 μg m-3, 71 μg m-3, 65 μg m-3, 44 μg m-3, 46 μg m-3, and 41 μg m-3, 

respectively, depicting a period with a relatively clean air environment. For EP2 with the OBB outbreak mainly associated 

with OCSB, PM2.5 concentrations increased significantly in most of these provinces, and the mean PM2.5 concentrations in 

these seven provinces could reach values of 135 μg m-3, 175 μg m-3, 182 μg m-3, 147 μg m-3, 129 μg m-3, 72 μg m-3, and 37 

μg m-3, respectively. This indicates the extensive haze in Henan, Anhui, Hubei and Henan. For Jiangxi and Zhejiang during 305 

EP2, no severe haze was detected despite large increases in PM2.5 concentrations relative to those in EP1. Thereafter, PM2.5 

concentrations in most parts of CEC decline rapidly and gradually stabilize in a lower range during EP3. Overall, the 

spatiotemporal evolution trends of regional haze characteristics were highly related to those of OBB emissions as analyzed 

above, signifying the dominant role of OBB emissions. As shown in these results, there were two important issues, which 

should be identified. (1) The temporal variations in PM2.5 concentrations in Hubei were highly similar to those in Hunan 310 

during the target period, especially in EP2, revealing that coincident unfavourable meteorological fields might facilitate 

severe haze there. (2) Relative to the evolution of regional haze in Henan, there was a distinct time lag (24 h ~ 48 h) for those 

in Hubei and Hunan. This indicates that OBB emissions mainly associated with OCSB in Henan as well as subsequent 

regional transport might also be responsible for severe haze in Hubei and Hunan.  

In conclusion, from the point of view of the highly correlated evolution relationship between regional haze and OBB 315 

activities, we can infer that OBB mainly associated with OCSB might dominate spatial and temporal variations in relatively 

high PM2.5 concentrations over CEC, especially in Henan, Anhui, Hubei, and Henan during the study period. Besides, 

meteorological fields should also play a critical role in shaping spatiotemporal variations in the regional haze, whereas other 

types of OBB emissions might be responsible for local haze in Zhejiang and Jiangxi. Therefore, relative contributions of 

OCSB and other types of OBB, as well as relevant meteorological fields, to regional haze formation at different regional 320 

scales are not consistent and should be accurately examined. 

3.3 Constrained optimal OBB emissions 

Given large uncertainties in the OBB emissions estimated by the original FINNv1.5, it is necessary to refine these emissions 

in order to allow the WRF-CMAQ model to reproduce the magnitudes and spatiotemporal distributions of regional haze 

induced by this OBB event. Also, it is the prerequisite to accurate estimations of OCSB and other types of OBB 325 
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contributions. In this study, all available observations from 340 ground monitoring sites and the WRF-CMAQ model 

simulations were used in co-constraining OCSB and other types of OBB emissions from FINNv1.5. This constraining 

method contained two steps: (i) To characterize the nonlinearity between emissions and PM2.5 concentrations, we examined 

model responses to variable OBB emission perturbations, which referred to variably amplifying OBB emissions using 

coefficients arranged in an arithmetic sequence (Xiao et al., 2010; Digar and Cohan, 2010; Tang et al., 2011), whose first 330 

term was 1, being consistent with the constant difference of terms; (ii) Subsequently, simulated PM2.5 concentrations were 

then compared with available observations. Hence, with variable emission perturbations, this evaluation process would be 

repeated, and simulated results could gradually approach observations. During the evaluation processes, the normalized 

mean bias (NMB) was selected as the major indicator to characterize the discrepancy (Yu et al., 2006). 

The constraining method took consideration of the spatiotemporal heterogeneity of uncertainties in OBB emissions to derive 335 

the optimal adjustment coefficients for OBB emissions more accurately. According to the variations in the OBB activity 

level, as shown in Fig. 3 and Table S1, the entire study period was divided into three periods, as noted before, i.e., the pre-

OBB (EP1), OBB (EP2) and post-OBB (EP3) stages. Nevertheless, in terms of regional haze, only EP1 was treated as the 

normal situation under the consideration that PM2.5 concentrations during EP3 would be inevitably impacted by residual 

emissions produced by this OBB event during EP2. To eliminate potential uncertainties in other emission sources (i.e., 340 

anthropogenic and biogenic emissions), we evaluated the model capability under normal situations (no OBB event), that is, 

the model was driven by original OBB emissions as well as anthropogenic and biogenic emissions (referred to as the BASE 

case). Figure 6 illustrates the simulated provincial average PM2.5 concentrations in the BASE case during the study period for 

