
[C2-1] I find the paper of interest, overall well balanced and presented, although too coincise in some 
aspects that, I think, deserve more detail (see minor comments below).  
I advice the editor to accept the paper for publication to ACP.  
 
[A2-1] Thank you so much for reviewing our manuscript. We would like to address your pointed 
issues to improve our manuscript. Through the revision to answer questions from the reviewer #1, 
several figures were corrected, and the related comments were modified in the revised manuscript, but 
our main conclusion and methodology are not changed.  
 
 
[C2-2] I invite the authors to deepen the discussion about the size of ensemble. as it is presented seems 
that the message is ’the more the better’, while has been largely proven that is rarely the case (rarely 
in the sense that only when combining truly independent models the MME improves reliability of each 
single member). Please comment on that. additional references (andf reference therein) for you to 
consider: Atmos. Chem. Phys., 9,9471–9489 Atmos. Chem. Phys., 13, 8315–8333, 2013 Atmos. 
Chem. Phys., 15, 2535–2544, 2015 Atmos. Chem. Phys., 16, 15629–15652, 2016 Atmos. Chem. Phys., 
14,11791–11815  
 
[A2-2] Thank you for your suggestions. We consider your recommended literatures and rethink about 
the ensemble size. As Potempski and Galmarini (2009) pointed in the introduction, the following 
general question is very important; “Which criteria should be adopted to guarantee that the ensemble 
results will always be superior to those of any individual member?” To attempt to answer this question, 
previous studies (Solazzo et al., 2013; Kioutsioukis and Galmarini, 2014; Solazzo and Galmarini, 
2015; Kioutsioukis et al.., 2016) introduced an analytical solution by considering weighting 
coefficients and selecting the informative members and investigated model ensemble results from 
model intercomparison projects such as AQMEII and HTAP. These results indicate that an effective 
ensemble size, which can be determined by the model members and the focusing parameters, is always 
smaller than the number of the ensemble members. Solazzo et al. (2013), for example, pointed out the 
effective number of the ensemble size is 4-6 from all 13 members in AQMEII participated models. By 
considering these references, we rewrited our discussion in section 4.3 (sensitivity of the ensemble 
size) and slightly modify the implicit idea that “the more the better”. 
 
Figure 10 in the original manuscript clearly shows that as increase the ensemble size, GMB becomes 
close to 1, RMSE decreases, and both PCC and FAC2 increase. This qualitative tendency is generally 
consistent to the previous studies of Figure 4 in Solazzo et al. (2013), Figure 3 in Pennell and Reichler 
(2001), Figures 1 and 11 in Kioutsioukis and Galmarini (2014) and Figure 3 in Solazzo and Galmarini 
(2015). Therefore, we can also say that “The addition of more models to the ensemble is not 
compensated by a linear increase in the overall information”, as noted by Pennell and Reichler (2001) 
and Solazzo et al. (2013). In this study, “the best ensemble results obtained using five members are 
close to those obtained using six members, with differences of +0.1% for GMB, +1.5% for PCC, 
+0.0% for RMSE and +0.2% for FAC2. By contrast, the best ensemble results obtained using four 
members are worse than those obtained using six members, with the differences of -1.6% for GMB, -
0.9% for PCC, +0.8% for RMSE and -4.0% for FAC2. Therefore, we conclude that the minimum 
number in the LMVE ensemble in this study is five, but only when the members are effectively selected. 
When the members cannot be selected, the best results can be obtained by reducing the weighting 
coefficients of the members through the calculation of the LMVE method, since the difference in the 
statistical metrics between six- and five-member ensembles is very small.” These are incorporated to 
Section 4.3 in the revised manuscript. 
 
As the reviewer pointed, the model member is not truly independent on the others and this is the usual 
case in the air quality models. Surely, the statistical metrics in median and average values in Figure 10 
of the original manuscript are not good, probably because the ensemble members are not i.i.d. 
“independent and identically distributed around the true value” used in previous studies like 
Kioutsioukis and Galmarini (2014). This probably causes moderate correlation (NOT strong 



correlation) between the ensemble and observation, i.e., PCC in the best results in this study is less 
than 0.7. Therefore, to obtain much closer to the observation, a new ensemble member, which should 
not be generally dependent on the current members, is required. However, it should be noted that even 
our proposed method provides a better result using too many ensemble members, as shown in 
Kioutsioukis and Galmarini (2014). This statement is obtained because the ensemble results become 
close to the average from the all members due to the central limit theorem. Therefore, we have added 
the following comments on the revised section 4.3; “Even in the best estimate using selected five- or 
six-members, the PCC value is less than 0.7, which means the ensemble results are moderately (NOT 
strongly) correlated with the observations. Therefore, to obtain values much closer to the observations, 
a new ensemble member is required. As explained in section 3.1, when one of the members provides 
results close to the observations even at 1 hour, the ensemble results proposed in this study become 
closer to the observations”. In the revised manuscript (P.2 L5-7), we conclude that “the important 
assumptions were … the ensemble size; i.e., … a larger ensemble number (the maximum in this study 
was six, but five is also acceptable if the members are effectively selected), generated better results.”  
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Abstract. Great efforts have been made to simulate atmospheric pollutants, but their spatial and temporal distributions are 10 

still highly uncertain. Observations can measure their concentrations with high accuracy but cannot estimate their spatial 

distributions due to the sporadic locations of sites. Here, we propose an ensemble method by applying a linear minimum 

variance estimation (LMVE) between multi-model ensemble (MME) simulations and measurements to derive a more 

realistic distribution of atmospheric pollutants. The LMVE is a classical and basic version of data assimilation, although the 

estimation itself is still useful for obtaining the best estimates by combining simulations and observations without a large 15 

amount of computer resources, even for high-resolution models. In this study, we adopt the proposed methodology for 

atmospheric radioactive caesium (Cs-137) in atmospheric particles emitted from the Fukushima Daiichi Nuclear Power 

