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Abstract. We examine the street-scale variation of NOx, NO2, O3 and PM2.5 concentrations in Beijing during the Atmospheric 

Pollution and Human Health in a Chinese Megacity (APHH-China) winter measurement campaign in November - December 

2016. Simulations are performed using the urban air pollution dispersion and chemistry model ADMS-Urban, and an explicit 

network of road source emissions. Two versions of the gridded Multi-resolution Emission Inventory for China (MEIC v1.3) 25 

are used: the standard MEIC v1.3 emissions and an optimised version, both at 3 km resolution. We construct a new traffic 

emissions inventory by apportioning the transport sector onto a detailed spatial road map. Agreement between mean simulated 

and measured pollutant concentrations from Beijing’s air quality monitoring network and the Institute of Atmospheric Physics 

(IAP) field site is improved when using the optimised emissions inventory. The inclusion of fast NOx-O3 chemistry and explicit 

traffic emissions enables the sharp concentration gradients adjacent to major roads to be resolved with the model. However, 30 

NO2 concentrations are overestimated close to roads, likely due to the assumption of uniform traffic activity across the study 

domain. Differences between measured and simulated diurnal NO2 cycles suggest that an additional evening NOx emission 

source, likely related to heavy duty diesel trucks, is not fully accounted for in the emissions inventory. Overestimates in 

simulated early evening NO2 are reduced by delaying the formation of stable boundary layer conditions in the model to 

replicate Beijing’s urban heat island. The simulated campaign period mean PM2.5 concentration range across the monitoring 35 

network (~15 µgm-3) is much lower than the measured range (~40 µgm-3). This is likely a consequence of insufficient PM2.5 

emissions and spatial variability, neglect of explicit point sources, and assumption of a homogeneous background PM2.5 level. 

Sensitivity studies highlight that the use of explicit road source emissions, modified diurnal emission profiles, and inclusion 

of urban heat island effects permit closer agreement between simulated and measured NO2 concentrations. This work lays the 

foundations for future studies of human exposure to ambient air pollution across complex urban areas, with the APHH-China 40 

campaign measurements providing a valuable means of evaluating the impact of key processes on street-scale air quality. 
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1 Introduction 

In recent decades, China’s rapid economic growth, industrialisation and urbanisation has led to severely deteriorating air 

quality. Associations between high concentrations of air pollutant species, such as fine particulate matter (PM2.5), nitrogen 

oxides (NOx = NO + NO2) and ozone (O3), and adverse health effects are well-established in China (Han et al. 2018). Most 45 

notably, the inhalation of ambient PM2.5 is linked to respiratory illnesses, cardiovascular disease, lung cancer and adverse birth 

outcomes (Han et al. 2018; Liang et al. 2019). The Global Burden of Disease Study 2016 identified ambient PM2.5 exposure 

as the fourth leading cause of premature death in China (GBD 2016 Risk Factors Collaborators, 2017).  

To accurately assess the extent of human exposure to pollution in densely populated and complex urban areas and to 

reduce this health risk, comprehensive information is needed on the spatiotemporal variation of ambient pollutant 50 

concentrations, the dominant emission source sectors, chemical processes and the role of meteorological conditions in pollution 

accumulation and dispersion. High quality air pollutant concentration measurements can provide some of the required 

information. For instance in Beijing, a 35 station automated air quality monitoring network has measured continuous hourly 

concentrations of PM2.5, PM10, SO2, NO2, O3 and CO since 2013. However, these measurements, recorded by Beijing’s 

Environment Protection Bureau (EPB), are sparsely distributed (Chen et al. 2015; Li et al. 2018; Cui et al. 2019). This, coupled 55 

with the sharp pollutant concentration gradients that exist across urban areas (Hood et al. 2018), limits the accuracy of any 

subsequent human exposure analyses. Therefore, air quality modelling, evaluated using network measurements, may fill in the 

gaps to provide complete spatially and temporally resolved concentration fields (Bates et al. 2018).  

Air quality modelling, from global to street-scale, requires detailed representations of local and regional emission 

fields. However, generating accurate and up-to-date emissions data is a considerable challenge, owing to difficulties in 60 

obtaining the necessary activity, emission factor, and production/control technology data for each emission source sector 

(Hong et al. 2017; Qi et al. 2017). Additionally, in China, the rapid decrease in emissions of major air pollutants over recent 

years needs to be accounted for (Sun et al. 2018; Zheng et al. 2018).  This reduction in emissions has followed the nationwide 

implementation of a number of clean air policies since 2013 as part of the Air Pollution Prevention and Control Action Plan 

(APPCAP) and more locally through the Beijing Action Plan (Ni et al. 2018; Cheng et al. 2019; Wang et al. 2019). Overall, 65 

emissions in Beijing of SO2, NOx, VOCs and PM2.5 are reported to have reduced by 84, 43, 42 and 55% between 2013 and 

2017 (Cheng et al. 2019). These emission reductions were estimated by Cheng et al. (2019), using the technology-based model 

framework of the Multi-resolution Emission Inventory for China (MEIC), and are in good agreement with independent 

satellite-derived emission trends (Liu et al. 2016; Liu et al. 2017).  

The MEIC emission inventory is widely used in studies aimed at understanding the key emission sources and the 70 

effectiveness of air pollution control measures across various regions of China (Li et al. 2017; Zheng et al. 2018; Cheng et al. 

2019). However, uncertainties in MEIC emissions estimates, related to its underlying methodology and input data, have also 

been highlighted. For instance, the MEIC model relies on the use of national and provincial energy consumption statistics, 

which were shown by Hong et al. (2017) to contain large sources of error. The MEIC model uses spatial proxies, such as Gross 

Domestic Product (GDP) and urban population density, to downscale emissions from provincial to county and grid level scale 75 

(Qi et al. 2017). A study by Zheng et al. (2017) revealed a tendency to over-allocate emissions to central urban areas when 

using these spatial proxies to produce the MEIC inventory at resolutions finer than 0.25°. Zheng et al. (2017) attributed this to 

the displacement of large industrial facilities away from urban centres, therefore decoupling the real-world location of the 

emissions from the population-related proxies used to represent them in the MEIC inventory.   

 Numerous regional modelling studies, incorporating emission inventories such as MEIC and Eulerian chemical 80 

transport models (CTMs), have been carried out for Beijing (Liu et al. 2016; Petaja et al. 2016; Li et al. 2017; Wang et al. 

2017; Wang et al. 2018; Chang et al. 2019). A key limitation of regional models, however, is that they cannot be used to 

represent pollutant concentrations at the scale needed to fully assess human health impacts. As a result, a range of street-scale 

resolution air quality modelling techniques have recently emerged. Land use regression (LUR) modelling studies, combining 
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geospatial indicators with air quality measurement data, can generate local scale (<1 km) pollutant level variations, but have 85 

been limited by the sparsity of monitoring network data available in Beijing (J. Xu et al. 2019; M. Xu et al. 2019). Alternatively, 

box models, such as The Model of Urban Network of Intersecting Canyons and Highways (MUNICH), are used to calculate 

pollutant concentrations within street canyons, but require detailed information on the spatial dimensions of a city’s street 

canyons and are restricted by assumptions of uniform concentrations along individual road segments (Lugon et al. 2019). 

Gaussian plume dispersion models, capable of simulating dispersion from an array of explicitly represented emission source 90 

types, including road and point sources, are instead often implemented. Widely used for environmental regulatory purposes, 

models such as ADMS-Urban (Owen et al. 2000) and AERMOD (Cimorelli et al. 2005) incorporate detailed boundary layer 

parameterisations and transport processes. The additional modelling of local fast chemistry processes on pollutant emissions 

with ADMS-Urban, involving the simplified Generic Reaction Set (GRS) chemistry scheme, including NOx-O3 reactions, 

enables sharp concentration gradients adjacent to major urban sources to be captured (Hood et al. 2018). Previous applications 95 

of ADMS-Urban in China have largely focussed on evaluating the impact that emission control schemes targeting individual 

sources have on the immediate environment. For instance, Chen et al. (2009) combined pollutant concentrations simulated by 

ADMS-Urban with population data to investigate the impact of traffic control policies on human exposure levels in Shanghai. 

Similarly, Cai and Xie (2011) used the ADMS-Urban model to quantify the effect that the odd-even traffic scheme (restricting 

vehicles with odd or even number plates), enforced during the 2008 Olympics, had on emissions from a selection of major 100 

roads, finding that some of the previously most polluted areas subsequently complied with the Chinese National Air Quality 

Standards (CNAAQS).   

This study aims to produce, for the first time, fully resolved street-scale NO2, O3 and PM2.5 concentrations across 

urban and suburban Beijing using ADMS-Urban and explicit source road traffic emissions. Previously, Yang et al. (2019) used 

the RapidAir dispersion model in Beijing, which excludes chemical processes, and a link-level traffic emissions inventory 105 

developed using congestion maps and manual vehicle counts to simulate pollutant concentrations at the street level. A bottom-

up street-scale vehicle emissions inventory was also created by Zhang et al. (2018), using traffic surveys and video 

identification of vehicle fleet composition, to evaluate the impact of a new low emission zone (LEZ) in urban Beijing.  For 

this study, we compile an explicit source traffic emissions inventory by apportioning gridded emissions onto the freely 

available OpenStreetMap (OSM) road network geometry. Unlike the data-intensive methodologies adopted by Zhang et al. 110 

(2018) and Yang et al. (2019), spatiotemporal variations in traffic volume and vehicle type are not considered here. However, 

this work provides a robust framework suitable for similar street-scale air quality modelling across large urban areas with 

limited data availability that future human health studies can build on. Furthermore, both the MEIC v1.3 and an optimised 

version of the same inventory are used to assess the performance of proxy-based inventories for street-scale modelling.  

Aggregated sectoral emissions (industrial, power and residential) are also included. We perform simulations for the 115 

Atmospheric Pollution and Human Health in a Chinese megacity (APHH-China) winter measurement campaign period, which 

took place in November-December 2016 at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (Shi et 

al. 2019). Measured pollutant concentrations from both the APHH-China campaign and Beijing’s air quality monitoring 

network are used to evaluate modelled concentrations, providing valuable insight into the key processes that impact street-

scale air quality. The adaptability of ADMS-urban is utilised in a series of further sensitivity simulations aimed at exploring 120 

the impact that explicit road traffic emissions, modified diurnal emissions profiles and Beijing’s evening urban heat island 

(UHI) have on discrepancies between measured and modelled pollutant concentrations.       