Henan, Anhui, Hubei, Hunan, Jiangxi, Zhejiang, and Fujian. The results show that the model uniformly underestimated 

observations during the study period. However, the NMBs were within a reasonable range (> -25%) during EP1 but 345 

presented much lower values (> 40 %) during the rest periods. Thus, this demonstrates that original OBB emissions as well 

as other sources can allow the model to capture spatiotemporal variations in PM2.5 concentrations for normal situations 

without significant impacts of OBB in most of provinces, as recorded by previous studies (Hu et al., 2015; Liu et al., 2016; 

Qiao et al., 2019), whereas the model failed to reproduce the rapid outbreak of PM2.5 concentrations for this OBB event, 

especially during EP2 in Henan and Anhui. These results confirmed that the model can have reasonable estimates of OBB 350 

emissions for normal situations (i.e., EP1) but significant underestimations of those for this OBB event. This result shows the 

need to derive optimal OBB emissions using this constraining method. On the other hand, for EP1, we also need to 

overcome slight underestimations of simulated PM2.5 concentrations in order to improve model performance and subsequent 

estimates of OBB contributions.  

Based on the comprehensive analyses for OBB emissions and their associated regional pollution, our purpose here is to 355 

extend this constraining method to specific spatiotemporal scales. This means that the three study stages (EP1 ~ EP3) should 

be discriminated due to their distinct OBB emissions, namely, different coefficients should be adopted to adjust OBB 

emissions for each individual study period. As discussed in Sections 3.1 and 3.2, Henan and Anhui were the top two 

provinces that contributed local OBB emissions (> 80 %) during the entire study period and would affect other provinces 
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through regional transport. Hence three areas (Henan, Anhui, and other provinces over CEC) were selected as separate 360 

adjustment objects in their turn as shown in Fig.7. Therefore, to accomplish this purpose, we need to employ this 

constraining method in the following ways: (i) derive respective optimal OBB emissions in Henan and Anhui for EP1 at first 

and then for EP2. Note that the optimal adjustment coefficient for EP1 would also be appropriate for EP3 due to the fact that 

both of them represent the normal situation with respect to the OBB emissions; (ii) on the basis of those results, the next step 

was to derive corresponding optimal OBB emissions for other provinces.  365 

Figure 7 exhibits colored cells to represent NMBs between observed and simulated PM2.5 concentrations that characterize 

model responses to variable OBB emission perturbations in Henan, Anhui, and other provinces over CEC. The numbers on 

the X and Y axes refer to the adjustment coefficients for OBB emissions for EP1 and EP2, respectively. With variable OBB 

emission perturbations, simulated results gradually approached to observed values. For Henan and Anhui, OBB emissions 

with relatively low adjustment coefficients (1 ~ 5) cannot allow the model to capture observed high PM2.5 concentrations 370 

during EP2, while those with higher adjustment factors (> 4) would cause the model to significantly overestimate observed 

values during EP1. This phenomenon highlights the substantial underestimation of original OBB emissions in FINNv1.5, 

especially during the OBB outbreak period (i.e., EP2). By comparison, relatively low coefficients should be adopted to 

adjust OBB emissions in other provinces. These results point to the importance of variable emission perturbations by 

considering the spatiotemporal heterogeneity in optimizing OBB emissions. Specifically, we can finally determine that 375 

optimal coefficients for OBB emissions for Henan, Anhui, and other provinces were 6, 7, and 4 for EP2, respectively, and 4, 

4, and 2 for both EP1 and EP3, respectively. Correspondingly, all of the NMB values reached the minimum and were 

controlled within ± 5 %. In summary, we would employ the aforementioned optimal coefficients to adjust OBB emissions at 

specific spatiotemporal scales. Table 1 summarizes the spatiotemporal emission amounts for all the species (NMVOCs, SO2, 

CO, NH3, NOX, EC, OC, PM2.5, PM10) for each province over CEC for each stage of the study period (EP1 ~ EP3). 380 

Corresponding maps of PM2.5 emissions for OCSB and other types of OBB presented similar spatial distributions to those of 

fire hotspots as shown in Fig. 8. By taking PM2.5 emitted from OCSB as an example, emission intensities in some pixels 

were found to exceed a value of 100 tons during the study period, and most cases were found in the areas surrounding the 

common border of Henan and Anhui. For other provinces, PM2.5 emission intensity only ranged from 1 to 20 tons per pixel. 

Other species from OCSB emissions presented similar spatial distributions. On the other hand, all species for other types of 385 

OBB consistently showed sparse spatial distributions and limited emissions. 

In summary, the optimal OBB emissions were derived by the constraining method which integrated observations and model 

results based on FINNv1.5. Note that this constraint was established based on specific spatial scales separately (i.e., Henan, 

Anhui, and rest provinces over CEC). Therefore, due to the nonlinearity between emissions and PM2.5 concentrations, the 

accuracy of the optimal OBB emissions should be extrapolated to the entire CEC in order to verify the model reliability. 390 
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3.4 Model evaluation 

Accurate simulations of meteorological and chemical fields were prerequisite to precise estimations of OBB contributions to 

the haze formation. Few previous OBB emissions established by bottom-up or top-down methods were evaluated directly. 

