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We thank the referees for their careful and thoughtful comments on the manuscript. We also thank 
the editor are giving us additional time to respond to the comments. We will begin with a general 
response to all referees, followed by a more detailed response to the comments from each referee. 
 

Referees #2 and #4 both expressed concern with referring to the flux inversion approach as 
4D-Var. Referee #2 suggested that it is a 3D-Var problem, whereas Referee #3 suggested we “drop 
the “4D” and “use only variational” to describe the approach. We would like to stress that this 
approach has been widely referred to as “4D-Var” by the inverse modeling community for quite 
some time. This has been the case in inversion analyses to estimate CO2 fluxes (e.g. Basu et al., 
2013, Deng et al., 2016; Zheng et al., 2018), CH4 emissions (e.g., Meirink et al., 2008; 
Bergamaschi et al., 2010; Turner et al. 2015), CO emissions (e.g., Kopacz et al., 2010, Jiang et al., 
2017), NOx and SO2 emissions (Qu et al., 2019), and emissions of SOx, NOx, and NH3 (e.g., 
Henze et al., 2009). We agree with the referees that the 4D-Var methodology in the flux inversion 
context is different from that in numerical weather prediction (NWP), but it is unclear what 
terminology would be better. It is not a 3D-Var scheme as the fluxes are time dependent. In our 
analysis we solve for monthly CH4 emission over a four-month period (February – May). This 
means that the February fluxes are being influenced by observations from February to May, relying 
on the adjoint model to propagate information from observations in the future back in time to 
update the February emissions. If we were solving for mean fluxes over the whole four-month 
period, it would be more similar to a 3D-Var approach. In addition, just referring to the approach 
as a variational scheme is vague. It might be a useful exercise for the inverse modeling community 
to develop new terminology for these methods that have been adapted from the NWP community, 
but that is not an objective of this study. Introducing new terminology for the flux inversion 
community would require a methodology study that clearly highlights the similarities and 
differences in how the 4D-Var technique is used in the flux inversion and NWP communities so 
that it can justify the proposed terminology.  

Another concern raised by Referees #2 and #4 is our statement that the model is assumed 
perfect in strong constraint 4D-Var. The referees stated several times that this is not true. We 
should have been more precise in our wording. In strong constraint 4D-Var it is assumed that the 
model perfectly evolves the state in time. As noted by Trémolet (2007), “current operational 
implementations of 4D-Var rely on the assumption that the numerical model representing the 
evolution of the atmospheric flow is perfect, or at least that model errors are small enough (relative 
to other errors in the system) to be neglected.” The full 4D-Var cost function is  

 
where x is the model state, yi are the observations, H is the observation operator, and R, B, and Q 
are is the observation, background, and model error covariance matrices, respectively. Here M is 
the forecast model that evolves the state in time from time t to t+1 as 

 
with model error u. In the cost function above, we are solving for the full 4D state vector. This is 
weak constraint 4D-Var. However, by assuming that the model evolution is perfect we can neglect 
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the second term in the cost function and optimize only the initial state (x0) (since this initial state 
is evolved forward in time without error). Thus, the cost function becomes 

 
where xi = Mi,0(x0) is the state at time i based on the perfect evolution of the initial condition x0 
forward in time. This is strong constraint 4D-Var. We have modified the text to make it clear that 
the model evolution is assumed to be perfect in strong constraint 4D-Var. 

It was suggested by the referees that the R matrix accounts for model errors in strong constraint 
4D-Var. In theory, R accounts for errors in the observations and for representative errors in the 
observation operator. It does not account for errors in the propagation of the state in time. In the 
strong constraint approach, one could adjust R to capture errors in the evolution of the state, but 
that would be inconsistent with the framework. Nevertheless, this is what is done in practice. It 
was also suggested by the referees that there are alternative means of estimating the model bias, 
and we agree. For example, one could incorporate the bias b into the first term of the cost function 
(i.e. [yi – H(xi – bi)] and solve for the bias together with x0 (i.e., J becomes a function of x0 and 
b). A similar approach was proposed by Dee and DaSilva (1998) in the context of a sequential 
assimilation scheme. We are not claiming that our approach is the only means of estimating model 
bias. We have adapted the weak constraint 4D-Var framework, as described by Trémolet (2007), 
for the GEOS-Chem 4D-Var scheme because in the context of a 4D-Var assimilation framework, 
the weak constraint scheme provides a means of estimating the model bias that is consistent with 
the 4D-Var formalism. 
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Responses to Individual Referees 
 
The comments from the referees are in bold Calibri font and our responses are in plain Times 
New Roman font. 
 
Anonymous Referee #2 
 
The authors propose a novel method to quantify errors in transport modelling. It uses GOSAT 
measurements within a new assimilation framework. In particular, the authors propose to 
use part of the knowledge provided by the adjoint of the transport model to constrain model 
errors. I am personally a great enthusiast of using the adjoint in a more comprehensive way 
than what is currently done by the community. Therefore, I recommend supporting the 
authors in their efforts to do so, and their work should make an interesting contribution to 
the community. 
 
However, the present state of their manuscript requires significant changes, clarifications and 
rearranging before suitable for publications. 
 
1 General comments 
 
1.1 Structure 
 
With the current structure and organization, it is hard to filter the take away messages. Some 
details are missing, other are not necessary. I have some doubts on the choice made by the 
authors in the way they split the content of their work between the present manuscript and 
the sister paper in GMD (gmd-2019-248). At lot of details about the method itself is given 
here, while it would be more suitable for a model description paper in GMD. Also, many 
details about the method, in particular the tuning choices, are set aside, while they are 
critical for validating the reliability of the approach.  Similarly, all the OSSEs would make 
more sense in a GMD paper. 

Only the part directly concerning real data would be suitable for an ACP content in my 
opinion, as well as the discussion on model resolution? 
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I suggest the author dramatically reconsider the way they organize their presentation of their 
work to help the reader navigate through the results. 
 
We agree that the manuscript was long and consequently it was difficult to navigate through the 
results. We have significantly shortened the OSSE section. We have removed one of the four OSSE 
experiments (the perturbed flux experiment), based on the comments from Referee #4, and we 
have removed the GOSAT observational coverage sensitivity experiment. Overall, we have 
removed 6 figures from the manuscript. We have also improved the description of the remaining 
experiments so that it is easier to follow the results.  

1.2 Weak constraint vs Strong constraint 
 
The authors insist on sticking to the 4D-VAR formulation of the surface flux inversion 
problem. Such an approach, following the work from the numerical weather forecast 
community, is artificial and ends up in clumsy and artificial formulations.  Even though the 
equations are correct, they are uselessly complicated. The surface flux inversion problem is a 
3D-VAR problem, the time step of the NWF community having no meaning in our case (the 
author implicitly acknowledge this fact by putting the emissions in the model parameters p). 

I may be wrong, but the author’s formalism could be easily replaced by the classical inversion 
equation, simply adding model bias in the control vector. Thus, the matrix Q would only be a 
sub matrix of B, and the Lagrangian terms would not be needed; they would be implicitly 
solved for in the problem as a 4D CH4 atmospheric source/sink in the transport model. 

 
Please see our general response above regarding the widespread use of the 4D-Var approach by 
the inverse modeling community. In addition, the emission optimization problem in our analysis 
is not 3D, as the emissions are time dependent and rely on the model transport to use observations 
in the future to quantify the fluxes in a given month. We are taking advantage of the fact that the 
4D-Var scheme is a smoother to quantify the monthly mean fluxes over the entire assimilation 
period. 

Yes, one can use the classical inversion equation and add the model bias to the control vector, as 
we noted in our general response above. However, the weak constraint 4D-Var approach is an 
alternate approach, in which we are adding the bias term to the control vector, but in a manner that 
is consistent with the 4D-Var formalism. 

1.3 Period of interest 
 
The authors chose a very short period of interest (4 months) in 2010.  This seems to be guided 
by the availability of validation data. 

Such a duration is very short considering the global atmospheric transport patterns. The 
author show that the biases in the initial conditions can be corrected quite quickly, which 
would excuse the short period. However, what about long-term biases? 
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In the present conditions, the WC inversion seems to only allow for short term corrections, at 
the cost of a loss in the mass balance. It would then limit the inversion conclusions to very 
regional patterns, reducing the interest of running global models... 

 
The main goal of the inversion analysis is to quantify regional sources of CH4 (using regional and 
global models). We are trying the use the imprint of fresh emissions on atmospheric CH4, as 
measured by GOSAT, to infer the surface emissions. Long simulations are not helpful in this 
regard as the emission signals become well mixed into the background on long timescales. 
However, biases associated with transport on long timescales can adversely impact the inversions. 
For example, a bias in the Brewer-Dobson circulation or in the representation of the polar vortex 
can result in a bias in CH4 in the lower stratosphere, which will produce a bias in the modeled 
XCH4. Such a bias cannot be mitigated by a correction in the surface emissions on short timescales, 
given the age of air in the lower stratosphere, but that would not be desirable in any case since our 
interest is in estimating emissions that are free of the signature of model biases. Our results show 
that the weak constraint approach can mitigate such biases in the stratosphere on emission-relevant 
timescales. 

Also, we note that there is no loss in mass balance. The model is mass conserving. The weak 
constraint is adding sources and sinks throughout the atmosphere to correct for the model errors, 
as opposed to putting these sources and sinks only at the surface. In doing so, it is redistributing 
the mass of CH4 in the atmosphere to better fit the CH4 mass suggested by the GOSAT 
measurements. 

1.4 Uncertainty matrices 
 

It feels that your results are so dependent to the subjective choice of Q that they are hardly 
exploitable.  It is already rather challenging to find a balance between R and B in a classical 
inversion. The final taste of the work as it is describe is that the method does not really fit its 
purpose. Quantifying biases would be as efficient with simple forward simulations as it is 
presented... 

I am convinced that the use of the adjoint to quantify model errors is a good approach, but 
with the author’s framework and no additional data, it seems quite impossible to deduce any 
conclusive results... 

The motivation for the study was the fact that there is increasing evidence that the vertical transport 
in the GEOS-Chem model is too weak, and that latitudinal dependent biases in XCH4 in the model 
are problematic for CH4 inversion analyses using the model (e.g., Turner et al., 2015). Therefore, 
we decided to apply the weak constraint approach, as described by Trémolet (2007), to try to better 
characterize these biases. A major concern was that assimilation of GOSAT XCH4 data, which do 
not provide vertical profile information, would be inadequate for capturing the model errors. 
Consequently, we chose to assume the simplest form for Q to see what structures in the model 
error can be identified given the GOSAT column observations. Imposing prior structure in Q 
would have made it more challenging to determine if the XCH4 data, when assimilated into a weak 
constraint 4D-var framework, can provide constraints in the vertical structure of the model error. 
Surprisingly, the results show that the estimated bias field is consistent with our developing 
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understanding of the vertical transport bias in GEOS-Chem. For our follow-up application of the 
approach, we are now trying to develop a better Q matrix to further improve the performance of 
the system. 

Reference 
Turner, A. J., et al.: Estimating global and North American methane emissions with high spatial 
resolution using GOSAT satellite data, Atmos. Chem. Phys., 15, 7049–7069, 
https://doi.org/10.5194/acp-15-7049-2015, 2015. 
 

2 Specific comments 

• p.2 l.24: regional and global scale 

Transport can have global impacts, but the focus is on the regional impacts that confound efforts 
to quantify regional emission estimates of CH4. 

• p.2 l.33: "assume that the model is perfect": this statement is misleading; the so- called 
strong-constraint inversion never assumes that the model is perfect. Errors are represented 
in the R observational error matrix. Of course, in most inversion framework, the R matrix is 
too simple and misses most of the error patterns, but that is only a technical choice in the 
application. 

This should have stated “assume that the model evolution is perfect.” We have corrected the text. 
Please see our general response above regarding the nature of the errors captured by the R matrix. 

• p.4 l.7: EDGAR 2004 is quite outdated; could the author justify such a choice? 

This is an older inventory, but it does provide a reasonable a priori for the assimilation of GOSAT 
data for 2010 conditions. It would be difficult to justify the use of the 2004 inventory for simulation 
of 2020 conditions, for example. 

• p.4-6 Sect. 2.2.1: This section mixes observation information with preliminary studies and 
side conclusions.  Shorten and put results in the results section if really needed or in 
Supplement, or in a GMD style paper 

We have removed Figures 1 and 2 and shortened the section. 

• p.6 Sect. 2.2.2: a lot of information is given about the instrument precision and techniques; 
are such details really needed in a OSSE paper? 

This is not an OSSE paper. We start with the OSSEs to assess the performance of the system, but 
the focus is on the assimilation of the GOSAT data. The description of the data used for validation 
of the assimilation results is important to help the reader interpret our results. 

• p.7 l.20: p vary over time? it is not clear from equation (1) 

The fluxes do vary over time. We solve for monthly fluxes over the assimilation period. We have 
added text to make this point clear on Page 7, lines 16–17. 
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• p.7 l 26: it is not clear at all what are the dimensions and spaces of the object presented 
here 

We have added text to specify the dimension of the variables. 

• p.8 eq.3: are Q and R always the same for each i? by design, you make it impossible to have 
temporal correlations in the observation space. It is often the case in practice in classical 
inversions, but should be highlighted as a limitation of this formulation 

In theory, R and Q change for each i, but in practice, we keep Q constant in our analysis. We now 
explicitly remind the reader of this on Page 8. 

• p.8 l.10: 4D-VAR artificial and makes it hard to understand.  Justified in NWF where the 
state is directly optimized with respect to observations, but our interest is p (surface 
emissions). We rather do 3D-VAR!!! 

Please see our general comment above. We are not using a 3D-Var approach. 

• p.8 eq.4: should H be Hi? should be different at each so-called time step? 

Yes, H is different for each observation that is assimilated. We have corrected that. 

• p.8 eq.4: The Lagrangian factor part would be automatically solved with a 3D-var SC 
including a 3D source-sink atmospheric term... 

That is an alternative inversion approach using 3D-Var. Inversion analyses using the 4D-Var 
scheme benefit from the fact that 4D-Var is a smoother, which allows us to more effectively exploit 
observations that are distributed in time.  

• p.9 l.11: What is exactly the size of ui? and what are i standing for? days?  minutes? It is not 
fully clear from the text neither as it changes over the course of sections... 

The size can be equal to or smaller than the size of x, depending on the spatial extent over which 
the model errors are quantified. We have added text to clarify this on Page 8 (line 1). 

• p.10 l.1: It is a big problem to assume diagonal B (as well as diagonal Q) as you give too 
many degrees of freedom to your inversion compared to the number of observations. 

The chemical data assimilation problem, whether we are solving for the state or emissions, is an 
underdetermined problem. We agree that imposing structure in the covariance matrices will help 
constrain the solution. However, as we noted in our response to General Comment 1.4, we chose 
the simplest representation of Q since it was unknown to what extent we would be able to capture 
the spatial patterns in the model error using the GOSAT XCH4 data (given that we use only data 
over land and are not assimilating CH4 profiles). Without good knowledge of the structure of Q, 
the most conservative approach is to assume that it is diagonal. In a similar vein, in the flux 
inversion community it is not uncommon to assume that B is diagonal (e.g., Turner et al. 2015, 
Jiang et al., 2017). Estimating the covariances for different emission types (e.g. for wetlands, 
agricultural, fossil fuels) is challenging, and assuming no structure is safer than imposing incorrect 
structure in the analysis.  
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• p.10 l.17: the choice of u is very shortly justified (and unconvincingly); consider extending 
such justification or all the results appear untrustworthy 

As we explained in the manuscript, the scaling ũ adjusts the direction of the gradient descent, 
between optimizing the emissions and the state. We believe that it would impair the reader’s ability 
to navigate through the results if we were to expand the manuscript and present a detailed 
discussion of the sensitivity of the optimization algorithm to ũ. 

• p.10 l.20-30: very clearly and accurately written paragraph stating the limitations of the 
method. But later sections contradicts the acknowledgement of the limitations. 

It is unclear which sections the referee thinks contradict our discussion here. We were careful in 
highlighting the limitations, and our results were presented in the context of these limitations. 

• p.11 l.3-6: important sensitivity results!  should be more extensively detailed, either in the 
result part, or supplement, or GMD companion paper... 

As we described in the manuscript, we conducted a series of sensitivity analyses using a range of 
values of q between 0.05 ppb and 2000 ppb, and found that the validation results (similar to what 
is shown in Figure 15 in the original manuscript) did not change for values of q larger than about 
50 ppb. As a result, we assumed a value of 50 ppb for q. We do not believe that adding individual 
plots of the validation results for a range of values of q to the already long manuscript would be 
any more informative than the description of the results already in the manuscript.  

• p.11 eq.4: is there a link with the cost function? the use of J is misleading; the equation is 
artificial and does not make sense. If the purpose is to introduce the total sensitivity in 
eq.12, the author should rather change both eq 11 and 12 and write them with the adjoint 
of the model, evaluated at an increment observation vector equal to 1 at every GOSAT obs. 

Our description of this experiment was confusing. The cost function here is different from the 
weak constraint cost function. In the interest of shortening the OSSE section, we have removed 
this experiment. 

• p.12 l.15: with less extreme situations, the balance between Q and B is expected to be even 
more subtle... 

The objective with the OSSEs was to assess whether the XCH4 data is able to provide information 
to help mitigate the model bias. Since these were OSSEs in which the pseudo-observations were 
generated with the same model, we chose extreme biases for the evaluation. The results showed 
that even when convection was turned off, the model was able to partially mitigate the model bias. 
They suggested that XCH4 data should be able to correct more modest model biases that may be 
present in real inversion analyses. Yes, the balance between B and Q would be more subtle with 
smaller errors. This will be an issue in the case where the model errors mimic emissions errors, 
such as a bias in the chemical sink for CH4. However, it will not be an issue for transport errors, 
which cannot be corrected for by adjusting surface emissions. If the biases mimic emission errors, 
additional information will be needed, such as by assimilating formaldehyde (HCHO) data to 
provide constraints on the hydroxyl radical (OH). And this will be an issue for any inversion 
analysis, regardless of the bias correction scheme employed.  
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• p.12 l.27: not clear what tuning you are talking about; please consider adding a table 
detailing all the OSSE and inversion set-ups to help the reader 

This was poorly worded. We meant that we conducted a number of experiments to evaluate the 
impact of the selected window length on the analysis. We have rewritten this section to more 
clearly describe the experiments. 

• p.12 l.35: negativity bound: ad-hoc unjustified choice; might be reasonable, but needs some 
details 

It is ad hoc. But, as we noted in the text, it was previously shown that the GEOS-Chem CH4 
simulation was positively biased in the extratropical stratosphere at a resolution of 4° x 5°. We 
chose the negativity bound to speed up convergence in the extratropical stratosphere, to remove 
this known bias. The L-BFGS-B algorithm provides a means of doing this as part of the 
optimization. 

• p.13 sect.3.1: more than 2 full pages, 8 figures, a lot for one section... consider splitting 

As we mentioned above in our response to general comment 1.1, we significantly shortened this 
section. In doing so, we have removed 4 figures. 

• p.13 l.27: fig.3 may be misleading; it shows the integrated ’footprint’ of GOSAT 
observations, but the inversion uses increments depending on the deviation from the prior 
and observations (or truth) 

Yes, the inversion uses the increment, but it is unclear how one would show the spatial distribution 
of the sensitivity for each increment over the whole 4-month period, that is easy for the reader to 
interpret. The integrated sensitivity over the four months seemed to be the best approach. 
Regardless, we have removed the figure to shorten the manuscript.  

• p.14 l.  7:  I disagree.  It only shows that the matrix Q you chose is incorrect for that set-up...  
it feels that your results are so dependent to the subjective choice of Q that they are hardly 
exploitable 

We respectfully disagree with the referee. The specification of Q is not the issue here. As Referee 
#4 noted, “in this setup the strong constraint assimilation does better than the weak constraint 
because it puts all the measurement information into the cause of the difference, the emissions, by 
design.” Because we have put all of the bias in the emissions, at the surface, it is not surprising 
that the strong constraint assimilation, that assumes all of the bias is in the emissions, outperforms 
the weak constraint assimilation. In retrospect, given the comment from Referee #4, we realize 
that this experiment is not a meaningful evaluation of the weak constraint assimilation. We have 
therefore removed this experiment. 

• p.14 l. 31: again, it only shows that Q is ill specified 

• p.14 fig.6: Right column: Due to ill specified Q, WC applies correction upwind in the Atlantic 
ocean to improve the situation over the Amazon basin.  This could be highly misleading for 
diagnosing model errors! 
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This discussion on Page 14 (starting from Line 25) was regarding the results of the OSSE in which 
we turned off convection. As shown in Figure 6, turning off convection results in an accumulation 
of CH4 near the surface over the continental source regions, and a deficit aloft, downwind of the 
source regions. The positive correction to the deficit over the Atlantic and the negative correction 
to the excess CH4 over the Amazon (and central Africa) is exactly what we hope the bias correction 
would do. It is not an indication of an ill-specified Q. Clearly, changing Q will impact the small-
scale features in the corrections, but the large-scale corrections to the excess CH4 near the source 
regions and to the deficit aloft is an indication that the scheme is working. 

• p.15 fig 6-7-8: why not including SC in these figures for comparison? 

We did not impose any flux errors in these experiments, consequently there would be no value in 
using the strong constraint assimilation in them. Our objective here is simply to evaluate the 
performance of the weak constraint scheme to mitigate the convection bias. 

