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Abstract. Great efforts have been made to simulate atmo-
spheric pollutants, but their spatial and temporal distributions
are still highly uncertain. Observations can measure their
concentrations with high accuracy but cannot estimate their
spatial distributions due to the sporadic locations of sites.5

Here, we propose an ensemble method by applying a lin-
ear minimum variance estimation (LMVE) between multi-
model ensemble (MME) simulations and measurements to
derive a more realistic distribution of atmospheric pollutants.
The LMVE is a classical and basic version of data assim-10

ilation, although the estimation itself is still useful for ob-
taining the best estimates by combining simulations and ob-
servations without a large amount of computer resources,
even for high-resolution models. In this study, we adopt
the proposed methodology for atmospheric radioactive cae-15

sium (Cs-137) in atmospheric particles emitted from the
Fukushima Daiichi Nuclear Power Station (FDNPS) acci-
dent in March 2011. The uniqueness of this approach in-
cludes (1) the availability of observed Cs-137 concentra-
tions near the surface at approximately 100 sites, thus pro-20

viding dense coverage over eastern Japan; (2) the simplic-
ity of identifying the emission source of Cs-137 due to the
point source of FDNPS; (3) the novelty of MME with the
high-resolution model (3 km horizontal grid) over complex
terrain in eastern Japan; and (4) the strong need to better25

estimate the Cs-137 distribution due to its inhalation expo-
sure among residents in Japan. The ensemble size is six, in-

cluding two atmospheric transport models: the Weather Re-
search and Forecasting – Community Multi-scale Air Quality
(WRF-CMAQ) model and non-hydrostatic icosahedral atmo- 30

spheric model (NICAM). The results showed that the MME
that estimated Cs-137 concentrations using all available sites
had the lowest geometric mean bias (GMB) against the ob-
servations (GMB = 1.53), the lowest uncertainties based on
the root mean square error (RMSE) against the observations 35

(RMSE = 9.12 Bq m−3), the highest Pearson correlation co-
efficient (PCC) with the observations (PCC = 0.59) and the
highest fraction of data within a factor of 2 (FAC2) with the
observations (FAC2 = 54 %) compared to the single-model
members, which provided higher biases (GMB= 1.83–4.29, 40

except for 1.20 obtained from one member), higher uncer-
tainties (RMSE = 19.2–51.2 Bq m−3), lower correlation co-
efficients (PCC = 0.29–0.45) and lower precision (FAC2 =
10 %–29 %). At the model grid, excluding the measurements,
the MME-estimated Cs-137 concentration was estimated by 45

a spatial interpolation of the variance used in the LMVE
equation using the inverse distance weights between the near-
est two sites. To test this assumption, the available measure-
ments were divided into two categories, i.e. learning and val-
idation data; thus, the assumption for the spatial interpola- 50

tion was found to guarantee a moderate PCC value (> 0.4)
within an approximate distance of at least 70 km. Extra sen-
sitivity tests for several parameters, i.e. the site number and
the weighting coefficients in the spatial interpolation, the
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time window in the LMVE and the ensemble size, were per-
formed. In conclusion, the important assumptions were the
time window and the ensemble size; i.e. a shorter time win-
dow (the minimum in this study was 1 h, which is the obser-
vation interval) and a larger ensemble size (the maximum in5

this study was six, but five is also acceptable if the members
are effectively selected) generated better results.

1 Introduction

Great efforts have been carried out to simulate atmospheric
pollutants, but the spatial and temporal distributions of sim-10

ulated pollutants are still highly uncertain (e.g. Fuzzi et al.,
2015). In contrast, observations are the most reliable method
of monitoring the concentrations of atmospheric pollutants
with high accuracy, but their spatial networks are usually
sporadic. Even if these observations densely cover the tar-15

get area, they cannot reveal the pathway of pollutants from
the source to the sink. To analyse the measurements and
deeply understand their behaviours in the atmosphere, we
need to improve atmospheric transport models as well as op-
timal interpolations using observations. To understand the20

model performance, we have executed model intercompar-
ison projects (MIPs) or multi-model ensembles (MMEs),
which provide more reliable results than those by a single
model for weather forecasting and climate prediction (e.g.
Stensrud et al., 2000). To develop the optimal interpolation,25

we have also analysed the error and the variance between
the simulations and observations to estimate more realistic
distributions of the target materials (e.g. Rutherford, 1972;
Talagrand, 1997; Robinchand and Ménard, 2014).

The MME technique is applied for weather forecasting30

(Stensrud et al., 2000; Gneiting et al., 2005), climate pro-
jections (Knutti et al., 2010; Taylor et al., 2012), short-lived
climate forcer assessments (Lamarque et al., 2013; Myhre
et al., 2013), air quality forecasting (Solazzo et al., 2012;
Sessions et al., 2015) and atmospheric dispersion predictions35

(Draxler et al., 2015; Sato et al., 2018). The members of the
ensemble are widely spread for the use of various numerical
models with perturbed initial conditions and various phys-
ical and chemical modules. The ensemble method is gen-
erally divided into three types: pure average scheme (equal40

weighting), weighting scheme with all members and selected
scheme with reduced members. The pure average method is
a popular method for MME-based climate studies accord-
ing to the concept of “one model, one vote” (Knutti et al.,
2010; Weigel et al., 2010) or evidence of improvements in the45

concentrations of pollutants in air quality and atmospheric
dispersion simulations (McKeen et al., 2005; van Loon et
al., 2007; Sessions et al., 2015; Kitayama et al., 2018). The
weighting scheme, especially with a relatively smaller en-
semble size, can be adopted to eliminate the common bi-50

ases and improve the ensemble results in the weather forecast

(Krishnamurti et al., 1999), climate studies (Haughton et al.,
2015), air quality forecasts (Casanova and Ahrens, 2009) and
atmospheric dispersion predictions (Nakajima et al., 2017;
Sato et al., 2018). The selected scheme is used in the air qual- 55

ity simulations (Solazzo et al., 2012, 2013; Solazzo and Gal-
marini, 2015a) and the atmospheric dispersion simulations
(Riccio et al., 2012; Solazzo and Galmarini, 2015b). The use
of the non-pure average scheme, i.e. weighting and selected
schemes, is increasing, and the technique is a useful tool for 60

estimating the reliable results among MMEs (Kioutsioukis et
al., 2016).