Here we assessed the optimal OBB emissions with the WRF-CMAQ model by evaluating its performance. This case is 

abbreviated as the OPT case hereinafter. The simulated chemical species (i.e., PM2.5, O3, SO2, CO, and NO2) and 395 

meteorological parameters (i.e., 10 m wind speed and direction, 2 m temperature, and PBLH) from the model were both 

taken into considerations by comparing with ground observations. 

Figure 4 illustrates spatial distributions of observed and simulated hourly PM2.5 concentrations in the OPT case for the entire 

CEC in EP1, EP2, and EP3. As discussed in Section 3.3, the OBB emissions from FINNv1.5 can drive the model to achieve 

reasonable results for normal situations, such as EP1, which, however, remained to be slight underestimations of 400 

observations. It is important to note that the simulated PM2.5 concentrations in the BASE case were significantly lower than 

observations at most of monitoring sites during EP2, especially in Henan, Anhui, Hubei, and Hunan as mentioned before. 

This implies that the original OBB emissions from FINNv1.5 substantially underestimate the emissions during the period of 

the OBB outbreak (i.e., EP2). Compared to the BASE case, the model results in the OPT case were able to reproduce the 

magnitudes and spatial patterns of observed PM2.5 concentrations much better. Specifically, the model with the optimal OBB 405 

emissions can not only capture extremely high observations (> 115 μg m-3) in Henan, Anhui, Hubei, and Hunan for the OBB 

event during EP2, but also succeeded in reproducing relatively lower values in other provinces at the same time. For EP1 and 

EP3, simulated results in the OPT case increased to some extent as expected and became closer to observations by 

comparison. These results indicated reliable model performance. 

To further evaluate the model performance, we examined the model capabilities at the provincial scale. Figure 6 displays the 410 

comparisons of observed and simulated hourly PM2.5 concentrations for the OPT case in Henan, Anhui, Hubei, Hunan, 

Jiangxi, Zhejiang, and Fujian. Besides the NMB, the correlation coefficient (R) was also used to evaluate the simulated 

results. Generally, the WRF-CMAQ model with the optimal OBB emissions can reasonably capture the temporal evolution 

of surface PM2.5 concentrations for these seven provinces. With the abundant observations as the constraint, the NMB values 

in these seven provinces were 1.1 %, 3.3 %, 0.2 %, 1.3 %, 1.4 %, 6.2 %, and 22.8 %, respectively, with R values of 0.90, 415 

0.80, 0.53, 0.74, 0.56, 0.80 and 0.64, respectively. These results provide direct evidence for the reliable capability of the 

optimal OBB emissions, allowing the model to reproduce the steep rising curves of observed PM2.5 concentrations in Henan, 

Anhui, Hubei, and Hunan during EP2 when OBB might trigger regional haze over the central part of CEC, as shown in Figs. 

4 and 6. 

The first two peaks of observed PM2.5 during the study period occurred in Anhui and Henan. Observed PM2.5 concentrations 420 

in Anhui and Henan gradually increased from 42 μg m-3 on June 1 to 226 μg m-3 on June 7 and from 75 μg m-3 on June 7 to 

226 μg m-3 on June 10, respectively. This phenomenon belongs to the distinct characteristics of local haze. Correspondingly, 

the model in Anhui and Henan can capture this general temporal pattern, especially the maximum with NMB values of 9 % 
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and 12 %, respectively. In contrast, regional transport might play a critical role in dominating two sudden eruptions of 

observed PM2.5 concentrations in Hubei and Hunan with relatively high values of 335 μg m-3 and 252 μg m-3 on June 12, 425 

respectively. The model to a large extent can capture these two abrupt peaks, even though consistently underestimating the 

maxima with the NMB values ranging from 20 % to -15 %. Note that there was a distinct 12 h time lag between the observed 

and simulated peaks of PM2.5 concentrations in Hubei, which is associated with the possible uncertainties in meteorological 

simulations. 

For other chemical species and main meteorological parameters, Tables S2 and S3 indicate that the WRF-CMAQ model with 430 

the optimal OBB emissions could also reproduce reasonable results, with most R values greater than 0.7 and NMB values 

within ± 30 %. Specifically, compared to the BASE case, the NMB and R values for the species (i.e., CO, PM10, and PM2.5) 

greatly contributed by OBB emissions in the OPT case were also greatly improved, reaching a much better level (± 25 %). 