• p.15 fig.11 and last OSSE: I didn’t really get this last OSSE. why initial conditions at different 
dates?  In the end, it is probably on of the most important OSSEs as it show the capability 
of the WC to correct for long-term errors; but the way it is presented makes it hard to 
understand 

Figure 11 (in the original manuscript) was not well-described. We only introduce a bias in the 
initial conditions for 1 February 2010. Figure 11 showed how that initial bias decreased in time in 
different regions of the atmosphere. We have removed this figure and instead briefly summarize 
the main result in the text.  

•  p.18 l.34: is it really necessary to extent ACE-FTS profiles to compare with GEOS-CHEM? 
can’t you produce real equivalents? 

To map the ACE-FTS data into XCH4 space we do need to extend the ACE-FTS profile to 
construct the full column. However, when looking at the differences between the modeled and 
ACE-FTS XCH4, the tropospheric component of the column from GEOS-Chem is removed, 
leaving only the real differences in the stratosphere and UTLS. To use real observations to extend 
the ACE-FTS data, we need global profile observations of CH4 that have near spatial and temporal 
coincidence with the ACE-FTS measurements. We are not aware of such observations for the 
period of interest. 

• p.19 l.30: such results is quite obvious with a one month assimilation window; please 
comment accordingly... 

Please see our response to General Comment 1.3 above.  

• p.20 l.5-10: Gives the impression of fitting pre-conceived conclusion at all costs... the results 
are not convincing in that direction 

In all data assimilation applications, if there is a known bias in the model it is important to try to 
mitigate that bias. It is not an issue of fitting a pre-conceived conclusion in the assimilation. The 
positive bias in the GEOS-Chem stratosphere at the 4° x5° resolution was previous identified, as 
we noted in the text. In their inversion analysis, Maasakkers et al. (2019) accounted for this bias 
by fitting a second order polynomial to the modeled background as a function of latitude. We 
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showed that the weak constraint scheme can mitigate this bias in the context of the assimilation. 
That is a desirable outcome. In addition, as we noted, at 2° x 2.5°, the bias changed sign between 
30°–40°N, and the weak constraint scheme was able to reduce both the positive and negative bias 
in the stratosphere. No one had previously documented the difference in the bias at 2° x 2.5°, yet 
the assimilation was able to mitigate it. 

Reference: 
Maasakkers, J. D., et al.: Global distribution of methane emissions, emission trends, and OH 
concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015, 
Atmos. Chem. Phys., 19, 7859–7881, https://doi.org/10.5194/acp-19-7859-2019, 2019. 

 
Anonymous Referee #3 
The effort at assessing the errors in the (chemistry-)transport model before going into flux 
inversions is necessary and the issue remains too rarely treated adequately in in- version 
papers. It is therefore a very good idea to present a methodology to tackle this issue. The 
explanations of the methodology and most of the interpretations of the results, regarding 
mainly biases in the transport, are clear and interesting. Nevertheless, parts of the study 
seem convoluted and misleading: 

1. what is the purpose of the "comparison" to the so-called "strong constraint" (SC) inversion? 
SC is said to consider that the model is perfect but this is not true since the covariance 
matrix R can contain errors in the model as well as errors in the measurement, 
representativity errors, etc. Moreover, it is always possible to invert transport 
variables/parameters along with the emission fluxes and boundary conditions - which may 
require assimilating more data, as is suggested but in the case of WC and only for glint 
measurements. Finally, the comparison between two data assimilating systems would be 
"fair" and useful only if the same information is provided to both. Here, it is not very clear 
what the configuration of the SC inversion is but it seems that it includes a lot less 
information than WC: for example, WC uses data to estimate the noise on GOSAT XCH4 (p. 
9) but it is not stated how this knowledge is used in SC. I would suggest to simply drop this 
"comparison" between SC and WC: the inconsistency between assessing errors in the 
model (WC) and inverting fluxes without taking these errors into account (as seems to be 
the case in SC) is too strong. 

The comparison between the weak constraint and strong constraint assimilation is intended to 
highlight the impact of not accounting for the errors in the strong constraint assimilation. The two 
assimilation schemes are ingesting exactly the same information. There is no difference in the 
GOSAT data assimilated by the two schemes. The only difference is that the strong constraint 
scheme adjusts the surface emissions, whereas the weak constraint adjusts the surface emissions 
as well 3D sources and sinks in the model state. We have expanded the description of the 
assimilation schemes in Section 2.3 to better explain the strong constraint method.  

Regarding the issues as to whether the model is considered perfect in strong constraint 4D-Var, 
and the possibility of capturing model errors in the R matrix, please see our general comment 
above. 
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2. what is the final aim of the characterization of the model errors? Is it to improve the model? 
In this case, the study lacks suggestions on how to do this (change convection schemes? use 
only high resolutions?). Is it to gain insights on how to invert fluxes? In this case, two 
questions are to be answered, which are not discussed as such in the paper: 

a) are the model errors too large compared to the errors due to the emission fluxes to 
allow meaningful inversions of the fluxes? 

b) if inversions are to be run with the model as it is, how can the errors in the model be 
taken into account so that the optimized fluxes are actually meaningful (e.g 
recommendations on the building of the R matrix for a so- called SC set-up)? 

 
Previous work by Yu et al. (2017), based on the GEOS-Chem simulation of 222Rn, 210Pb, and 7Be, 
suggested that the vertical transport in the model is too weak at the coarse resolution. We therefore 
applied the weak constraint assimilation here to characterize these biases in the context of the CH4 
simulation. In our companion paper in GMD we used the insight gained from the assimilation 
work presented here to better understand the source of the CH4 biases. As we stated in Stanevich 
et al. (2020) in GMD, that paper “complements Yu et al. (2017), with a specific focus on the impact 
of model resolution on the CH4 simulation and the goal of better understanding the source of the 
biases identified in Stanevich et al. (submitted).” Consequently, it is in the companion paper where 
we discuss the implications of the bias for flux inversion analyses and ways of improving the 
model. One conclusion in the companion study was that because of the magnitude of the errors at 
4° x 5°, “we do not recommend the 4° x 5° GEOS-Chem model for CH4 inverse modelling.” If 
one wants to use the 4° x 5° model for flux estimation, the weak constraint approach would offer 
the best means of mitigating the bias, instead of trying to do so through the R matrix. In the 
companion paper we also suggested that one way to improve GEOS-Chem and reduce the vertical 
transport bias was “by archiving and globally remapping the native resolution horizontal [air mass 
fluxes] in order to drive advection at the coarse resolution instead of calculating the horizontal [air 
mass fluxes] from the coarse-resolution wind fields.” 

3. what does the proposed methodology bring to the assessment of the model errors? In the 
discussion of the results of this study, it is not clear what it brings compared to previous 
studies: the errors assessed in this paper seem to be already well-known through other 
methodologies. 

As we discussed above, previous work had identified a stratospheric bias in the CH4 simulation, 
but previous work in the troposphere had focused on the simulation of 222Rn, 210Pb, and 7Be. The 
weak constraint scheme enabled us to characterize the structure in the model bias in CH4, which 
motivated the analysis presented in the companion paper, and in which we quantified the 
contribution to the bias that arises from diagnosing the vertical transport from the horizontal winds 
and from the loss of eddy mass flux in the low-resolution meteorological fields. The focus in this 
manuscript is just on the assimilation results. We refer the referee to the companion paper for the 
discussion of the implications of the bias identified here. 

Specific comments 

General 
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Beware of the use of 4D-Var: it should be used only in cases when the problem is actually 4 
dimensional. This is the case in meteorology, where the problem is on the initial conditions. 
Usually, it is not the case for flux inversions, which are problems on the boundary conditions: 
the relation between the 3D maps of fluxes through time is not taken into account in the 
model (only the relation of concentration fields through time is). It would be best to use only 
"variational" and drop the 4D in these cases of flux inversions. 

Please see our general response above regarding the issue as to whether this approach should be 
called 4D-Var. 

Abstract 

• p.1, l.6-7: "capable of differentiating the vertical distribution of model errors": what does 
differentiating mean here? 

We changed this to read “capable of providing information on the vertical structure of model 
errors.” 

• p.2, l.2: "indicating the presence of resolution-dependent model errors": do you mean 
errors directly linked to the parameterizations in the physical core of the model or 
representativity errors also? 

These errors are due to the way the vertical transport is diagnosed from the low-resolution wind 
fields. A detailed discussion of this is presented in the companion paper.  

• p.2, l.4: "However, a major limitation of this approach is the need to better characterize the 
specified model error covariance in the assimilation scheme": this is true for all data 
assimilating systems in our domain. What does this study bring to this issue? 

The referee is correct. This is an issue for all data assimilation systems. We highlighted this in the 
abstract and in the conclusions to make it clear that this remains an issue. The weak constraint 
scheme offers no novel insights into characterizing the covariance matrices. 

Section 1 Introduction 

• p.2, l.21-22: "the impact of biases in chemistry and transport are often neglected": this is 
not exactly true, a lot of studies try and deal with biases in various ways e.g. debiasing 
previous to the inversion itself, specifying adapted R matrices, etc. Please look deeper into 
the available studies. 

The referee is correct. We have modified the text to read that “the impact of biases in chemistry 
and transport are often neglected or accounted for using various ad hoc approaches.” 

• p.2, l.32: " In contrast to the traditional "strong constraint" (SC) 4D-Var method, the WC 
scheme does not assume that the model is perfect": same remark as above, the so-called 
SC method does not imply that the model is assumed to be perfect, it implies that all errors 
are taken into account in the R (and B) matrix so that what is not is "perfect". 

Please see our general comment above regarding the assumption that the model is perfect in strong 
constraint 4D-Var. 
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• p.3, l.16-17: "Highly accurate aircraft CH4 profile measurements would be an ideal source 
of information, but they are limited in space and time.": what about aircores? 

AirCores provide excellent information on the vertical distribution, but they are still limited in 
space and time. We have included AirCores in the revised text. 

Section 2 Data and Methods 

• p.4, l.11-12: "due to the dependence of wetland emissions on the meteorological fields": 
do you mean that wetland emissions are actually recomputed from the references provided 
above with the regridded GEOS meteorological fields? Or computed on-line in GEOS-Chem? 

The wetland emissions are computed online in the version of GEOS-Chem used in the analysis, 
but, as described in the manuscript, this results in slight differences in the emissions between the 
2° x 2.5° and 4° x 5° resolutions (due to small differences in the regridded meteorological fields). 
To ensure consistency in the emissions between the two resolutions in our analysis we regridded 
the emissions from the 4° x 5° simulation to 2° x 2.5°. 

• p.4, l.21: "the period of 1 February 2010 to 31 May 2010": this is a very short period of time, 
which does not allow for one full seasonal cycle for mid-latitudes. Why not work on a full 
year? 

We are interested in assessing the utility of the weak constraint 4D-Var scheme in capturing the 
model bias. To do this there is no need to run the model over the whole seasonal cycle. However, 
a longer analysis would provide a means of examining seasonally varying biases and evaluating 
the impact of the seasonally varying observation coverage of GOSAT on the ability of the scheme 
to capture the biases. Such a study is broader in scope than the work presented here, but would be 
an interesting follow-up study.  

• p.4, l.22-25: "5.5 years ... initial condition for the analysis period": this seems a bit 
convoluted. Why not run a spin-up of about 9 years (life time of CH4) OR assimilate data to 
obtain initial conditions? 

We did assimilate GOSAT data to obtain optimized emissions for the initial conditions. As we 
stated in the manuscript, we ran without data assimilation for “5.5 years until July 2009. From July 
2009 to January 2010 we assimilated the GOSAT Proxy XCH4 retrievals (Parker et al., 2015) to 
obtain monthly mean emission estimates at 4° x 5° resolution. The optimized emissions were then 
regridded and used to perform forward model simulations at 2° x 2.5° resolution for the same 
period from July 2009 to January 2010. The updated model fields on 1 February 2010 at both 
model resolutions were taken as initial condition for the analysis period.” Thus, the initial 
conditions on 1 February 2010 are based on the a posteriori CH4 from optimized emissions 
obtained from the assimilation of GOSAT data from 1 July 2009 to 31 January 2010. 

• p.5, l.22-25: "The use of the alternative CO2 fields did not change any of the findings about 
model errors in our study. There may still be unidentified biases in both retrieval products. 
However, the fact that both CO2 fields were obtained using different methodologies gives 
us confidence in our results." Were both fields used for all the following results? But only 
one set of results is presented and there is no comment about a sensitivity test. Also, why 
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not use the default field? How was it not satisfying? 

Our assumption was that the use of CO2 fields from GEOS-Chem would be preferable for 
assimilation of the proxy XCH4 in GEOS-Chem, as the structures in the modeled CO2 would be 
consistent with those in CH4. However, as we discussed in the manuscript, the differences in the 
resulting XCH4 fields were small, with differences typically less than 3 ppb. Not surprisingly, we 
found that these small differences had no consequential impact of the initial assimilation with the 
two data sets. It demonstrated that the proxy approach works well. Instead of reverting back to the 
original CO2 fields, we used the GEOS-Chem CO2 fields for all of the analyses presented in the 
manuscript. 

• p.5, l.30-31: "However, we expect vertical structure to emerge from atmospheric transport 
patterns": what about the OH field patterns (e.g its vertical structure)? 

Because the lifetime of CH4 is long, we would not expect much vertical structure in the errors in 
the CH4 field due to OH. This can be seen in Figures 8 and 9 in the original manuscript (which are 
Figures 3 and 4 in the revised manuscript) for the OSSE in which we turned the OH sink during 
the assimilation period. The chemistry related bias was fairly uniform throughout the troposphere.  

• p.6, l.4-6: "Such precision could be enough in many regions of the world to improve 
knowledge about CH4 a priori surface emissions. However, the presence of potential model 
errors significantly undermines this assumption." This is not clear: which regions? Improve 
how? By decreasing the uncertainties by how much? What would be the required ratio 
between the model errors and the precision and the expected improvement of knowledge? 

Regions such as North America, where Sheng et al (2018) showed that enhancements in XCH4 
above the background in North American are about 10 ppb (as measured at Lamont). With a 
random error of about 12 pbb on each retrieval, assimilation of the GOSAT data should provide 
constraints on regional emissions when they are aggregated in space and time. We now explain 
this in the revised manuscript. It is unknown what would be the “required” ratio, but clearly one 
would expect the emission signal to exceed the measurement noise (which will depend on the 
degree to which the data are aggregated).  

Reference 
Sheng, J.-X., et al.: 2010–2016 methane trends over Canada, the United States, and Mexico 
observed by the GOSAT satellite: contributions from different source sectors, Atmos. Chem. 
Phys., 18, 12257–12267, https://doi.org/10.5194/acp-18-12257-2018, 2018. 

• p.6, l.19-23: why use only flasks and not continuous measurements? 

The flask data are widely used by the GHG inverse modeling community, so we chose to use them 
in our analysis. Given our interest in correcting the vertical distribution of CH4 in the assimilation, 
we focused more on incorporating the HIPPO, TCCON, and ACE-FTS data in the evaluation, 
rather than additional surface data.  

• p.7, l.2: "Retrievals are bias corrected based on comparisons with calibrated aircraft and 
AirCore profiles." Which aircraft profiles? Be sure not to use them in the assimilation if the 
validation data is to be kept totally independent. Why not use also aircores (others than 
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the ones used by TCCON) as validation data? 

We refer the referee to the Wunch et al. (2015) paper for details of the TCCON validation. It is not 
within the scope of our modeling study to discuss the details of the TCCON validation. In our 
assimilation, we only assimilated GOSAT XCH4 data.  
As regards the aircore data, they are another useful validation data set. We did not consider them 
when we began the project because we were focused on finding validation data with a more global 
distribution. However, given the increasing availability of aircore data, if we were starting the 
project today, we would include aircore data in the validation data set. 

• p.7, l.27: "the adjoint forcing commonly used in 4D-Var": please clarify what "adjoint 
forcing" means. 

“Adjoint forcing” is often used to describe the gradient of the cost function. Here in the text, we 
drew attention to the fact that our use of the term “forcing” is different from the traditional use of 
the expression. 

• p.7, l.21-22: "This is the assumption that is employed in standard 4D-Var, which is also 
referred to as "strong constraint" 4D-Var because the model trajectory is used as a strong 
constraint in the optimization." Same remark as in the General comments about the use of 
"4D-Var": the concentrations are linked through time but not the fluxes. 

Please see our general comment above regarding the use of 4D-Var to describe the assimilation 
scheme. 

• p.7, l.29-30: "The 4D-Var problem to estimate surface emissions is transformed into a 3D 
sources and sinks estimation problem": same remark as in the General comments: flux 
inversions are generally not actual 4D-Var and the cost function used is the same as what 
is shown after, but for the Q term. Does anything prevents Q from being included in R or in 
B? Please clarify the mathematical and technical differences between SC and WC. 

Please see our general comment above regarding issue as to whether the flux inversion problem is 
a 3D problem.  
We have added the strong constraint cost function to the manuscript and additional text in Section 
2.3 to better explain the differences between weak and strong constraint 4D-Var as used in our 
analysis.  

• p.9, l.9-14: how long does it take to run for practical cases? 

It takes about 12 days to complete 25 iterations of the 4-month weak constraint assimilation at a 
resolution of 2° x 2.5°. 

• p.9, l.18-23: "For each WC inversion ... about 10 ppb": this is a good idea but the validation 
data are not independent anymore since information contained in them is actually used in 
the inversions. Please clarify how this issue is dealt with when comparing to the data for 
validation. 
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We do not assimilate any of the validation data. We only assimilate the GOSAT XCH4 data and 
compare the resulting a posteriori fields during the 4D-Var iterations (as the cost function is 
minimized) to the validation data (i.e., the in situ, TCCON, and HIPPO data).  

• p.10, l.3: "Therefore, we did not attempt to characterize global pattern of model errors on 
shorter time scales": even with a period of three days for GOSAT data, information is 
available at shorter time scales e.g. in the GOSAT data and in the meteorology. Would this 
not make it possible to characterize patterns of model errors at shorter time scales? 

Even with global coverage every three days, there are still significant gaps in the GOSAT 
observational coverage due to cloud cover, for example. It is possible that we could estimate the 
model errors at shorter time scales than three days, but we have not investigated this.  

• p.10, l.4-6: "Little is known about the a priori structure of the model errors": this is not what 
appears from discussions and references cited afterwards: at least some elements such as 
the role of the horizontal resolution or the tropo-strato gradient are known. Is this 
information not usable in the inversion framework? 

The stratospheric bias in CH4 was known. However, it was unknown what was the impact on CH4 
of the weakened vertical transport identified by Yu et al. (2017) in their 222Rn, 210Pb, and 7Be 
analysis.  

• p.10, l. 9-end and p.11, l.1-2: the issues described here are the same as when building the 
R and B matrices in the so-called SC case. Therefore, the exploration of the nature of errors 
in the modelled CH4 uses the strong assumption of a diagonal Q. What are then the 
advantages of this methodology compared to the usual R and B matrices in the so-called 
SC, with various set-ups for R for example? 

As we discussed above, this weak constraint method of capturing the model error is consistent 
with the 4D-Var formalism. We have not explored the utility of trying to account for the model 
error using the R and B matrices in the context of the strong constraint assimilation. 

• p. 11, l.9-11:  "Therefore, we considered a uniform structure for Q to be   a satisfactory 
assumption for this initial assessment of model errors in the context of the WC 4D-Var 
analysis": is this statement justified by "expert- knowledge"? Is it not possible to design 
sensitivity tests to assess the impact of this strong assumption? 

As a follow-up analysis, we are examining the impact of a non-uniform Q on the weak constraint 
assimilation. 

• p.12, l.9: "we believe that the OSSEs should reveal the best performance of the WC 
method": it is a bit dangerous to show the performances of a methodology only in best-
case scenarios since the application to realistic cases may show the tool to be very limited. 

The text here was referring to the fact that most of the OSSE results are presented for March, which 
is the middle of the assimilation window, when one would expect the 4D-var scheme to provide 
the best estimate of the state. This would the case even with real data. We actually chose extreme 
model biases for the OSSEs that we expected would be challenging for XCH4 data to help mitigate.   
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• p.12, l.15: "for the real world applications, we expect less extreme model errors": would 
the method proposed here be able to characterize the errors if they are smaller? See also 
comment above. 

Please see our response to Referee #2 above (on Page 8). 

• .12, l.21-22: "We also conducted SC 4D-Var assimilation experiment for comparisons with 
the WC approach in the OSSE with biased surface emissions.” see General comments. 
Without more details, it is not possible to understand the differences between WC and SC. 
If SC contains less information than WC, the comparison is not really meaningful and 
interesting. 

The weak constraint and strong constraint assimilations are assimilating exactly the same 
observations. We have added a description of the strong constraint assimilation (including the SC 
cost function) in Section 2.3 to make this clear. Nevertheless, we have removed this experiment 
since it was not too informative, as noted by Referee #4. 

Section 3 Results 

• p.13, l.26 - p.14, l.4: how do the sensitivities in the model compare to the errors in the 
actual GOSAT data? 

The sensitivity is of XCH4 with respect the CH4 in the model state. We cannot directly compare 
them to the GOSAT precision. One would have to define a given perturbation in the state and ask 
how that perturbation, projected through the sensitivity, compares to the GOSAT errors.  

• p.14, l.7-8: "when using the SC method, we implicitly supply the assimilation with 
knowledge about the source of the bias": how? 

In this OSSE, as noted by Referee #4, we are imposing all of the bias in the surface emissions, and 
by design, the strong constraint assimilation assumes that all of the bias is at the surface emissions. 
As a result of this aspect of the OSSE, and to shorten the manuscript, we have removed this OSSE 
from the manuscript. 