A detailed description of the ADMS-Urban model and its inputs is provided in Sect. 2. Section 3 presents an 

evaluation and discussion of results comparing modelled concentrations, using both emission inventories, with monitoring 

network and field campaign measurement data. A summary of this work’s primary findings is provided in Sect. 4 along with 125 

details of possible future study development. 
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2 Methodology 

The street-scale air pollution dispersion and chemistry model, ADMS-Urban, is used here to simulate ambient concentrations 

of NOx, NO2, O3 and PM2.5 across Beijing during the APHH-China winter campaign period (5 November 2016 – 10 December 

2016).  Section 2.1 provides a full description of the model and its configuration for Beijing, including details on emission 130 

source types, pollution dispersion, chemical processes and background pollutant concentrations. Emission inventory 

development , including the construction of an explicit network of road source emissions, is outlined in Sect. 2.2. In Section 

2.3, the statistical measures used to evaluate model performance are described.  

2.1 Model Description and Set-up   

ADMS-Urban, developed by Cambridge Environmental Research Consultants (CERC), is a quasi-Gaussian pollution 135 

dispersion and chemistry model that has been applied worldwide for environmental regulation, investigation and assessment 

of emission control strategies and generation of high spatial resolution air quality forecasts (McHugh et al. 2005; Carruthers, 

2009; Cai and Xie, 2011). 

The model domain (75 km x 90 km) covers urban Beijing, defined here as everywhere within the Sixth Ring Road 

(marked in Fig. 1), and extends into the suburban counties of Shunyi and Changping to the north and Tongzhou, Daxing and 140 

Fangshan to the south, as illustrated by Fig. 1. 

2.1.1 Emission sources, meteorological inputs and surface parameters 

In the model, pollutant emissions are represented as individual plumes dispersing from a range of explicitly represented sources, 

including point, road, area and volume sources. Aggregate grid sources (2-D and 3-D) are used to account for additional, 

poorly-defined diffuse emissions (e.g domestic heating or minor roads) (Mohan et al. 2011; Dédelé and Miskinyté, 2015; Hood 145 

et al. 2018). Plume dispersion calculations are driven by a single set of meteorological measurements that are representative 

of upwind conditions and assumed to be homogeneous across the study domain. For this study, we use hourly wind speed, 

wind direction, air temperature and cloud cover data from the Beijing Capital International Airport Meteorology Observatory, 

which is located ~20 km northeast of the Fourth Ring Road (Fig. 1). The input meteorology is processed by the model to 

calculate parameters that determine the stability and height of the planetary boundary layer (PBL) for each hour. Cloud cover 150 

measurements, along with the time of day and day of year, are used to calculate incoming solar radiation which generates 

surface sensible heat flux (Fθ0), friction velocity (U*) and Monin-Obukhov length (LMO) terms via the surface energy balance. 

LMO is a measure of the relative importance of mechanical turbulence and buoyancy in the PBL and along with surface heat 

flux terms determines PBL height (PBLH) in the model. Alternatively, measurements of PBLH can be used if available. For 

this study, simulations are performed using directly input observations of mixed layer height (MLH) derived from ceilometer 155 

measurements taken at the IAP field site during the APHH-China campaign (Kotthaus et al. 2016; Shi et al. 2019). The MLH 

represents the height of the lowest atmospheric layer always in direct contact with the earth’s surface resulting from turbulent 

exchange (Kotthaus and Grimmond, 2018) and is assumed here to equate to the model’s PBLH output.  

ADMS-Urban calculates the ratio of PBLH to LMO, a measure of the relative importance of mechanical turbulence 

and buoyancy, to generate a continuous PBL stability profile that varies with height. This PBLH/LMO parameterisation controls 160 

the vertical and horizontal spread extents of each emitted Gaussian plume, with the aggregate contribution from each individual 

emission source determining hourly simulated pollutant concentrations. In unstable conditions, an additional convectively 

driven turbulence component is calculated. This produces a skewed, non-Gaussian concentration distribution, meaning that 

for elevated sources the height of maximum concentration and mean height of the plume itself will descend and ascend, 

respectively (CERC, 2017).  165 
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Differences between conditions at the exposed airport meteorological site and the predominantly built-up modelling 

domain, largely caused by frictional effects of buildings and street canyons that perturb near-surface dynamics locally, are 

accounted for through distinct definitions of surface roughness (Z0) and minimum Monin-Obukhov length (LMO) in both 

environments. Z0 and minimum LMO values of 0.5 m and 30 m, respectively, represent conditions at the meteorological 

measurement site. However, greater Z0 and minimum LMO values of 1.5 m and 100 m, respectively, typical of urban areas 170 

dominated by densely packed tall buildings and concrete surfaces (Stewart and Oke, 2012), are used across the modelling 

domain and displace the upwind vertical wind speed, wind direction and turbulence profiles derived from the meteorological 

measurements. 

2.1.2 PBL stability adjustment 

Both Z0 and minimum LMO definitions prevent the modelled boundary layer from becoming unrealistically stable in urban 175 

areas where the surface radiation balance is perturbed by a number of factors including anthropogenic heat release, building 

geometry and the thermal properties of concrete surfaces (Oke, 1982). The resulting positive temperature differential between 

urban areas and the surrounding rural environment is referred to as the urban heat island (UHI) effect (Hamilton et al. 2014). 

This phenomenon is strongest in the late afternoon and early evening hours, when anthropogenic heat from rush hour traffic 

and residential heating systems, as well as incoming solar radiation stored in the urban fabric throughout the day, is released 180 

into a stabilising PBL (Liu et al. 2007). 

For this study, a further restriction on PBL stability has been applied to more comprehensively account for Beijing’s 

strong evening UHI (Wang et al. 2017). Figure 2 shows how the PBL stability, represented by PBLH/LMO, varies diurnally for 

the campaign period. The LMO values are derived from a prior model simulation without stability modifications and the 

observed MLH (Sect. 2.2.1) is used as the PBLH. PBLH/LMO > 1, -0.3 ≤ PBLH/LMO ≤ 1 and PBLH/LMO < -0.3 represent stable, 185 

neutral and unstable conditions, respectively. 

During the day, the surface net radiation is partitioned between upwards fluxes of sensible and latent heat and the 

downwards flux of heat into the ground (Oke, 1982). The version of ADMS-Urban used here (v 4.2) assumes that this ground 

heat flux is a constant proportion of the net radiation. In reality, this proportion varies diurnally, peaking around midday when 

a greater proportion of incoming solar radiation is stored by the urban fabric (Anandakumar, 1999; Grimmond and Oke, 1999). 190 

The release of this excess heat in the early evening sustains convection in the PBL, prolonging its instability. To account for 

this, a constant rate of decrease of PBLH/LMO has been assumed between original modelled values for 3 pm and 8 pm, 

producing the modified campaign period mean PBLH/LMO diurnal profile illustrated in Fig. 2. Modified LMO values from 4-7 

pm are added to the set of input meteorological variables for all subsequent simulations, with the directly input PBLH 

measurements remaining unchanged. This adjustment increases sensible and latent heat fluxes, therefore enhancing the 195 

turbulent mixing of air during this early evening period. The 4-7 pm time window is chosen as it coincides with sunset in 

November-December in Beijing and it is in agreement with the extended duration of evening sensible heat flux decay in urban 

areas, compared with surrounding rural areas, observed by other UHI-related studies (Zhou et al. 2013; Barlow et al. 2015). 

Without this adjustment, the model tends to predict overly stable meteorological conditions in the early evening, which can 

lead to the over-prediction of pollutant concentrations. It is important to note that the modelled surface heat flux and LMO terms 200 

are calculated independently of the PBLH, so that small positive LMO values can generate an overly stable boundary layer even 

when paired with the measured MLH assumed here to represent real-world stability conditions.  

2.1.3 Chemistry 

The chemical transformation of pollutants contained within each dispersing plume is represented using the Generic Reaction 

Set (GRS) chemistry scheme (Malkin et al. 2016). Typically, regional CTMs such as WRF-Chem and CMAQ use detailed 205 
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chemical mechanisms containing hundreds, or even thousands of reactions involving NO, NO2, O3 and VOCs, including 

homogeneous and heterogeneous aerosol production (Sarwar and Luecken, 2008). The GRS, however, simplifies these to the 

following seven reactions: 

   

 210 
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where ROC represents Reactive Organic Compounds, RP is the Radical Pool, SGN is the Stable Gaseous Nitrogen product 

and SNGN is the Stable Non-Gaseous Nitrogen product (CERC, 2017). The inclusion of fast NOx-O3 chemistry, whereby at 

high NOx levels, NO consumes O3 (R3 and R4), enables the sharp pollutant species concentration increases, with proximity to 220 

major road or large point sources, to be captured. R1 summarises all of the oxidation and photolysis reactions that lead to 

radical production from VOCs (Malkin et al. 2016), while R2 and R5 represent subsequent radical loss.  

An additional set of reactions involves the production of ammonium sulphate, following the oxidation of SO2 and 

reactions with water and ammonia, and this provides a source of both PM10 and PM2.5. Other secondary organic and inorganic 

components of particulate matter, which can comprise up to a combined 70% of total PM2.5 mass in Beijing (Ma et al. 2014; 225 

Tao et al. 2017; Wang et al. 2017), are accounted for in the background concentration field described in Sect. 2.1.4.  

2.1.4 Background pollutant concentrations 

Background pollutant concentrations represent the regional pollution levels on which the local emissions build. For this study, 

background levels for NO2, O3, PM2.5, PM10, SO2 and CO are derived directly from hourly air quality measurement data and 

are assumed to be uniform across the study domain. Measured concentrations at 12 national air quality monitoring stations, 230 

run by the China National Environmental Monitoring Center (CNEMC), the IAP field site and an additional site 60 km SE of 

Beijing, situated in the built-up Guangyang district of Langfang in Hebei province, are used to estimate this background 

concentration field. The locations of these 14 sites are given in Table 1.    