3.5 Relative contributions of OCSB and OBB to regional haze formation 

We designed three model simulations to simultaneously isolate OCSB and OBB contributions to PM2.5 concentrations over 435 

CEC, i.e., the first with only anthropogenic and biogenic emissions (referred to as the NOBB case), the second with not only 

anthropogenic and biogenic emissions but also constrained OCSB emissions (referred to as the OPT_OCSB case), and the 

last with not only anthropogenic and biogenic emissions but also total constrained OBB emissions (namely the OPT case). In 

this study, OCSB and OBB contributions were quantified by differences between simulated PM2.5 concentrations in different 

cases in terms of absolute mass concentrations and relative contributions as calculated in the following formulas: 440 

OCSB୫ୟୱୱ ൌ 	OPT_OCSB୫ୟୱୱ െ	NOBB୫ୟୱୱ,                                                                                                                             (4) 

OCSBୡ୭୬୲୰୧ୠ୳୲୧୭୬ ൌ 	 ሺOCSB୫ୟୱୱ	/	NOBB୫ୟୱୱሻ 	ൈ 	100	%,                                                                                                         (5) 

OBB୫ୟୱୱ ൌ 	OPT୫ୟୱୱ െ	NOBB୫ୟୱୱ,                                                                                                                                          (6) 

OBBୡ୭୬୲୰୧ୠ୳୲୧୭୬ ൌ 	 ሺOBB୫ୟୱୱ	/	NOBB୫ୟୱୱሻ 	ൈ 	100	%                                                                                                             (7) 

where NOBB୫ୟୱୱ, OPT_OCSB୫ୟୱୱ and OPT୫ୟୱୱ represent simulated PM2.5 concentrations in the BASE, OPT_OCSB, and 445 

OPT cases, respectively. OCSB୫ୟୱୱ  (OBB୫ୟୱୱ) and OCSBୡ୭୬୲୰୧ୠ୳୲୧୭୬  (OBBୡ୭୬୲୰୧ୠ୳୲୧୭୬) denote contributions from OCSB 

(OBB) with regard to absolute PM2.5 mass concentrations and relative contributions, respectively.  

Figure 9 shows spatiotemporal distributions of OBB୫ୟୱୱ and OBBୡ୭୬୲୰୧ୠ୳୲୧୭୬ during EP1, EP2, and EP3. For CEC, OBB 

during EP2 had much more significant impacts than those during EP1 and EP3 on regional PM2.5 concentrations. In 

particular, OBB contributed up to more than 75 % (> 75 μg m-3) to surface PM2.5 concentrations over the border of Henan 450 

and Anhui during EP2. These spatial distributions were exactly consistent with those of OBB emissions and the regional 

haze, implying the key role of OBB emissions in triggering the regional haze formation. In contrast, PM2.5 concentrations 

also increased substantially by 14 ~ 74 μg m-3 (16 ~ 78 %) in Hubei and Hunan, where no apparent OBB emissions were 

detected. This phenomenon should be attributed to regional transport of air pollution brought by prevalent meteorological 

fields. It was worth noting that, there were the substantial declines in OBB emissions and PM2.5 concentrations with 455 
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significant decreases in OBB contributions consistently occurring over CEC during EP3. This indicates that stringent 

controls on the OBB emissions were still conspicuously beneficial for regional air quality. On the other hand, massive OCSB 

pollutants mainly emitted in Henan and Anhui were not transported to the eastern coastal zones of CEC during EP3, because 

of the role of meteorology. In addition, local OBB would not lead to regional haze in the southern edge of CEC despite its 

large contributions (> 75 %). As shown in Figure 10, OCSB contributions show largely similar spatiotemporal distributions 460 

to those of OBB, indicating that OCSB generally played a key role in reshaping PM2.5 concentrations over CEC. During the 

OCSB outbreak period, its relative contributions were significantly higher than those in other periods. However, OCSB 

contributions were located at some typical areas, namely the common border between Henan and Anhui (> 75 μg m-3, 75 %) 

and central narrow zones between Hubei and Hunan (> 35 μg m-3, 39 %). For other provinces, its relative contributions were 

within a narrow range of approximately 20 %. Figure 11 highlights that fairly large proportions (more than 80 %) of OBB 465 

contributions came from OCSB over the most parts of CEC, indicating that OCSB should play a dominant role in reshaping 

spatial and temporal distributions of regional PM2.5 concentrations over the most parts of CEC during the study period, 

especially for EP2. In contrast, other types of OBB barely influenced the haze formation in Jiangxi, Fujian, and Zhejiang (< 

10 μg m-3).  

To further understand OCSB and OBB effects on regional haze formation over CEC, time series of OBB and OCSB 470 

contributions to hourly PM2.5 concentrations for seven provinces over CEC during the study period are examined in Fig. 6. 