In this study, the MME with the weighting scheme that
minimizes the variance between the simulations and ob-
servations is carried out to derive a more realistic dis- 65

tribution of radioactive caesium (Cs-137) at the surface.
The Cs-137 in atmospheric particles was emitted from the
Fukushima Daiichi Nuclear Power Station (FDNPS) accident
in March 2011. Thus far, many atmospheric dispersion mod-
els have simulated Cs-137 aerosols (e.g. Chino et al., 2011; 70

Morino et al., 2011; Stohl et al., 2012), and several MIPs
were conducted (Science Council of Japan, 2014; Draxler et
al., 2015; Sato et al., 2018). Under the MIPs, the MMEs pro-
vided reliable results in the assessed models (10 or more).
However, ordinary modellers cannot easily carry out such 75

MMEs using only their own models. For such situations,
we propose a useful method for limited ensemble size in
MMEs by applying an analytical optimization to determine
the weights for the ensemble. The optimization is based on
a linear minimum variance estimation (LMVE), which is a 80

classical and basic type of data assimilation similar to the
Kalman filter (e.g. Talagrand, 1997; Kalnay, 2003).

This approach is unique from other MMEs of other species
based on the following four factors. (1) The observed Cs-137
concentration near the surface is available at approximately 85

100 sites, providing dense coverage of eastern Japan (Tsu-
ruta et al., 2014; Oura et al., 2015). Since plumes includ-
ing Cs-137 particles are transported and diffused very het-
erogeneously, dense measurements are essential to capture
such plumes. (2) The spatial distribution of Cs-137 distri- 90

bution is captured relatively easily since Cs-137 is emitted
from the point source. For example, the PM2.5 distribution is
rather difficult to capture in the atmosphere since it is emit-
ted from complex sources and formed from various chemical
reactions. (3) MME studies to identify a simple tracer with 95

a high-resolution (3 km horizontal grid) model over complex
terrain, such as Fukushima, are still limited. (4) It is very im-
portant for people to properly estimate the spatial and tem-
poral distributions of Cs-137 emitted from the FDNPS. The
better estimation of the Cs-137 distribution greatly helps us 100

to understand the impacts of inhalation exposure on residents
in Japan.

In a previous study, Nakajima et al. (2017), which com-
prises the basis of our proposed method, was applied using
multi-models, including the Weather Research and Forecast- 105

ing – Community Multi-scale Air Quality (WRF-CMAQ)
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model (Morino et al., 2013) and non-hydrostatic icosahe-
dral atmospheric model (NICAM) (Goto et al., 2018), to de-
rive a better Cs-137 distribution. However, the estimation is
still uncertain, and its ensemble results were not greatly im-
proved, which was mainly because the results of the original5

model were still highly uncertain. In addition, Nakajima et
al. (2017) did not discuss the availability of the use of LMVE
for more than three members and the uncertainty of the rel-
evant parameters in LMVE. After the study of Nakajima et
al. (2017), both models were further developed by using a10

finer horizontal resolution (3 km) grid and by nudging a new
meteorological field provided by Sekiyama et al. (2017) with
higher accuracy. In this study, the available results were in-
creased to six members, including two atmospheric transport
models and two or four sensitivity experiments. This pro-15

posed method using more than two members promises to be
applicable for MIPs as a new ensemble method. Furthermore,
the estimated Cs-137 concentrations are used for the estima-
tion of inhalation exposure of Cs-137 emitted from FDNPS
in March 2011 (Takagi et al., 2020).20

Section 2 gives a description of two models, WRF-CMAQ
and NICAM, including a design of the sensitivity experi-
ments, an explanation of the ensemble method using LMVE,
the used measurement datasets with designs to test several
assumptions in the proposed ensemble method and statisti-25

cal metrics for model evaluation. Section 3.1 shows the esti-
mated Cs-137 concentrations and their comparison with the
single-model results. Section 3.2 shows the tests used for the
assumption of spatial interpolation in the LMVE equation
using the distance between the nearest two sites, as shown in30

Sect. 2.2, by separating the measurement into learning and
validation sites. In the proposed method, several parameters
are assumed: the size, number and weighting values in the
interpolation, the time window in the LMVE and the ensem-
ble size. These parameters are investigated and discussed in35

Sect. 4. Section 5 shows a conclusion and the implication of
this study.

2 Methods

2.1 Description of the two atmospheric transport
models40

The ensemble size is six, and it includes two different at-
mospheric transport models, WRF version 3.1 (Skamarock
et al., 2008) coupled with CMAQ version 4.6 (Byun and
Schere, 2006) and the NICAM (Tomita and Satoh, 2004;
Satoh et al., 2008, 2014) coupled with the spectral radiation-45

transport model for aerosol species (SPRINTARS; Takemura
et al., 2005; Goto et al., 2011). According to the rule of
Nakajima et al. (2017), these models are hereafter referred
to as the W-model and N-model, respectively. The W-model
analyses atmospheric processes, such as transport, diffusion50

and deposition of particles, but it was modified for radioac-

tive particle use, such as Cs-137 emitted from the FDNPS
accident in the target area in Japan (Morino et al., 2013).
The basic experimental design in this study is widely used
in this field, such as in Morino et al. (2013). The N-model 55

is a seamlessly multi-scaled model for air pollutants (Goto
et al., 2018) on a global scale with a quasi-uniform grid
(Suzuki et al., 2008; Dai et al., 2014), a semi-regional scale
with a stretched grid (Goto et al., 2015, 2019) and a perfect
regional scale with a diamond grid system (Uchida et al., 60

2017; Nakajima et al., 2017). The N-model also considers
the atmospheric processes of particles and focuses on the tar-
get area in this study. The basic experimental design in this
study is generally common to Nakajima et al. (2017). Both
the W-model and N-model participate in the international 65

MIP for Cs-137 emitted from the FDNPS accident (Sato et
al., 2018). The experimental design among the models was
harmonized as best as possible; that is, all experiments were
carried out by using the same emission inventory in Katata
et al. (2015) and nudging the meteorological fields using the 70

operational model for regional weather forecasting around
Japan (the non-hydrostatic model, named NHM; Saito et al.,
2006) coupled with the local ensemble transform Kalman fil-
ter (LETKF) (NHM-LETKF) from Sekiyama et al. (2017),
with almost a 3 km grid resolution. Using the W-model and 75

N-model, six experiments were conducted, as shown in Ta-
ble 1. The W-model was executed in four experiments by
considering differences in the meteorological fields used as
nudging data, the wet deposition process for Cs-137 and
emission scenarios of Cs-137 from Terada et al. (2012). The 80

N-model was performed in two experiments by considering
only the difference in the meteorological fields. The hourly
Cs-137 concentrations simulated in all the experiments in the
lowest layer are linearly interpolated to a 1km× 1km grid
cell (third mesh grid filled for people’s living areas to indicate 85

inhalation exposure in Japan in Takagi et al., 2020) for the en-
semble process. The target region is eastern Japan as shown
in Fig. 1. The target period is from 11 to 24 March 2011
(Japan Standard Time; JST).