For particulate matter (PM2.5 and PM10), an hourly upwind background concentration is derived based on wind direction 

with concentrations selected from sites 3 (270-360o), 10 (0-90o) and 14 (90-270o) located to the NW, NE and SE of urban 235 

Beijing, respectively. Particulates have near-surface lifetimes of days to weeks, therefore concentrations in Beijing are heavily 

influenced by long-range transport (LRT) of both primary and secondary components originating in neighbouring industrial 

regions (Wang et al. 2017; Cheng et al. 2019). The measured upwind concentration is expected to capture this transported 

background regional air. Gaseous species such as NO2, have a much shorter lifetime (~ 1 day) and therefore a smaller regional 

contribution, with concentrations across urban areas dominated primarily by local traffic sources (Zhang et al. 2014). The NO2 240 

concentrations at the upwind monitoring station were subsequently not deemed representative of the true background value 

owing to both this greater spatial variation and the proximity of the upwind monitoring stations to local emission sources. 

 
𝑅𝑂𝐶 + ℎ𝑣 → 𝑅𝑃 + 𝑅𝑂𝐶 (R1) 

 
𝑅𝑃 + 𝑁𝑂 → 𝑁𝑂2 (R2) 

 
𝑁𝑂2 + ℎ𝑣 → 𝑁𝑂 +  𝑂3 (R3) 

 
𝑁𝑂 + 𝑂3 → 𝑁𝑂2 (R4) 

 
𝑅𝑃 + 𝑅𝑃 → 𝑅𝑃 (R5) 

 
𝑅𝑃 + 𝑁𝑂2 → 𝑆𝐺𝑁 (R6) 

 
𝑅𝑃 + 𝑁𝑂2 → 𝑆𝑁𝐺𝑁 (R7) 
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Instead, to approximate background values for gaseous species (NO2, O3, CO and SO2), the hourly minimum concentration for 

each pollutant across the 12 network monitoring stations and the IAP field site is selected, yielding an approximation for the 

underlying conditions uninfluenced by local sources.  245 

2.2 Emissions inventory processing 

For this study, ADMS-Urban simulations use both aggregate 3-D grid source and explicit road source emissions of NOx, NO2, 

SO2, VOC (total), PM2.5, PM10 and CO derived from a standard and an optimised version of the high-resolution (3 km) MEIC 

v1.3 emissions inventory. The standard MEIC v1.3 emissions inventory, for 2013, consists of five emission source sectors: 

transportation, power, industrial, residential and agricultural (Qi et al. 2017). Note that the latter is not used in this study due 250 

to both the lack of farmland in urban Beijing and the negligible contributions to the pollutant species simulated in this study 

from agricultural emission sources (Qi et al. 2017). The transportation sector is estimated following Zheng et al. (2014), in 

which county-level emissions, derived from county-level vehicle ownership, are downscaled to grids based on road network 

and road-specific vehicle activity data. Liu et al. (2015) describes the unit-based technique, adopted to generate the power 

sector emissions, which utilises the Coal-fired Power Plant Emissions Database (CPED), including information on the 255 

technologies, activity data, operation situation, emission factors and locations of individual units. Industrial and residential 

sector emissions are calculated from provincial level activity data and emission factors (Zheng et al. 2017). Industrial emissions 

are downscaled to the county level using GDP (National Bureau of Statistics, 2014), with both industry and residential 

emissions further distributed to grid level resolutions based on high resolution (~ 1 km) population density data (Oak Ridge 

National Laboratory, 2013) (Zheng et al. 2017). To model conditions during the APHH-China winter campaign, the MEIC 260 

v1.3 emissions inventory is re-scaled for this study to account for the 2013-2016 emission reductions in Beijing (Sect. 1). 

According to Cheng et al. (2019), total emissions of NOx (and NO2), SO2, VOCs and PM (PM2.5 and PM10) in Beijing were 

estimated to reduce by 30, 63, 27, 35 and 30%, respectively, between 2013 and 2016. This adjusted MEIC v1.3 emissions 

inventory is hereafter referred to as MEIC Std.  

An alternate optimised version of MEIC v1.3 (hereafter referred to as MEIC Opt) was created (Li et al. 2018), for 265 

November and December 2016, with the aim of addressing the over-allocation of emissions to urban areas that occurs when 

downscaling MEIC v1.3 to fine scales based on proxy data (Zheng et al. 2017). This MEIC Opt inventory was created using 

the Nested Air Quality Prediction Modeling System (NAQPMS) to perform iterative minimisation of a cost function comparing 

NAQPMS simulations with winter campaign observations (Li et al. 2018). This optimisation algorithm was used to redistribute 

MEIC emissions from central urban Beijing to suburban and rural areas, and to adjust their magnitude to represent the 270 

campaign period. Both MEIC Std and MEIC Opt inventories comprise of monthly varying emissions with distinct diurnal 

weighting profiles applied to each emission sector. 

Aggregate 3-D grid sources contain the sum of all MEIC emission source sectors (residential, transportation, 

industrial and power) and consist of seven vertical layers (38, 90, 152, 228, 337, 480 and 660 m). In the absence of sufficient 

information required to model point source emissions (e.g large power plants) explicitly, ADMS-Urban’s 3-D grid sources 275 

enable plume release and dispersion from each of the seven grid source heights, accounting for tall emission sources included 

within the MEIC v1.3 power or industrial sector grids. MEIC Std and MEIC Opt campaign period mean NO2, NOx, PM2.5, 

PM10, SO2 and VOC emission rates from 3-D grid sources, aggregated across all, urban and suburban grid cells, are shown in 

Table 2.  

An explicit network of road emissions for Beijing has been constructed based on the MEIC transportation sector 280 

emissions. Figure 3 illustrates the pseudo-top down approach adopted here in the absence of detailed information on traffic 

activity and fleet composition. Figure 3a shows the spatial distribution of the November and December mean MEIC Std 

transportation sector surface NO2 emissions. The transportation sector emissions of all pollutants are apportioned to individual 

road segments on a grid cell-by-grid cell basis, using the geographic information system software ArcGIS. The spatial road 
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network of Beijing, presented in Fig. 3b, is provided by the OpenStreetMap dataset (https://openstreetmap.org/) and includes 285 

individual road segment type and geometry information. Emissions are mapped onto the road network based on each road 

segment length and an emissions weighting factor, producing the distribution shown in Fig. 3c, following Eq. (1):  

𝐸𝑚𝑖𝑠𝑖,𝑗,𝑘 =
𝑙𝑖,𝑗 . 𝑤𝑘

∑ (𝑙𝑖,𝑗. 𝑤𝑘)𝑛
𝑖=1

 × 𝐸𝑗 
(1) 

where 𝑙𝑖,𝑗 represents the length of road segment 𝑖 in grid cell 𝑗 of road type 𝑘. The weighting factor of road type 𝑘 is given by 

𝑤𝑘. Ej and 𝑛 denote the total traffic emissions and number of road segments in grid cell 𝑗, respectively. A weighted mean 

emission rate, based on road segment length, is calculated along segments traversing multiple grid cells in order to avoid 290 

discontinuities.  

Weighting factors (Table 3) are estimated using road type and width (based on manual inspection of the most frequent 

number of lanes for each road type), acting as proxies for traffic activity. Each road type weighting factor is applied equally to 

all pollutant species. The magnitude of weighting factors relative to each other is important, rather than their absolute values, 

according to Eq. (1). Minor roads were removed from the network to limit the computational expense of each simulation and 295 

are instead aggregated within the 3-D grid sources. This methodology is based on the assumption that traffic volume, speed 

and fleet composition are constant across all road type classes listed in Table 3. However, substantial variations in traffic flow 

characteristics on roads of the same classification within Beijing’s urban area have been observed. For example, Jing et al. 

(2016) used GPS-fitted buses and taxis to collect near real-time traffic data along the major road types in Beijing, finding much 

greater levels of congestion closer to the urban centre, causing increased traffic volume and vehicle speed variations. 300 

Additionally, Zhang et al. (2018) observed a greater proportion of vehicles with lower emission standards on roads outside the 

Fifth Ring Road. Given that the same emission weighting factors for roads of the same class are applied across the domain and 

the lack of traffic flow variations on specific roads within cities in the MEIC framework (Zheng et al. 2014), the methodology 

adopted here may under-allocate emissions on more congested inner-city roads and over-allocate emissions in suburban areas.                                                                                                                  

2.3 Model evaluation 305 

Evaluation of regional-scale Eulerian CTMs involves the comparison of measurements at specific monitoring site locations 

with simulated concentrations in the nearest model grid box (Zhong et al. 2016; Wang et al. 2017; Zheng et al. 2017). However, 

for street-scale air quality modelling with ADMS-Urban, pollutant concentrations can be simulated at specific locations, 

referred to hereafter as receptor points. For this study, concentrations are modelled at the locations of the 12 monitoring 

network stations, as well as the IAP field site, for direct comparison with the corresponding measured concentrations. The 310 

following three statistical performance measures are considered simultaneously enabling a comprehensive evaluation of 

modelled predictions of concentrations, using both MEIC Std and MEIC Opt emissions inventories, during the APHH-China 

winter campaign period: 

 

 315 

 

 

 

 

 
Normalised mean square error (NMSE) =

(𝑀 − 𝑂)2

𝑀𝑂
 

(2) 

 
Fractional bias (Fb) =

𝑀 − 𝑂

0.5(𝑂 + 𝑀)
 

(3) 

 Pearson′s correlation coefficient (𝑅)

=
1

𝑛 − 1
∑ (

𝑛

𝑖=1
𝑀𝑖 − 𝑀/𝜎𝑀) (𝑂𝑖 − 𝑂/𝜎𝑂) 

(4) 

https://openstreetmap.org/
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where 𝑛  denotes the total number of matching hourly modelled and observed concentrations;  𝑀  and 𝑂  indicate mean 320 

modelled and observed concentrations, respectively, and 𝜎 is the standard deviation. 