Overall, OBB emissions had significant contributions to hourly PM2.5 concentrations in Henan (44.14 %, 23.82 μg m-3), 

Anhui (46.19 %, 36.24 μg m-3), Hubei (56.89 %, 37.69 μg m-3), Zhejiang (25.89 %, 17.79 μg m-3), and Fujian (28.97 %, 7.31 

μg m-3), but lower impacts on those in Hunan (21.51 %, 13.86 μg m-3) and Jiangxi (14.07 %, 7.11 μg m-3). It should be noted 

that most of OBB (> 89 %) contributions uniformly resulted from OCSB emissions. For the OBB outbreak period, 475 

significant OBB contributions were found in Henan (60.47 %), Anhui (57.73 %), Hubei (42.91 %), and Hunan (29.14 %), 

whereas those in other provinces were in a small range (± 15 %), and OCSB emissions always contributed to the most (more 

than 90 %). Note that the variations in OPT_OCSB୫ୟୱୱ in Henan and Anhui kept generally synchronized with those in local 

abundant OCSB emissions and haze. In contrast, the peak values of OPT_OCSB୫ୟୱୱ in Hubei and Hunan, where no extensive 

fire hotspots were detected, showed apparent temporal asynchronies (24h ~ 48h) relative to those in Henan. This means 480 

OCSB was not only one of the significant local pollution sources but also a considerable regional source over CEC. On the 

other hand, other types of OBB emissions had a certain impact on local PM2.5 concentrations in Jiangxi (9.04 %), Fujian 

(11.82 %), and Zhejiang (10.08 %) but few effects (< 5 %) on the other provinces. 

3.6 Potential OCSB emission sources and associated meteorological causes 

OCSB emissions can have significant impacts on local and regional haze in Henan, Anhui, Hubei, and Hunan. There is thus 485 

a need to explore associated potential sources and meteorological conditions. First, we utilized the CWT method to 

investigate potential OCSB emission sources triggering regional severe haze. To pinpoint potential emission sources for 

OCSB, Pingdingshan, Hefei, Wuhan, and Changsha were selected as receptor sites to represent Henan, Anhui, Hubei, and 
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Hunan, respectively. Figure 12 presents spatial distributions of the CWT values calculated based on the hybrid receptor 

model (Fig. S1) and observed PM2.5 concentrations for these cities. It should be noted that only sources with relatively high 490 

CWT values (> 150 μgm-3) were used as potential major sources leading to regional severe haze. For Henan and Anhui, most 

of the potential major sources concentrated in local areas with large amounts of OCSB emissions during EP2, thereby 

suggesting the dominant role of local OCSB emissions. For Hubei and Hunan, however, potential major sources were also 

located in common areas in Henan and Anhui, especially over the border between them, thus clearly demonstrating that local 

haze in Hubei and Hunan was caused by regional transport of pollution from Henan and Anhui. In summary, OCSB 495 

emissions in Henan and Anhui should be mainly responsible for regional haze over CEC during EP2.  

Atmospheric pollution processes, especially wind fields, are closely related to synoptic weather patterns. A high-pressure 

system is usually considered to be the governing synoptic pattern suitable for the accumulation of air pollutants, whereas the 

differences between high and low-pressure systems are thought to be the major cause of transport on the regional scale. 

Figure 13 uses surface pressure maps from June 8 to 11 to explore the relationships among synoptic pressure patterns, OBB 500 

emissions, and haze formation over CEC. On June 8, concurrent with the OCSB outbreak, an extensive high-pressure system 

enveloped over CEC, forming a stationary condition and facilitating rapid accumulations of PM2.5 in Henan and Anhui. 

Thereafter, it was gradually turned into the low-pressure system on June 9 located at Jiangxi, receiving pollutants originating 

from Henan and Anhui by the differential field between the high- and low- pressure systems. This differential field also 

established positive dispersion conditions for Anhui, although OCSB emissions were still occurring there. Thereafter the 505 

stationary high-pressure system made a brief stay in Henan and Anhui on June 10, being prone to accumulate elevated PM2.5 

concentration, then a narrow low-pressure corridor squeezed by two high-pressure zones went through Henan, Hubei, and 

Hunan, thus facilitating regional transport of severe haze. 

3.7 Comparison to previous studies 

Numerous emission data on OBB have been established for CEC. These results, generally estimated based on statistics or 510 

satellite retrievals, have been rarely constrained by model and observations. Here we compare our constrained results with 

five representative emission datasets including GFASv1.0 (Kaiser et al., 2012), GFEDv4.1s (Van Der Werf et al., 2017), 

FINNv1.5 (Wiedinmyer et al., 2011), Qiu et al. (2016), and Zhou et al. (2017), as shown in Fig. 14. The former four 

inventories belong to satellite-based products, while the last one is derived with the traditional bottom-up method. 

Theoretically, there are two additional issues we need to note: (i) GFEDv4.1 incorporates small fires through the MODIS 515 

active fire detection product (Randerson et al., 2012); (ii) Qiu et al. (2016) is unable to discriminate small fires, but it can 

also detect more fire hotspots than GFASv1.0 and FINNv1.5 with the benefit of the extra MODIS burned area product 

(MCD64Al). 