2.2 Ensemble method 90

One of the optimization methods for the simulated Cs-137
concentration is a multi-model ensemble. When the simu-
lated concentration in model i represents Ci and the number
of models is two, the ensemble concentration Cens can be ex-
pressed as 95

Cens = a1C1+ a2C2, (1)

where ai (i = 1,2) is a weighted coefficient for Ci (i =
1,2). According to the idea of LMVE used in Nakajima et
al. (2017), this study also defines the weighted coefficient as

ai =
(

1/σ 2
i

)
/
(

1/σ 2
1 + 1/σ 2

2

)
, (2) 100

where σ 2 represents a variance between the simulated Cs-
137 (Csim) and observed Cs-137 (Cobs).
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Table 1. Brief model description and the design of the experiments.

Name W-model (W1) W-model (W2) W-model (W3) W-model (W4) N-model (N1) N-model (N2)

Dynamic core WRF WRF WRF WRF NICAM NICAM

Module CMAQ4.6 CMAQ4.6 CMAQ4.6 CMAQ4.6 Modified Modified
SPRINTARS1 SPRINTARS1

Horizontal grid size (km) 3 3 3 3 3 3

Number of layers 34 34 34 34 40 40
(Bottom layer thickness) (19 m) (19 m) (19 m) (19 m) (20 mTS1 ) (20 mTS2 )

Meteorological SE17 MSM SE17 SE17 SE17 MSM
fields (nudged)2

Wet deposition WSPEEDI WSPEEDI CMAQ WSPEEDI SPRINTARS SPRINTARS
for Cs-1373

Emission scenario KA15 KA15 KA15 TE12 KA15 KA15
of Cs-1374

1 Modified SPRINTARS optimizes SPRINTARS (Takemura et al., 2005) for simulating Cs-137 particles by assuming a one-modal size distribution with a radius centre of
0.24 µm and high hygroscopicity, similar to sulfate (Nakajima et al., 2017). 2 SE17 represents the meteorological fields calculated by NHM-LETKF in Sekiyama et al. (2017).
MSM represents mesoscale objective analysis data (MANAL) from the Japan Meteorological Agency (JMA). 3 WSPEEDI is a model for simulating the radioactive materials
developed by JAEA (Terada et al., 2008). 4 KA15 and TE12 represent Katata et al. (2015) and Terada et al. (2012), respectively.

σ 2 is defined as

σ 2
=

∑
dS,dt

(Csim−Cobs)
2, (3)

where dS is a spatial window, i.e. a specific domain, and dt is
a time window, i.e. a specific period. This formulation is clas-
sical and widely used for various subjects, such as data as-5

similation (e.g. Rutherford, 1972; Talagrand, 1997; Kalnay,
2003), and can be applicable for MMEs as shown in theoreti-
cal works (Potempski and Galmarini, 2009; Kioutsioukis and
Galmarini, 2014). This method leads to the minimization of
the difference between the simulation and observation results10

without a large amount of computer resources.
Different from the previous study of Nakajima et

al. (2017), the number of ensemble members is not only two
but also more than two. In this case, Eqs. (1) and (2) are gen-
eralized as follows:15

Cens =
∑N

i=1
aiCi (4)

ai =
(

1/σ 2
i

)/∑N

j=1

(
1/σ 2

j

)
, (5)

where N is the number of ensemble members. Equation (5)
represents the non-biased conditions and the weight is satis-
fied as follows:20 ∑N

j=1
aj = 1. (6)

In this study, the term Ci in Eqs. (3) and (4) is the loga-
rithmic scale of Cs-137 concentrations because the Cs-137
concentration is very heterologous and ranges from 0.1 to
100 000 Bq m−3 (Tsuruta et al., 2014). When the observed25

Cs-137 concentration is less than the detection limit, it is as-
sumed to be 0.01 Bq m−3 in Eq. (3).

In grids where an observation site or observed data at an
observation site are missing, σ 2 is calculated by interpolating
σ 2 values at the available observation sites. The interpolation 30

of σ 2 is applied for calculating Cens at all grids in the whole
domain. In this study, Cens is not directly interpolated be-
cause it varies abruptly in space and time. The interpolation
of σ 2 at grid k (σ 2

k ) depends on the distance according to the
inverse distance weighting (IDW) used in previous studies 35

(e.g. Rutherford, 1972; Hollingsworth and Lönnberg, 1986)
and can be expressed as follows:

σ 2
k =

∑M

j=1

[{(
1
rj,k

)m/∑M

i=1

(
1
ri,k

)m}
σ 2
j

]
, (7)

where rj,k represents the distance between grid j and the
grid k, M (= 1,2,3) is the number of grids used in the in- 40

terpolation, and m (= 1,2) is the weighting power. The val-
ues ofM and m are determined by the interpolation methods
shown in Table 2. The standard experiment adopts M = 2
and m= 1; i.e. the weighted coefficient at grid k depends on
the inverse distance between the target grid (k) and the two 45

nearest observation grids shown in Table 2 as LIP1. To con-
firm this assumption, an additional four IDW methods were
carried out by changing the values of M and m as shown
in Table 2 (discussed in Sect. 4.1). One set of values is the
nearest neighbours (M = 1 and m= 1), which is a popular 50

method for interpolation; however, the spatial pattern of the
σ 2 value is not smoothly distributed. In two of the sensitivity
tests, the dependence of the σ 2 value on distance is stronger
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than that of the other method based on an inverse square dis-
tance (m= 2) to the interpolation.

In Eq. (3), dt is set to 1 h, which is an assumption and
is tested by setting dt to 3–48 h (discussed in Sect. 4.2); dS
is set to one grid, i.e. 1 km by 1 km, where the observation5

site is located. The ensemble size, N , is set to six, which is
also tested by changing the number from six to two, three,
four and five (discussed in Sect. 4.3). Hereafter, the proposed
method is referred to as the “LMVE ensemble method”.