NMSE (ideal value = 0) is a measure of the model’s overall accuracy (Cai and Xie, 2011), incorporating the effects of 

both systematic and random errors (Patryl and Galeriu, 2011); Fb (ideal value =0) reflects the model’s tendency to overestimate 

or underestimate concentrations, compared to measurements; and R (ideal value =1) informs on the extent to which modelled 

and measured values are linearly related. 325 

 In this study, the statistical evaluation of pollutant concentrations simulated at the exact coordinates of the measurement 

locations is complemented by street-scale resolution maps which more clearly illustrate the strong spatial heterogeneity of 

pollution levels across Beijing. Fully resolved PM2.5, NO2 and O3 concentration fields in central Beijing are simulated with a 

combination of regularly spaced receptor points at ~150 m and additional output points distributed within and in the immediate 

vicinity of all individual road emission source segments. The addition of emission source-oriented output points increases the 330 

model resolution to < 10 m across regions containing dense distributions of explicit road sources, therefore enabling the sharp 

pollutant concentration variations adjacent to roads to be captured. 

  

3 Results and Discussion 

Street-scale resolution maps of PM2.5, NO2 and O3 concentrations across a region of urban Beijing are presented in Sect. 3.1. 335 

Section 3.2 provides a statistical evaluation of simulated pollutant species against hourly measurements at 12 monitoring 

network sites and the IAP campaign field site (Table 1), using both MEIC Std and MEIC Opt inventories. Diurnal cycles of 

NOx, NO2 and O3 concentrations are given in Sect. 3.3, and Sect. 3.4 contains an analysis of local and regional PM2.5 sources. 

Sensitivity studies explore the impact on model performance of including explicit road emission sources, varying diurnal 

emissions profiles and accounting for the evening UHI in Sect. 3.5, 3.6 and 3.7, respectively.      340 

3.1 Street-scale variation of PM2.5, NO2 and O3 concentrations 

Mean PM2.5, NO2 and O3 concentrations simulated for the campaign period (5 November-10 December 2016), using the MEIC 

Opt inventory, for a region of urban Beijing within the Fifth Ring Road are presented in Fig. 4. The influence of the explicit 

road emissions network on the spatial variation of all species is clear, most notably along the Second, Third and Fourth Ring 

Roads. PM2.5 and NO2 concentrations peak at 125 µg m-3 and 160 µg m-3, respectively, along the ring road centrelines, before 345 

sharply decaying. The magnitude of this drop and distance across which it occurs is determined not only by emission source 

strength but also by physical and chemical mechanisms, with the speed of plume dispersion and mixing, controlled by 

mechanical and convective turbulence generation, interacting with the differing lifetimes of individual pollutants. In Fig. 5, 

mean NO2 concentrations reduce by ~20-25 µg m-3 along a horizontal profile extending 100 m either side of the Second Ring 

Road. The spatial variation of O3 concentrations is approximately inversely related to these NO2 levels. Modelled O3 350 

concentrations reduce to 5 µg m-3 along the Second Ring Road centreline and reach 25 µg m-3 between the Fourth and Fifth 

Ring Roads (Fig. 4). This is a result of the fast reaction of O3 with NO (titration) (R4) which dominates in high NOx 

environments (Zhang et al. 2015; Tang et al. 2017; Ma et al. 2018), such as those next to major roads. The conversion of 

primary NO exhaust emissions to NO2, following the titration of O3, also produces a sharply increasing NO2/NOx ratio with 

distance from road centre (Fig. 5). In the following sections, a comprehensive evaluation of model performance is presented.  355 
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3.2 Model evaluation and assessment of emission inventories 

Table 4 summarises the performance of ADMS-Urban in Beijing during the APHH-China winter measurement campaign, with 

comparisons between MEIC Std and MEIC Opt simulations enabling an assessment of the MEIC v1.3 optimisation.  

Modelled NOx concentrations at the IAP field site display the most substantial differences between the two 

simulations (Table 4; Fig. 6). Modelled NOx concentrations using the MEIC Opt inventory are 149.8 µg m-3, 56% lower than 360 

the MEIC Std case, leading to NMSE and Fb decreases from 2.35 to 0.63 and 0.93 to 0.17, respectively (Table 4). This 

enhanced model agreement is reflected in Fig. 6, in which a large proportion of modelled NOx values reaching 400-600 µg m-

3 with MEIC Std, up to a factor of six higher than measurements, are reduced to within a factor of two of measured 

concentrations using MEIC Opt. This result reflects the 63% NOx emissions reduction across urban Beijing, over all source 

sectors, in the optimised inventory (Table 2). However, correlation coefficient (R) values for simulated NOx remain low using 365 

both emissions inventories, slightly increasing from 0.35 to 0.41 with MEIC Opt. This smaller improvement in the correlation 

between measured and modelled NOx using MEIC Opt, compared to NMSE and Fb, reflects the dependency of R on modelled 

NOx levels that capture the correct temporal variation as well as the overall magnitude of NOx measurements. The noise 

apparent in the measured and simulated NOx comparison in Fig. 6 is therefore likely related to either the diurnal emissions 

profile or meteorological variations.   370 

NO2 concentrations differ less, with NMSE values of 0.27 and 0.30 for the MEIC Std and MEIC Opt simulations, 

respectively. However, a greater difference is evident at urban receptor locations, with modelled NO2 concentrations from the 

MEIC Opt simulation 12% lower than those with MEIC Std. Across suburban sites, the opposite pattern is seen, with changes 

in Fb values between measurements and MEIC Std and MEIC Opt simulations ranging from negative (-0.08) to positive (0.02), 

respectively.  Both urban and suburban NO2 concentration changes, between simulations, reflect the overall redistribution of 375 

NO2 emissions in the MEIC Opt inventory, away from central Beijing and towards the city outskirts (Table 2).   

The much greater urban NOx concentration difference between the two simulations, as compared to NO2, can be 

attributed to two factors. Firstly, NO2 concentrations respond in a more non-linear way to NOx emission changes than NOx 

concentrations. This has been shown in previous studies (e.g Kurtenbach et al. 2012) and can be explained by the timescales 

and kinetics involved in the formation and destruction of secondary NO2. As NOx levels decrease, the production of secondary 380 

NO2 via R4 occurs faster as O3 concentrations are higher, leading to a slower rate of decrease of NO2 concentrations compared 

to NOx emissions. Additionally, the proportion of NOx directly emitted as NO2 is greater with MEIC Opt (NO2/NOx = 0.093) 

than MEIC Std (NO2/NOx = 0.068) (Table 2). This is reflected by the much greater reduction, from MEIC Std to MEIC Opt, 

in domain-aggregated NOx emissions (43%), as compared NO2 (22%) (Table 2).  

At urban sites, O3 concentrations simulated with MEIC Opt are 12.8 µg m-3, which is a factor of two greater than 385 

those simulated using MEIC Std (6.1 µg m-3). Overall, the modelled O3 concentrations at urban sites using MEIC Opt are in 

closer agreement with the measurements, reflected by lower Fb and NMSE values of -0.29 and 0.93, respectively, as compared 

to -0.95 and 3.2 in the MEIC Std simulations (Table 4). This is caused by both lower urban NOx emissions in MEIC Opt and 

the reduced proportion of remaining NOx emitted directly as NO, in MEIC Opt, leading to less O3 destruction through R4. 

Contrastingly, higher MEIC Opt NOx emissions in suburban Beijing reduce modelled O3 concentrations by 7%. As a result, 390 

modelled O3 performance across all monitoring stations is substantially improved in the MEIC Opt simulation, with a NMSE 

reduction from 1.54 to 0.74 and an R value increase from 0.71 to 0.79 (Table 4). These results highlight the strong dependency 

of O3 concentration predictions in urban areas, which inform human exposure analyses and influence future emission control 

implementation, on the accurate spatial variation and magnitude of NOx emissions in high resolution emissions inventories. 

The increase in modelled urban O3 concentrations following NOx emissions reductions also highlights both the negative impact 395 

that controls on one pollutant species can have on another as well as the possible need for air quality guidelines that consider 

multiple pollutants in contrast with the single pollutant-based air quality index used in China (Han et al. 2018).   
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Figures 7a and 7b illustrate site-specific differences between measured and simulated NO2 and O3 concentrations, 

respectively, using both emissions inventories. It is clear that, despite generally closer model agreement with measurements 

using MEIC Opt, NO2 concentrations remain substantially overestimated at urban sites 1 (~14 µg m-3) and 2 (~9 µg m-3). To 400 

help understand the cause of this, the sensitivity of modelled concentrations within 100 m of a road source near site 1 is 

illustrated in Fig. 8. Concentrations along a cross-road slice, extending 100 m either side of the road, are simulated after halving 

and doubling the magnitude of emissions of all species from this secondary road. Emissions from all other sources in the model 

configuration remain the same. Along the road centre, the range of simulated concentrations between emission scenarios is 

~10 µg m-3, however this difference decreases to ~2 µg m-3 at a distance of 100 m, which is much lower than modelled NO2 405 

overestimations produced by MEIC Opt at sites 1 and 2, each located ~80-90 m from the nearest road . Therefore, the high 

modelled NO2 at sites 1 and 2 may only be partially attributed to an over-allocation of explicit road source emissions caused 

by either (a) underlying gridded emissions that are still too high, or (b) not considering traffic volume/speed variations across 

the domain in road class emission weighting factor estimates. It should also be noted that the physical barriers to pollution 

dispersion represented by the urban canopy, and specifically street canyons, are not explicitly modelled in this study. This may 410 

lead to road emissions dispersing further from the road centre than in reality, therefore contributing to elevated modelled 

concentrations at greater distances from explicit roads sources (Dédelé and Miskinyte, 2015). The sensitivity of the simulated 

NO2/NOx concentration ratio to emission magnitude changes is also shown in Fig. 8. For each emissions scenario, the NO2/NOx 

emission ratio remains the same (0.093) (Table 2), however the concentration ratio varies. With doubled NOx emissions, the 

NO2/NOx ratio is ~0.3 along the road centre, compared to ~0.4 with halved NOx emissions (Fig. 8). This difference, which 415 

decays to zero at a distance of ~75 m, is mostly driven by PBL dynamics and the mixing of freshly emitted NOx into air with 

a lower NO2/NOx concentration ratio driven by the impact of higher NOx emissions on secondary NO2 production via R4, as 

discussed above. 