Figure 14 shows that the constrained OBB emissions in this study were generally higher than satellite-based estimates but 

lower than the bottom-up statistics (i.e., Zhou et al., 2017). For example, the constrained CO emissions over CEC were 5.2, 520 

3.4, and 5.7 times larger than those in GFASv1.0, GFEDv4.1s, and FINNv1.5, respectively. By comparison, the constrained 
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SO2 and NOX emissions were also closer to those of GFED v4.1s. This indicates that small fires were projected to be central 

to OBB emissions since this OBB event was dominated by OCSB as mentioned, which always come from individual farmers 

with limited burned areas. In turn, for the NMVOCs, EC, OC, PM2.5, and PM10, our estimates were much higher than those 

from GFEDv4.1s but closer to those derived from Qiu et al. (2016) and Zhou et al. (2017) with the difference ranging from -525 

10 % to 73 %. Thus, relative to substantial underestimations in GFEDv4.1s despite of additional small fires, such large 

increases in Qiu et al. (2016), which also acted as satellite-based estimates, should be attributed to extra detected fire 

hotspots. An emphasis should be given to Zhou et al. (2017), especially on higher SO2, CO, NOX, and NH3 emissions (> 4 

times), inevitably leading to unreasonable overestimations of PM2.5 concentrations. On the other hand, it involves various 

uncertainties due to inherent statistical parameters and has common disadvantages in allocating seemingly sufficient 530 

emission amounts into high spatiotemporal cases. 

In summary, the constrained OBB emissions in this study can not only supplement insufficient satellite-based estimates, but 

also to a large extent avoid overestimations due to inherently large uncertainties originating from bottom-up statistics. 

In contrast to numerous OBB emission inventories for CEC, few studies focus on serious OBB events over CEC to 

investigate OBB contributions to surface PM2.5. Cheng et al. (2014) applied numerical models with satellite-based OBB 535 

emissions and found obvious OBB effects (i.e., 23 % ~ 48 %, 18 μg m-3 ~ 65 μg m-3) on surface PM2.5 in several cities over 

CEC (i.e., Ningbo, Shanghai, Nanjing, Hangzhou, and Suzhou) in June 2011. During the same period, Wu et al. (2017) 

utilized similar methods and found similar results in Nanjing (50 %). As expected, each of the two studies with raw satellite-

based OBB emissions substantially underestimated surface PM2.5 concentrations (-7 % ~ -38 %), especially in areas with 

intensive OBB activities at several times with peak concentrations (< -200 %). This would thus lead to relatively low 540 

estimates of OBB effects compared with our results. A most recent study (Yang and Zhao, 2019) adopted the constraining 

method, that is, similar to that in this study, to optimize OBB emissions for June 2012 but ignored the spatiotemporal 

heterogeneity of their adjustments, resulting in much more significant estimates of OBB effects  (50 % ~ 70 %) than before, 

while slightly lower than those in our study. This implies that more detailed constrained methods, such as provinces-specific, 

even grids-specific adjustments, should be helpful to establish reliable OBB emissions with high spatial and temporal 545 

resolution over CEC. 

4 Conclusion and discussion 

OBB, especially OCSB, has long been suspected of being the source of rapid deterioration of regional air quality over CEC 

during the harvest seasons. Up to now, satellite-based FINNv1.5 provides a unique opportunity to constrain variations in 

OBB and OCSB emissions with a high spatiotemporal resolution, despite substantial underestimations mainly resulting from 550 

unresolved agricultural small fires surrounding large fire hotspots. Here, we selected June 2014 as the study period, which 

includes a complete spatiotemporal evolution process (i.e., from June 1 to 19) of OBB and regional haze over CEC. We 

combined ground PM2.5 measurements and model predictions with FINNv1.5 to constrain OBB emissions in terms of 

spatiotemporal variations. It is demonstrated that the constrained optimal emissions can allow the WRF-CMAQ to reproduce 
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spatiotemporal chemical fields induced by OBB more reasonably. By comparison, the optimal OBB emissions can, to a large 555 

extent, not only supplement insufficient estimations derived from satellite retrievals but also reduce overestimations of 

bottom-up methods. These model results were thus used to simultaneously isolate OBB and OCSB impacts on spatial and 

temporal evolutions of PM2.5 concentrations. Further, we employed the CWT method as well as analysis of surface pressure 

maps to explore potential major OBB sources and corresponding meteorological causes. These results can provide an 

effective and efficient reference for policymakers to improve environmental control strategies. The results are summarized as 560 

follows: 

1. OCSB dominated OBB emissions during the study period by accounting for 74 ~ 94 %. And 81 ~ 88 % of OBB emissions 

intensively erupted during EP2 (from June 5 to 14). OBB mainly associated with OCSB emissions presented significant 

spatial and temporal inhomogeneities, mainly (> 60 %) concentrating in Henan and Anhui during EP2. Meanwhile, they had 

a strong spatiotemporal correlation with local haze in Henan and Anhui, indicating its critical role in affecting local PM2.5 565 

concentrations. In addition, they might also trigger regional haze in Hubei and Hunan through regional transport. By 

comparison, most of other types of OBB emission (> 71 %) were located in Anhui, Zhejiang, and Jiangxi. 