2.3 Observation data10

The hourly measured Cs-137 concentrations at the surface
are directly estimated by using the aerosol sampling tapes
of the national suspended particulate matter (SPM) network
(Tsuruta et al., 2014, 2018). There are almost 400 SPM sites
in eastern Japan, but now 101 sites have available data for15

Cs-137 (Oura et al., 2015). In this study, the measured Cs-
137 data at 100 sites (one site, Futaba, was eliminated be-
cause the site is located in the same model grid as FDNPS,
which is known as the change-of-support problem; Gotway
and Young, 2002) are used for the ensemble. In addition, at20

an extra site, Tokai (36.45◦ N, 140.59◦ E), which covers the
missing area of Oura et al. (2015), daily measured Cs-137
concentrations (Furuta et al., 2011) are used. All 101 sites
used in this study are plotted using four different colours in
Fig. 1. All measurements shown in Fig. 1 (all colour sites)25

are used as learning data in the LMVE ensemble method as
a control experiment (CTL). In the sensitivity tests discussed
in Sect. 4, we used all observation sites.

The colours represent the sites used to learn or validate
the data in the extra ensemble estimation to examine the ef-30

fect of the spatial interpolation for the σ 2 value on the MME
concentrations. In the test experiments (SEN1, SEN2 and
SEN3), some of the datasets are used as learning data and
others are used as validation data, as shown in Table 3. The
validation data are selected by choosing the sites with the35

largest number of observed samples as the representative site
in the specific domain. When the specific domain is defined
by a lattice of 0.125◦ by 0.125◦, the sites in yellow are used
as validation data for the experiments (SEN3). When the spe-
cific domain is defined as a lattice of 0.25◦ by 0.25◦, the sites40

in yellow and green are used as validation data in the exper-
iments (SEN2 and SEN3, respectively). When the specific
domain is defined as a lattice of 0.5◦ by 0.5◦, the sites in
yellow, green and blue are used as validation data for the ex-
periments (SEN1, SEN2 and SEN3). This means that in the45

SEN2 experiment, the 56 sites in blue and green can be used
as validation data, whereas the 45 sites in red and yellow are
used as learning data. Since the area where Cs-137 is emitted
from is the point source of FDNPS, a method used to ran-
domly choose the learning/validation sites is not applied for50

accurately evaluating the spatial interpolation of the ensem-
ble method.

2.4 Statistic metrics for the MME evaluation

The model evaluation should be carried out using multi-
ple statistical metrics (e.g. Chang and Hanna, 2004). In this 55

study, we introduce the geometric mean bias (GMB), root
mean square error (RMSE) using the geometric variance
(GV), Pearson correlation coefficient (PCC), and the fraction
of data within a factor of 2 of observations (FAC2):

GMB= exp
(
logCobs− logCsim

)
(8) 60

RMSE= ln
(

GV2
)

(9)

GV= exp
{
(logCobs− logCsim)

2
}

(10)

PCC=
∑(

logCobs− logCobs
)(

logCsim− logCsim
)√∑(

logCobs− logCobs
)2∑(

logCsim− logCsim
)2 (11)

FAC2= fraction of data that satisfy;

0.5 ≤
logCsim

logCobs
≤ 2.0. (12)

Because Cs-137 concentrations vary by several orders (e.g. 65

Tsuruta et al., 2014), GMB and GV are preferred over the
fractional bias method because they are suitable for extreme
high and low values (Chang and Hanna, 2004). The RMSE
is an indicator of uncertainty. In this study, the PCC is es-
timated using logarithmically scaled Cs-137 concentrations. 70

Because the logarithmic Cs-137 is undefined for zero val-
ues, a minimum threshold of logarithmic Cs-137 is set to the
lower threshold in the measurement, i.e. 0.01 Bq m−3. The
PCC using logarithmically scaled values is actually not a ro-
bust measure because the lower limitation is sensitive to the 75

results. However, the PCC using logarithmically scaled val-
ues is a useful indicator because it becomes applicable even
for highly skewed distributions; therefore, we also use the
PCC for the model evaluation. FAC2 becomes the most flex-
ible metric for evaluating the model results even if its prob- 80

ability distribution frequency is highly skewed, and it can be
an indicator of precision. These statistical metrics are calcu-
lated for the case in which the observed Cs-137 exceeds the
detection limit. The total sampling number is 7056 for all
available sites and times in the CTL experiment, whereas it 85

is 1865 (minimum value) for the SEN1 experiment. Because
the sampling number is adequately large, a direct comparison
of these statistical metrics among the different experiments
can be performed.

3 Results 90

3.1 LMVE ensemble method using all available
observations

Cs-137 simulated by parts of the ensemble six members,
i.e. W1 and N1, is evaluated under an MIP (Sato et al.,
2018). The performances of these two members are moderate 95

www.atmos-chem-phys.net/20/1/2020/ Atmos. Chem. Phys., 20, 1–19, 2020
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Table 2. Test experiments in the ensemble method for linear interpolation (LIP).

Name Nearest LIP1 LIP2 LIP3 LIP4

Number of 1 2 2 3 3
grids (M)

Method Nearest LIP LIP LIP LIP
neighbours

Weighting No Inverse Inverse Inverse Inverse
(m= 1) distance square distance distance square distance

(m= 1) (m= 2) (m= 1) (m= 2)

Spatial No Yes Yes Yes Yes
seamlessness

The parameters M and m are defined in Eq. (7).