• p.14, l.11-12: "Due to weak vertical sensitivity of the pseudo-data, it is difficult for the WC 
4D-Var method to mitigate strong localized vertical bias." The low sensitivity is a problem 
for data assimilation in general. What is particular to WC here? 

We are not claiming that this is particular to the weak constraint assimilation. We are only noting 
that because of the limited vertical information in the XCH4 data, the assimilation cannot mitigate 
strong localized vertical bias. 

• p.14, l.13-14: "Instead, it compensates for the bias by applying relatively weak CH4 state 
adjustment of the opposite sign in the column of the atmosphere above, particularly in the 
stratosphere": what are the consequences of the creation of such a dipole? 

We have not examined the consequence of this in the OSSE. We anticipate that it would not be 
too consequential since the largest bias is in the middle stratosphere, which will have a minimal 
impact on the total column.  
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• p.14, l.15-20: the additional information explicitly provided to WC could also be used in SC 
in the covariance matrices R and B. 

If one insists in using strong constraint 4D-Var, given the identified model bias, one could try to 
tune the R and B matrices to improve the performance of the assimilation, but it would be 
preferable to fix the model to remove the identified model bias. 

• p.14, l.33-34: "GOSAT retrievals possess sensitivity to biases in vertical transport and can 
distinguish...": this is not a property of the GOSAT data as such but of the whole data 
assimilation framework. Maybe "GOSAT retrievals contain information on the vertical 
transport, which can be used in our set-up to distinguish..." would be clearer. 

We have changed this to “GOSAT retrievals contain information to enable us to capture vertical 
transport bias even when…” 

• p.15, l.11-12: "we do not expect chemical biases to be as strongly localized as the biases 
associated with emissions and vertical transport": why? 

Because of the long lifetime time of CH4, we do not expect vertical transport to provide localized 
biases. This can be seen in Figure 8 in the original manuscript (Figure 3 in the revised manuscript), 
in which we turned off the chemical sink of CH4. 

• p.15, l.30-32: "The perfect observing system would completely remove the initial condition 
bias at the start of the assimilation period (on February 1). However, what is shown on 
February 1 is just an 8% reduction in the bias in each of the eight regions, relative to the a 
priori, with the rest of the bias propagated onto the assimilation period". What are the 
consequences of this? 

The results suggest that a “spin up” time of about two months would be desirable to avoid the 
impact of initial condition biases on the analysis. As a result, as noted at the beginning of Section 
4.1, we only examine the stratospheric bias in May 2010, to avoid any influence from the initial 
conditions. To shorten the OSSE section, as requested by Referee #2, we have removed Figure 11 
from the revised manuscript and instead briefly summarize the key result in the text. 

• p.16, l.3-4: " This suggests that additional vertical correlation between forcing terms in the 
stratosphere would be beneficial to accelerate convergence in the stratosphere." Why not 
test the sensitivity to such correlations? 

As we discussed in our response to Referee #2, we chose the simplest form of Q with which to 
evaluate the initial performance of the scheme. We are now doing experiments to quantify the 
structure in Q, and that will be the focus of a future manuscript. 

• p.16, l.11: "residual high latitude bias, which resembles noise or bias in the GOSAT 
observations." Is this due to the period of interest being winter in the Northern 
hemisphere? 

It is unclear what is the source of this residual bias. One would expect larger errors in the GOSAT 
retrievals at high latitude in winter/spring, but we have not investigated this. 
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• p.16, l.19-20: "the SC assimilation leaves significantly larger residual biases." What is the 
impact of these on the optimized fluxes and on the uncertainty reduction? 

The larger residual biases are due to the inability of the flux adjustments to mitigate the model 
bias. We have not tried to quantify what is the impact of these residuals on the fluxes since we can 
mitigate the biases using the weak constraint scheme. 

• p.17, section 3.2.1: the TCCON and NOAA data are not actually independent from the WC 
(see above). How is this dealt with? If they are actually independent from the SC, the 
comparison between SC and WC against the fit to these data is not meaningful. 

We do not assimilate the TCCON or NOAA data. These data are used only to evaluate the 
assimilation. We assimilate only GOSAT data, and both the weak constraint and strong constraint 
schemes assimilate exactly the same data. 

• p.18, l.11: "similar errors": similar to what? The sentence is not very clear to me. 

We mean that the errors may be similar in both the 2° x 2.5° and 4° x 5° simulations. We have 
reworded this on Page 16 (line 21) in the revised manuscript. 

• p.18, l.9-13: these sentences seem a bit convoluted. Is the idea to state that a station such 
as IZO sees the upper troposphere and is best compared to the model’s upper troposphere? 

We are arguing that the improved model agreement at IZO with the weak constraint 4D-Var 
scheme is due largely to improvements in the column in the upper troposphere and lower 
stratosphere, since neither model resolution can capture the topography for the island, which will 
result in lower tropospheric model transport errors in the vicinity of the island. We have rewritten 
the text here on Page 16 in the revised manuscript. 

• p. 18, l.27: what about the impact on GOSAT retrievals of the still long nights around the 
North pole during the period of interest? 

We are unsure as to how polar night impacts high latitude GOSAT retrieval just outside the 
terminator. This is beyond the scope of the manuscript. 

Section 4 Discussion of Model Biases 

• p.19, l.22-23: "a stratospheric bias introduced in the system through the initial conditions 
": is there no other way than the ICs to introduce a bias in the stratosphere? 

There are numerous ways the stratosphere could be biased. We intentionally introduced an initial 
condition bias to assess the ability of the system to remove such a bias.  

• p.19, l.29-30: "it shows that the SC assimilation attempts to correct the positive high-
latitude stratospheric CH4 bias at the expense of surface emissions": this seems to be a 
direct consequence of the set-up of the SC inversion. More details on this inversion are 
required to discuss its results. 
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It is a direct consequence of the fact that the strong constraint assimilation assumes that all the 
model bias can be mitigated through adjustment of the surface fluxes. We have added a more 
detailed description of the strong constraint assimilation in Section 2.3. 

• p.21, l.6-14: can you deduce some recommendations for improvements in the model? If 
not, how can this knowledge be used for setting up inversions for fluxes? 

See our response to general comments 2 and 3 above. 

• p.21, l.15-23: same questions as above: recommendations for improvements in the model? 
Information for flux inversion? 

See our response to general comments 2 and 3 above. 

• p.22, l.25-26: what could be concluded? Recommendations for improvements in the 
model? Information for flux inversion? 

See our response to general comments 2 and 3 above. The assimilation results presented here 
motivated the work in our companion GMD paper, in which we examined the sources of the model 
errors and made recommendations for improving the model. 

• p.23, l.13-14: "Finally, the results strongly suggest that the WC assimilation and the GOSAT 
observations have the potential to diagnose transport errors at both model resolutions" 
What would prevent the assimilation of data to bring information on errors at any 
resolution (if the data are relevant)? 

The referee is correct. If the data have sufficient information it should not matter. We have 
removed the statement from the manuscript. 

Section 5 Conclusions 

• p.24, l.1-2: " However, characterizing these correlations will be challenging": is it possible 
at least to design sensitivity tests to explore various possibilities for these error 
correlations? 

Yes, and that will be the focus of a future manuscript. The current manuscript, together with its 
companion GMD paper, represents a significant effort to adapt the weak constraint scheme for 
CH4 assimilation. Developing these correlations and expanding the manuscript to incorporate 
sensitivity tests with the correlations would have made the manuscript unwieldy.  

• p.24, l.5-6: "Initial comparisons suggested that GEOS-Chem was affected by biases not 
solely related to discrepancies in surface emissions." This is not very informative as it is well 
known and flux inversion would be relatively straightforward otherwise. 

Yes, it is well known that models have biases, and in the subsequent sentences we discussed the 
nature of these biases in GEOS-Chem and the fact that the weak constraint 4D-Var scheme was 
able to mitigate them. 

• p.24, l.13-14: "Meanwhile, the results showed that running the a priori model at 
2x2.5resolution produced better agreement with TCCON observations than the a posteriori 



 
 

22 

fields from the SC 4D-Var surface emission optimization at 4x5." What can be deduced from 
this result? 

As we concluded in the companion paper in GMD, without correcting for the biases, “we do not 
recommend the 4° x 5° GEOS-Chem model for CH4 inverse modelling.” 

• p.24, l.31-32: "glint measurements": a lot of other data could be assimilated, not only 
satellite data related to the concentrations of a given species. 

Yes, there are a lot of other data, but satellite observations give the best global observational 
coverage. We stressed the need for glint data here, in the context of the shortwave infrared 
measurements, to obtain a more global coverage, particularly over the oceans. 

• p.25, l.2: "if the model were assumed to be perfect, as is the case in SC 4D-Var": see General 
comments: this is not so simple. 

Please see our general response regarding the assumption that the model is perfect. We now state 
that “…if the evolution of the model state were assumed to be perfect.” 

• p.25, l.7: "Potentially, any CTM may be improved if the signal from the surface emissions 
can be separated from other model errors." This is only relevant if the objective is to 
optimize fluxes. A given CTM and set up may work very well with errors compensating one 
another for other objectives (e.g forecasting). Be more specific on what improvements 
could be made, how and to which purposes. 

Our overall interest here is in optimizing fluxes. We have added text to make this clear. 

• p.25, l.14: "regional-scale analysis at higher spatial resolution": how in practice? The link to 
what it is used for in this study is not plain for me. 

By optimizing the state, we can provide a 4D field of CH4 that can be used as boundary conditions 
for a regional model. 

Technical corrections 

• p.10, l.33: "the errors in the model CH4 simulation" -> the errors in the modelled CH4 
concentrations? 

We have changed this to “explore the structure of the errors in the model.” 

• p.11, l.19: "The sensitivity of the GOSAT observations to the modelled state" -> The 
sensitivity of the equivalent of GOSAT observations to the modelled state 

We have removed this text to shorted the OSSE section, as requested by Referee #2. 

• p.15, l.13: "in the Fig.8" -> remove "the" 

Removed. 

• p.18, l.10: "inland" -> island? 

Fixed. 
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• p.18, l16: homogenize including/excluding Sodankyla. 

Fixed. 

• p.22, l.9: "lofted" -> lifted 

Changed. 

Tables and Figures 

• Tables 1, 2: please use consistent names for the columns in the legend and table. 

Fixed. 

• Fig. 4: the black boxes are not so easy to see: maybe use a very different color (try pink?) 

We have removed this figure from the manuscript. 

• Fig. 15: do not repeat in the legend what appears in the graph itself so that is it easier to 
read and may be kept on one page. 

We have shortened the description in the figure caption so that it is easier to read. 

• Fig. 16: reduction (third column) may be easier to evaluate in % and absolute value. 

We believe that the change in the absolute bias provides the reader with a meaningful sense of the 
improvement that the assimilation offers. 

 
 
Anonymous Referee #4 
General Review Comments: 

This is a significant and important body of work and I believe the community will find it very 
interesting. The main limitations I see are in terms of the figures which don’t always back up 
the assertions in the text. Sometimes, in the case of Fig6/Fig7, they clearly support the text 
but seem to fail because of lack of difference plots or poor choice of color scales. The text is 
sometimes hard to follow because of the multiple terms being used, eg. state/forcings/3D 
CH4 adjustments and parameters vs. surface fluxes.  After providing the theory, it might be 
wise to work with common terminology. 

Furthermore, I particularly found the assumed variability of the “forcings” in time and space, 
somewhat hard to follow. In summary though, the work is quite interesting and novel in its 
handling of the main source of error in atmospheric trace gas inversions (transport). 

We have shortened the manuscript by deleting some of the material in the OSSE section. We have 
also tried to improve the description of the experiments to make it easier for the reader to follow 
the discussion.  

Specific Comments: 
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caption Figure 2: "and smoothed with the GOSAT averaging kernels" The authors should give 
the exact equation they use to calculate modeled XCH4 from their model: is the prior CH4 
profile assumed in the retrieval used in this calculation, in addition to the averaging kernel, or 
not? 

We have added the equation (Eq. (1) in the revised manuscript) describing the GOSAT retrievals 
in terms of the averaging kernels and a priori profile. 

Figure 6: Fig 7 provides a motivating summary of Fig 6. However, looking at Fig 6 relative to 
its colorbar, it is hard to see that the two even provide the same information. I’d really 
consider adopting a more dynamic color palette for this image. 

Our intention with Figure 6 was to give the reader a sense of the spatial patterns of the imposed 
model bias and the resulting correction. Because we are showing the differences at the surface and 
in the upper troposphere, and vertically in the tropics and mid-latitudes, it was difficult to find a 
scale that will allow the reader to quantitatively compare the plots. Thus, we included Figure 7. 
We have added text to emphasize that the focus of Figure 6 (Figure 1 in the revised manuscript) is 
the spatial patterns of the model error corrections. 

p6 l10: "...with smaller [modeled] XCH4 in the SH..." A difference plot would be helpful in 
Figure 2. I am having a very hard time seeing how XCH4 is lower in the SH in the model (top 
panel) than in the measurements (bottom panel) – the opposite appears to be the case, to my 
eye. 

See the response below. 

p6 l11: I agree that China, India, and equatorial Africa are higher in the model, but South 
America appears to be lower, at least over the Amazon. Again, a difference plot in Figure 2 
would help. 

We apologies for the confusion here. The discussion regarding Figure 2 was about the spatial 
patterns of the XCH4 field in both the model and observations. The XCH4 is smaller in the southern 
hemisphere than in the northern hemisphere in both the model and observations. Similarly, there 
is enhanced XCH4 over South America and equatorial Africa in both the model and observations. 
We have removed Figure 2 to shorten the discussion in this section, as requested by Referee #2. 

p7 l29-on: "The 4D-Var problem to estimate surface emissions is transformed into a 3D 
sources and sinks estimation problem..." I think you ought to be a bit more precise with the 
wording here. The 4Dvar method in general can be used to estimate both surface 
sources/sinks and 3D fields, either using the strong- or weak-constraint dynamics. I think 
what you want to say is that for your application, which in the past was solving only for 
surface fluxes and not 3D fields, you are now allowing this 3D forcing term to be solved for, as 
well. You might want to mention here that you are not too concerned with what this 3D field 
represents in your application – it could be a chemical source/ sink, a correction to the 3D 
concentration field, or a dynamical error. That comment would help those who are 
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accustomed to thinking of this term as being solely a dynamical error term in the weak-
constraint approach. 

We have added text clarifying this point on Page 8 (lines 2-3) in the revised manuscript. 

p8 L15:  There is a spurious extra term in the cost function here that should lead to   some 
"double counting" of the dynamical errors. To be specific, the last two terms in the cost 
function both involve the dynamical mismatches, while only one is needed, and that term 
ought to be: ... + [-Gu_i]ˆT [Q_i]ˆ-1 [-Gu_i] , which equals ... + (x_i -  M(x_i-1,p))ˆT [Q_i]ˆ-1 (x_i 
- M(x_i-1,p)) 

If we note that lambda_i = [Q_i]ˆ-1 (x_i - M(x_i-1,p)), then there is no need to carry around 
the additional variable u_i, and u_i can be calculated from lambda_i  as 

G u_i = - [Q_i] lambda_i 

Similarly, it is not necessary to have equations for the partial of L with respect to both 
lambda_i and u_i. 

In the Lagrangian, the first term is the observational mismatch, the second term is the a priori 
constraint on the emissions, the third term is the a priori constraint on the state corrections, and the 
fourth term is the constrain from the dynamics. We are not “double counting” the influence of the 
dynamics. 
The Referee is correct, we do not need the partial of the Lagrangian with respect to λi. We have 
removed this equation. 

p10 L5:  "...  a priori estimates of the model errors were set to zero." Just to be sure here, you 
are setting the actual initial model errors themselves equal to zero (u_i=0) and not the 
assumed uncertainty in those same errors (Q_i=0),  correct? Because  setting Q_i=0 would be 
equivalent to reverting back to the hard dynamical constraint. Writing this out with the 
mathematical symbols would eliminate any uncertainty the reader might have on that score. 

Yes, we are setting u = 0. We now write this out mathematically on Page 10 (line 6). 

p10 second paragraph: This discussion of the relative weighting of the forcing versus emission 
parts of the solved-for control vector points to something that could be simplified in this 
approach. It can be shown that the forcing vector -Gu_i at any iteration is simply [Q_i] 
lambda_i – that is, the adjoint state vector times the assumed model error covariance matrix. 
The forcing vector does not need to be solved for in the control vector – it is already solved 
for in the strong-constraint 4Dvar, essentially, since lambda_i is solved for. All that needs to 
be done to implement the weak-constraint version is to add the forcing vector (=[Q_i] 
lambda_i) onto the state at each step during the forward runs (although saving lambda_i at 
fine temporal resolution, at the timestep of the model, for example, can take a lot of memory 
and I/O time). Once this is recognized, it is clear that the full parameter space of the forcing 
vector can be solved for, up to the temporal resolution limits just mentioned.  Since it is not 
too clear what the magnitude of [Q_i] ought to be, some experimentation with the relative 
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weighting between the forcing and emissions parts of the cost function is probably still 
needed, even with the simplification just noted. 

We thank the referee for the suggestion. We agree that once the sensitivities have been calculated 
in the strong constraint case, it is straightforward to extend the model to estimate the forcing terms 
in weak constraint 4D-Var. We will consider the implications of the referee’s suggestion for 
simplifying the way we have implemented the scheme in the model.  

p10 L32-34: "Instead, we use the WC 4D-Var method to optimally constrain the CH4 state and 
explore the nature of the errors in the model CH4 simulation." Actually, you   are not really 
solving for an optimal estimate of the CH4 state (the 3D CH4 field at each timestep), because 
you have not put this in the control vector that you are solving for. This state evolves 
according to your model M and has dynamical constraints upon it. What you are really solving 
for is some sort of error term on the state, which might be thought of as a dynamical error, or 
a 3D source/sink (e.g.  a chemical one) if one is not modeled, or an error on a modeled 3D 
source/sink. Since the measurements have error on them, this also allows large measurement 
errors to be given less importance in the problem (the measurement error is turned into a 
large forcing error and its effect is on the actual parameters solved-for is lessened). 

The referee is correct. This is a more accurate description of what we are doing. We have modified 
the text to state that we are using “the WC 4D-Var method to constrain the 3D corrections to the 
CH4 state.” 

p10 L33-34: "We performed two types of inversions: “full state assimilation” and “flux+state 
assimilation”." Point back to your description of these two cases in Section 2.3 here. I had 
already forgotten that you described them earlier by this point. Also, it wouldn’t hurt to say 
explicitly that the "full state" case solves only (or mainly) for u, while the "flux+state" case 
solves for both u and p. Spell it out, especially since the state is defined as "x" earlier, and you 
don’t actually solve for the full 3-D field "x" in your control vector, no? I guess you get the 3D 
CH4 fields by adding on the dynamical errors that you do solve for onto the state using 
equation (2), right? 

Thank you for the suggestion. We have modified the text as suggested. 

p11 L13: This would be a good place to mention that, in all these OSSEs, the same transport 
model was used to generate the truth as was used in the inversion. In other words, these are 
all "perfect model" experiments in all respects except the isolated error signal looked at in 
each experiment.  This is important to say, because most readers will be thinking of the weak 
constraint as a way to handle general model errors, and might be thinking that you used a 
different transport model for the generating the truth and doing the inversion (I will actually 
advocate adding an OSSE of this sort below in the emissions case.) 

We have added text stating this on Page 11. 

p13 L29-31: Isn’t the greater sensitivity in the upper troposphere / lower stratosphere also 
due to the fact that the GOSAT  Xch4 averaging kernel is weighted most heavily in the mid- to 
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upper-troposphere (it being a thermal IR measurement)? A small figure showing what the 
GOSAT XCH4 averaging kernel actually looks like might be valuable here. 

We are using the shortwave infrared retrievals (see Section 2.2.1), so the averaging kernels are 
heavily weighted toward the lower and middle troposphere. Since the manuscript is already too 
long (with 19 figures in the submitted version), and because plots of the averaging kernels are in 
the published literature, we would prefer not to include such a plot in the manuscript. We added 
the Yoshida et al. (2011) reference in Section 2.2.1, which contains plots of the averaging kernels. 

p14 L9:  "The results confirm that the SC 4D-Var method better removes CH4 biases due to 
emissions." This is misleading.  Yes, in this setup the SC does better than the WC because it 
puts all the measurement information into the cause of the difference, the emissions, by 
design (it doesn’t solve for the 3D forcing corrections) as you have noted. But in general case 
of when there are model errors, the WC case should solve for emissions more accurately than 
the SC case. It would be really useful if you could have done an additional OSSE here in which 
you introduced emissions errors AND dynamical errors in the truth, then tried to estimate 
both using the SC case and the WC "flux+state" setup. That ought to show the WC case doing 
better, since it would correctly partition the dynamical and emissions errors to the forcing 
terms and emissions parameters, whereas the SC would incorrectly attribute the dynamical 
errors solely as emissions errors. You should use a completely different transport model in 
generating the truth from what is used in the inversion to make this case realistic. The 
dynamical errors in Q should be based on the differences between the two transport models. 
I think that that new OSSE would demonstrate the benefit of the WC approach for that case 
that a lot of readers care about: how much their surface emissions estimates are degraded by 
model error when using the SC approach. 