2. The optimal adjustment coefficients for OBB emissions over CEC during the study period were not constant but varied 

depending on their spatial and temporal evolutions. Original FINNv1.5 roughly underestimated OBB emissions by a factor 

of 5 ~ 7 during EP2, but only a factor of 2 ~ 4 during EP1 and EP3. Specifically, with respect to Henan, Anhui, and other 570 

provinces over CEC, the optimal adjustment factors of OBB emissions were 6, 7, and 5 for EP2, respectively, whereas they 

were 4, 4, and 2 for EP1 and EP3, respectively. 

3. With constrained optimal OBB emissions, the WRF-CMAQ model could reproduce chemical and meteorological fields 

reasonably during the study period from regional to provincial scales. Specifically, the model can capture the rapid outbreak 

of PM2.5 concentrations in Henan, Anhui, Hubei, and Henan. The correlation coefficients (R) between simulated and 575 

measured PM2.5 concentrations were higher than 0.6, and most of the corresponding NMB values were within 10 % over 

CEC.  

4. OBB played a key role in reshaping spatial and temporal distributions of regional PM2.5 concentrations over CEC during 

the study period, and up to more than 89 % contributed by OCSB, especially in Henan, Anhui, Hubei, and Hunan during EP2. 

By comparison, other types of OBB also to a certain extent influenced the haze formation in Jiangxi, Fujian, and Zhejiang.  580 

5. OCSB was not only a critical local pollution source but also had substantial impacts on the regional haze. Potential major 

OCSB emission sources leading to severe haze in Henan, Anhui, Hubei, and Hunan during EP2 were mostly located in 

Henan and Anhui, especially their borders. This finding highlights that effective and efficient OCSB controlling strategies 

were not implemented in these regions. Conversely, other types of OBBs only exhibited their impacts on local haze in Anhui, 

Zhejiang, and Jiangxi. 585 

6. Stationary high-pressure systems led to relatively stable conditions in Henan and Anhui and thus played a cardinal role in 

enhancing local PM2.5 concentrations during EP2. Moreover, the conversions between the high- and low-pressure systems 

drive regional transport, directly facilitating the transports of accumulative pollutants from Henan and Anhui to Hubei, 
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Hunan, and Jiangxi. Therefore, interprovincial joint enforcement actions in terms of OBB prohibitions should be strictly 

undertaken. 590 

It is a large challenge to detect small fires that are far from fire hotspots to reduce the uncertainties. Thus, one should take 

more satellite-based burning products in consideration. Besides, geostationary satellites might be the prospective means to 

overcome the limitation of time spans of polar-orbiting satellites. In addition, precise simulations of smoke plume and 

related chemical reactions are both challenging for regional and global models. The regional model is barely capable of 

characterizing turbulent flows of OBB plumes and subsequent vertical transport, thus causing uncertainties in three-595 

dimensional distributions of aerosols viewed from a specific spatial and temporal scale. The constraining method combining 

model results and available observations could be an effective way to reduce large uncertainties in the OBB emission 

inventories. Furthermore, uniform optimal factors for all species of OBB emissions are used in this study. Thereby it is 

necessary to conduct species-specific adjustments in order to accurately investigate OBB effects. Similarly, provinces-

specific, even grids-specific adjustments should also be further explored. Therefore, to improve the model capability in 600 

quantifying OBB and OCSB effects on regional air quality, more comprehensive experiments, field measurements and 

modelling efforts are needed in the future. 

 

Data availability. MODIS and OMI data can be freely accessed at https://earthdata.nasa.gov/ (last access: 5 August 2019). 

GFASv1.0 data are available from http://apps.ecmwf.int/datasets/data/cams-gfas/ (last access: 5 August 2019). GFED4s data 605 

can be downloaded from https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html (last access: 5 August 2019). 

FINNv1.5 data can be found at http://bai.acom.ucar.edu/Data/fire/ (last access: 5 August 2019). 
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Figure 1. Model domain and geographical areas of CEC. Black thick lines outline boundaries of 10 provinces belonging to CEC, 
including Anhui (AH), Hubei (HB), Henan (HEN), Hunan (HUN), Shandong (SD), Zhejiang (ZJ), Jiangsu (JS), Shanghai (SH), 
Fujian (FJ) and Jiangxi (JX). This figure is generated using NCAR Command Language (NCL) version 6.3.0, open-source software 
free to the public.  5 

https://doi.org/10.5194/acp-2019-808
Preprint. Discussion started: 17 October 2019
c© Author(s) 2019. CC BY 4.0 License.