Figure 1. Cs-137 observation sites used as a learning site in (a) the standard (CTL), (b) SEN1, (c) SEN2 and (d) SEN3 experiments in this
study. The closed black circle is the location of the FDNPS. The closed circles in red, yellow, green and blue are the locations of the learning
data sites used in the CTL experiment. The closed circle in yellow is the learning data location used for the ensemble in CTL, SEN1 and
SEN2. The closed circle in green is the learning data location used for the ensemble in CTL and SEN1. The closed circle in blue is the
learning data location used for the ensemble in the CTL only. The number of sites is 23 (red), 22 (yellow), 32 (green) and 24 (blue). The
details are also explained in Table 3. The words in italics are the names of prefectures. The Kantō region includes seven prefectures: Tokyo,
Kanagawa, Chiba, Saitama, Ibaraki, Tochigi and Gunma. The background map for the elevation is obtained from the ETOPO (Amante and
Eakins, 2009).

among the MIP-participating models. Here, all of the ensem-
ble members and the ensemble results are compared with the
measurements of the surface Cs-137 concentrations. Figure 2
shows the temporal variation in both simulated and observed
Cs-137 at the sites near FDNPS and in the Kantō region.5

Generally, the ensemble results at these sites are the clos-
est to the observations compared to the results of the single-
member model. For example, at Naraha (Fig. 2a), which is
the closest site to FDNPS, the first and second largest peaks
in the observed Cs-137 are noteworthy during 15–17 March.10

The results of the ensemble members are largely dispersed,
so the ensemble results become very close to the obser-
vations. In the other peaks, such as those on 16 and 20–
21 March at Furukawa (Fig. 2c), the ensemble results are
almost completely matched with the observations. However,15

the ensemble results are not close to the observations when
all the results of the ensemble members are underestimated
compared to the observation, as is the case on 13 March at
Haramachi (Fig. 2b). In this case, the ensemble result has a
peak on 12 March, which is earlier than the timing captured 20

by the observation. In contrast, on 12 March at Naraha, some
of the members have a peak in the simulated Cs-137; thus,
the ensemble result also has a small peak, whereas the obser-
vation does not have such a peak. These cases are also shown
on 20 March at Kawagoe (Fig. 2d), which can be explained 25

as follows: when the Cs-137 simulated by all members is un-
derestimated compared to the observations, the variance in
Cs-137 between the observations and the simulations, as de-
fined in Eq. (3), must be too large, and thus the weighted
coefficient of the members, as defined in Eq. (5), becomes 30
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Table 3. Test experiments in the ensemble method using the selected sites.

Description CTL SEN1 SEN2 SEN3

Number of learning sites 101 77 45 23
Number of validation sites 0 24 56 78
Maximum distance between the learning and validation sites – 0.125◦ 0.25◦ 0.5◦

Colours in the used learning sites in Fig. 1 Red Yes Yes Yes Yes
Yellow Yes Yes Yes No
Green Yes Yes No No
Blue Yes No No No

Figure 2. Temporal variations in Cs-137 at the relevant sites (Naraha, Haramachi, Furuga and Kawagoe). The locations in brackets represent
the names of prefectures. The results are shown for the observations (“obs” in black), ensemble members (W1, W2, W3, W4, N1 and N2 in
colours) and the ensemble model (red). The time is JST.

very small. Because the cross terms of the Cs-137 concen-
tration and the weighted coefficient are small, the Cs-137
concentrations estimated by the ensemble must be underesti-
mated. In contrast, when Cs-137 simulated by some members
is overestimated compared to the observations, the weighted5

coefficient becomes very small. However, because the cross
terms of the Cs-137 concentration and the weighted coeffi-
cient are not small, the Cs-137 concentrations estimated by
the ensemble are overestimated, which represents one of the
disadvantages of the LMVE ensemble method and prevents10

it from obtaining more accurate ensemble results relative to
the observations.

Figure 3 shows scatterplots for the observed and simulated
Cs-137 at all sites using the ensemble results (a), the results

of each member (b–g) and the median results (h) among 15

the ensemble members. The statistical metrics are listed in
Fig. 4, including the bias (GMB), uncertainty (RMSE), cor-
relation (PCC) and FAC2. The perfect model presents values
of GMB = 1 (Csim = Cobs), RMSE = 0 Bq m−3, PCC = 1
and FAC2 = 1 (100 %). The observation values at all 101 20

sites are used in the LMVE ensemble method as learning
data. Compared with the results of the other ensemble mem-
bers, the ensemble result is the closest to the observations,
with GMB = 1.53, RMSE = 101.709 (= 9.42) Bq m−3 (i.e.
the lowest uncertainty), PCC = 0.59 and FAC2 = 54 %. The 25

ensemble members produce slightly overestimated results
ranging from GMB = 1.21 to GMB = 2.54 (for W1, W2,
W3 and W4) and considerably overestimated results rang-

www.atmos-chem-phys.net/20/1/2020/ Atmos. Chem. Phys., 20, 1–19, 2020
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Figure 3. Relationship between the simulated Cs-137 and the observed Cs-137 at all available sites using the (a) ensemble model with all
models (W1, W2, W3, W4, N1 and N2), (b–g) original one-member model (W1, W2, W3, W4, N1 and N2) and (h) median model using all
models (W1, W2, W3, W4, N1 and N2). The blue line is the 1 : 1 line.

Figure 4. Statistical metrics defined in Sect. 2.4 using the simulated Cs-137 and observed Cs-137 at the available 101 sites. The metrics show
the (a) GMB, (b) RMSE, (c) PCC and (d) FAC2. The results correspond to Fig. 3.

ing from GMB = 4.20 to GMB = 4.30 (for N1 and N2),
and they have low to moderate correlations ranging from
PCC = 0.29 to PCC = 0.45 and uncertainties ranging from
101.283 (= 19.2) to 101.709 (= 51.2) Bq m−3. The median re-
sult using all ensemble members has a moderate correlation5

of PCC = 0.42 but a high GMB of 4.39 and high RMSE

of 101.717 (= 50.7) Bq m−3. The median and average values
using many members is generally close to the best estimate
compared to the original models (e.g. Draxler et al., 2015),
although in this study, the median among the six members 10

does not provide the best results.

Atmos. Chem. Phys., 20, 1–19, 2020 www.atmos-chem-phys.net/20/1/2020/
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Figure 5. Temporal variations in Cs-137 at the independent sites (not learning but validation sites) using the LMVE ensemble method for
CTL, SEN1, SEN2 and SEN3. The time is JST.