A clear distinction exists between measured PM2.5 concentrations recorded at the suburban (78 µg m-3) and urban 

(101 µg m-3) monitoring stations (Table 4). These values are well in excess of China’s annual PM2.5 National Ambient Air 420 

Quality Standard (NAAQS) of 35 µg m-3, however concentrations are expected to be higher in winter due to more stable 

meteorology (Zheng et al. 2015; Li et al. 2017) and enhanced coal combustion for residential heating and cooking and at power 

plants in neighbouring cities (Chen et al. 2017). Simulated PM2.5 concentrations, however, do not reflect such an urban-

suburban discrepancy, with mean urban values exceeding those at suburban sites by only 9 µg m-3 and 7 µg m-3 using MEIC 

Std and MEIC Opt, respectively (Table 4). Across all monitoring stations, the range in campaign period mean measured 425 

concentrations is substantially higher (~40 µg m-3) than the simulated range using both MEIC Std (~20 µg m-3) and MEIC Opt 

(~15 µg m-3), respectively. These results suggest that either PM2.5 emission sources are too uniform in magnitude and spatial 

distribution across the domain in the current model set-up, or that the assumption of a homogeneous background PM2.5 

concentration is invalid. It is likely that, by diluting PM2.5 emissions within individual grid cells and not explicitly representing 

point source emissions (e.g. large industrial units), the model is unable to capture the PM2.5 concentration hotspots that would 430 

increase the urban PM2.5 level increment and improve model agreement with the observed spatial variation. With the exception 

of simulated PM2.5 adjacent to major roads, this modelled uniformity in urban PM2.5 is clearly evident in Fig. 4, in which PM2.5 

concentrations vary by only ~5-10 µg m-3 across the area enclosed by the Fifth Ring Road. The mean estimated PM2.5 

background concentration is 79 µg m-3 (Fig. 7), which is higher than both the mean measured concentrations at suburban sites 

3 and 10, located to the north. This implies that either the background PM2.5 level is, in reality, inhomogeneous with lower 435 

concentrations to the north and higher to the south of urban Beijing, or that the upwind background monitoring site to the south 

is too heavily influenced by local emission sources and is not representative of background conditions. The relative 

contributions from PM2.5 emission sources and background inhomogeneity to the underestimated spatial variation in PM2.5 is 

further discussed in Sect. 3.4.   
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3.3 Winter campaign diurnal cycles of NO2, O3 and NOx 440 

The diurnal variation of pollutant species in urban areas provides insight into how concentrations are impacted by both diurnal 

variations in meteorology and temporally varying emissions. The locations of urban stations 1, 12 and IAP, and suburban site 

11 are illustrated in Fig. 9, with measured mean diurnal NO2 concentrations averaged over the campaign period at all four sites 

compared with those simulated using both the MEIC Std and MEIC Opt inventories in Fig. 10. There are several common 

differences between modelled and measured concentration profiles at all three urban stations (Fig. 10a, 10c and 10d). Firstly, 445 

both simulated NO2 diurnal cycles at sites 1, 12 and IAP are considerably lower than measurements from 11 pm to 6 am. This 

discrepancy peaks at 2 am, with simulated concentrations ~20 µg m-3 and ~30 µg m-3 lower than measurements, using MEIC 

Std and MEIC Opt, respectively. Observed NO2 concentrations at urban sites remain elevated between 11 pm and 6 am, relative 

to the rest of the day, resulting in a diurnal profile absent of the distinct morning and evening peaks commonly observed in 

other megacities, such as London (Hood et al. 2018). High nocturnal NO2 concentration measurements during the APHH-450 

China winter campaign at the IAP field site are also noted by Shi et al. (2019). 

Previous studies have attributed the evening influx of heavy duty diesel trucks (HDDTs), banned from commuting 

within the Fourth Ring Road from 6 am to 11 pm (Zhang et al. 2019), to evening NOx concentration increases across urban 

Beijing of up to 10 µg m-3 (Wu et al. 2016; Yang et al. 2019). A large proportion of this HDDT fleet originates in other 

provinces where emission standards are not as strict as those in Beijing (Wang et al. 2011). It is possible, therefore, that in a 455 

proxy-based emissions inventory (e.g MEIC), such traffic restrictions and inter-provincial vehicle mobility are not fully 

accounted for (Zheng et al. 2014). This is supported by the much closer agreement between evening modelled and measured 

NO2 at suburban site 11 (Fig. 10b), situated outside the Sixth Ring Road (Fig. 9) and away from the influence of additional 

nighttime HDDT NOx emissions. Additionally, ADMS-Urban makes an approximation when modelling dispersion in calm 

conditions by applying a minimum wind speed of 0.75 m s-1 (CERC, 2017). These stable, low wind speed conditions, however, 460 

are common in winter in Beijing and have been strongly linked to the acceleration of pollution accumulation during severe 

winter haze events (Zhang et al. 2015; Zhang et al. 2016; Zhang et al. 2018). Therefore, it is likely that the large early morning 

NO2 concentration model underestimations across all three urban sites are a consequence of NOx emissions that are too low in 

magnitude, from 11 pm to 6 am, dispersing into a simulated PBL that may be insufficiently stable due to the use of a minimum 

wind speed in the model. 465 

From 6-9 am, modelled NO2 concentrations in both the MEIC Std and MEIC Opt simulations increase sharply (Fig. 

10). This is most prominent at site 1, where simulated levels approximately double during this three hour period. This increase 

corresponds to the release of rush hour traffic-related NOx emissions into a stable and shallow morning PBL. Contrastingly, 

measurements at these sites decline over this early morning period following an evening concentration peak as described above. 

This overestimation of NO2 continues throughout the afternoon, with similar profiles at sites 12 and IAP reflecting the close 470 

proximity of both receptor locations (~3 km apart) (Fig. 9).   

The concurrence of evening rush hour traffic emissions and a stabilising PBL, associated with the reduction in surface 

heating following sunset, creates a second simulated NO2 concentration peak at ~6 pm. In contrast to the simulated morning 

concentration rise, the close agreement between the measured and modelled time of onset and magnitude of this early evening 

increment indicates that the simulated stability adjustment (Sect. 2.1.2), implemented between 4-7 pm, has successfully 475 

accounted for the re-release of stored heat, characteristic of large urban areas.  

There is little difference between the diurnal NO2 concentration profiles simulated using the MEIC Std and MEIC 

Opt inventories and this is consistent with the model evaluation results described in Sect. 3.2. Simulated NO2 concentrations 

across the urban sites are marginally lower using MEIC Opt compared to MEIC Std, with the reverse true at suburban site 11, 

again reflecting the relocation of emissions out of the urban centre.  480 
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The much closer agreement between measured NOx concentrations at the IAP field site and those simulated with 

MEIC Opt compared to MEIC Std, outlined in Sect. 3.2, is further emphasised by the diurnal cycles in Fig. 11. MEIC Opt 

produces much lower NOx concentrations than MEIC Std across all hours of the day (up to a factor of three), peaking during 

morning and evening rush hour with concentrations of ~200 µg m-3 and ~250 µg m-3, respectively. The simulated NO2/NOx 

concentration ratio at IAP produced with MEIC Opt ranges from 0.4 to 0.7 throughout the day, 0.2-0.3 greater than the MEIC 485 

Std simulation. This again reflects the combined influences of both the greater NO2/NOx emission ratio in MEIC Opt (Table 

2) and the non-linear response of secondary NO2 concentrations to NOx emission changes, as discussed in Sect. 3.2. 

Overestimated NOx concentrations and underestimated NO2/NOx concentrations ratios at IAP produced with MEIC Opt 

indicate that, despite emissions modifications, the magnitude of NOx emissions (specifically NO), are too high in the MEIC 

Opt inventory.  490 

The impact of NOx emissions differences on diurnal O3 concentrations is illustrated in Fig. 12. Using MEIC Std, simulated 

O3 concentrations across all three urban sites, are considerably lower than measured values from 8 am to 5 pm, with the 

measured-modelled difference reaching ~20 µg m-3 at midday. This reflects the prominence of R4, caused by high urban NO 

emissions in MEIC Std. The reverse response is seen at site 11, where midday O3 is overestimated by ~10 µg m-3 as a result 

of low MEIC Std NO emissions in suburban versus urban regions. During daylight hours, there is much closer agreement 495 

between measured and modelled O3 across all four sites with MEIC Opt. This reflects the adjusted balance between 

photochemical production of O3, via R3, and its removal via R4, caused by decreased NOx emissions in urban areas and 

increased emissions in suburban areas, in the MEIC Opt inventory. NOx-O3 chemistry is also greatly influenced by proximity 

to road sources. As shown in Fig. 8 and discussed in Sect. 3.2, roads with higher NOx emissions lead to lower NO2/NOx 

concentration ratios within distances of 100m and therefore greater O3 loss through its titration by NO in R4. 500 

3.4 Local and regional contributions to PM2.5 concentrations 

Figure 13 presents the diurnal variation of the range of site-specific campaign period mean measured and simulated PM2.5 

concentrations, using MEIC Opt, across all 12 monitoring network sites. The interquartile range of all network measurements, 

illustrating the extent to which PM2.5 concentrations vary spatially across the domain, greatly exceeds that of modelled 

concentrations for most of the day. This observed range is largest at night and consistently in excess of 20 µg m-3, compared 505 

to the simulated range of 5-10 µg m-3. The measured ranges are additionally sub-divided into those recorded at urban and 

suburban monitoring sites, with the diurnal median urban PM2.5 values as much as ~35 µg m-3 higher than those for suburban 

sites between 11 pm and 2 am. It is possible that, similarly to the elevated evening NO2 concentration measurements discussed 

in Sect. 3.3, this high measured nighttime urban PM2.5 concentration increment is also related to the influx of HDDTs to central 

Beijing following the lifting of traffic restrictions from 11 pm to 6 am, with recent studies (Zhang et al. 2015; Wu et al. 2016) 510 

reporting a rising contribution from HDDT exhaust emissions to PM2.5 levels across China. A subsequent reduction of the 

measured urban-suburban PM2.5 level discrepancy during daytime hours, reaching ~10 µg m-3 at midday, coincides with much 

closer overall agreement between modelled and measured concentrations. 