The referee is correct. In retrospect it is not surprising that the strong constraint performs better 
when we impose all of the bias in the surface fluxes. Since this OSSE is not that informative, we 
have removed it from the manuscript, in the interest of shortening the manuscript. The suggestion 
of the referee to use a different transport model to show that the strong constraint assimilation will 
incorrectly attribute the transport errors to flux errors would have been helpful earlier in the 
analysis. In our companion paper we effectively show this. We found larger flux corrections with 
the strong constraint assimilation at 4° x 5° than at 2° x 2.5°, which is consistent with the strong 
constraint assimilation incorrectly adjusting the fluxes to compensate for the larger model errors 
at 4° x 5°. 

p16 L15-18:  I cannot tell from Fig 12 and 13 that the high latitude a priori bias is smaller in 
2x2.5 compared to 4x5. Similar question for the model bias reduction. It may just be that the 
color scale saturates so quickly in the images? Are they zonal avg summary stats you could 
provide to back this up? 

This can be seen more clearly in Figure 2 and 3 in our companion paper in GMD. In Figure 3 in 
the GMD paper we plot the zonal mean differences of the 4° x 5° and 2° x 2.5° model with respect 
to the ACE-FTS data. 
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p17 L10: "The results suggest that GEOS-Chem a priori CH4 simulation suffered from biases 
that were not related only to incorrect surface emissions." Since GEOS-Chem is not perfect 
(i.e. the real world has different transport) this is the most obvious source of the errors. 

We agree that this is obvious, but we felt it necessary to point it out nevertheless. 

p18 L5: I find it a bit perplexing that 2x2.5 sims are generally argued to provide better 
atmospheric transport but perform more poorly against in situ obs, which one would think 
would be the most sensitive to things like vertical transport. Would you consider this an 
indication of residual error in surface CH4 fluxes? 

Yes, we believe that this is an indication of residual error in the surface fluxes. Because the 
constraints that the GOSAT data provide on regional fluxes is limited, the posterior flux field at 
2° x 2.5° is noisier than at 4° x 5°. For example, Maasakkers et al. (2019) found that their inversion 
of GOSAT data to estimate CH4 fluxes for 2010-2015 had only 128 degrees of freedom for signal 
on the global 4° x 5° GEOS-Chem grid. 
Maasakkers, J. D., et al., Global distribution of methane emissions, emission trends, and OH 
concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015, 
Atmos. Chem. Phys., 19, 7859–7881, https://doi.org/10.5194/acp-19-7859-2019, 2019. 

Tables 1 & 2:  These comparisons to independent data are powerful demonstrations that 
using the weak constraint approach on the GOSAT XCH4 data really does improve the 
estimated 3D CH4 fields better than the SC approach. Apparently either the transport or the 
measurements are bad enough that the WC results in a big improvement.  If the GOSAT data 
are badly biased, adding flex in the state trajectory would help things, even if the transport 
were not too bad. 

Yes, it would help even if the GOSAT data were badly biased. However, based on previous work, 
we believe that the problem is with the model.   

p22 L30: I get the averaging out of resolved eddy motions causing problems but what are you 
referring to by “incorrect” regridding? 

This was poorly worded. When we degrade the model resolution, the air mass flux is not conserved 
from one resolution to another in the regridding. The text now states that the vertical transport is 
weakened due to “loss of eddy mass flux and air mass flux in the regridding of the meteorological 
fields.” 

p23 L28:  "Despite having almost flat averaging kernels in the troposphere..." Show a plot of 
the GOSAT XCH4 averaging kernel – since GOSAT measures it in a thermal IR band, I would 
have thought that the averaging kernel would be mainly sensitive to the upper troposphere. 

As we mentioned above, we are using the CH4 retrievals based on the shortwave infrared (SWIR) 
measurements, so the sensitivity is relatively flat throughout the lower and middle troposphere. 
We have added the Yoshida et al. (2011) reference in Section 2.2.1 that the reader can consult for 
a description of the SWIR averaging kernels.  
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Minor Comments: p5 line 13: should this read "and the GHG_CCI group"?? 

We have corrected the text. 

p5 L20:  "produced a comparable fit...": to what, the old three-model suite used in the 
retrievals? 

Comparable to the agreement that we obtain using the XCH4 data with the original CO2 fields. We 
now state that “…a posteriori inversion results using the new CO2 fields and the original fields 
generally produced comparable fits to independent…” 

p5 L24: you should say GOSAT "XCH4" here, since that is what you are looking at;  "CH4" does 
better than that, I think. 

We do mean CO2 fields here; the original LMDZ/MACC-II Co2 fields and the GEOS-Chem a 
posteriori fields.  

P21 L25-26: Reword these lines, I don’t think the CH4 budget is conserved because there is 
bias in the stratosphere induced by transport error. 

The referee is correct. A transport bias can change the CH4 distribution and thus the overall loss 
of CH4. We have removed this text. 

P23 l8: add a comma before “are”. 

We added the comma. 

In general, I would prefer full descriptions like “the difference between A and B” as opposed 
to the “bias in A”. The term “bias” means a lot of different things, and can relative to another 
unspecified quantity,  and using the full description is always going    to be less confusing 
albeit more wordy. 

We have tried to include the full description where possible, without making the text tedious since 
the main focus of the analysis is on biases.  
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Abstract.

We examined biases in the global GEOS-Chem chemical transport model for the period of February-May 2010 using weak

constraint (WC) four-dimensional variational (4D-Var) data assimilation and dry-air mole fractions of CH4 (XCH4) from the

Greenhouse gases Observing SATellite (GOSAT). The ability of the observations and the WC 4D-Var method to mitigate

model errors in CH4 concentrations was first investigated in a set of observing system simulation experiments (OSSEs). We5

then assimilated the GOSAT XCH4 retrievals and found that they were capable of differentiating the vertical distribution

::::::::
providing

::::::::::
information

::
on

:::
the

:::::::
vertical

:::::::
structure

:
of model errors and of removing a significant portion of biases in the modelled

CH4 state. In the WC 4D-Var assimilation, corrections were added to the modeled CH4 state at each model time step to account

for model errors and improve the model fit to the assimilated observations. Compared to the conventional strong constraint (SC)

4D-Var assimilation, the WC method was able to significantly improve the model fit to independent observations. Examination10

of the WC state corrections suggested that a significant source of the model errors was associated with discrepancies in the

model CH4 in the stratosphere. The WC state corrections also suggested that the model vertical transport in the troposphere

at mid- and high-latitudes is too weak. The problem was traced back to biases in the uplift of CH4 over the source regions in

eastern China and North America. In the tropics, the WC assimilation pointed to the possibility of biased CH4 outflow from the

African continent to the Atlantic in the mid-troposphere. The WC assimilation in this region would greatly benefit from glint15

observations over the ocean to provide additional constraints on the vertical structure of the model errors in the tropics. We

1



also compared the WC assimilation at the 4◦ × 5◦ and 2◦ × 2.5◦ horizontal resolutions and found that the WC corrections to

mitigate the model errors were significantly larger at 4◦ × 5◦ than at 2◦ × 2.5◦ resolution, indicating the presence of resolution-

dependent model errors. Our results illustrate the potential utility of the WC 4D-Var approach for characterizing model errors.

However, a major limitation of this approach is the need to better characterize the specified model error covariance in the

assimilation scheme.5

1 Introduction

Atmospheric concentrations of methane (CH4), the second most important anthropogenic greenhouse gas, have been rapidly

raising since 1850 (Etheridge et al., 1992). However, atmospheric measurements in recent decades show that the rate of CH4

increase in the atmosphere has varied and its behaviour is not well understood (Dlugokencky et al., 2009). Significant effort has

been put into characterizing surface emissions of CH4 in order to attribute its recent trends. In this context, a number of satellites10

have been launched to measure atmospheric CH4 in order to constrain its sources. These include Envisat carrying the Scanning

Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (Schneising et al., 2011), the Greenhouse

Gases Observing Satellite (GOSAT) carrying the Thermal And Near-infrared Sensor for carbon Observation Fourier Transport

Spectrometer (TANSO-FTS) (Kuze et al., 2009), Sentinel-5p with the Tropospheric Monitoring Instrument (TROPOMI) on-

board (Veefkind et al., 2012), and the Greenhouse Gases Satellite (GHGSat). Proposed missions include the Methane Remote15

Sensing Lidar Mission (MERLIN) (Kiemle et al., 2014), GOSAT-2 (Nakajima et al., 2017), the Geostationary Carbon Cycle

Observatory (GeoCARB) (Polonsky et al., 2014) and the recently-announced MethaneSat. However, current regional CH4

emissions remain largely uncertain (e.g., Saunois et al., 2016). One of the biggest challenges for reducing uncertainty on

emission estimates is the relatively weak signal of emissions in the atmospheric column of CH4, which puts tight requirements

on the accuracy of satellite measurements. However, while future satellite instruments and improved spectroscopy are expected20

to provide better CH4 measurements, errors in the atmospheric models used to simulate CH4 remain poorly characterized.

While random model errors can be accounted for in flux inversion analyses, the impact of biases in chemistry and transport are

often neglected
:
or

:::::::::
accounted

:::
for

:::::
using

::::::
various

::
ad

::::
hoc

:::::::::
approaches. In the case of CH4, which is a relatively long-lived gas with

an atmospheric lifetime of about 9 years (Prather et al., 2012), chemistry plays a critical role in long-term trends (McNorton

et al., 2016), whereas transport, alone or coupled with chemistry, defines how total surface emissions are distributed on a25

regional scale. Therefore, transport errors, such as those produced by numerical advection schemes, biases and uncertainties of

meteorological fields, and parametrization of sub-grid scale processes may significantly undermine our ability to use models

to relate emissions to atmospheric observations, and thus our ability to improve CH4 emission estimates (Prather et al., 2008;

Locatelli et al., 2015; Patra et al., 2011).

One potential solution is to apply a bias correction to the model in the context of the inversion analysis. Simple bias correction30

schemes with uniform or latitudinally dependent bias estimates have been attempted before (Bergamaschi et al., 2009; Fraser

et al., 2013; Monteil et al., 2013; Alexe et al., 2015; Locatelli et al., 2015), mostly to correct poor description of the modeled

stratosphere. Here we explore the utility of a “weak constraint” (WC) four-dimensional variational (4D-Var) data assimilation
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method to characterize forward model errors. In contrast to the traditional “strong constraint” (SC) 4D-Var method, the WC

scheme does not assume that the model
:::::::
evolution

:
is perfect. The WC 4D-Var method was introduced by Sasaki (1970) and

used in numerical weather prediction (NWP) models by Derber (1989), Zupanski (1997) and Trémolet (2006, 2007). It was

first applied by Keller (2014) in the GEOS-Chem simulation of atmospheric carbon monoxide (CO) to characterize model bias.

One of the first attempts to apply bias correction in chemical data assimilation was done in the framework of the suboptimal5

Kalman filter by Lamarque et al. (2004), who used the bias estimation approach of Dee and Da Silva (1998) to constrain

the CO state using measurements from the Measurement of Pollution in the Troposphere (MOPITT) instrument. The study

pointed to the possibility of errors in the model vertical transport, however most of the estimated biases were attributed to

poor a priori estimates of CO surface emissions in the model. The major challenge for this type of analysis for CH4 is the

limited information available about the global vertical distribution of CH4 in the atmosphere. There are satellite observations10

that contain information about the CH4 distribution in the middle and upper troposphere, such as the thermal infrared CH4

retrievals from the Tropospheric Emission Spectrometer (TES) on-board the NASA Aura satellite (Worden et al., 2012), or in

the stratosphere, such as the solar occultation measurements from the Atmospheric Chemistry Experiment Fourier Transform

Spectrometer (ACE-FTS, Bernath et al., 2005) on-board SCISAT. However, the accuracy of these measurements, based on

validation studies (for example, De Mazière et al., 2008; Wecht et al., 2012), may not be sufficient to detect model errors.15

The most accurate satellite measurements are those of the total dry-air mole fraction of CH4 in the total atmospheric column

(XCH4) obtained by TANSO-FTS on-board GOSAT. However, these measurements provide less vertical information on CH4

than those from TES or ACE-FTS, although the latter are less sensitive to surface emissions. Highly accurate aircraft
::
or

:::::::
AirCore

CH4 profile measurements would be an ideal source of information, but they are limited in space and time. We explore here the

information content of GOSAT CH4 observations and show that despite being designed to constrain surface emissions, they20

contain sufficient information to help characterize possible model errors. We assimilate the GOSAT observations using the WC

4D-Var data assimilation approach to estimate biases in GEOS-Chem. This approach is shown to provide a valuable tool for

diagnosing and determining the origin of model errors.

This paper is organized as follows. Section 2 gives an overview of the forward model, the observations, and the WC 4D-

Var method. It also contains a description of the various sensitivity studies conducted through a series of Observing System25

Simulation Experiments (OSSEs). In Sect. 3, we present the results of the sensitivity experiments, as well as the results of the

assimilation of real GOSAT observations. Sect. 4 provides an interpretation of the pattern of model biases estimated from the

GOSAT assimilation. Finally, conclusions are given in Sect. 5.

2 Data and Methods

2.1 The GEOS-Chem Model30

For all assimilation experiments we use version v35 of the GEOS-Chem adjoint, which is based on version v8-02-01 of the for-

ward model, with updates up to v9-02 (Henze et al., 2007). The GEOS-Chem CTM (www.geos-chem.org) is driven by archived

meteorological fields from the Goddard Earth Observing System (GEOS-5.2.0) produced by the NASA Global Modelling and
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Assimilation Office (GMAO). The meteorological fields are regridded from their native resolution of 0.5◦ × 0.67◦ with 72 ver-

tical levels to 4◦ × 5◦ and 2◦ × 2.5◦ with 47 vertical levels. The vertical grid spacing in the troposphere varies from about 150

m in the lower part to about 1 km in the upper part. CH4 is advected using the multi-dimensional flux-form semi-lagrangian

(FFSL) scheme by Lin and Rood (1996). Convection is implemented based on the relaxed Arakawa-Schubert scheme (Moorthi

and Suarez, 1992). The model uses a simple treatment of turbulent mixing in the boundary layer by instantaneously mixing5

species from the surface to the top of the planetary boundary layer (PBL). The GEOS-Chem CH4 sources and sinks used here

are described in detail in Wecht et al. (2014). Anthropogenic CH4 sources include emissions from natural gas and oil extrac-

tion, coal mining, livestock, landfills, waste water treatment, rice cultivation, biofuel burning and other minor sources and are

based on the 2004 anthropogenic inventory from the Emission Database for Global Atmospheric Research (EDGAR) v4.2

(European Commission Joint Research Centre/Netherlands Environmental Assessment Agency, 2009). Natural CH4 sources10

include wetland emissions after Kaplan (2002) and Pickett-Heaps et al. (2011), termite emissions (Fung et al., 1991) and open

fire emissions from the daily Global Fire Emissions Database Version 3 (GFED3) (van der Werf et al., 2010; Mu et al., 2011).

The CH4 emissions at 4◦ × 5◦ and 2◦ × 2.5◦ resolutions are slightly different due to the dependence of wetland emissions

on the meteorological fields. Therefore, for consistency of the analysis of model errors, the emissions were regridded from the

coarser to the finer resolution. The main loss of CH4 (about 90% of the total loss) in the atmosphere is due to oxidation by OH,15

with the remaining 10% sink mainly due to soil absorption and oxidation in the stratosphere. CH4 chemistry is performed in

off-line mode in which changes in CH4 concentrations do not feed back on other species. Tropospheric OH fields in the model

are prescribed as a three-dimensional monthly mean climatology from a tropospheric chemistry simulation in GEOS-Chem

v5-03 (Park et al., 2004). Stratospheric CH4 loss frequencies are from archived climatology of the NASA Global Modelling

Initiative (GMI) model (Murray et al., 2012).20

The adjoint model is described by Henze et al. (2007) and has been used for assimilation of CH4 observations by Wecht et al.

(2012, 2014), Turner et al. (2015), Bousserez et al. (2016), and Tan et al. (2016). For the analysis presented here, we focus on

the period of 1 February 2010 to 31 May 2010. The CH4 fields were spun up at a resolution of 4◦ × 5◦ and 2◦ × 2.5◦ for about

5.5 years until July 2009. From July 2009 to January 2010 we assimilated the GOSAT Proxy XCH4 retrievals (Parker et al.,

2015) to obtain monthly mean emission estimates at 4◦ × 5◦ resolution. The optimized emissions were then regridded and25

used to perform forward model simulations at 2◦ × 2.5◦ resolution for the same period from July 2009 to January 2010. The

updated model fields on 1 February 2010 at both model resolutions were taken as initial condition for the analysis period. As a

result, the initial conditions at both resolutions contain similar amounts of CH4 in the atmosphere. However, CH4 is distributed

differently, reflecting the balance between emissions and transport at each model resolution.

2.2 Measurements30

2.2.1 GOSAT

We obtain information about the CH4 distribution in the atmosphere from XCH4 retrievals from the TANSO-FTS on-board

GOSAT, which has a three-day repeat orbit period. The instrument has a surface footprint of 10.5 km in diameter and records
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spectra at about 13:00 local time. We use version 5.2 of the University of Leicester (UoL) GOSAT Proxy XCH4 data product.

The retrieval algorithm is explained in detail in Parker et al. (2011, 2015). In this algorithm, simplified spectral retrievals of

XCO2 and XCH4 are obtained in spectral bands centred at 1.65 µm and 1.61 µm, respectively. The final total column-averaged

dry-air mole fraction of CH4 is obtained by multiplying the retrieved XCH4/XCO2 ratio by modelled XCO2 fields. This is

useful for cancelling out common spectral features caused by light path modifications due to thin clouds, aerosol scattering, and5

instrumental artefacts in close spectral bands. However, a reliable knowledge of the XCO2 data is required. The Proxy method

provides significantly greater observational coverage, especially in tropical areas, compared to the “full-physics” retrievals.

The weakness of the approach is in the fact that the modeled CO2 fields may still contain biases that are not accounted for

in the final XCH4 product. Version 5.2 of the XCH4 data does not include retrievals from spectra recorded over oceans (glint

observations). This is in contrast to the later versions 6 and 7 which, however, use the same algorithm for XCH4 retrievals10

over land. Furthermore, in our analysis we exclude all retrievals over Greenland and poleward of 75◦ (including retrievals over

snow).

The original XCH4 retrievals utilized XCO2 fields based on the median of three models: GEOS-Chem (from the University

of Edinburgh), LMDZ/MACC-II, and CarbonTracker (National Oceanic and Atmospheric Administration (NOAA)), that was

smoothed with GOSAT CO2 averaging kernels (Parker and the GHG-CCI the group, 2016). CO2 fields in all three models15

were produced by assimilating in-situ surface CO2 observations. In this work, we replaced the original modeled CO2 fields

with optimized CO2 fields from a GEOS-Chem CO2 surface flux assimilation analysis that used GOSAT XCO2 retrievals over

land (Deng et al., 2014). For the period of interest (February-May 2010), the XCH4 retrievals using both proxy CO2 fields

are unbiased against each other with a scatter of 3 ppb and a correlation of R= 0.99. Figure ?? shows the mean difference

between the two products and points to some systematic regional discrepancies of up to 8 , however, in 90% of all 4× 5grid20

cells covered by the measurements, the differences are smaller than 3 . Sensitivity tests that were conducted showed that a

posteriori inversion results using the new CO2 fields generally produced a comparable fit
:::
and

::::
the

::::::
original

::::::
fields

::::::::
generally

:::::::
produced

::::::::::
comparable

::::
fits to independent CH4 measurements from the Total Carbon Column Observing Network (TCCON,

Wunch et al., 2011) and from the NOAA Earth System Research Laboratory (ESRL) global cooperative air sampling network

(Dlugokencky et al., 2016). The use of the alternative CO2 fields did not change any of the findings about model errors in our25

study. There may still be unidentified biases in both retrieval products. However, the fact that both CO2 fields were obtained

using different methodologies gives us confidence in our results.

GOSAT CH4 retrievals contain about 1 degree of freedom for signal (DOFS) and have relatively flat averaging kernels in the

troposphere that slowly decrease in the stratosphere
:::::::::::::::::
(Yoshida et al., 2011). Therefore, they contain little vertical information

about the atmosphere at the time of measurement. We use these averaging kernels to smooth the GEOS-Chem CH4 fields and30

map them into the measurement space of the GOSAT retrievals
::::
using

:::
the

:::::::::
expression

:

XCH4 = XCHa
4 + aT (zmod− za)

::::::::::::::::::::::::::
(1)

:::::
where

::::
zmod::

is
:::
the

:::::::::::
GEOS-Chem

::::
CH4:::::::

profile,
::
za::

is
:::
the

:::::::
GOSAT

:
a
:::::
priori

::::::
profile,

:::
aT

::
is

:::
the

:::::::
GOSAT

::::::
column

::::::::
averaging

::::::
kernel,

::::
and

:::::
XCHa

4::
is

:::
the

:
a
:::::
priori

:::::
XCH4:::::

based
:::
on

::
za. The absence of vertical information in the measurements is a challenge for constraining
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the 3D structure of model errors. However,
:
,
:::
but we expect vertical structure to emerge from atmospheric transport patterns. For

example, the majority of the CH4 mass enters the North American domain through the western boundary in the jet stream in

the upper troposphere. Therefore, XCH4 observations over North America would be more sensitive to past CH4 concentrations

in the upper troposphere upwind over the Pacific and Asia.