3.2 LMVE ensemble method using limited
observations

In Sect. 3.1, the results of the CTL are shown, and in this sec-
tion, the sensitivity tests (SEN1, SEN2 and SEN3 as shown
in Sect. 2.3) for the separation of learning and validation sites5

are conducted. The test results are evaluated at the sites that
are independent (used as validation data) from the other sites
(used as learning data) in the LMVE ensemble method (Ta-
ble 3). At the independent sites, the temporal variations in
the simulated Cs-137 are compared at the four sites near FD-10

NPS and in the Kantō region (Fig. 5). The sensitivity depends
on the location; the results of all sensitivity tests (SEN1,
SEN2 and SEN3) are sometimes far from the observations
at Fukushima, as shown in Fig. 5a and b, whereas those of
all the sensitivity tests (SEN1, SEN2 and SEN3) are gener-15

ally close to the observations at the sites in the Kantō region
(Fig. 5c and d). This suggests that the interpolation of vari-
ance (and thus the Cs-137 concentrations) near the FDNPS
is sometimes not applicable, which is probably because the
plume of high-density Cs-137 near the FDNPS is very nar-20

row and strongly depends on local winds (Nakajima et al.,
2017). The wind, especially low wind speeds, tends to influ-
ence the results at the observation sites (Weil et al., 1992).

Figure 6 summarizes the statistical metrics among the sen-
sitivity tests. This figure indicates that the GMB and RMSE25

values are larger and the PCC and FAC2 values are smaller
as the distance between the learning and validation sites in-
creases. The figure also shows that the differences in these
metrics between the results using all and independent sites
are small and thus clearly show the success of the linear in- 30

terpolation of variance between the simulation and the obser-
vation in the LMVE ensemble method. These results are con-
sistent with the results shown in the Kantō region of Fig. 5c
and d, indicating that the largely spread plumes are generally
reproduced by the ensemble method. As shown in Fig. 6, the 35

relationship between the two axes, i.e. distance vs. PCC, can
be fitted as a linear line with a slope of 0.18 for the results us-
ing all sites and 0.36 for the results using only the validation
sites. The slope indicates that the PCC decreases by 0.02–
0.04 when the distance from the learning site to the validation 40

site increases by 0.1◦. According to the approximate line, the
distance is calculated to be 1.03◦ when all sites are used and
0.68◦ when the independent sites are used to obtain moder-
ate correlation (PCC > 0.4). Therefore, the proposed interpo-
lation is generally applicable for the best estimation within a 45

distance of 0.7–1.0◦, i.e. at least 70 km, from the observation
site.

www.atmos-chem-phys.net/20/1/2020/ Atmos. Chem. Phys., 20, 1–19, 2020
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Figure 6. Statistical metrics (GMB, RMSE, PCC and FAC2) at the available sites for CTL, SEN1, SEN2 and SEN3. The statistical metrics
are calculated using all sites (in black) and the independent sites (in grey), which are not used in the LMVE ensemble method. The names
of the experiments are shown in each panel. The x axis represents a maximum distance between the learning and validation sites in units of
degrees.

4 Discussion

This section discusses the uncertainties caused by several
assumptions in the LMVE ensemble method. As described
in Sect. 2.2, the spatial interpolation of variance defined in
Eq. (3) assumes IDW. The selection of the sites is also uncer-5

tain and is investigated in Sect. 4.1. The time window used in
Eq. (3) is assumed to be 1 h, which is discussed in Sect. 4.2.
The ensemble size defined in Eqs. (4) and (5) is also dis-
cussed in Sect. 4.3. In Sect. 4.4, the spatial distribution of the
Cs-137 surface concentrations estimated by the LMVE en-10

semble method is shown as an example for estimating the im-
pact of Cs-137 on inhalation exposure of residents in Japan.

4.1 Sensitivity of spatial interpolation

The spatial interpolation of variance defined in Eq. (3) adopts
IDW using two of the nearest sites as denoted by LIP1 in15

Table 2. Here, four extra methods in Table 2 are used for
testing SEN1, SEN2 and SEN3, as shown in Sect. 3.2. Fig-
ure 7 illustrates the statistical metrics for 15 tests using the
validation sites, which are not used in the LMVE ensem-
ble method as learning data. For SEN1, all metrics in the20

five interpolation methods are estimated as 1.60± 0.01 for
GMB, 100.95±0.00 Bq m−3 for RMSE, 0.64± 0.00 for PCC
and 52± 0.0 % for FAC2 by using 1865 data samples. The
differences among the interpolation methods are close to
zero. In SEN2 and SEN3, however, the differences among25

the five interpolation methods, especially between the near-

est neighbours (named “nearest” in Table 2) and the others,
become slightly larger than the others. The largest difference
is observed between nearest and the others at 0.01 for GMB,
100.01 Bq m−3 for RMSE, 0.01 for PCC and 1 % for FAC2. 30

Judging from the slight differences and the simplest method,
we use the LIP1 method (using the two nearest sites and the
weighting coefficient of the inverse distance) in the standard
experiment. It should be noted that other interpolations were
considered in the discussion, although they provided much 35

worse results than those shown in Fig. 7 (not shown). The
method that used the covariance between the observations
at the nearest observation site and the simulation at the tar-
get grid was not applicable to this study because the covari-
ance values are generally negative or close to zero at most 40

grids due to the heterogenous distribution of Cs-137. Another
method that uses all sites (not two or three grids) for the in-
terpolation was also not applicable to this study because the
influence of the ensemble coefficients at the grids far from
the target grid cannot be ignored. 45

4.2 Sensitivity of the time window

To investigate the sensitivity of the time window in Eq. (3),
the temporal variations in Cs-137 simulated by the ensem-
ble methods are shown in Fig. 8 using various time win-
dows ranging from 1 to 49 h (not all results are shown in 50

Fig. 8). The difference in the estimated Cs-137 concentra-
tions is generally small but sometimes very large. In Fig. 8a,
for example, at Naraha on 20 March, the observed peak is
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Figure 7. Statistical metrics (GMB, RMSE, PCC and FAC2) for the three sensitivity tests (SEN1, SEN2 and SEN3) as described in Ta-
ble 3 using the five interpolation methods (nearest, LIP1, LIP2, LIP3 and LIP4) described in Table 2. The x axis represents the sensitivity
experiments with the sampling number (N ).

Figure 8. Same as Fig. 2 except for the use of the ensemble results with various time windows ranging from 1 h (tw01hr) to 49 h (tw49hr).

www.atmos-chem-phys.net/20/1/2020/ Atmos. Chem. Phys., 20, 1–19, 2020
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sharp, whereas the sharpness of the estimated peaks depends
on the time window values. As the time window increases,
the sharpness of the peak becomes weak, i.e. the peak is
broadly distributed. At Kawagoe (Fig. 8d) on 20–22 March,
the estimated Cs-137 concentrations using the longer time5

window are far from the observations and estimations us-
ing the shorter time window. Such situations are found at the
other sites and during other periods (not shown). This also in-
dicates that the peak in Cs-137 is very sharp temporally and
spatially, so the time window must be shortened. The depen-10

dency of the time window on the results is investigated using
the statistical metrics at all sites used in the LMVE ensem-
ble method, as shown in Fig. 9. The dependency of the time
window on the GMB, RMSE, PCC and FAC2 was found to
be strong; moreover a shorter time window tends to provide15

higher PCC and FAC2 values and lower GMB and RMSE
values. Therefore, the time window in the standard experi-
ment is set to the shortest time, i.e. 1 h.