The large difference between mean measured urban and suburban PM2.5 concentrations throughout the day in Fig. 13 

is not captured by the model. This is likely the result of either a lack of heterogeneity in the modelled PM2.5 emission sources, 515 

particularly across urban areas, or that, in reality, substantial non-uniformity in the background concentration exists across the 

domain. The former is consistent with a number of previous studies on PM2.5 source apportionment in Beijing, which have 

suggested that, during extended periods of elevated particulate mass concentrations in winter, local emissions can account for 

80% of PM2.5 concentrations (Li et al. 2017; Wang et al. 2017; Chang et al. 2019). Therefore, as discussed in Sect. 3.2, in order 

to simulate the high spatial variation of PM2.5 concentrations, characterised by large urban PM2.5 concentration increments, 520 

higher resolution modelling of primary PM2.5 emissions, through the inclusion of explicitly represented large point sources is 

likely to be necessary.  
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It is also possible that greater secondary aerosol production needs to be included in the model’s chemistry scheme, 

further increasing the simulated urban PM2.5 increment. Currently in ADMS-Urban, with the exception of ammonium sulphate 

production, secondary PM2.5 concentrations are assumed to be included in the upwind background concentration. As the 525 

dominant contribution to secondary PM2.5 in Beijing is reported to be from neighbouring industrial regions to the south (Ma et 

al. 2017), this assumption seems largely valid. However, the relative local contributions of other secondary components in 

Beijing, such as ammonium nitrates, are found to be increasing (Wang et al. 2017; Xu et al. 2019; Yang et al. 2019). This is a 

consequence of the effectiveness of recent SO2 emission controls and the lack of agricultural ammonia (NH3) emissions 

reductions (Zheng et al. 2018), which have promoted the formation of ammonium nitrate (Xu et al. 2019). Xu et al. (2019) 530 

also found the nitrate aerosol to be of increasing importance at night during winter, as a result of its greater stability at lower 

temperatures, which, coupled with high nighttime NO2 concentrations (Fig. 10), may further account for the elevated evening 

PM2.5 levels (Fig. 13). The applicability of this previous work is possibly limited by the smaller domain size and short 

timescales of pollution dispersion in this study compared with those necessary for secondary aerosol production. However, 

future work testing the impact of both the higher resolution representation of PM2.5 emission sources and additional secondary 535 

particle formation pathways within the chemistry scheme is needed to fully understand the potential impact of both on 

improving agreement between simulated and measured PM2.5 concentrations (Fig. 13). 

The regional contribution to total PM2.5 concentrations in Beijing has been shown by previous studies to vary from 

<10% to >90% depending on the time of year and meteorological conditions (He et al. 2015; Liu et al. 2015; Li et al 2017; 

Wang et al. 2017). Therefore, the sensitivity of the calculated PM2.5 background concentration to the methodology used to 540 

select the appropriate monitoring site is important and is illustrated in Fig. 14. As described in Sect. 2.1.4, simulated PM2.5 

concentrations include a wind direction-dependent upwind background contribution calculated using either of two sites to the 

north or one to the south of urban Beijing. Figure 14 shows the diurnal range of calculated upwind background values during 

the winter campaign, with the corresponding range of background PM2.5 calculated by instead selecting the minimum hourly 

concentration across the monitoring network, matching the methodology used to determine background concentrations for 545 

gaseous species. 

For each hour, the upwind background PM2.5 upper quartile, median and lower quartile greatly exceed the corresponding 

values when using the minimum background methodology. This discrepancy is greatest for the upper quartile values and peaks 

during morning and evening rush hour, reaching ~80 µg m-3 at 5 pm  (Fig. 14). The lower whiskers, however, denoting the 

lowest datum lying within 1.5 times the interquartile range of the lower quartile, are common across both sets of PM2.5 550 

background diurnal cycles. Interpretation of these results is assisted by Fig. 15, which presents hourly wind vectors and PM2.5 

time series measurements throughout the campaign at all three upwind sites as well as urban sites 1 and 2. It is clear that the 

highest upwind PM2.5 background concentrations occur when values at the additional site to the southeast of urban Beijing 

(site 14) are selected during periods of southerly winds (Fig. 15). The lowest background concentrations, therefore, can be 

attributed to either of the northerly sites (site 3 and site 10). Northerly winds advect clean air originating over the relatively 555 

unpolluted mountainous regions into urban Beijing (Tie et al. 2015). This switch in wind directions creates a saw-tooth pattern, 

with pollution episodes initially consisting of a slow build-up phase, associated with stagnant southerly winds, and culminating 

with sharp concentration drops related to the influx of cold northerly air (Li et al. 2017; Wang et al. 2017). A clear example of 

this, from 23-27 November, is shown in Fig. 15.  

PM2.5 concentrations at site 14, situated in the south-eastern corner of the model domain are consistently higher than those 560 

measured at sites located in central Beijing. This monitoring station is located in the built-up Guangyang District of Langfang 

in Hebei province and is not in the immediate vicinity of any large point sources. Therefore, this region is possibly more 

heavily influenced by regional PM2.5 advected from industrial towns and cities to the south. This highlights an important 

limitation of our study, which assumes a homogeneous background concentration for each species; this assumption may not 

be valid across such a large and complex urban area.   565 
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Both local PM2.5 emission sources not represented in our study and background inhomogeneity appear to contribute 

substantially to differences in the spatial and temporal variation of measured and modelled PM2.5 concentrations. However, 

the large diurnal variability in measured PM2.5 concentration ranges across the domain (Fig. 13), not captured by the model, is 

more likely the influence of local emission sources, with longer timescales required for background PM2.5 concentration 

variability driven by regional transport. 570 

3.5 Impact of explicit road source modelling 

In this section, we investigate the sensitivity of the simulated NO2 concentrations to the inclusion of explicit road source 

emissions. Simulations that use aggregate 3-D grid sources alone are much less computationally expensive than those that also 

incorporate explicit road source emissions and allow studies to be performed with ADMS-Urban in urban areas where detailed 

road network information is unavailable. In Fig. 16, measured NO2 concentrations averaged across the campaign are compared 575 

with those simulated using 3-D grid and explicit road sources, as well as 3-D grid sources only, derived from the MEIC Opt 

emissions inventory. By resolving road traffic emissions into explicitly represented road sources, as opposed to using gridded 

emissions only, mean modelled NO2 concentrations across urban stations increase from 62.8 µg m-3 to 71.4 µg m-3 (Table 5). 

This modelled urban NO2 concentration increase results in a Fb value improvement from -0.13 to 0 (Table 5) reflecting the 

greater NO2 levels simulated by the model at locations in close proximity to explicit roads. By using grid sources only, the 580 

road traffic emissions are diluted over each 3 x 3 km grid cell and the strong concentration gradients associated with a region 

densely populated by major roads, illustrated in Fig. 4, are not captured. Similarly, Dédelé and Miskinyté (2015) and Hood et 

al. (2018) found that increased traffic emissions due to higher traffic volume and adjusted emission factors, respectively, 

produced improved Fb values using ADMS-Urban. 

More accurate model predictions next to roads can lead to better assessments of human exposure levels to pollutant species 585 

and is evidence of the successful implementation of the top-down approach to estimating explicit road traffic emissions used 

in this study. However, it is also clear from Fig. 16 that agreement between modelled and measured NO2 concentrations at 

sites 1 and 2 is substantially poorer when using explicit road sources than with the grid source only simulation. The model 

evaluation statistics for all monitoring sites (Table 5) reflect this with increases in NMSE from 0.28 to 0.3 and decreases in R 

from 0.59 to 0.53 when modelling road emissions explicitly.  As discussed in Sect. 3.2, this highlights the impact that the 590 

assumption of constant traffic activity, high underlying gridded emissions or the absence of street canyon and urban canopy 

modelling can have on simulated concentrations at certain near-road locations.   

Minimal R value changes and a much lower Fb improvement, -0.03 to 0.02, are seen across suburban compared to urban 

areas, following the inclusion of explicit road source emissions. This reflects the lower density of roads in suburban areas (Fig. 

4) and therefore the absence of strong concentration gradients that enhance NO2 levels at near-road urban locations. The 595 

relative influence of diffuse emissions contained within the underlying gridded emission sources on simulated pollutant 

concentrations is therefore more prominent with distance from Beijing’s urban centre, with previous studies specifically 

highlighting the persisting importance of residential coal combustion for heating and cooking during winter in suburban and 

rural Beijing (Cai et al. 2018; Li et al. 2018). 

3.6 Accounting for additional evening NOx emission source 600 

In this section, the influence of modifying the MEIC diurnal emissions profile, used for all previous simulations, to account 

for additional sources of nighttime NOx emissions is examined. As discussed in Sect. 3.3, a likely explanation for the simulated 

underestimate in nocturnal NOx and NO2 concentrations is that an additional evening NOx emission source is not accounted 

for in the emissions inventories. The timing of these peak NO2 and NOx measurements, between 11 pm and 6 am, coincides 

with the influx of HDDTs within Beijing’s Fourth Ring Road.  605 
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Figure 17 presents the standard MEIC diurnal emissions profile (DP_MEIC), and two alternative profiles, DP_25 and 

DP_50, constructed by increasing the standard MEIC profile factors between 11 pm and 6 am by ~0.25 and ~0.5, respectively, 

to account for additional nighttime HDDT emissions. For both modified emissions profiles, in order to retain the same 24-hour 

emissions total, DP_MEIC is further adjusted between 7 am to 10 pm, by magnitudes that also preserve the timings of the 

morning and evening emissions peaks associated with rush hour traffic. The weekend emissions profile, characterised by a 610 

delayed morning peak and ~30% reduced total daily traffic emissions, is kept unchanged for all three sensitivity simulations.  

Campaign period mean diurnal profiles of NO2 concentrations, simulated using the diurnal emissions profiles shown in Fig. 

17, are presented in Fig. 18. At suburban site 11, the close agreement between simulated and measured NO2 concentrations 

using DP_MEIC is strengthened further by increasing the proportion of emissions released at night relative to the daytime. 

Modelled NO2 level overestimations throughout the morning and afternoon hours at sites 12 and IAP using DP_MEIC are 615 

reduced when applying the two modified emissions profiles. However, at site 1 the application of DP_50 is unable to reduce 

daytime NO2 concentrations substantially, which is likely related again to the effect of overestimated emissions along the 

nearest explicit road source (Fig. 8). The evening NO2 concentration is underestimated at sites 1, 12 and IAP, using DP_MEIC, 

and this is successively reduced by a small amount with DP_25 and DP_50. The remaining evening differences suggest that, 

although the inclusion of higher nighttime emissions improves agreement, other possible issues exist related to ADMS-urban’s 620 

inability to model dispersion at very low wind speeds; inaccurate underlying gridded emissions; the simplified GRS chemistry 

scheme; the exclusion of street canyon and urban canopy modelling or PBL dynamics. 