Errors in GOSAT Proxy XCH4 retrievals with the original XCO2 data were assessed against co-located TCCON ground-5

based measurements by Hewson et al. (2015). That validation study found that GOSAT retrievals contain random errors of

12.55 ppb and systematic errors of 4.8 ppb (although per-site biases ranged from -2.15 ppb (Wollongong) to 13.44 ppb

(Garmisch)). However, errors away from TCCON sites could be larger. Overall, GOSAT and TCCON were highly correlated

with a correlation coefficient of 0.86. Buchwitz et al. (2017) obtained similar results with random errors of 11.9 ppb and sys-

tematic errors of 5.7 ppb for GOSAT Proxy XCH4 retrievals against co-located TCCON retrievals. Such precision,
:::::::::
combined10

::::
with

:::::
spatial

::::
and

:::::::
temporal

::::::::::
aggregation

::
of

:::
the

:::::
data, could be enough in many regions of the world to improve knowledge about

CH4 a priori surface emissions
:
in

:::::::
regions

::::
such

::
as

:::::
North

::::::::
America,

::::::
where

:::
the

:::::
XCH4::::::::::::

enhancements
::::::
above

:::
the

::::::::::
background

:::
are

::::
about

:::
10

::::
ppm

::::::::::::::::
(Sheng et al., 2018). However, the presence of potential model errors significantly undermines this assumption.

Therefore, here we explore the potential utility of the weak constraint 4D-Var scheme to discern model biases using the XCH4

data.15

Figure ?? shows the mean XCH4 fields from February to May 2010 modeled by GEOS-Chem at 4× 5resolution (top panel)

and as measured by GOSAT (bottom panel). A number of features in modeled XCH4 can be identified. There is a clear

inter-hemispheric difference with smaller XCH4 in the Southern hemisphere. Enhanced XCH4 concentrations can be observed

over China, India, equatorial Africa and South America, with weaker signals also present over Europe and the eastern US,

which, to first approximation, are related to local surface CH4 emissions. Major features generally agree between the modelled20

and observed XCH4 fields, however there are also a number of discrepancies that are discussed in Section 3.

2.2.2 Validation Data

The a priori and constrained model CH4 fields are validated against in situ NOAA-ESRL CH4 measurements (Dlugokencky

et al., 2016) and measurements from the third HIAPER Pole-to-Pole Observations (HIPPO-3) aircraft campaign (Wofsy et al.,

2011), against TCCON ground-based XCH4 retrievals (Wunch et al., 2011), and ACE-FTS space-based CH4 retrievals (Boone25

et al., 2005).

The NOAA network operates by collecting air flask samples which are later analysed by gas chromatography with flame

ionization detection. At stationary sites, samples are collected once per week. Shipborne samples from sites in the Pacific Ocean

and the South China Sea are collected once every three weeks and weekly, respectively, per latitude band. Measurements

are reported relative to the NOAA X2004A CH4 scale. The absolute uncertainty of the scale is 0.2% (about 3 ppb), and30

measurements are reproducible to within 1-3 ppb.

Airborne data are provided by the HIPPO-3 aircraft campaign which took place between 20 March 2010 and 20 April

2010. The campaign sampled the atmospheric curtain from the North Pole to the coast of Antarctica through the central

Pacific Ocean and from the surface to 14 km altitude. We used CH4 measurements performed by a quantum cascade laser
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spectrometer (QCLS) at 1 Hz frequency. QCLS measurements have precision of 0.5 ppb and accuracy of 1 ppb, while the

mean bias relative to simultaneous flask-based measurements is 0.44 ppb (Santoni et al., 2014). We exploited the Merged 10-

second Meteorology, Atmospheric Chemistry, and Aerosol Data product (Wofsy et al., 2012), which was derived from 1-sec

measurements by applying a median filter.

TCCON is a global network of ground-based high-resolution Fourier transform infrared (FTIR) spectrometers retrieving5

XCH4 from solar absorption spectra in the near-infrared band. We used the GGG2014 version of TCCON XCH4 data from

multiple stations around the globe (Kivi and Heikkinen, 2016; Kivi et al., 2017; Blumenstock et al., 2017; Griffith et al., 2017;

Hase et al., 2017; Notholt et al., 2017; Sherlock et al., 2017; Sussmann and Rettinger., 2017; Warneke et al., 2017; Wennberg

et al., 2017b, a). The estimated accuracy and precision of XCH4 retrievals are less than 0.5% and 0.3%, respectively (Wunch

et al., 2015). Retrievals are bias corrected based on comparisons with calibrated aircraft and AirCore profiles.10

ACE-FTS on-board SCISAT performs solar occultation measurements over a range of tangent heights. The satellite makes

15 occultations for both sunrise and sunset per day separated by about 24◦ in longitude. Measurements cover an altitude range

from the cloud tops in the upper troposphere up to 150 km. Spectra are recorded continuously during 2-sec scans, which

implies that the altitude and tangent point changes slightly during the scan. As a result, the instrument has low horizontal

resolution of about 300 km in the limb direction. The vertical resolution determined by the instrument field-of-view is about15

3 km at a tangent point 3000 km away from the satellite. However, vertical sampling ranges from 2 to 6 km depending on

viewing geometry. In this study, we use the most recent v3.6 CH4 retrievals with geolocation information (Boone et al., 2013;

Waymark et al., 2014). Version 3.6 only differs from version 3.5 in that a local computer was used to process v3.5 while

a shared supercomputing system was used for v3.6. Olsen et al. (2017) compared ACE-FTS v3.5 and MIPAS CH4 vertical

profiles coincident with TANSO-FTS measurements, and found small differences above the tropopause except in the tropics.20

The mean differences were larger than 20% below about 450 hPa, within 5% between 450 and 40 hPa, and larger than 5%

above 40 hPa.

2.3 The Weak Constraint 4D-Var Approach

The
::::::::
estimation

::
of

:::::::
surface

::::::::
emissions

::
of

::::
CH4:::::

using
:::
the

::::::
strong

::::::::
constraint

:::::::
4D-Var

::::::
scheme

::
is
::::::::
achieved

::
by

::::::::::
minimizing

:::
the

::::::
strong

::::::::
constraint

::::
cost

:::::::
function25

J(p) =
N∑
i=0

1

2
(yi−Hixi)T R−1i (yi−Hixi)+

1

2
(p−pa)

T B−1(p−pa),

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

:::::
where

::
N

:::
is

:::
the

:::::::
number

::
of

::::
one

::::::
hourly

::::
time

:::::
steps,

:::
yi::

is
:::
the

::::::
vector

::
of

::::::
XCH4:::::::::::

observations
::::::
during

:::
the

:::::
time

::::
step

::
i,

:::::::
xi ∈ Rn

:
is
::::

the
:::::
model

:::::
state

::
at

::::
time

::::
step

::
i
:::
that

:::
is

::::::::::
represented

::
by

::
a
:::
3D

::::
field

:::
of

::::
CH4:::::::::::::

concentrations,
:::::::

p ∈ Rp
::
is

:::
the

::::::
vector

::
of

:::::::
surface

::::::::
emissions

::
of

:::::
CH4,

:::
and

:::::::
pa ∈ Rp

::
is

:::
the

:
a
:::::
priori

:::::::
estimate

::
of

:::
the

::::
CH4:::::::::

emissions.
:::::
Here,

::
H

:
is

:::
the

::::::::::
observation

:::::::
operator

:::
that

:::::
maps

:::
the

:::::::
modeled

::::
CH4::::

state
::::
into

::
the

:::::::::::
measurement

:::::
space

::
at

:::
the

:::::::
location

::
of

:::
the

:::::::
GOSAT

:::::
XCH4:::::::::::

observations,
:::
Ri ::::::::

represents
:::
the

::::::::::
observation30

::::
error

:::::::::
covariance

::::::
matrix,

::::
and

::
B

::
is

:::
the

:
a
:::::
priori

:::::
error

:::::::::
covariance

::::::
matrix.

::
In

::::::::::
minimizing

::
J ,

:::
we

:::::
solve

:::
for

:::::::
monthly

:::::
mean

::::::::
emission

:::::::
estimates

:::::
over

:::
the

:::::::
specified

:::::::::::
assimilation

::::::
period.

::::
The

::::::::
evolution

::
of

:::
the

::::::
model

::::
state

::
in

:::
Eq.

::
2
::
is

:::::::::
performed

::
by

:::
the

:
GEOS-Chem
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forward model
:::::
model,

::::::
which can be represented by an operator M which

:::
that acts on the model state xi and model parameters

::::::::
emissions p at time step i to produce a new model state xi+1 at the next time step as follows:

xi+1 =M(xi,p). (3)

The model state at each time step is represented by a 3D field of CH4 concentrations, and model parameters usually include

CH4 emissions from each model surface grid cell. In Eq. 3, it is assumed that there are no errors in propagating the state forward5

in time. This is the assumption that is employed in standard 4D-Var, which is also
::::::
implicit

:::
in

:::
Eq.

::
2,

:::
and

::::
thus

:::
the

:::::::::::
optimization

:
is
:
referred to as “strong constraint” 4D-Varbecause

:
; the model trajectory is used as a strong constraint in the optimization.

However, as

::
As

:
described by Trémolet (2006), Eq. 3 can be modified to account for model errors by adding corrections ui+1 to the CH4

state at time step i+1 so that the model forecast becomes10

xi+1 =M(xi,p)+Gui+1, (4)

where G is an operator that maps corrections ui ::::::
u ∈ Rm

:
into the model state. Herethe corrections ui+1 :

,
:::
the

:::::::::
corrections

::
u are

referred to as forcing terms, which is distinct from the adjoint forcing commonly used in 4D-Var. The operator G can also be

understood as a mask that defines the spatial regions in the 3D model state where corrections need to be applied. Hence, the

second term in Eq. 4 represents additional sources and sinks of CH4 in the region of the atmosphere defined by G. The 4D-Var15

problem to estimate surface emissionsis transformed into a
::
In

:::
the

:::
case

::::::
where

::
G

::::::::
represents

:::
the

:::::
whole

::::::::::
atmosphere,

::::::
m= n

::::
and

:
u

:::
will

::::
have

:::
the

:::::
same

:::::::::
dimension

::
as

::
x.
::::

The
:::::::
sources

:::
and

:::::
sinks

:::::
could

:::::
arise

::::
from

::::::
errors

::
in

:::
the

:::::
model

::::::::
transport

:::
or

::::::::
chemistry.

:::
In

:::::::::
minimizing

::::
Eq.

:
2
:::
we

:::::
solve

::::
only

:::
for

:::
the

:::::::
surface

:::::::::
emissions,

:::::::
however,

:::::::
because

:::
of

:::
Eq.

::
4

:::
we

::::
have

:::
the

::::::
means

::
of

:::::::
solving

:::
for

:::
the

::::::
surface

::::::::
emissions

::
as

::::
well

::
as
:::

the
:
3D

:::::::::
distribution

::
of

:
sources and sinksestimation problem in which a cost function

:
.
::
In

:::
this

:::::
case,

::
the

:::::::
4D-Var

:::
cost

::::::::
function,

:::::
which

:
is minimized with respect to both model parameters

::::::
surface

::::::::
emissions

:
(p

:
) and state corrections20

:
(u. In this case, the WC 4D-Var cost function

:
), is expressed as

J(p,ui) =

N∑
i=0

1

2
(yi−Hixi)T R−1i (yi−Hixi)+

+
1

2
(p−pa)

T B−1(p−pa)+

N∑
i=1

1

2
uT
i Q−1i ui,

(5)

where N is the number of one hourly time steps, yi is
::
Qi::::::

defines
:::
the

::
a
:::::
priori

:::::
model

:::::
error

:::::::::
covariance

::::::
matrix.

::::
This

::
is

:::
the

:::::
weak

::::::::
constraint

::::::
4D-Var

::::
cost

:::::::
function,

::::::
which

::
is

:::::
similar

::
to
::::
Eq.

::
2,

:::::
except

:::
for

:::
the

:::::::
addition

::
of the vector of XCH4 observations during the

time step i, H is the observation operator that maps the modelled CH4 state into measurement space at the location of GOSAT25

XCH4 observations, Ri represents the observation error covariance matrix, pa is the a priori estimates of model parameters,

B is the a priori error covariance matrix, and Qi defines the a priori model error covariance matrix
::::
third

::::
term

:::
that

::::::::
accounts

:::
for

::
the

::::::
errors

::
in

:::
the

::::::::
evolution

::
of

:::
the

:::::
model

::::
state. As described by Trémolet (2006), ui can be considered to represent model errors

on time scales as short as each model time step or as long as the full assimilation period, and is assumed to be constant over

8



the appropriate interval. In the case where the forcing is estimated over the full assimilation window, the optimized forcing

will represent a constant model bias over the whole model trajectory.
:::
For

:::
the

::::::
results

::::::::
presented

::::
here,

::
ui:::::::

changes
::
in
:::::
time,

:::
but

:::
we

::::::
assume

:::
that

::
Q

:
is
::::::::
constant.

The WC 4D-Var approach was implemented into the GEOS-Chem model by Keller (2014) and here we describe that ap-

proach. The cost function (Eq. 5) is minimized subject to the equality constraints in Eq. 4 by adding the model constraints to5

the cost function to create the following Lagrangian function:

L(p,xi,λi,ui) =
1

2
(p−pa)

T B−1(p−pa)+

N∑
i=0

1

2
(yi−Hixi)T R−1i (yi−Hixi)+

N∑
i=1

1

2
uT
i Q−1i ui−

N∑
i=1

λT
i [xi−M(xi−1,p)−Gui],

(6)

where λi are the Lagrange multipliers. We define gradients of the Lagrangian Lwith respect to λi, xi, p and ui by the following

system of equations:

∂L
∂λi

= xi−M(xi−1,p)−Gui,10

∂L
∂xi

=−Hi
T R−1i

[
yi−Hixi

]
−λi +

(
∂M

∂xi

)T

λi+1, (7)

∂L
∂xN

=−Hi
T R−1i

[
yN −HixN

]
−λN , (8)

∂L
∂p

= B−1(p−pa)+

N∑
i=1

(
∂M

∂p
(xi−1,p)

)T

λi, (9)

∂L
∂ui

= Q−1i ui +GTλi, (10)

where MT = (∂M∂xi )
T is the adjoint of the tangent linear model M. At the minimum, the L gradients are equal to zero. In this15

case, Eq. ?? transforms into Eq. 4, whereas Eqs. 7-8 give the adjoint model equations

λN =−HT
i R−1i [yN −HixN ] ,

λi =

(
∂M

∂xi

)T

λi+1−HT
i R−1i [yi−Hixi] .

(11)
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Values of λi are derived from the forward and adjoint model integrations and are substituted into Eqs. 9-10. In general, ∂L
∂ui

and
∂L
∂p do not equal zero as the minimum has yet to be reached by iteratively minimizing the Lagrangian function L. In GEOS-

Chem this is done using the L-BFGS-B algorithm (Byrd et al., 1995). Finally, the entire optimization algorithm consists of the

following steps:

1. Run the forward model (Eq. 4) from time t1 to tN using the current estimates of p and ui.5

2. Run the adjoint model and simultaneously accumulate the estimate of λi based on Eq. 11.

3. Calculate the gradients of L with respect to p and ui using Eqs. 9-10 and estimates of λi.

4. Update the estimates of p and ui using the L-BFGS-B optimization algorithm based on the descent direction defined by
∂L
∂ui

and ∂L
∂p .

5. Repeat steps 1-4 until convergence is reached.10

Generally, at some point during the convergence process the inversion will start fitting the noise in GOSAT observations. This

can be prevented by stopping the iterative algorithm when the reduced chi-squared value for the fitted model approximately

equals unity. In practice, the real uncertainty on GOSAT XCH4 retrievals is unknown due to unaccounted errors in the CO2

fields, for example, so we used a different approach. For each WC inversion that was performed, we monitored the evolution

of the optimized model fields and compared them to independent observations (from TCCON, the NOAA in situ network,15

and the HIPPO-3 aircraft campaign). The iterative process was terminated when the fit to independent observations did not

improve any further or started to get worse, based on the assumption that after this threshold the optimization began to fit noise

in GOSAT observations. On average, the level of noise was estimated to correspond to GOSAT XCH4 uncertainty of about 10

ppb.

We utilized the reported uncertainty on the GOSAT XCH4 retrievals (with the median value of approximately 10 ppb)20

and inflated it to match the GOSAT scatter against TCCON observations (approximately 13 ppb). It was assumed that the

observation errors are uncorrelated, so that R was assumed to be diagonal. The a priori error covariance matrix B was also

assumed to be diagonal, with 50% uncertainty on CH4 emissions in each surface grid box. Emissions were not split into

separate categories but optimized as monthly totals in each surface grid box. GOSAT provides global coverage with a period

of three days. Therefore, we did not attempt to characterize global pattern of model errors on shorter time scales and explored25

keeping the forcing terms constant over a time interval that varied from a minimum of three days up to one month. Little is

known about the a priori structure of the model errors, so in the design of the cost function, a priori estimates of model errors

were set to zero
:::::
(u = 0

::
at
:::
the

:::::::::
beginning

::
of

:::
the

:::::::::::
assimilation).

The WC algorithm optimizes scaling factors (SFs) for both the forcing terms and the model parameters (surface emissions).

Emission SFs are ratios of optimized emissions to a priori emissions, while forcing SFs are the ratios of optimized forcing terms30

to a constant scaling parameter ũ. The WC inverse method becomes sensitive to the choice of scaling parameter when working

with multidimensional problems. This choice does not affect the Lagrangian L (Eq. 6), however, it does change the relative

10



magnitude of L gradients with respect to forcing terms ∂L
∂ui

(Eq. 10) and to surface emissions ∂L
∂p (Eq. 9). The state vector of the

WC inversion is largely dominated by the number of forcing SFs as opposed to the emission SFs (with a ratio of up to 500:1).

Due to the high dimensionality of the problem, the L-BFGS-B optimization algorithm can search only a fraction of parameter

space in the direction of the largest gradient descent. Therefore, it becomes sensitive to the relative magnitude of the forcing

gradients ∂L
∂ui

versus the emission gradients ∂L
∂p . For large values of ũ (for example, ũ > 50 ppb), the algorithm descends in the5

direction of the forcing gradient and the WC inversion is transformed into the so-called “full state assimilation”. Meanwhile,

small values of ũ (for example, ũ < 0.05 ppb) force the algorithm to minimize the cost function in the direction of emission

gradients (“flux assimilation”). The value of ũ = 1.0 ppb was empirically chosen to perform simultaneous optimization of the

emissions and forcing terms (“flux+state assimilation”).

Application of the WC 4D-Var method is sensitive to the specification of the covariance matrix Q, which is difficult to10

characterize (Trémolet, 2007). We adopted a diagonal structure of matrix Q as our standard option. This implies there was

no explicit temporal or spatial correlation assumed between model errors. However, some correlation is implicitly present in

the model and emerges from both atmospheric transport patterns and the definition of the constant forcing time window. Still,

assigning adequate model error uncertainty is one of the major challenges for using the WC method. Generally, there is no

single recipe for that, as model errors come from a variety of sources, with different characteristics and, moreover, vary on daily15

to seasonal time scales. Additionally, in practice, there is usually no way to properly validate whether the inversion correctly

attributed biases in CH4 fields as being caused by surface emissions, model errors, or observational biases. This later statement

is related to the fact that surface emission, observational bias, and some model errors may leave similar signatures in the CH4

fields that would not be easy to distinguish even with perfect observational coverage. The situation may even be worse for CH4

biases if incorrect emissions and model errors mask each other and do not show up in the model comparison with the GOSAT20

data.

Given these issues, our focus here is not on estimating surface emissions of CH4. Instead, we use the WC 4D-Var method

to optimally constrain the
::
3D

::::::::::
corrections

::
to

:::
the

:
CH4 state and explore the nature

:::::::
structure

:
of the errors in the modelCH4

simulation. We performed two types of inversions,
:::
as

::::::::
described

::
in

:::::
Sect.

:::
2.3: “full state assimilation”

:
,
::
in

:::::
which

:::
we

::::::::
estimate

::::
only

:::
the

:::
3D

:::::::::
corrections

:
(
:
u
:
)
::
to

:::
the

::::::
model

:::::
state, and “flux+state assimilation”,

::
in

::::::
which

:::
we

:::::::
estimate

:::
the

::::::
surface

:::::::::
emissions

:
(
:
p
:
)25

:::
and

:::
the

:::
3D

:::::::::
corrections. Given that little is known about the distribution of model errors

::
in

::::
CH4::

in
:::
the

::::::::::
troposphere, in both cases

we chose a uniform spatial and temporal structure of model error uncertainty q so that the model error covariance is defined as

Q = q2I.

We conducted a series of parameter tuning experiments where the WC 4D-Var analysis was performed using values of q

ranging from 0.05 ppb to about 2000 ppb, and optimized CH4 fields were validated against independent observations. The30

experiments showed that for values of q above 50 ppb, the fit of optimized CH4 fields to independent observations did not

change noticeably. However, for values of q below 50 ppb, the fit deteriorated as q became smaller. Therefore, q was set to 50

ppb. It is important to note that the magnitude of estimated forcing terms changes with changing q, but the general pattern of

positive and negative corrections was not significantly affected by the choice of q. In the experiments described in Sect. 2.4, we

found that the WC method was still able to significantly improve the model and capture the bias in the CH4 state. Therefore, we35
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considered a uniform structure for Q to be a satisfactory assumption for this initial assessment of model errors in the context

of the WC 4D-Var analysis.