4.3 Sensitivity of the ensemble size

The previous study of Nakajima et al. (2017) used only two20

members for the LMVE ensemble method, and the ensemble
results were better than the original results for each mem-
ber, but the difference in the PCC was very small (0.03–0.05;
Table 1 in Nakajima et al., 2017). Therefore, this study in-
creases the number of LMVE ensembles to six members and25

investigates the sensitivity of the ensemble size to the re-
sults. Figure 10 shows the relationship between the ensem-
ble size and the statistical metrics (GMB, RMSE, PCC and
FAC2). The results clearly show that as the ensemble size
increases, the GMB and RMSE decrease, and the PCC and30

FAC2 increase. This tendency can also be found in previous
studies (e.g. Pennell and Reichler, 2010; Kioutsioukis and
Galmarini, 2014; Solazzo and Galmarini, 2015a). Using two
members, the average GMB is calculated to be 1.95, which is
smaller than that obtained using a single member by 0.76; the35

average RMSE is calculated to be 101.208 (= 16.2) Bq m−3,
which is smaller than that obtained using a single member by
101.155 (= 14.3) Bq m−3; the average PCC is calculated to be
0.46, which is larger than that obtained using a single mem-
ber by 0.08; and the average FAC2 is calculated to be 34 %,40

which is larger than that obtained using a single member by
14 %. Using more than two members, the PCC is calculated
to be more than 0.4, i.e. a moderate correlation. Using five
members, the average GMB is calculated to be 1.56, which is
larger than the value of 1.53 obtained using six members; the45

average RMSE is calculated to be 100.984 (= 9.63) Bq m−3,
which is larger than the value of 100.960 (= 9.12) Bq m−3 ob-
tained using six members; the average PCC is calculated to
be 0.57, which is smaller than the value of 0.59 obtained us-
ing six members; and the average FAC2 is calculated to be50

51 %, smaller than the value of 54 % obtained using six mem-
bers. However, the best ensemble results obtained using five
members are close to those obtained using six members, with

differences of +0.1 % for GMB, +1.5 % for PCC, +0.0 %
for RMSE and +0.2 % for FAC2. By contrast, the best en- 55

semble results obtained using four members are worse than
those obtained using six members, with the differences of
−1.6 % for GMB, −0.9 % for PCC, +0.8 % for RMSE and
−4.0 % for FAC2. Therefore, we conclude that the minimum
number in the LMVE ensemble in this study is five but only 60

when the members are effectively selected. When the mem-
bers cannot be selected, the best results can be obtained by
reducing the weighting coefficients of the members through
the calculation of the LMVE method, since the difference in
the statistical metrics between six- and five-member ensem- 65

bles is very small.
Even in the best estimate using selected five or six mem-

bers, the PCC value is less than 0.7, which means the en-
semble results are moderately (not strongly) correlated with
the observations. Therefore, to obtain values much closer to 70

the observations, a new ensemble member is required. As
explained in Sect. 3.1, when one of the members provides
results close to the observations even at 1 h, the ensemble
results proposed in this study become closer to the observa-
tions. 75

For the median and average values using six members, the
PCC is calculated to be 0.42 and 0.46, respectively, similar
to the ensemble results obtained using two members. By con-
trast, the GMB, RMSE and FAC2 values for the median and
average results obtained using six members are close to the 80

results for the single members. Since the median and average
values obtained using many members are generally closer to
the best estimate compared to the original members, the orig-
inal members used in this study are not independent of each
other. Therefore, these results indicate that the LMVE en- 85

semble method is applicable even when the ensemble size is
only two and even when they are not independent, although
the bias, uncertainty, correlation and precision dramatically
decrease as the ensemble size increases. The proposed en-
semble method is very useful for properly estimating Cs-137 90

concentrations, even under a limited ensemble size.

4.4 Cs-137 spatial distribution

The above discussion indicates that the LMVE ensemble
method can better estimate the Cs-137 distribution; the spa-
tial distributions of Cs-137 concentrations that are integrated 95

daily on 15 March 2011 are also shown (Fig. 11). In the
Fukushima prefecture, including the FDNPS, the results of
Cs-137 simulated by each member are largely spread, so the
ensemble results, especially in the area far from the obser-
vation sites, are very important. Figure 5 suggests that the 100

ensemble results are moderately correlated with the observa-
tions around the area where the distance from the observation
site is approximately 20–30 km. Therefore, in the Fukushima
prefecture, which presents a complex terrain, parts of the re-
sults of Cs-137 in this area are still uncertain, even when us- 105

ing models with a 3 km horizontal grid, because part of the
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Figure 9. Statistical metrics (GMB, RMSE, PCC and FAC2) at the 101 available sites against various time windows (x axis) ranging from 1
to 49 h.

area is far (30 km away the coast of Fukushima, which is
called Hama-dori in Japan), and the inner area is the loca-
tion of many observation sites (called Naka-dori in Japan).
By contrast, although the difference in the simulated plumes
among each member is very large over the Kantō region, the5

conclusion from Sect. 3.2 supports the results that the en-
semble Cs-137 results are closer to the observations, with
PCC > 0.4, compared to the results of each member. This
result is obtained because in the Kantō region, most areas
are within 70 km of any observation site. However, some of10

the prefectures in the Kantō region do not have measurement
sites, so in these prefectures, the ensemble results are still un-
certain. This suggests that in the future, it should be required
to observe Cs-137 at distance intervals of 20–30 km distance
near the source region and 70 km in other areas to properly15

estimate the best results of the Cs-137 spatial distribution.