3.7 The influence of boundary layer height and stability on diurnal NO2 concentrations 

In this section, the impact of PBLH and stability on diurnal NO2 concentrations is explored with further sensitivity simulations. 

The space into which emitted plumes of pollutants can disperse and mix is determined by the PBLH. Figure 19 shows the 625 

difference between measured and modelled PBLHs and their impact on simulated diurnal NO2 concentrations. Differences 

between the PBLH simulated without evening stability adjustment and the observed PBLH (Fig. 19) are characterised by a 

daytime overprediction and nighttime underprediction. At 3 pm, the rapidly growing convective PBL peaks at ~1100 m, 

exceeding the observed heights by ~200 m. This difference between observed and simulated PBLHs could be a result of an 

overestimation of the solar radiation-driven surface sensible heat flux and mechanically-driven turbulent flux values, which 630 

are the principal parameters impacting the modelled PBLH. Additionally, due to complex cloud physics, detecting the exact 

limit of vertical mixing is difficult in the presence of low level stratiform clouds, which form frequently in Beijing during 

winter, and may further account for low PBLHs derived from ceilometer observations (Kotthaus and Grimmond, 2018). After 

sunset at 5 pm, the modelled PBLH shrinks to ~200 m, 400 m below the measured height. This sharp transition between an 

unstable and stable modelled PBL is a consequence of ADMS-urban not accounting for the UHI effect in its surface energy 635 

balance calculations, as described in 2.1.2.  

The early evening stability adjustment (Sect. 2.1.2) applied to all previous simulations in this study replicates the 

effect of the UHI by reducing PBL stability between 4-7 pm. By applying the stability modification, early evening modelled 

PBLH increases and reaches ~1300 m by 6 pm before sharply decreasing to ~200 m by 8 pm. Note that directly input PBLH 

measurements are unaffected by changes to LMO and surface heat flux terms. The stability adjustment reduces NO2 640 

concentrations simulated at 4 pm using modelled and measured PBLHs by ~40 µg m-3
 and ~15 µg m-3, respectively, greatly 

improving agreement with measurements. The sharp morning modelled NO2 concentration rise, peaking at 9 am, decreases by 

~10 µg m-3 through use of the measured PBLH alone. However, application of a similar PBL stability adjustment, between 7-

10 am, would likely reduce the early morning PBLH underestimation and further weaken the modelled NO2 concentration rise 

associated with the input of rush hour-related NOx emissions into a morning PBL that is currently too stable and too shallow 645 

compared to observations.    
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The results suggest that although atmospheric stability modifications have a strong impact on NO2 concentrations, the use of 

observed PBLH instead of modelled heights has little effect. This is clearest outside the hours in which the stability correction 

has been applied, when large (~300 m) measured and modelled mid-afternoon and nighttime PBLH discrepancies have 

negligible impact on simulated NO2 concentrations. The greater impact of PBL stability changes alone, however, is clearly 650 

evidenced by the ~15 µg m-3 difference at 4 pm between simulations using measured PBLHs with and without the stability 

correction. This dominant influence of PBL stability is possibly related to the impact in the model configuration of near-surface 

traffic emissions and the exclusion of elevated point sources, with pollution dispersion from the latter more likely to be 

restricted by low PBLHs which would then further affect modelled NO2 levels. 

4 Conclusions 655 

In this study, street-scale resolution concentrations of NOx, NO2, O3 and PM2.5 are simulated for Beijing, using the Gaussian 

pollution dispersion and chemistry model, ADMS-Urban. Simulations for the APHH-China winter measurement campaign 

period (5 November 2016 – 10 December 2016), are driven by an explicit source road traffic emissions inventory, developed 

for this work using a pseudo top-down methodology. This approach, which involves apportioning an underlying high-

resolution gridded emissions inventory onto Beijing’s spatial road network, provided by OpenStreetMap, may be applied to 660 

investigate the air quality in other cities where detailed bottom-up traffic emissions inventories are unavailable.  

Measurements recorded at 12 of Beijing’s air quality monitoring network stations and at the Institute of Atmospheric 

Physics (IAP) field site are compared with simulated pollutant levels generated by the Multi-resolution Emission Inventory 

for China v1.3 (MEIC Std), at 3 km resolution, and an optimised version of the same inventory (MEIC Opt). MEIC Opt, which 

is based on campaign measurements, has lower emissions across urban Beijing (within the Sixth Ring Road), and higher 665 

emissions in surrounding suburban areas, resulting in greatly improved agreement between observed and simulated 

concentrations for all species.  Most notably, driven by NO emission changes, simulated mean NOx concentrations at the IAP 

site are lower by more than a factor of two using MEIC Opt compared to the MEIC Std inventory. Consequently, modelled 

urban O3 concentrations increase by 109%, with suburban O3 concentrations decreasing by 7% in simulations performed with 

MEIC Opt.  670 

The inclusion of explicit road sources allows sharp NO2 concentration gradients adjacent to major roads to be resolved, 

leading to generally closer agreement between network measurements and simulated concentrations. However, limitations of 

the model configuration can lead to modelled NO2 levels that are substantially higher than measurements at some near-road 

(~100 m) sites. These model uncertainties stem from the application of uniform weighting factors to roads of the same 

classification (thus neglecting traffic activity variations), the assumptions inherent to the underlying gridded inventory, and 675 

exclusion of the physical barriers to pollution dispersion created by street canyons. Future work could focus on refining the 

explicit road emissions network created here by testing the impact of adjusting weighting factors for different pollutants and 

across urban and suburban areas to better account for the impact of traffic congestion and vehicle type, such as HDDTs, on 

emissions along different road classifications.  

Differences in the diurnal variability of measured and simulated NO2 concentrations during the winter campaign 680 

period reveal features related to emissions (e.g. local driving restrictions) and the Urban Heat Island (UHI), that air quality 

modelling studies over large urban areas should consider. For instance, measured NO2 concentrations at urban monitoring sites 

situated close to roads can reach nighttime values above 80 µg m-3, exceeding both morning and evening rush hour levels. This 

pattern is not reproduced in the simulated NOx concentrations and is consistent with the evening influx of heavy duty diesel 

trucks (HDDTs), banned from traversing within the Fourth Ring Road between 6 am and 11 pm. The increase in HDDT traffic 685 

at night across urban Beijing is therefore an important local emission source that needs to be included in MEIC and other 

proxy-based emission inventories. Additionally, modifying modelled PBL stability parameters to replicate early evening (4-7 
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pm) instability driven by the delayed release of heat stored in the urban fabric, improves the diurnal variation in simulated NO2 

concentrations. A similar modification may improve morning model predictions, although it would be difficult to use the 

presence of a UHI to justify this.  690 

The range in measured PM2.5 concentrations across the monitoring network for the campaign period (~40 µg m-3) is 

much higher than the corresponding simulated range using both MEIC Std (~20 µg m-3) and MEIC Opt (~15 µg m-3). The 

large difference between measured suburban and urban PM2.5 levels is also not captured by the model and may indicate any or 

all of the following: (a) PM2.5 emissions are too low in magnitude and not represented at sufficiently high resolution, 

particularly across urban areas, (b) the simplified GRS chemistry scheme needs to be modified to increase contributions from 695 

locally produced secondary PM2.5, or (c) the assumption of a homogeneous background concentration across complex 

megacities, such as Beijing, which are heavily influenced by the advection of regional pollution, is not valid.   

Sensitivity studies have shown that using explicit road source emissions; including an additional nighttime emission source; 

and accounting for UHI effects, through enhanced early evening instability conditions, can produce closer agreement between 

simulated and measured NO2 concentrations.    700 

Street-level modelling, along with the open data sources and methodologies used here, may be applied for future work 

elsewhere. Quantifying spatio-temporal pollutant distributions at such fine scales is essential for human health exposure-related 

studies, and for informing choices on the emission controls of specific sectors. 
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Figure 1: Map of Beijing (source: OpenStreetMap) with modelling 

domain, measuring 75 km x 90 km, outlined (dashed blue line). Urban 

(green circle), suburban (pink circle), upwind background (yellow 

square) and IAP (red circle) air quality monitoring station locations, 

including site numbers, are provided. Beijing Capital International 

Airport (yellow star) and the Sixth Ring Road (black line) are also 

highlighted.  

Figure 2: Diurnal mean PBLH/LMO values 

for the campaign period (blue line). 

Modified PBLH/LMO, from 4-7pm, to 

account for evening UHI, shown by red 

dashed line. 

Map data © 2019 OpenStreetMap 
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Figure 3: (a) Spatial distribution of November and December mean transportation sector MEIC Std NO2 emissions 

(lowest vertical layer) covering full study domain, (b) Spatial road network of Beijing (source: OpenStreetMap), (c) 

explicit road source NO2 emission rates following apportioning of (a) onto (b), and (d) enlarged Sect. of road emissions 

network covering the IAP field site and site 12.  

Map data © 2019 OpenStreetMap 
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Figure 4: Spatial maps of mean PM2.5 (b), NO2 (c), and O3 (d) concentrations for the winter campaign period 

(5/11/16 to 10/12/16), simulated using the MEIC Opt emissions inventory. Simulated concentrations cover the 

region marked in (a). Mean measured concentrations at monitoring network sites (NO2, O3 and PM2.5) and 

the IAP field site (NO2 and O3) are represented by coloured dots. 

 

 

 

 

Figure 5: Simulated campaign period mean NO2 

concentrations, with distance from point on Second Ring 

Road centreline (marked by X in Fig. 4c) using MEIC Opt 

(pink). Simulated NO2/NOx ratio denoted by black dashed 

line. Shaded areas represent the 95% confidence interval. 

Map data © 2019 OpenStreetMap 



28 
 

 

 

 

 

 1050 

 

 

 

 

 1055 

 

 

 

 

 1060 

 

 

 

 

 1065 

 

 

 

 

 1070 

 

 

Figure 6: Hourly measured and modelled NOx concentrations during the campaign period at the IAP field site. 