2.4 Configuration of Sensitivity
::
the

::::::
OSSE Experiments

To evaluate the performance of the WC 4D-Var scheme, we conducted a series of OSSEs. We began with an analysis of the

sensitivity of the GOSAT observational coverage to the CH4 state in the model. Following Liu et al. (2015) and Byrne et al. (2017)5

, we constructed the sensitivity function

J =

N∑
n=1

(XCHmodel
4 )n,

where XCHmodel
4 are modelled CH4 dry-air mole fractions sampled at the times and locations of the GOSAT observations

and convolved with GOSAT scene-dependent averaging kernels. The sensitivity function is summed over all N observations

available over the assimilation period. The sensitivity of the GOSAT observations to the modelled state is obtained by taking10

the derivative of J with respect to the state, using the model adjoint

∂J

∂xi,j,k,t
=

N∑
n=1

∂(XCHmodel
4 )n

∂xi,j,k,t
,

where xi,j,k,t is the CH4 at longitude i, latitude j, altitude k, and time t. The sensitivities are expressed in units of and can be

understood as the propagation backward in time of the GOSAT averaging kernels weighted by the value proportional to the

local surface pressure. The sensitivities can be summed in space or time to give an aggregated view of the sensitivity of the15

GOSAT observational coverage to the modelled CH4 state.

We conducted four
::
We

:::::::::
conducted

::::
three

:
OSSEs in order to evaluate the performance of the WC 4D-Var method in regards to

mitigating artificially introduced model errors for February-May 2010. In particular, we investigated model biases from four

different sources: surface emissions,
:::
due

:::
to vertical transport, chemical loss, and initial conditions. The “true” model state

was defined as optimized CH4 global fields obtained from an inversion analysis to constrain estimates of monthly CH4 fluxes20

using GOSAT XCH4 Proxy retrievals during the same time period. We also refer to these constrained fluxes as “true” CH4

surface emissions. The CH4 initial conditions are described in Sect. 2.1. This “true” model state was used to produce pseudo

GOSAT XCH4 measurements by sampling it at the corresponding times and locations of the real GOSAT measurements and

then convolving them with GOSAT averaging kernels. The perturbed model was defined by introducing bias in the “true”

model from one of the four specified sources of model bias. Then the pseudo-observations were used to constrain and mitigate25

biases in the perturbed model CH4 state.
:
It
::::::

should
:::

be
:::::
noted

::::
that

:::::
these

:::
are

:::::::
“perfect

::::::
model”

:::::::::::
experiments

:::::
since

:::
we

:::
are

:::::
using

:::::::::::
GEOS-Chem

::
to

:::::::
simulate

:::
the

::::::
pseudo

::::
data

::
as

::::
well

::
as

:::
for

:::
the

:::::::::
inversions. The performance of the pseudo-inversion was evaluated

by comparing the recovered CH4 fields to the “true” ones. The analyses were conducted for the standard period of four months

(February-May 2010), but most of the results are presented for the second month of the assimilation period, March 2010.

This gives the model errors time to accumulate during February, and provides two months of pseudo-data, in April and May,30
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to constraint the CH4 state in March. No noise was added to pseudo-observations. Given that and the fact that, usually, the

state is most optimally constrained in the middle of the assimilation period, we believe that the OSSEs should reveal the best

performance of the WC method.

The emission bias was introduced by replacing the “true” CH4 emissions with the original a priori emissions. Convection

:::
bias

:::
in

::::::
vertical

::::::::
transport

:
and chemistry were artificially biased by completely turning them off

::::::::
introduced

:::
by

:::::::
turning

:::
off5

:::::::::
convection

:::
and

:::::::::
chemistry,

:::::::::::
respectively, in the model for the duration of the assimilation period. Finally

::
In

:::
the

::::
third

::::::
OSSE, a

bias in initial conditions was introduced by replacing the “true” initial conditions with the ones obtained by running the forward

model without convection and with 70% of the a priori emissions from 1 July 2009 to 1 February 2010, the beginning of the

assimilation period. The applied biases for these four
::::
three

:
OSSEs were intentionally designed to be extreme; for the real world

applications, we expect less extreme model errors.10

We configured the WC method to carry out “full state assimilation” (as described in Sect. 2.3) and have the freedom to

determine independently the location of the bias. The constant forcing time window was set equal to three days and the forcing

terms were optimized throughout the entire atmosphere (the mask G equals unity everywhere). This particular configuration

may not be optimal to mitigate a specific type of bias in a real assimilation with limited observational coverage. Here, we

intend to investigate the performance of the measurements and the assimilation method when no information is given about the15

sources and magnitude of model errors. We also conducted SC 4D-Var assimilation experiment for comparisons with the WC

approach in the OSSE with biased surface emissions.

2.5 Configuration of the Assimilation with Real GOSAT Data

For the assimilation of the real GOSAT CH4 data, we used the same WC 4D-Var configuration as in the OSSEs, but with

some modifications.
:::
the

:::::
model

:::::
error

::::::::::
corrections

::
to

:::
the

::::
CH4:::::

state
::::
were

::::::::::
constrained

::::::
during

::::
the

:::::::
standard

::::::::::
four-month

::::::
period20

::
of

::::::::::::
February-May

:::::
2010.

:
The CH4 initial conditions are as described in Sect. 2.1. The CH4 state was constrained during the

standard four-month period of February-May 2010 using GOSAT observations during the same period. Modifications
:::
We

::::::::
conducted

::::
four

::::
sets

:::
of

:::::::::::
experiments,

:::::
which

:::
are

:::::::::
described

::::::
below,

::
to

::::::
assess

:::
the

:::::::::
sensitivity

::
of

::::
the

::::::
results to the WC 4D-Var

configurationincluded tuning the length of the constant forcing time window T and the horizontal and vertical structure of the

forcing mask G. We also performed additional tuning of the method in order to explore the nature of the model errors. The25

quality of the constrained CH4 fields was evaluated against independent observations. .
:
Additionally, we compared results of

the WC inversions with results of the SC surface flux assimilation.

The a priori model validation presented in Sect. 3.2.2,
::
as

::::
well

::
as

:::
the

::::::
results

::
of

:::::::::::::::
Saad et al. (2016),

:
pointed to the fact that the

stratosphere in GEOS-Chem at
:::
the 4◦ × 5◦ resolution, particularly, at high latitudes, may be positively biased. The OSSE re-

sults also suggested that the WC assimilation may benefit from additional constraints on stratospheric forcing terms. Therefore,30

for the assimilation of the real GOSAT data we imposed a negativity bound in the L-BFGS-B algorithm for the optimization

of the forcing terms in the extra-tropical stratosphere (above about 210 hPa and poleward of 44◦)
::
to

::::::
remove

:::
the

::::::
known

::::
bias at

4◦ × 5◦ resolution. No bound was imposed on forcing terms in the 2◦ × 2.5◦ resolution assimilation.
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In one
::
the

::::
first set of experiments, we performed “full state assimilation” and changed the length of the time window over

which the forcing terms are held constant in the assimilation. The
:
In

:::::
these

:::::::::::
experiments,

:::
the

:
forcing mask G comprised the

entire atmosphere, and biases in the CH4 state potentially induced by incorrect surface emissions were treated as just another

source of model errors included in forcing terms. The length for the forcing window was varied from three to 30 days. Short

time windows would be more appropriate if the model were affected by temporally changing biases such as those related5

to transient mesoscale eddies. However, the observations may not be able to constrain the short time scales. Also, for short

temporal correlation length scales, there is a higher risk that the inversion will fit noise or possible biases in observations. In

contrast, the use of long time windows introduces additional temporal correlations between forcing terms that may be suitable

only for mitigation of stationary systematic biases in the model, such as those related to surface emissions, chemistry or

stationary transport errors.10

In a different
::
the

::::::
second

:
set of experiments, we carried out WC 4D-Var “source+state assimilation’ and explored the optimal

design of the
:::::::::
sensitivity

::
of

:::
the

::::::
results

::
to

:::::::
vertical

:::::
extent

:::
of

:::
the

:
forcing mask G. Here, the forcing window was set equal to

three days. First, we explored the vertical structure of G. The algorithm was configured to optimize forcing terms in 1) the

whole atmosphere, 2) above 750 hPa, 3) above 500 hPa, and 4) above 200 hPa. Then the horizontal structure
:
in

:::
the

:::::
third

::
set

:::
of

::::::::::
experiments,

::::
the

::::::::
horizontal

::::::
extent

:
of G was modifiedas well. Forcing terms were applied

::
1)

:
globally throughout the15

stratosphere and
::
2) in the troposphere only over four separate

::
the

:::::::::
following

::::
four regions: the three regions defined by the

boundaries of the GEOS-Chem nested model domains (North America (NA), Europe (EU), and China with South-East Asia

(CH)) and over Equatorial Africa (EQAf). In these experiments we also attempted to identify the origin of the biases affecting

the model at the location of the TCCON and NOAA measurement sites.

All the above experiments were conducted at the 4◦ × 5◦ model resolution. In one additional
::
the

::::::
fourth experiment, we20

applied the WC 4D-Var “full state assimilation” to constrain errors in GEOS-Chem at 2◦ × 2.5◦ resolution. We used the

standard configuration with a forcing time window of three days. The only difference between the 4◦ × 5◦ and the 2◦ × 2.5◦

assimilation was in the initial conditions, which are described in Sect. 2.1.

3 Results

3.1 OSSE Experiments25

We began with the analysis of the sensitivity of the GOSAT observation coverage to the CH4 state in the model (see Eq. ??).

Shown in Fig. ??, as a function of altitude and latitude, is the total zonal adjoint sensitivity (upper panel), which is a sum of

adjoint sensitivities over time and longitude. Additionally, we included a vertical slice of the total adjoint sensitivity across 34N

latitude, which is a sum of adjoint sensitivities over time (lower panel). As suggested by the upper panel in Fig. ??, the entire

GOSAT observing system in February to May 2010 has the greatest sensitivity to CH4 changes in the upper troposphere and30

the lower stratosphere (UTLS) in the northern hemisphere. This can be explained by the fact that winds in the UTLS region

are stronger than in the lower troposphere, hence any change in the CH4 fields in the former region will eventually affect

a larger number of GOSAT measurement locations in the model. The sensitivity in the tropics is approximately half that in
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mid-latitudes. The lower panel in Fig. ?? also shows that over the oceans (which are not covered by the GOSAT observations

used in this study), such as over the Pacific Ocean, between 120E and 130W), the sensitivity is reduced near the surface and

is increased in the UTLS where most of CH4 mass flux from Asia enters the North American domain. Increased sensitivity

between approximately 30W and 30E is due to the large number of GOSAT measurements over the Sahara desert.

In the first OSSE, we tested the ability of both the SC and WC 4D-Var schemes to reproduce mean CH4 atmospheric5

concentrations for the case of biased emissions. It is expected that the SC 4D-Var method will produce better results than the

WC 4D-Var due to the fact that, when using the SC method, we implicitly supply the assimilation with knowledge about the

source of the bias. The results of the OSSE are presented in Fig. ??, which shows the mean difference between the recovered

state and the “true” CH4 fields. The results confirm that the SC 4D-Var method better removes CH4 biases due to emissions.

As shown in Fig. ??, the major challenge for the WC 4D-Var was to constrain CH4 fields in the boundary layer below about10

800 above large emission sources. Here the method failed to properly correct the vertical structure of the model biases. Due to

weak vertical sensitivity of the pseudo-data, it is difficult for the WC 4D-Var method to mitigate strong localized vertical bias.

Instead, it compensates for the bias by applying relatively weak CH4 state adjustment of the opposite sign in the column of the

atmosphere above, particularly in the stratosphere (see Fig. ??).

In order to improve the WC 4D-Var performance, additional information is required about the location (which can be15

specified using forcing mask G) and properties of the model errors. For example, the equivalent of perfect temporal correlation

can be accounted for using a constant forcing time window (one month instead of three days for emissions). Improvement

in the performance can also be achieved by providing additional information on the structure of the model errors, such as by

assigning a forcing error covariance matrix Q with non-uniform vertical error structure, exhibiting larger uncertainty in the

boundary layer and smaller errors in the free troposphere. A simple example of the gain in the performance by using a 30-day20

forcing time window is shown in Fig. ??. In another example, shown in the same figure, we changed the forcing mask G so

that model errors are estimated only in the troposphere (approximately, from the surface to 200 ). However, this is a rather

loose constraint on the potential location of model errors and did not result in a significant improvement in CH4 state in the

troposphere beyond the previous experiments.

In the second
:::
first OSSE, we investigated the ability of the WC 4D-Var method to mitigate errors in vertical transport by25

turning off convection in the model. This
:::
The

::::::
spatial

::::::
patterns

:::
of

:::
the

::::::::
estimated

::::::
model

:::::::::
corrections

:::
are

::::::
shown

::
in

::::
Fig.

::
1.

::
As

::::
can

::
be

:::::
seen,

:::
the

::::::::::
assimilation

:
resulted in enhanced CH4 concentrations in the lower troposphere and reduced CH4 in the upper

troposphere over the main source regionsas seen in Fig. 1. .
:
Furthermore, the positive CH4 anomalies in the lower troposphere

were partly advected downstream. For example, over Equatorial Africa and South America, instead of being convectively lofted

over the continent, CH4 emissions were transported westward in the lower and middle troposphere (see Fig. 1, first column,30

third row). As shown in the figure, the state corrections capture the general horizontal and vertical structure of the a priori

bias. The largest corrections are co-located with the regions of deep convection. Positive corrections are found in the upper

troposphere and negative corrections in the lower. Still, this was not sufficient to fully mitigate the extreme bias associated with

turning off convection, but the results show that GOSAT retrievals possess sensitivity to biases in vertical transport and can
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distinguish them
::::::
contain

::::::::::
information

::
to

::::::
enable

::
us

::
to
:::::::

capture
::::::
vertical

::::::::
transport

::::
bias

:
even when the sources and magnitude of

model errors are unknown.

Figure 2 shows the mean vertical distribution of the a priori and a posteriori residual biases in the CH4 state over equatorial

South America, equatorial Africa, equatorial Southeast Asia, and Europe. In mid-latitudes over Europe, the convection bias

was much weaker than over the tropics and reached just about 16 ppb near the surface. At altitudes above 600 hPa the WC5

4D-Var method was able to strongly mitigate this bias, and below 800 hPa it reduced the bias by more than a factor of two.

The worst results in terms of the fractional reduction of the bias were achieved over equatorial Southeast Asia, most likely

due to fewer GOSAT retrievals over this region and limited constraints on the CH4 distribution in the outflow region over the

ocean. The assimilation also removed a large fraction of the bias in the CH4 fields over Equatorial Africa and South America,

particularly in the middle and upper troposphere over Africa and in the lower troposphere over South America.10

In the third OSSE,
:::
The

::::::
second

::::::
OSSE,

::
in

:::::
which

:
a chemistry bias was created by turning off the reaction of CH4 with OH.

This
:
, was the least challenging bias for the WC 4D-Var scheme to mitigate. This bias was rather smooth in the troposphere

and did not contain small-scale features. Although the actual chemistry bias in the model may have more complex vertical

structure, we do not expect chemical biases to be as strongly localized as the biases associated with emissions and vertical

transport. The a priori and a posteriori residual biases, as well as WC forcing terms, are shown in the Fig. 3. The WC state15

optimization performed best over land where the a priori biases were almost completely removed. The optimization was least

successful over the oceans in the lower troposphere. This situation is consistent with the distribution of the adjoint sensitivities

shown in Fig. ??, which showed lower GOSAT
:::
fact

:::
that

:::
the

::::::::::
assimilation

::
of

:::::::
GOSAT

::::
data

:::
has

:::::
lower

:
sensitivity to variations in

CH4 in the lower troposphere as compared to the upper troposphere, due in part to the absence of GOSAT observations over

oceans in our analysis
::
as

::::
well

::
as

::
to
::::::::

different
::::::::
transport

::::::
patterns

::::
and

:::::::
stronger

:::::
winds

:::
in

:::
the

:::::
upper

::::::::::
troposphere. Shown in Fig. 420

are the mean vertical profiles of the prior and posterior bias over the same four regions considered in Fig. 2. The model does

indeed successfully mitigate the bias. Over the convection regions in the tropics, there is some compensatory corrections in the

lower troposphere and in the UTLS, which is probably due to the fast vertical transport in these regions and the limited vertical

information in the GOSAT retrievals.

In the final OSSEwe biased the initial conditionsby introducing biases in the vertical distribution of CH4 (by turning off25

convection) and in the total CH4 mass in the atmosphere (by running the model with different surface emissions in the previous

seven months). The
::::
third

::::::
OSSE,

::::
with

::::::
biased

:
initial

:::::::::
conditions,

:::
the

:::::
initial

:
condition bias is shown on the left panel in Fig. 5.

The stratosphere and southern troposphere were positively biased, whereas the northern troposphere was negatively biased. The

right panel shows the structure of the a posteriori bias after the WC assimilation, on the last day of the assimilation window,

May 31st. It shows that the CH4 state converged to the “true” concentrations everywhere except in the upper stratosphere; the30

positive upper stratospheric bias was compensated for in the column by a small negative CH4 bias in the troposphere and the

lower stratosphere.

In Fig. ??, we show
::::::::::
Examination

::
of
:
the evolution of the initial condition bias , relative to the total atmospheric CH4 mass, in

four altitude bins in each hemisphere: 1000-700
:::
(not

:::::::
shown), 700-400 , 400-200 , and 200-0 . What the figure does not show

is how much the bias was adjusted in the actual initial conditions. The perfect observing system would completely remove35
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the initial condition bias at the start of the assimilation period (on February 1). However, what is shown on February 1 is just

an 8% reduction in the bias in each of the eight regions , relative to the a priori, with the rest of the bias propagated onto

the assimilation period. The different regions
:::::::
indicates

::::
that

:::::::
different

:::::::
regions

::
of

:::
the

::::::::::
atmosphere

:
converged to the “true” CH4

mass at different rates. The tropospheric CH4 burden in both hemispheres (in the 1000-700 , 700-400 , and 400-200 bins)

converged mainly during the first month, however, convergence was slower near the surface in the SH. Above ,
::::
with

::::::
levels5

:::::
above 200 , the convergence rate was slow

:::
hPa

:::::::::
converging

:::
the

::::::
slowest, such that by the third month the CH4 mass had not fully

recovered , particularly in the SH where there is reduced sensitivity due to the limited GOSAT observational coverage. The

slower convergence above 200 hPa (compared to the troposphere) is expected due to weak vertical transport in the stratosphere.

This suggests that additional vertical correlation between forcing terms in the stratosphere would be beneficial to accelerate

convergence in the stratosphere.
::
at

::::
these

::::::
levels.10

3.2 Assimilation of Real GOSAT Retrievals

The bias between the GOSAT data and the 4◦ × 5◦ a priori and a posteriori model is shown in Fig. 6. Here we will refer to the

a posteriori results as the WC_4x5 assimilation, which is our standard WC 4D-Var assimilation at 4◦ × 5◦ resolution with a

three-day forcing time window and a forcing mask G comprising the entire vertical extent of the atmosphere. As can be seen,

there are large positive a priori biases at high latitudes in the northern hemisphere and in some low-latitude regions, such as15

Equatorial Africa and eastern China. The WC_4x5 assimilation successfully reduces the a priori bias. There is some residual

high latitude bias, which resembles noise or bias in the GOSAT observations. In a companion analysis, Stanevich et al. (2020),

in which we examine the impact of model resolution on the modelled CH4 distribution, we showed that the large positive a

priori CH4 bias over China may partly be explained by weakening of the vertical transport in the model due to the coarse 4◦

× 5◦ resolution. In Stanevich et al. (2020), we also showed that a significant fraction of the high-latitude bias comes from the20

stratosphere and is a consequence of running the model at 4◦ × 5◦ resolution. As a result, here we repeated the GOSAT WC

assimilation at the higher resolution of 2◦ × 2.5◦. The results, which are shown in Fig. 7, reveal that the high latitude a priori

bias is indeed smaller in the 2◦ × 2.5◦ model. At the higher resolution, the WC assimilation also successfully reduces the

model bias. For comparison, we repeated the assimilation at 4◦ × 5◦, but optimized the emissions instead of the CH4 state. The

results for this experiment, referred to as SC_4x5, are shown in Fig. 8. As can be seen, the SC assimilation leaves significantly25

larger residual biases. The pattern of the residual bias indicates that there were other biases that the assimilation could not fit

at the expense of the emissions. We will investigate possible sources for these biases in the sections below.

The signal of surface emissions is mixed with possible model errors in the troposphere, such as those related to vertical

transport. Biases in the CH4 fields caused by incorrect surface emissions will in some cases have identical structure to those

caused by biased vertical transport, which may complicate the interpretation of WC 4D-Var state corrections in the troposphere.30

On the other hand, it takes much longer for the surface emissions signal to mix into the stratosphere. We therefore assumed that,

on the short (four-month) time scale of the simulation, optimized forcing corrections ui in the stratosphere can be considered

independent from the influence of surface emissions. The third column in Figs. 6 and 7 shows the actual mean monthly bias

in the a priori CH4 fields that was corrected by the stratospheric forcing terms. The bias corrections in the 2◦ × 2.5◦ CH4
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simulation are smaller than for the 4◦ × 5◦ simulation, which is consistent with Stanevich et al. (2020), who suggested that

part of the stratospheric bias at 4◦ × 5◦ resolution is due to the model resolution itself. The WC inversion results suggest that

the 4◦ × 5◦ model is positively biased in the stratosphere at the high latitudes and weakly negatively biased in the tropics. In

contrast, the 2◦ × 2.5◦ model is mainly negatively biased in the stratosphere, particularly, around 30-40◦N, except for few high

latitude regions, possibly related to the polar vortex.5

3.2.1 Evaluation With TCCON and NOAA Data

Table 1 presents the results of the evaluation of the SC_4x5 and the WC_4x5 assimilation with the in situ and TCCON data,

whereas Table 2 gives the comparison results at individual TCCON sites. Based on the OSSE results in Sect. 3.1, and provided

that the only model bias is due to incorrect surface emissions, we would anticipate the WC assimilation to produce generally

worse fits to the surface measurements than the SC assimilation. The comparisons show that both approaches produced similar10

improvements in the fit to the NOAA in situ observations, with slightly better performance from the WC method. The WC

assimilation had a significant impact on the overall fit to the TCCON XCH4 retrievals, whereas the SC assimilation had a much

more limited impact. Table 2 shows the benefits of using the WC method at the individual TCCON sites. With the exception

of Park Falls and Lamont, the WC assimilation significantly improved the correlation and reduced the bias between the model

and the TCCON observations. The results suggest that GEOS-Chem a priori CH4 simulation suffered from biases that were15

not related only to incorrect surface emissions.