30 
 

 

Figure 2. Monthly variations in numbers of OBB fire hotspots in FINNv1.5 over CEC (right axis) in 2014 and relative contributions 
of seven types of OBB classified by corresponding land use types (left axis). 
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 10 

Figure 3. (a) Temporal and (b) spatial variations in numbers of fire hotspots for OCSB and other types of OBB during EP1, EP2 
and EP3, which represent three successive episodes in turn, namely, from June 1 to 4, June 5 to 14, and June 15 to 19, respectively. 
This figure is generated using NCAR Command Language (NCL) version 6.3.0, open-source software free to the public. 
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Figure 4. Spatial distributions of simulated and observed episode-averaged PM2.5 concentrations over CEC during (a) EP1, (b) EP2, 15 
and (c) EP3. Colored circles denotes locations of ground measurement sites and corresponding values. This figure is generated using 
NCAR Command Language (NCL) version 6.3.0, open-source software free to the public. 
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Figure 5. Spatial distributions of AOD observed by MODIS (MOD08_D3) at 550 nm and OMI (OMERUVd v003) at 500 nm for 20 
EP2. This figure is generated using NCAR Command Language (NCL) version 6.3.0, open-source software free to the public. 

  

https://doi.org/10.5194/acp-2019-808
Preprint. Discussion started: 17 October 2019
c© Author(s) 2019. CC BY 4.0 License.



34 
 

 
Figure 6. Provincial average temporal variations in ground observed and simulated hourly PM2.5 concentrations in Henan, Anhui, 
Hubei, Hunan, Jiangxi, Zhejiang and Fujian. The averaged concentrations for each province were calculated with values at the 25 
monitoring stations from both observations and different model simulations (OBS: observations; NOBB: the simulations with only 
anthropogenic and biogenic emissions; BASE: the simulations with not only anthropogenic and biogenic emissions but also original 
OBB emissions in FINNv1.5; OPT: the simulations with not only anthropogenic and biogenic emissions but also constrained OBB 
emissions; OPT_OCSB: the simulations with not only anthropogenic and biogenic emissions but also constrained OCSB emissions) 
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 30 

Figure 7. Model responses to dynamic emission perturbations. Colored cells represent NMBs between observed and simulated PM2.5 
concentrations in different model sensitive tests for Henan, Anhui and other provinces over CEC. Coefficients in X axis refer to the 
adjustment coefficients for OBB emissions in EP1 and EP3, while coefficients in Y axis denotes the ones for EP2. 
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 35 

Figure 8. Spatial distributions of constrained PM2.5 emissions from (a) OCSB and (b) other types of OBB for the study period. This 
figure is generated using NCAR Command Language (NCL) version 6.3.0, open-source software free to the public. 
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Figure 9. Spatial distributions of ܛܛ܉ܕ۰۰۽ and ܖܗܑܜܝ܊ܑܚܜܖܗ܋۰۰۽	during EP1, EP2 and EP3. This figure is generated using NCAR 
Command Language (NCL) version 6.3.0, open-source software free to the public. 40 

  

https://doi.org/10.5194/acp-2019-808
Preprint. Discussion started: 17 October 2019
c© Author(s) 2019. CC BY 4.0 License.



38 
 

 

Figure 10. The same as Fig. 9 but for ܛܛ܉ܕ۰܁۱۽ and ܖܗܑܜܝ܊ܑܚܜܖܗ܋۰܁۱۽. This figure is generated using NCAR Command Language 
(NCL) version 6.3.0, open-source software free to the public. 
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Figure 11. The same as Fig. 10 but for the differences between ܛܛ܉ܕ۰܁۱۽) ܛܛ܉ܕ۰۰۽） and （ ܖܗܑܜܝ܊ܑܚܜܖܗ܋۰܁۱۽）ܖܗܑܜܝ܊ܑܚܜܖܗ܋۰۰۽. 

This figure is generated using NCAR Command Language (NCL) version 6.3.0, open-source software free to the 

public. 
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Figure 12. CWT maps during EP2 at four representative cities (Pingdingshan, Hefei, Wuhan and Changsha) that represent Henan, 
Anhui, Hubei and Hunan, respectively. This figure is generated using NCAR Command Language (NCL) version 6.3.0, open-source 
software free to the public. 
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Figure 13. Surface weather maps for June 8, June 9, June 10, and June 11 over CEC 
(http://www.kma.go.kr/eng/weather/images/analysischart.jsp). 
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Figure 14. Comparisons of OBB emissions between other studies and this study.  
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