Panel (a) and (b) showing concentrations simulated using MEIC Std and MEIC Opt, respectively.  Colours 

represent the total number of matching hourly measured and modelled values contained within distinct hexagonal 

bins. Dashed lines mark factor of two difference between measured and simulated concentrations. 
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Figure 7: Campaign period mean measured and modelled (a) NO2, (b) O3, and (c) PM2.5 concentrations at all 

monitoring network sites (numbered) and the IAP field site (NO2 and O3). Blue and pink lines indicate 

concentrations simulated using MEIC Std and MEIC Opt, respectively. Horizontal light blue line represents 

campaign period mean background concentrations calculated from measurements. 
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Figure 8: (a) Campaign period mean simulated NO2 concentrations and NO2/NOx concentration ratios with distance 

from road centre along cross-road slice marked in (b) using half (blue), double (yellow) and unchanged (green) 

emissions of all species from explicit road source marked by red line. Green circle in (b) marks position of 

monitoring site 1. 

Map data © 2019 OpenStreetMap 

Figure 9: Spatial distribution of November and December mean MEIC Opt NO2 emissions (all emission sectors) 

overlaid with Beijing road network (source: OpenStreetMap). Enlarged regions cover urban sites 1, 12 and IAP as well 

as suburban site 11.  

Map data © 2019 OpenStreetMap 
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Figure 10: Campaign period mean diurnal variation in modelled and measured NO2 concentrations at sites (a) 1, (b) 

11, (c) 12, and (d) IAP. Modelled concentrations produced using both MEIC Std (blue) and MEIC Opt (pink). 

Measurements marked by red line. Shaded areas and error bars represent the 95% confidence intervals for simulated 

and measured concentrations, respectively.  

Figure 11: Campaign period mean diurnal variation in modelled and measured (a) NOx concentrations and (b) 

NO2/NOx concentration ratios at the IAP field site. Modelled concentrations produced using both MEIC Std (blue) and 

MEIC Opt (pink). Measurements marked by red line. Shaded areas and error bars represent the 95% confidence 

intervals for simulated and measured concentrations, respectively. 



32 
 

 

 

 

 

 1160 

 

 

 

 

 1165 

 

 

 

 

 1170 

 

 

 

 

 1175 

 

 

 

 

 1180 

 

 

 

Figure 12: Campaign period mean diurnal variation in modelled and measured O3 concentrations at sites (a) 1, (b) 11, 

(c) 12 and (d) IAP. Modelled concentrations produced using both MEIC Std (blue) and MEIC Opt (pink). 

Measurements marked by red line. Shaded areas and error bars represent the 95% confidence intervals for simulated 

and measured concentrations, respectively. 

 

Figure 13: Variations in site-specific campaign period mean measured (red) and modelled (blue) PM2.5 concentrations 

across all monitoring network stations for each hour of the day. Measurements sub-divided to highlight the variation 

between suburban (cyan) and urban (pink) monitoring network stations specifically.  
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Figure 14: Ranges in campaign period mean calculated background PM2.5 concentrations for each hour of the day 

using minimum (green) and upwind (yellow) concentration methodologies.  

Figure 15: Hourly PM2.5 concentrations at measurement sites 1, 2, 3, 10 and 14 during the campaign period. Wind 

vectors, representing wind speed magnitude and direction recorded at the airport meteorological station, are also 

provided (black arrows). 
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Figure 16: Campaign period measured and modelled 

NO2 concentrations at all measurement sites 

(numbered). Modelled concentrations produced 

using 3-D grid and explicit road emission sources 

(blue), and 3-D grid sources only (orange) derived 

from the MEIC Opt emissions inventory. Horizontal 

light blue line represents campaign period mean 

background NO2 concentrations calculated from 

measurements. 

 

Figure 17: Diurnal emissions profiles applied to the simulations shown in Fig. 

18. Standard MEIC diurnal emissions profile (DP_MEIC) marked by blue 

line; modified DP_MEIC with increased proportions of nighttime emissions 

marked by pink (DP_25) and cyan (DP_50) lines and weekend emissions 

profile marked by dashed black line. 
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Figure 18: Campaign period mean diurnal variation in measured and modelled NO2 concentrations using MEIC Opt 

at sites (a) 1, (b) 11, (c) 12, and (d) IAP.  Measurements marked by red line. Shaded areas and error bars represent the 

95% confidence intervals for simulated and measured concentrations, respectively.  

 

Figure 19: (a) Campaign period mean diurnal variation in modelled PBLH with stability correction (pink), modelled PBLH 

without stability correction (cyan) and measured PBLH (red). (b) Campaign period mean diurnal variation in measured 

(red) and modelled NO2 concentrations with measured PBLH and stability correction (blue), modelled PBLH with stability 

correction (pink), measured PBLH without stability correction (green), and modelled PBLH without stability correction 

(cyan) at the IAP field site. Shaded areas and error bars represent the 95% confidence intervals for simulated and 

measured PBLH and concentrations, respectively. 
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Table 2:   Campaign period mean MEIC Std (S) and MEIC Opt (O) pollutant species emissions (Tonnes day-1) aggregated across 

all, urban and suburban grid cells. Change (%) in emissions between inventories, following optimisation, calculated as (O – S/S) x 

100. 
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Site name Site type Latitude (°N) Longitude 

(°E) 

Distance to 

nearest road 

centreline 

(m) 

Nearest Road 

type 

1 Guanyuan Urban 39.93 116.34 90 Secondary 

2 Wanshou Xigong Urban 39.88 116.35 80 Tertiary 

3   Dingling Suburban 40.29 116.22 285 Tertiary 

4 Dongsi Urban 39.93 116.42 200 Secondary 

5 Tiantan Urban 39.89 116.41 90 Tertiary 

6 Nongzhanguan Urban 39.94 116.46 400 Trunk 

7 Haidan Wanliu Urban 39.99 116.29 100 Tertiary 

8 Gucheng Urban 39.91 116.18 260 Tertiary 

9 Shunyicheng Suburban 40.13 116.66 190 Secondary 

10 Huairouzhen Suburban 40.33 116.63 N/A Tertiary 

11 Changpingzhen Suburban 40.22 116.23 200 Secondary 

12 Aoti Zhongxin (Olympic 

Park) 

Urban 39.98 116.4 110 Secondary 

13  IAP Urban 39.97 116.37 110 Secondary 

14 TCM Medical Material 

Company 

Urban 39.52 116.69 N/A Secondary 

Campaign period mean aggregate pollutant emission rates (Tonnes day-1) 

Region of 

domain 

NO2 NOx PM2.5 PM10 SO2 VOC 

S O S O S O S O S O S O 

All 60.2 46.9 889.3 504.6 86.2 110.3 156.5 176.1 72.5 54.4 717.6 1942.5 

Change 

(%) 

-22.1 -43.3 28.0 12.5 -25.0 170.7 

Urban 44.0 22.1 649.1 238.3 49.9 46.9 89.3 69.5 42.4 27.5 476.8 1273.1 

Change 

(%) 

-49.8 -63.3 -6.0 -22.2 -35.1 167.0 

Suburban 16.3 24.7 240.2 266.2 36.3 63.4 67.2 106.7 30.1 27.0 240.8 669.4 

Change 

(%) 

51.5 10.8 74.7 58.8 -10.3 178.0 

Table 1: Locations (latitude and longitude) of all monitoring stations, including distinction between urban (within sixth ring 

road) and suburban site types. Approximate distance (nearest 10 m) from each monitoring station to nearest road centreline and 

corresponding road type also provided.    
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Table 3: Estimated emission weighting factors for each modelled road type. 1270 
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Road Type Weighting 

Motorway 0.7 

Trunk 0.5 

Primary 0.4 

Secondary 0.25 

Tertiary 0.15 

 

Mean Concentrations (µg m-3) 

 

Model Evaluation Statistics 

 NMSE  Fb  R 

 Sites Mod (S) Mod (O) Obs S O S O S O 

PM2.5 All 90.3 89.8 93.4 0.37 0.37 -0.03 -0.04 0.76 0.76 

Urb 93.4 92.1 100.9 0.36 0.36 -0.08 -0.09 0.78 0.78 

Sub 84.0 85.3 78.3 0.40 0.41 0.07 0.09 0.74 0.74 

O3 All 10.4 14.6 18.5 1.54 0.74 -0.56 -0.24 0.71 0.79 

Urb 6.1 12.8 17.2 3.20 0.93 -0.95 -0.29 0.70 0.77 

Sub 20.0 18.6 21.4 0.48 0.47 -0.07 -0.14 0.82 0.83 

NO2 All 69.5 65.7 65.3 0.27 0.30 0.06 0.00 0.55 0.53 

Urb 79.2 71.4 71.3 0.27 0.31 0.10 0.00 0.42 0.44 

Sub 47.9 52.9 51.8 0.21 0.23 -0.08 0.02 0.74 0.70 

NOx IAP 345.5 149.8 126.1 2.35 0.63 0.93 0.17 0.35 0.41 

Table 4: Statistical evaluation of modelled pollutant concentrations for the campaign period, using MEIC Std (S) and MEIC 

Opt (O) emissions inventories. Mean modelled (Mod) and observed (Obs) concentrations and statistics divided into all (12 

monitoring network sites and IAP field site for NO2 and O3, monitoring network sites only for PM2.5) and urban and suburban 

monitoring site groups. Urban and suburban sites defined in Table 1. NOx measurements only available at the IAP field site. 

Mean concentrations and statistics calculated from matching hourly values.   

 

Mean Concentrations (µg m-3) 

 

Model Evaluation Statistics 

NMSE Fb R 

 Site Mod (G) Mod (G-R) Obs G G-R G G-R G G-R 

NO2 All 58.9 65.7 65.3 0.28 0.30 -0.10 0.00 0.59 0.53 

Urb 62.8 71.4 71.3 0.29 0.31 -0.13 0.00 0.51 0.44 

Sub 50.1 52.9 51.8 0.21 0.23 -0.03 0.02 0.73 0.70 

Table 5: Same information presented as in Table 4 but for NO2 concentrations simulated (MEIC Opt) using 3-D grid 

sources only (G) as well as 3-D grid and explicit road sources (G-R) (also presented in Table 4). 