5 Conclusions

The LMVE ensemble method is based on a classical idea
but is still useful for estimating the best results using MMEs
and observations without requiring a large amount of com-20

puter resources for high-resolution models. This method was
first applied to estimate the Cs-137 distribution by Naka-
jima et al. (2017) and is extended in this study. The unique-

ness of this approach compared with other MMEs for other
species is based on the following: (1) the availability of ob- 25

served Cs-137 concentrations near the surface at approxi-
mately 100 sites, thus providing dense coverage over eastern
Japan; (2) the simplicity of identifying the emission source of
Cs-137 associated with the point source of FDNPS; (3) the
novelty of implementing the MME approach with a high- 30

resolution model over complex terrain in eastern Japan; and
(4) the strong need to better estimate the Cs-137 distribu-
tion due to its inhalation exposure risk among residents in
Japan. However, Nakajima et al. (2017) did not thoroughly
discuss the availability of this method in depth, show the 35

biases, uncertainties, precision and generalizability of this
method under varying time windows, space windows and
ensemble sizes. Radioactive Cs-137 was released from the
FDNPS in March 2011, and many studies have investigated
the distribution of Cs-137, but the proper estimations of Cs- 40

137 are not still adequate. Therefore, this study first extended
the LMVE ensemble method to an ensemble size of six for
simulating Cs-137, including two models, the WRF-CMAQ
and NICAM models, and observations and then investigated
their uncertainties to confirm their performances to general- 45

ize this method and attempt to give the best estimate for the
estimation of their inhalation impacts on humans, which is
a companion study by Takagi et al. (2020). The results of
the ensemble members are also updated from Nakajima et
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Figure 10. Statistical metrics (GMB, RMSE, PCC and FAC2) at the available sites against the number of the ensemble members, the median
and the average (x axis). The black line indicates an average of the ensemble results for each number, whereas the dashed line indicates the
maximum and minimum results of the ensemble results for each number.

al. (2017) by using a finer horizontal resolution (3 km grid)
and by nudging an improved meteorological field provided
by Sekiyama et al. (2017).

The proposed LMVE ensemble method provides the best
results among the single members of the ensemble. This5

shows that the MME-estimated Cs-137 concentrations at all
available 101 sites have the lowest bias against the obser-
vations, with GMB = 1.53; the lowest uncertainties, with
RMSE = 9.42 Bq m−3; the highest correlation against the
observations, with PCC = 0.58; and the highest precision10

against the observations, with FAC2 = 54 %. Moreover, the
single-model members provided higher biases (GMB =
1.83–4.29, except for 1.20 obtained from one member),
higher uncertainties (RMSE = 19.2–51.2 Bq m−3), lower
correlation coefficients (PCC = 0.29–0.45) and lower preci-15

sion (FAC2 = 10 %–29 %). In the model grid excluding the
observations, Cs-137 is estimated by a spatial interpolation
of variance in the formulation of the LMVE using the inverse
distance weighting between the nearest two sites. For the test
of this assumption, the available measurements are divided20

into two sets, learning and validation data, and thus the test
finds that the assumption for linear interpolation promises a
moderate PCC value (> 0.4) within a distance of 0.7–1.0◦,
i.e. at least 70 km. Extra sensitivity tests for several param-
eters, i.e. the site number and the weighting coefficients in25

the spatial interpolation, the time window in the LMVE and

the ensemble size, are determined. As a result, the findings
for the uncertainty in the proposed LMVE ensemble method
are shown. (1) The LIP1 method (using two sites and IDW)
is the simplest and provides better results than the other in- 30

terpolations. (2) The time window in the LMVE ensemble
method can be set to 1 h. (3) A larger number of ensemble
members (ensemble size) remarkably yielded better results,
and having more than two members generates better results
than each member alone, even when the members are not 35

completely independent. In this study, the minimum ensem-
ble size is found to be five, but only when the members are
effectively selected. The best ensemble size can be six if the
weighting coefficient of the member is minimized through
the LMVE calculation without selecting any members. 40

It should be noted, however, that the LMVE ensemble
method presents certain limitations. When Cs-137 simulated
by all members is too underestimated compared to the ob-
servations, the variance in Cs-137 between the observations
and the simulations, as defined in Eq. (3), must be too large, 45

and thus the weighted coefficient of the members, as defined
in Eq. (5), becomes very small. Because the cross terms of
the Cs-137 concentration and the weighted coefficient are
small, the Cs-137 concentrations estimated by the ensemble
must be underestimated. By contrast, when Cs-137 is overes- 50

timated by some members, the weighted coefficient becomes
very small. However, because the cross terms of the Cs-137
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Figure 11. Spatial distribution of the (a) observed and (b–h) simulated daily integrated Cs-137 concentrations on 15 March 2011 (JST).

concentration and the weighted coefficient are not small, the
Cs-137 concentrations estimated by the ensemble are over-
estimated.

In addition, the spatial interpolation used in this study
does not obtain a moderate PCC value (> 0.4) in the areas5

where the distance from the observation sites exceeds ap-
proximately 70 km. Therefore, the estimated results over the
area with very sporadic site locations are very uncertain, es-
pecially for the inner areas of the Kantō region, e.g. Gunma
and Tochigi prefectures. The assumption of the spatial inter-10

polation using IDW is difficult to apply to broadly distributed
materials, such as Cs-137 emitted from the FDNPS, which
is spatially and temporally distributed very heterogeneously
(Nakajima et al., 2017). It can be said that it is difficult to use
any spatial interpolation, which basically assumes the spatial15

smoothness of the target’s concentrations based on the best
estimation of the Cs-137 distribution. In the future, Cs-137
should be observed at distance intervals of 20–30 km near
the source region, including in complex terrain, and at inter-
vals of at least 70 km in other areas to properly estimate the20

best results of the Cs-137 spatial distribution.
This study only applies the LMVE ensemble method to

radioactive Cs-137 in the atmosphere, but this method can
be applied to Cs-137 deposition and atmospheric pollutants,
such as PM2.5. However, the results obtained in this study are25

not directly used for estimation of the best estimate of the Cs-
137 deposition because the simulated Cs-137 concentration
and the simulated Cs-137 deposition flux are not generally
correlated with each other, as suggested by previous model
comparison studies (Kitayama et al., 2018). Recently, large 30

areal coverage of surface PM2.5 measurements has become
available for most countries (https://aqicn.org/map/world/,
(last access: 6 March 2020). In addition, since the PM2.5
distribution does not vary abruptly, the LMVE ensemble
method is easily applied for PM2.5 estimations. Therefore, 35

this method will be applied in our future study to estimate
the PM2.5 distribution for better air quality prediction.
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