The evaluation of the WC tuning
::::::::
sensitivity

:
experiments is summarized in Fig. 9. The series of WC experiments described

in Sect. 2.5 were organized into four groups. The most sensitive indicator of the quality of the model-observations fit is the

correlation. The scatter was close to the level of the GOSAT measurement noise and did not change much among the different

assimilation experiments. In the first group
::
set of experiments (first panel in Fig. 9) ,

::
in

:::::
which

:
we changed the vertical extent of20

the forcing mask G. We
:
,
:::
we found that restricting the optimized forcing to the stratosphere (altitudes above 200 hPa) resulted

in correlation statistics that were only slightly worse than when we optimized the forcing throughout the whole atmosphere.

This suggests that a significant part of model errors above all TCCON stations may be related to the representation of the

stratosphere in the model. In addition, the bias and scatter plots show that optimization of forcing terms above 200 hPa

produced the best fit to NOAA surface observations. In the second group of experiments (second panel in Fig. 9) ,
::
in

:::::
which we25

modified the horizontal extent of the forcing mask G. We
:
,
:::
we found that optimization of the forcing throughout the stratosphere

and only over North America, Europe, China, and Equatorial Africa in the troposphere, as described in Sect. 2.5, produced

almost identical fits to the case of the “full state assimilation”. These four regions are major sources of CH4 and our results

suggest that at the TCCON sites the model was likely affected by errors in emissions and the transport of the emission signal

over these regions. Henceforth, we refer to these assimilation results as WC_4REG_4x5. In the third group of experiments30

(see the third panel in Fig. 9) ,
::
in

::::::
which we varied the length of the forcing window from 3 days to 7 days, 14 days, and 30

days. We
:
,
::
we

:
found that the agreement at some of the stations, such as Lamont, Park Falls, and Sodankylä, were generally

insensitive to increasing the length of the forcing window, which could suggest that the model above these stations was affected

by slowly varying biases. The model fit at other stations, particularly, Bialystok, Bremen and Karlshure, degraded when the
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window length was increased. The three later stations are located close to each other and are, probably, affected by the similar

model errors on synoptic times scales of about one week.

In the last group of experiments (see the fourth panel in Fig. 9), we compared the performance of the two 4D-Var assimilation

modelling approaches (WC “full state assimilation” and SC “flux assimilation”) at the two model resolutions, (4◦ × 5◦ and 2◦

× 2.5◦). The comparison suggested that, in the absence of a priori bias correction, the SC method brings limited improvements5

to the a prior CH4 fields at both resolutions. Indeed, we conclude that the SC assimilation at the 4◦ × 5◦ resolution is futile as

the a priori model at 2◦ × 2.5◦ resolution produces a better fit to the TCCON observations than the SC 4◦ × 5◦ assimilation.

The performance of the SC assimilation at the 2◦ × 2.5◦ resolution was similar to but was surpassed by the “best fit” WC

state assimilation at the 4◦ × 5◦ resolution in term of its fit to TCCON and NOAA in situ measurements. Overall, the WC

state assimilation at 2◦ × 2.5◦ resolution generated the best model fit to TCCON observations. However, in all 2◦ × 2.5◦10

resolution experiments the model bias against NOAA surface measurements was larger compared to the 4◦ × 5◦ experiments.

For example, the smallest WC a posteriori bias at 4◦ × 5◦ was about 10 ppb, whereas at 2◦ × 2.5◦ it was about 17 ppb.

Another important conclusion can be drawn from the fact that the WC assimilation at both model resolutions significantly

improved the model fit to Izana measurements (see the fourth panel in Fig. 9). The Izana station is located at an altitude of 2370

m above sea level on a small island near the coast of Africa that has no local CH4 emission sources. The model at 2◦ × 2.5◦15

and 4◦ × 5◦ resolutions is not able to resolve the inland
:::::::::
topography

:::
of

:::
the

:::::
island. Therefore, the model transport in the vicinity

of a
:::
this high-altitude station, particularly, in the lower troposphere, may be subject to similar errors

:
at
:::::

both
:::
the

:
2◦

::
×

:::
2.5◦

:::
and

:
4◦

:
×
::
5◦

:::::::::
resolutions. Hence, the improvement in the assimilated CH4 fields should mainly

:::
may

:
be related to the corrected

transport
:::::
model

:::::
errors in the upper troposphere and the stratosphere, which also supports the conclusions drawn from the first

group of experiments
:::::
rather

::::
than

::
in

:::
the

:::::
lower

::::::::::
troposphere

:::::
where

::::::::::::::::
topography-related

:::::
errors

:::::
would

:::
be

::::::::
dominant.20

The WC full state assimilation at 4◦ × 5◦ leaves a weak positive biases in the GEOS-Chem fields against the TCCON

observations (excluding Sodankylä) in most of the experiments. Mean a posterior inter-station bias at 4◦ × 5◦ (2◦ × 2.5◦)

resolution is 3.4 (4.0) ppb (excluding Sodankylä), while the scatter is 8.6 (7.3) ppb (including
::::::::
excluding Sodankylä). It is

not clear if the GOSAT data is positively biased or if this could be caused by differences between the GOSAT and TCCON

averaging kernels in the stratosphere and the fact that, for example, the stratospheric model bias was not fully recovered by25

the assimilation, particularly, during the first couple of months of the assimilation period(see Fig. ??). .
:
The results also do not

indicate the presence of a latitudinal bias between TCCON and GEOS-Chem and, hence, between TCCON and GOSAT.

There is a larger positive XCH4 bias between the model and Sodankylä measurements, 12.6 ppb and 11.2 ppb for the WC

assimilation at 4◦ × 5◦ and 2◦ × 2.5◦ resolution, respectively, however, the correlation is also high, 0.81 and 0.93, respectively.

Tukiainen et al. (2016) and Ostler et al. (2014) pointed to the fact that polar vortex conditions at high-latitude stations may30

induce biases in TCCON XCH4 retrievals. It has been claimed that a priori profiles in the retrievals do not account for and are

not adjusted to these dynamic conditions, hence, they significantly deviate from the real CH4 profiles. When there is not enough

information in the spectra to correct for such discrepancies, the XCH4 retrievals can be systematically biased. It is possible that

both the GOSAT and TCCON could have been affected by the polar vortex conditions during some days in February-April 2010

so that the biases in co-located retrievals are partially cancelled. It should also be noted that the negative a priori correlation35
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between the model and Bialystok XCH4 measurements is partly caused by the limited number (84) of measurements during

the four-month assimilation time window.

3.2.2 Evaluation With ACE-FTS and HIPPO-3 Data

Figures 10 and 11 show the results of the GEOS-Chem comparison with the ACE-FTS and HIPPO-3 data. Model versus ACE-

FTS data is shown only in the stratosphere in order to exclude potentially biased data due to interference with clouds in the5

upper troposphere. The mean XCH4 difference between GEOS-Chem and ACE-FTS that is shown was obtained by artificially

extending the ACE-FTS CH4 profiles down into the troposphere using the GEOS-Chem fields and then applying the GOSAT

column averaging kernels. Consistent with ?
::::::::::::::
Saad et al. (2016), the CH4 differences reveal that the a priori 4◦ × 5◦ model has a

positive stratospheric bias that can be as large as 250 ppb averaged zonally (see Fig. 10). HIPPO-3 comparison also showed that

the 4◦ × 5◦ model is positively biased in the stratosphere and slightly negative in the troposphere. Wang et al. (2017) showed10

that similar positive CH4 biases in mid- and high latitudes exist in TM3, TM5 and LMDz CTMs. The 4◦ × 5◦ WC assimilation

reduced the positive stratospheric bias with respect to both HIPPO-3 and ACE-FTS, but it did not remove it completely. For

example, the maximum model minus ACE-FTS XCH4 bias due to the stratosphere was reduced from about 40 ppb to 30 ppb.

The average negative tropospheric CH4 bias relative to HIPPO-3 was reduced. It is possible that the WC method was not able

to properly localize the stratospheric bias. However, the validation analysis may also reflect the influence of the slow recovery15

of the stratospheric CH4 fields from the bias in the initial conditions. Therefore, discrepancies in the stratospheric CH4 field

from the initial conditions in the first two months of the WC assimilation could be contributing to the observed HIPPO-3 and

ACE-FTS bias. Unfortunately, the measurements are either too sparse or limited in space and time to verify this assumption.

The positive a priori stratospheric bias relative to ACE-FTS and HIPPO-3 was significantly smaller at 2◦ × 2.5◦ than at

the 4◦ × 5◦ resolution (see Fig. 11), however, it was not completely removed. Stratospheric CH4 fields in the NH above 20020

hPa even became negatively biased at 2◦ × 2.5◦, particularly around 30◦N-40
::::
N–40◦N, where the absolute bias became larger

than at 4◦ × 5◦. The WC assimilation at 2◦ × 2.5◦ further corrected the positive biases and significantly reduced the negative

bias around 30◦N-40
::::
N–40◦N. As can be inferred from Fig. 7, the latter covered the entire latitudinal band but was particularly

pronounced over the Himalayas. Despite the reduction of the stratospheric bias, the 2◦ × 2.5◦ WC assimilation introduces a

positive CH4 bias relative to HIPPO-3 in the NH lower troposphere.25

4 Discussion of Model Biases

4.1 Stratospheric Bias

The sensitivity experiments carried out in Sect. 2.4 suggested that a stratospheric bias introduced in the system through the

initial conditions has the slowest correction rate. However, by the start of the last month of the assimilation, May 2010, the bias

is either removed or does not change much with time. Therefore, we focus the discussion here on the stratosphere in the month30

of May 2010, with the assumption that the model is free of the influence of the initial conditions. Figure 12 compares the a
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priori CH4 fields to the optimized fields from the WC_4x5 and SC_4x5 assimilations. The top panel shows that corrections in

the stratospheric CH4 abundance are the most pronounced feature of the WC optimized CH4 fields, and that changes are smaller

in the zonal mean tropospheric fields. The bottom panel is presented to contrast the behaviour of the two 4D-Var approaches.

It shows that the SC assimilation attempts to correct the positive high-latitude stratospheric CH4 bias at the expense of surface

emissions. This results in a negative CH4 bias in the lower troposphere, while the surface signal hardly impacts the stratosphere.5

In the WC assimilation, stratospheric CH4 was significantly reduced at high latitudes and increased in the tropics relative to

the a priori, which is consistent with the correction of the biases shown in Fig. 10 and 11. The changes are more substantial

in the northern hemisphere due to the asymmetrically larger number of GOSAT measurements in the northern hemisphere(see

the adjoint sensitivity in Fig. ??).
:
.

Large biases in the stratosphere were previously identified in GEOS-Chem (?)
:::::::::::::::
(Saad et al., 2016) and in other chemistry10

transport models (Strahan and Polansky, 2006; Patra et al., 2011; Ostler et al., 2016). The problem was mainly linked to biases

in the meridional Brewer-Dobson circulation in the stratosphere and in the rate of troposphere-stratosphere exchange. However,

neither mechanism was analysed in detail. Indeed, the observed changes in Fig. 12 may partly reflect discrepancies in the

Brewen-Dobson circulation projected from the initial conditions. In particular, too-rapid meridional overturning in the months

prior to the assimilation would have transported excess of CH4 from the tropics and to the high latitudes. In the companion15

study, Stanevich et al. (2020) show that the stratospheric bias in GEOS-Chem can also be due to increased numerical diffusion

at the coarse horizontal model resolution. This leads to additional unphysical horizontal mixing between the troposphere and

the stratosphere and between the high latitudes and the tropics in the stratosphere.

4.2 Tropospheric Bias

4.2.1 Pattern of forcing terms20

The forcing terms are corrections applied to the CH4 fields at each model time step. This time step is equal to 30 min and 15

min for the 4◦ × 5◦ and 2◦ × 2.5◦ simulations, respectively. In order to compare the forcing terms in the two simulations,

we added together the state corrections at two successive 2◦ × 2.5◦ time steps. Therefore, all forcing terms discussed in this

section are presented for 30 min time intervals. The first column in Fig. 13 presents forcing terms in the troposphere optimized

by the WC_4x5 assimilation. The observed structure of the forcing terms simultaneously mitigated model errors from multiple25

sources. In this section, we attempt to give the most likely explanation of the retrieved pattern of the state correction and

identify sources of regional biases.

In general, the original a priori CH4 fields can be affected by model errors that either occurred during the assimilation period

or have been projected onto the assimilation window from the initial conditions. Here, we investigate the former case. Given

the results of the OSSE with biased initial conditions in Sect. 3.1, we focus in Fig. 13 on the mean forcing terms in the last30

three months of the assimilation (March-May 2010) as they are much more likely to be related to recent model errors rather

than to biases in the initial conditions. The temporally averaged structure also gives insight into systematic model errors and

is easier to interpret. Figure 13 (first column) shows that negative forcing terms dominate near the surface and in the lower
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troposphere, particularly over Europe, Equatorial Africa and East Asia. The CH4 reduction at the surface is consistent with

NOAA observations. Positive state corrections are more frequently found in the upper troposphere, mainly in mid-latitudes

over the Pacific and Atlantic oceans as well as over Europe and significant part of Russia. There are also several regions,

such as eastern China and equatorial Africa, where the forcing terms are negative throughout the entire tropospheric column.

Vertical slices over mid-latitudes (bottom right panel) show that strong negative corrections over the east coast of Asia and5

North America are accompanied by positive corrections in the upper troposphere downwind of the continents. Forcing terms

are generally weaker in the lower troposphere over the oceans where we lack GOSAT observations.

Generally, corrections of one sign with monotonically decaying magnitude from the surface to the upper troposphere could

be associated with biases in the surface emissions, while the dipole structures with corrections of the opposite sign in the upper

and lower troposphere could be related to errors in vertical transport. However, it is not feasible to uniquely identify the origin10

of model errors from the pattern of forcing terms because model errors from separate sources are mixed in the atmosphere and

the estimation of the forcing terms is an under-constrained inverse problem.

Still, we may try to identify possible sources of model errors. For example, initial assessment of the state corrections pointed

to potential issues in vertical transport. Indeed, the dipole structure of the forcing terms could indicate that upward transport

of CH4 in mid-latitudes may be insufficient, particularly, over regions with strong vertical CH4 gradients that are present over15

large sources of CH4. In NH mid-latitudes the major CH4 source regions are China, the US, and Europe. Moreover, the eastern

parts of China and North America are located in regions of significant extra-tropical cyclone activity (Stohl, 2001; Shaw et al.,

2016), where CH4 emitted from the surface is being lifted into the free troposphere in warm conveyor belts associated with

these cyclones (Kowol-Santen et al., 2001; Li et al., 2005; Sinclair et al., 2008; Lin et al., 2010). Moist convection over land

could also contribute to the total transport bias, however convective transport is not strong over these mid-latitude regions20

during the months of February-May.

Similar vertical structure in the forcing terms was identified above and downwind of eastern North America and China (see

the first column, forth row of Fig. 13). The WC method applied negative corrections over the land, from the surface to the upper

troposphere, and large positive corrections in the upper troposphere and weakly negative correction in the lower troposphere

over the oceans downwind of the continents. The WC method may suggest that vertical transports over eastern parts of the25

continents has to be stronger. In such case, more CH4 emitted from local sources reaches the middle to upper troposphere and

is transported away from the continents by strong westerly winds. Meanwhile, CH4 concentrations in the entire atmospheric

column over land and in the lower troposphere over the adjacent oceans are reduced. Therefore, the large positive a priori bias

between the model and GOSAT over China shown in Fig. 6 (first column) may partly be attributed to weak local uplift of CH4.

The observed structure of the forcing terms cannot be uniquely attributed only to biases in vertical transport. The WC30

method significantly reduced CH4 in the stratosphere at high latitudes. If biases in the stratospheric CH4 fields are induced

by transport errors, the total CH4 budget has to be conserved. Therefore, CH4 removal from the high-latitude stratosphere

has to be compensated for in either the tropical stratosphere or the upper troposphere. Hence, the positive forcing terms

in the upper troposphere, particularly, in the vicinity of the westerly jet, may also be partly related to model errors in the
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troposphere-stratosphere exchange and may correct for CH4 leaking from the troposphere to the stratosphere. The negative

forcing terms over China and North America may also partly correct for positively biased a priori surface emissions.

Another region of interest, as suggested by the WC assimilation (Fig. 13, first column, third row), is equatorial Africa.

Similar to China, a large positive a priori model XCH4 bias was found here. However, due to the observational coverage,

there are limited direct constraints on the CH4 outflow from equatorial Africa except for sparse GOSAT observations over5

South America. While the African XCH4 bias could be related to positively biased local a priori surface emissions, the WC

assimilation also suggested another transport related explanation. The WC assimilation applied negative CH4 forcing terms

over central Africa and positive forcing terms downwind in the middle troposphere (between 400 and 800 hPa) over the

Atlantic Ocean. Such a pattern of state correction could point to potential errors in CH4 outflow from the African continent.

Southern Africa is characterized by a persistent high pressure system that drives easterly outflow from southern tropical Africa10

to the Atlantic in the lower to middle troposphere (Garstang et al., 1996). In their analysis of the sources of moisture in the

Congo Basin, Dyer et al. (2017) showed that there is a strong export of moisture from southern tropical Africa to the Atlantic

between 800-500 hPa. Furthermore, Arellano et al. (2006) found, in their inversion analysis of carbon monoxide (CO) data

from the MOPITT instrument, a discrepancy between their a posteriori CO and observations at Ascension Island, which they

speculated could be due to errors in the altitude dependence of the outflow from Africa in the GEOS-Chem model. It is possible15

that too-much CH4 is being convectively lofted
::::
lifted to the upper troposphere over central Africa and not enough is exported

out over the Atlantic in the lower troposphere. Figure ??
:
1 (first column) displays the bias in CH4 fields when convection was

turned off in the model. This caused CH4 emitted over Africa to take a different transport pathway. Instead of being lifted up

over the continent, more CH4 was transported out to the Atlantic in the lower to middle troposphere between 500 and 900 hPa.

Under such conditions, CH4 is simultaneously depleted over the continent and increased over the Atlantic, which is similar to20

what the WC forcing terms suggest. We cannot determine the exact origin of the XCH4 bias over Africa, but the forcing terms

do suggest the presence of a transport bias.

The estimation of the forcing terms is an under-constrained inverse problem. Consequently, here we evaluate the impact of

reducing the dimensionality of inverse problem by limiting the region of the atmosphere where the forcing terms should be

applied. This was done in the WC_4REG_4x5 assimilation, in which we restricted the forcing optimization to the stratosphere25

and only over the main CH4 anthropogenic emission regions in the troposphere. The results presented in Sect. 3.2.1 suggested

that the WC_4x5 and WC_4REG_4x5 assimilations produced similar fits to the independent observations. Therefore, errors

affecting the model, at least, at the location of the validation stations could emerge from either the NA, CH, EU, EQAf, or

STRAT regions. The second column in Fig. 13 presents the structure of optimized forcing terms from the WC_4REG_4x5

assimilation where the number of optimized variables was reduced using the forcing mask G. Over China and North America,30

the forcing terms acquired a better defined dipole structure with positive correction in the upper troposphere and negative

correction in the lower troposphere. Over equatorial Africa, the region of positive corrections in the mid-troposphere moved

closer to the continent.
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4.2.2 Dependence of the forcing terms on model resolution

Coarsening the model resolution from 2◦ × 2.5◦ to 4◦ × 5◦ can be considered as equivalent to introducing errors in the

finer resolution model. Yu et al. (2017) and Stanevich et al. (2020) showed that at coarse resolution vertical transport in

GEOS-Chem is weakened due to loss of eddy mass flux and incorrect regridding of
::
air

:::::
mass

::::
flux

::
in

:::
the

:::::::::
regridding

:::
of

:::
the

meteorological fields. Stanevich et al. (2020) also showed that the efficiency of transport barriers is reduced due to increased5

numerical diffusion, which causes unphysical mixing between the interior and the exterior of the polar vortex, too rapid mixing

of CH4 between the tropical and extratropical branch of the Brewer-Dobson circulation, and increased troposphere-stratosphere

exchange. Thus, in Fig. 13 we compare the forcing terms from the 4◦ × 5◦ assimilation (WC_4x5) with those from the 2◦ ×
2.5◦ WC assimilation (WC_2x25). Differences between the 2◦ × 2.5◦ and 4◦ × 5◦ forcing represent the response of the WC

method to the resolution-induced transport errors. We found that the magnitude of the negative forcing term was reduced in10

the lower troposphere, particularly, over China. Similarly, the magnitude of positive forcing terms was reduced in the upper

troposphere. The pattern of forcing terms on the vertical slice at mid-latitudes became significantly weaker. Comparison of

Figs. 6 and 7 also suggested smaller stratospheric corrections at the 2◦ × 2.5◦ resolution. At the same time, the structure and

magnitude of forcing terms at the equator (particularly, over equatorial Africa) was not significantly affected by the increase of

resolution.15

Several conclusions follow from Fig. 13. First, the results suggest that a large fraction of model errors at 4◦ × 5◦ resolu-

tion, particularly, in the stratosphere and over mid-latitudes in the troposphere are resolution-induced. Second, although the

magnitude of the forcing terms at the 2◦ × 2.5◦ resolution is smaller, the pattern remains similar, which implies that the 2◦ ×
2.5◦ resolution model may still be affected by the same type of transport errors. Third, the assumptions made about sources

of model errors in the tropics, particularly, over equatorial Africa, still apply to the 2◦ × 2.5◦ simulation as the structure and20

magnitude of forcing terms remained unresponsive to the model resolution. It is possible that these regions are dominated by

discrepancies in moist convective transport that are large at 2◦ × 2.5◦ and 4◦ × 5◦. Finally, the results strongly suggest that the

WC assimilation and the GOSAT observations have the potential to diagnose transport errors at both model resolutions.

5 Conclusions

In this study, we assessed errors in the global GEOS-Chem chemistry transport model during the four-month period of25

February-May 2010 using the weak constraint 4D-Var data assimilation method at the model resolutions of 4◦ × 5◦ and 2◦ ×
2.5◦. This was done by constraining simulated CH4 fields with GOSAT XCH4 retrievals. This represents the first application

of WC 4D-Var scheme for assimilation of GOSAT XCH4 retrievals to characterize model errors in a CTM.

An analysis of the sensitivity of the GOSAT measurements to the atmospheric CH4 state found that the XCH4 retrievals are

most sensitive to CH4 mass changes in the stratosphere and in the upper troposphere in the northern hemisphere, which was30

explained by the GOSAT observational coverage and stronger horizontal winds in the UTLS, allowing the CH4 perturbations

to be observed by a larger number of measurements. Sensitivity at the equator was about half that at northern mid-latitudes. In a

series of OSSEs, the observations and the WC method were tested to determine the ability of the system to recover “unknown”
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errors in CH4 fields associated with artificially introduced biases in emissions, convection, chemistry, and initial conditions. We

found that when not supplied with any information about the errors, the WC method was able to significantly mitigate biases in

the CH4 fields with slowly changing spatial structures, but was not able to correct strongly localized biases, particularly, those

in the boundary layer. Despite having almost flat averaging kernels in the troposphere, our analysis showed that the GOSAT

XCH4 retrievals could help constrain the vertical distribution of model errors when convection was turned off in the model.5

The WC method needed about a month to recover the bias introduced in the initial condition in the troposphere and about

two months to do so in the stratosphere. Generally, the method was successful in mitigating model errors of “unknown” origin

and magnitude. However, more optimal performance could be achieved by supplying the method with additional information

about model errors, such as their temporal and spatial correlation using the model errors covariance matrix Q. However,

characterizing these correlations will be challenging.10

The WC method was tuned in a set of experiments to diagnose real model errors in the GEOS-Chem CTM at the 4◦ × 5◦

resolution. The a posteriori model fit to independent observations, such as ACE-FTS, HIPPO-3, TCCON and NOAA surface

measurements, was used to evaluate the assimilation. Initial comparisons suggested that GEOS-Chem was affected by biases

not solely related to discrepancies in surface emissions. Results suggested that the modelled CH4 fields at the location of most

NH TCCON stations were affected by slowly varying biases, however, a few stations, such as Bialystok, Bremen and Karlsruhe,15

were more likely influenced by errors varying on time scales of one week. The evaluations pointed to a large positive bias in the

stratosphere relative to ACE-FTS and HIPPO-3 measurements, and weakly negative bias in the middle to upper troposphere

relative to HIPPO-3 data. The WC assimilation was able to mitigate the negative tropospheric bias and partly removed the

stratosphere bias. We found that the SC 4D-Var assimilation that optimized the surface emissions had only limited impact on

the model fits. Furthermore, the WC assimilation at 4◦ × 5◦ resolution performed better than the SC assimilation at 2◦ × 2.5◦20

resolution. Meanwhile, the results showed that running the a priori model at 2◦ × 2.5◦ resolution produced better agreement

with TCCON observations than the a posteriori fields from the SC 4D-Var surface emission optimization at 4◦ × 5◦.

State corrections at the 4◦ × 5◦ resolution also explicitly pointed to issues with vertical transport, suggesting that vertical

transport of CH4 in mid-latitudes over the large CH4 source regions of eastern China and North America is too weak. In the

tropics, the WC inversion corrected for large positive XCH4 biases over equatorial Africa. From the pattern of forcing terms,25

it remained unclear whether the bias over Africa was related to surface emissions. However, the WC method suggested the

possibility of biased CH4 outflow from the African continent to the Atlantic Ocean in the mid-troposphere, which could be

related to a discrepancy in the partitioning between deep convection transport to the upper troposphere and shallow outflow to

the Atlantic Ocean.

In a companion analysis, Stanevich et al. (2020) examined the impact of model resolution on the CH4 simulation and found30

larger model biases at 4◦ × 5◦ compared to 2◦ × 2.5◦. We found that assimilating the GOSAT data at the higher resolution of

2◦ × 2.5◦ produced state corrections that were similar to those obtained at 4◦ × 5◦, however, the magnitude of these corrections

in the stratosphere and in the mid-latitude troposphere was significantly reduced at the higher resolution. This suggested that

the model at both resolutions was affected by transport errors of similar origin, although less so at the 2◦ × 2.5◦ resolution,

and a significant fraction of these errors was induced by the model resolution itself. The WC assimilation also corrected for35

25



the negative CH4 bias relative the ACE-FTS and HIPPO in the northern mid-latitude stratosphere, found only at the 2◦ × 2.5◦

resolution, and located this bias particularly over the Himalayas. However, the origin of this bias remained unclear.

In our analysis, we used only GOSAT CH4 data over land. However, XCH4 glint measurements over oceans could help

better constrain the vertical structure of the model errors. The WC 4D-Var assimilation of shorter-lived species, such as CO,

could also help better diagnose model errors, especially when transport and emission errors mask each other in CH4 fields,5

although shorter-lived species may also be more strongly affected by errors in chemistry. The advantage of CH4 is its longer

memory of model transport, however shorter-lived gases are more strongly affected by and, hence, may be more sensitive

to the same model errors. Clearly, the detected transport error at the 4◦ × 5◦ resolution would have considerable impact on

inferred emissions if the model
::::::::
evolution

::
of

:::
the

:::::
model

::::
state

:
were assumed to be perfect, as is the case in SC 4D-Var. Instead of

reducing positive high-latitude bias in the stratosphere, the 4◦ × 5◦ SC 4D-Var surface flux assimilation negatively biased the10

lower troposphere. The SC inversion also significantly reduced Chinese CH4 emissions by incorrectly attributing model errors

in vertical transport. Some of the detected transport error were significantly smaller at the 2◦ × 2.5◦ resolution, while others

remained resolution-independent. The effect of these remaining errors at the 2◦ × 2.5◦ resolution has to be further investigated.

Potentially,
:
In

:::
the

:::::::
context

::
of

:::::::::
optimizing

::::::
fluxes,

:::::::::
potentially,

:
any CTM may be improved if the signal from the surface emis-

sions can be separated from other model errors. This would be a rather challenging task for GOSAT XCH4 measurements.15

Further analysis is needed on this problem, particularly on the design of the model error covariance matrix Q. For example,

Trémolet (2007) proposed a design based on statistics of model tendencies. The Q matrix had a rather primitive structure in

our analysis, although sufficient for the objectives of this work. Based on our initial assessment of model errors, the structure

of Q can be further improved. In the meantime, the WC 4D-Var method has a number of immediate useful applications. In

general, it is a valuable instrument for diagnosing model errors. It can also be used as a tool to produce a better estimate of the20

CH4 state in the model in order to provide boundary and initial conditions for forecasting purposes or regional-scale analysis

at higher spatial resolution.

6 Data and code availability

The GOSAT satellite data are available at http://www.esa-ghg-cci.org/sites/default/files/documents/public/documents/GHG-CCI_

DATA.html. The TCCON data are available at http://tccondata.org/. The NOAA-ESRL Global Greenhouse Gas Reference Net-25

work data are available at https://www.esrl.noaa.gov/gmd/dv/data/. The HIPPO aircraft data are available at http://hippo.ornl.

gov/data_access/. The ACE-FTS data are available at https://databace.scisat.ca/level2/ace_v3.5_v3.6/, and registration is re-

quired to download the data. The code for the GEOS-Chem model and its adjoint (with the weak constraint capability) is

publicly available and can be downloaded from www.geos-chem.org. The output from the GEOS-Chem model simulations

used in this analysis are available upon request.30
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Table 1. Evaluation of a priori, SC_4x5 and WC_4x5 optimized CH4 fields using TCCON XCH4 from the stations listed in Table 2 and

NOAA surface in situ observation (mean statistics for the period of February-May 2010). The first, second and third columns represent mean

difference, standard deviation and correlation between the model and measurements, respectively. The fourth column represents the slope of

the regression line with modelled data on the y-axis and measurements on the x-axis.

Mean Difference [ppb] Standard Deviation [ppb] Correlation (R) Slope of regression

Prior SC WC Prior SC WC Prior SC WC Prior SC WC

TCCON 9.1 8.2 5.3 15.0 13.8 9.9 0.83 0.86 0.93 1.16 1.14 1.07

In situ 15.1 9.7 9.6 34.5 30.3 28.9 0.88 0.89 0.90 0.90 1.02 0.99
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Table 2. Evaluation of a priori, SC_4x5 and WC_4x5 optimized CH4 fields using TCCON XCH4 (mean station-wise statistics for the period

of February-May 2010). The first, second and third columns represent mean difference, standard deviation and correlation between the model

and measurements, respectively.

Mean Difference [ppb] Standard Deviation [ppb] Correlation (R)

Prior SC WC Prior SC WC Prior SC WC

Sodankylä (67.37◦N, 26.63◦E) 30.0 25.7 13.7 18.9 19.1 12.6 0.49 0.50 0.81

Bialystok (53.23◦N, 23.03◦E) 11.9 7.3 5.1 9.3 10.6 8.0 0.39 0.43 0.65

Bremen (53.10◦N, 8.85◦E) 6.3 3.2 0.7 14.3 15.2 10.5 -0.37 -0.28 0.47

Karlsruhe (49.10◦N, 8.44◦E) 6.4 4.4 0.8 9.7 9.9 8.9 0.33 0.29 0.49

Orleans (47.97◦N, 2.11◦E) 3.9 3.5 2.5 8.9 9.6 8.3 0.31 0.30 0.51

Garmish (47.48◦N, 11.06◦E) 9.9 10.0 5.7 9.0 9.7 8.4 0.46 0.56 0.65

Park Falls (45.95◦N, 90.27◦W) 1.9 3.6 2.3 9.7 10.6 8.5 0.37 0.47 0.65

Lamont (36.60◦N, 97.486◦W) 1.4 3.7 4.4 11.1 11.5 9.4 0.27 0.30 0.49

Izana (28.30◦N, 16.5◦W) -5.8 -5.3 3.1 7.6 8.2 6.7 0.64 0.58 0.72

Wollongong (34.41◦S, 150.88◦E) 7.5 3.9 3.7 8.9 8.8 8.4 0.58 0.55 0.59

Lauder (45.04◦S, 169.68◦E) 9.6 9.2 5.9 5.6 5.7 5.4 0.72 0.72 0.73
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Mean difference from 1 February - 31 May 2010 between GOSAT XCH4 retrievals based on the original and new CO2 proxy

fields. The original CO2 proxy is based on the median of the CO2 distributions from the GEOS-Chem (from the University of

Edinburgh), LMDZ/MACC-II and NOAA CarbonTracker models constrained by in-situ surface CO2 observations. The new

CO2 proxy is from a CO2 surface flux inversion analysis using the GEOS-Chem model constrained by GOSAT ACOS CO2

retrievals over land. Mean XCH4 fields from February to May 2010. Top panel: XCH4 from the GEOS-Chem model at a5

resolution of 4× 5. The model was sampled at the locations and times of the GOSAT observations and smoothed with the

GOSAT averaging kernels. Bottom panel: GOSAT XCH4 retrievals based on the new CO2 proxy fields. Distribution of total

adjoint sensitivity in GEOS-Chem of GOSAT observations in February-May 2010 to the modeled CH4 distribution (the model

state) during the same period. The adjoint sensitivities have been summed over the time period. Shown are (top) the total zonal

mean adjoint sensitivities and (bottom) the altitude-longitude cross section of the sensitivities along 34N.10
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Mean differences in the CH4 distribution in March 2010 in the OSSE with biased surface emissions. Left column: mean differences

between the priori simulation and that based on the "true" emissions (the true state). Middle column: mean differences between the WC

optimized CH4 state and the true state. Right column: mean differences between the SC optimized CH4 state and the true state. The rows

show the results at the surface (upper), 750 hPa (middle), and 500 hPa (lower). The black boxes indicate the four domains considered for the

regional analysis discussed in the text and shown in Fig. ??. Mean vertical profiles of the CH4 differences in March 2010 in the OSSE with

biased surface emissions for the four regions depicted in Fig. ??. The differences are between (black lines) the biased a priori and the “true”

CH4 state, (dark red lines) the SC optimized state and the “true” CH4 state, and between the WC optimized state and the ‘true” CH4 state

for the following cases: (light red line) the standard WC optimization with the forcing calculated over the depth of the entire atmosphere

(i.e., G= [1000− 0 hPa]) and with a constant forcing window (T ) of 3 days; (green lines) the forcing calculated from the surface to 200

hPa with a constant forcing window of 3 days; and (blue lines) the forcing calculated over the depth of the entire atmosphere, but with a

forcing window of 30 days.
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Figure 1. Mean differences in the CH4 distribution in March 2010 in the OSSE with biased convection. Left column: mean differences

between the a priori CH4 state and the “true” CH4 state. Middle column: mean differences between the WC optimized CH4 state and

the “true” CH4 state. Right column: the mean WC state corrections (the forcing terms), in units of ppb. Shown are the latitude-longitude

differences at (top row) the surface and (second row) at 300 hPa, as well as the altitude-longitude differences (third row) along the equator

and (bottom row) along 42◦N. The black boxes indicate the four domains considered for the regional analysis discussed in the text and shown

in Fig. 2.
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Figure 2. Mean vertical profiles of the CH4 differences in March 2010 in the OSSE with biased convection for the four regions depicted in

Fig. 1. The differences are between (black lines) the a priori and the “true” CH4 state and between (red lines) the WC optimized state and

the “true” CH4 state.
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Figure 3. Mean differences in the CH4 distribution in March 2010 in the OSSE with biased chemistry. Left column: mean differences between

the a priori CH4 state and the “true” CH4 state. Middle column: mean differences between the WC optimized CH4 state and the “true” CH4

state. Right column: the mean WC state corrections (the forcing terms), in units of ppb. Shown are the latitude-longitude differences at (top

row) the surface and (second row) at 300 hPa, as well as the altitude-longitude differences (third row) along the equator. The black boxes

indicate the four domains considered for the regional analysis discussed in the text and shown in Fig. 4.
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Figure 4. Mean vertical profiles of the CH4 differences in March 2010 in the OSSE with biased chemistry for the four regions depicted in

Fig. 3. The differences are between (black lines) the a priori and the “true” CH4 state and between (red lines) the WC optimized state and

the “true” CH4 state.
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Figure 5. Results of the OSSE with biased initial conditions. Left: a priori bias in initial conditions. Right: a posteriori bias at the end of the

assimilation window. The dashed line represents the mean tropopause height on 31 May 2010 taken from GEOS-5 meteorological fields.
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Figure 6. Monthly mean fields from the 4◦ × 5◦ resolution model for February - May 2010. First column: differences between the GEOS-

Chem a priori XCH4 state and the GOSAT data. Middle column: differences between the a posteriori WC_4x5 XCH4 state and the GOSAT

data. Right column: the optimized stratospheric XCH4 bias correction, calculated as the difference between the model simulation with

optimized forcing corrections everywhere and the model simulation with the forcing corrections estimated only in the troposphere. The rows

represent results for (top row) February, (second row) March, (third row) April, and (bottom row) May 2010. All model simulations were

sampled at the locations and times of the GOSAT observations and smoothed with the GOSAT averaging kernels.

Differences in the atmospheric CH4 mass between the WC optimized state and the “true” CH4 state, as a function of time,

for the OSSE with biased initial conditions. The CH4 mass was calculated over the eight different regions of the atmosphere

as given in the legend. “SH” and “NH” indicate the southern hemisphere and northern hemisphere, respectively.
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Figure 7. Same as Fig. 6 but for the 2◦ × 2.5◦ resolution model.
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Figure 8. Monthly mean differences between the GEOS-Chem a posteriori XCH4 state and GOSAT: Left column: differences between the a

posteriori state from the SC “flux assimilation” at 4◦ × 5◦ (SC_4x5) and GOSAT. Right column: differences between the a posteriori state

from the SC “flux assimilation” at 2◦ × 2.5◦ (SC_2x25) and GOSAT. The rows represent results for (top row) February, (second row) March,

(third row) April, and (bottom row) May 2010.
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Figure 9. Evaluation of the mean (February-May 2010) a priori and optimized CH4 fields using TCCON XCH4 and NOAA surface in

situ observation. Results are shown for a set
::
the

::::
four

:::
sets

:
of inversions organized

:::::::::
experiments

::::::::
described in separate characteristic groups

for better representation
::::::
Section

:::
2.5. The

::
For

::::
each

::
set

::
of
:::::::::

experiment
:::::
(each

::::
row),

:::
the left column shows the correlation with respect to the

TCCON and NOAA data, whereas the right column shows the mean bias and scatter. Top row: comparison of (red) the a priori fields, (light

green) the standard WC assimilation(with the forcing terms estimated throughout the atmosphere and with T = 3 days), (dark green)
::

and
:
the

WC assimilation with the forcing terms estimated at altitudes above
::::
(dark

:::::
green) 750 hPa, (blue) the WC assimilation with the forcing terms

estimated above 500 hPa, and (purple) the WC assimilation with the forcing terms estimated above 200 hPa. Second row: comparison of (red)

the a priori fields, (dark green) the standard WC assimilation(with the forcing terms estimated throughout the atmosphere,
:::
and

:
(blue) the

WC assimilation with joint estimation of the state and surface emissions , and (blue) the WC assimilation with the forcing terms estimated

only over North America, Europe, and Asia. Third row: comparison of (red) the a priori fields, (light green) the standard WC assimilation,

(dark green)
::

and
:
the WC assimilation with a constant forcing window of

::::
(dark

:::::
green) 7 days, (blue) the WC assimilation with a constant

forcing window of 14 days, and (purple) the WC assimilation with a constant forcing window of 30 days. Bottom row: comparison of (red)

the a priori fields ,
:
at
:

(
::

red)
::

4◦
::
×

:
5◦

::
and

:
(light green

:::
blue)

:
2◦

:
×

:::
2.5◦,

:
the standard SC assimilation ,

::
at (dark

::::
light green) the standard WC

assimilation,
:
4◦

:
×
::

5◦
:::
and (light

:::
dark

:
blue) the a priori fields at 2◦ × 2.5◦, (dark blue)

::
and

:
the SC

:::
WC

:
assimilation at 2

:::
(dark

:::::
green)

::
4◦ ×

2.5
:
5◦ , and (purple) the WC assimilation at 2◦ × 2.5◦. Each plot shows the statistics for the comparison with each of the 11 TCCON sites

considered as well as the global mean statistics for the comparison with the NOAA surface data.
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Figure 9. Continued.
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Figure 10. Evaluation of the mean (February-May 2010) a priori and WC_4x5 optimized CH4 fields using ACE-FTS and HIPPO-3 CH4

measurements. Shown is (left column) the a priori bias, (middle column) the a posteriori bias, and (right column) the reduction in absolute

bias. Top row: XCH4 bias between GEOS-Chem and ACE-FTS. Middle row: zonally averaged CH4 bias between GEOS-Chem and ACE-

FTS. Bottom row: CH4 bias between GEOS-Chem and HIPPO-3. We used ACE-FTS retrievals only in the stratosphere. The XCH4 bias

between GEOS-Chem and ACE-FTS was obtained by augmenting the ACE-FTS profile in the stratosphere with the GEOS-Chem profile

in the troposphere and smoothing the vertical CH4 profile with mean meridional GOSAT averaging kernels. The dashed line represents the

mean tropopause height.
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Figure 11. Same as Fig. 10 but for the 2◦ × 2.5◦ resolution model.
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Figure 12. Zonal mean CH4 differences (in ppb) in May 2010 between (top panel) the WC_4x5 optimized state and the a priori fields and

(bottom panel) between the SC_4x5 optimized state and the a priori fields. The dashed line represents the mean monthly tropopause height.
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Figure 13. Mean optimized forcing terms (in ppb) for March-May 2010. Left column: WC_4x5 assimilation at 4◦ × 5◦. Middle column:

WC_4REG_4x5 assimilation at 4◦ × 5◦. Right column: WC_2x25 inversion at 2◦ × 2.5◦. Top row: forcing terms at the surface. Second

row: forcing terms at 300 hPa. Third row: altitude-longitude distribution of the forcing terms along the equator. Bottom row: altitude-

longitude distribution of the forcing terms along 34◦N. In the plots in the left column, arrows represent the direction and relative magnitude

of horizontal winds.
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