Station (FDNPS) accident in March 2011. The uniqueness of this approach includes (1) the availability of observed Cs-137 

concentrations near the surface at approximately 100 sites, thus providing dense coverage over eastern Japan; (2) the 

simplicity of identifying the emission source of Cs-137 due to the point source of FDNPS; (3) the novelty of MME with the 20 

high-resolution model (3-km horizontal grid) over complex terrain in eastern Japan; and (4) the strong need to better estimate 

the Cs-137 distribution due to its inhalation exposure among residents in Japan. The ensemble size is six, including two 

atmospheric transport models (the Weather Research and Forecasting-Community Multi-scale Air Quality (WRF-CMAQ) 

model and non-hydrostatic icosahedral atmospheric model (NICAM)). The results showed that the MME-that estimated Cs-

137 concentrations using all available sites had the lowest geometric mean bias (GMB) against the observations 25 

(GMB=1.53), the lowest uncertainties based on the root-mean-square error (RMSE) against the observations (RMSE=9.12 

Bq m-3), the highest Pearson correlation coefficient (PCC) with the observations (PCC=0.59) and the highest fraction of data 

within a factor of 2 (FAC2) with the observations (FAC2=54%) compared to the single-model members, which provided 

higher biases (GMB=1.2083-4.29, except for 1.20 obtained from one member), higher uncertainties (RMSE=19.2-51.2 Bq 

m-3), lower correlation coefficients (PCC=0.29-0.45) and lower precision (FAC2=10-29%). At the model grid, excluding the 30 

measurements, the MME-estimated Cs-137 concentration was estimated by a spatial interpolation of the variance used in the 
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LMVE equation using the inverse distance weights between the nearest two sites. To test this assumption, the available 

measurements were divided into two categories, i.e., learning and validation data; thus, the assumption for the spatial 

interpolation was found to guarantee a moderate PCC value (>0.4) within an approximate distance of at least 50 70 km. 

Extra sensitivity tests for several parameters, i.e., the site number and the weighting coefficients in the spatial interpolation, 

the time window in the LMVE and the ensemble size, were performed. In conclusion, The the most important assumptions 5 

was were the time window and that the ensemble size; i.e., a shorter time window (the minimum in this study was one hour, 

which is the observation interval) and a larger ensemble size (the maximum in this study was six, but five is also acceptable 

if the members are effectively selected) generated remarkably better results than the single-member model as it increased. 

Therefore, the proposed ensemble method, with a maximum ensemble size (six in this study), can be applicable for the best 

estimation of the Cs-137 distribution. 10 

1 Introduction 

Great efforts to simulate atmospheric pollutants have been carried out to simulate atmospheric pollutants, but the spatial and 

temporal distributions of simulated pollutants are still highly uncertain (e.g., Fuzzi et al., 2015). In contrast, observations are 

the most reliable method of monitoring the concentrations of atmospheric pollutants with high accuracy; however, but their 

spatial networks is are usually sporadic. Even if these observations densely cover the target area, they cannot reveal the 15 

pathway of pollutants from the source to the sink. To analyse the measurements and deeply understand their behaviours in 

the atmosphere, we need to improve atmospheric transport models as well as optimal interpolations using observations. To 

understand the model performance, we have executed model intercomparison projects (MIPs) or multi-model ensembles 

(MMEs), which provide more reliable results than those by a single model for weather forecasting and climate prediction 

(e.g., Stensrud et al., 2000). To develop the optimal interpolation, we have also analysed the error and the variance between 20 

the simulations and observations to estimate more realistic distributions of the target materials (e.g., Rutherford, 1972; 

Talagrand, 1997; Robinchand and Ménard, 2014).  

The MME technique is applied for weather forecasting (Stensrud et al., 2000; Gneiting and Raffery, 2005), climate 

projections (Knutti et al., 2010; Taylor et al., 2012), short-lived climate forcer assessments (Lamarque et al., 2013; Myhre et 

al., 2013), air quality forecasting (Solazzo et al., 2012; Sessions et al., 2015) and atmospheric dispersion predictions (Draxler 25 

et al., 2015; Sato et al., 2018). The members of the ensemble are widely spread for the use of various numerical models with 

perturbed initial conditions and various physical and chemical modules. The ensemble method is generally divided into three 

types: pure average scheme (equal weighting), weighting scheme with all members and selected scheme with reduced 

members. The pure average method is a popular method for MME-based iclimate studies based onaccording to the concept 

of “one model, one vote” (Knutti et al., 2010; Weigel et al., 2010) or evidence of improvements in the concentrations of the 30 

pollutants in the air-quality and atmospheric dispersion simulations (McKeen et al., 2005; van Loon et al., 2007; Sessions et 

al., 2015; Kitayama et al., 2018). The weighting scheme, especially with a relatively smaller ensemble size, can be adopted 
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to eliminate the common biases and improve the ensemble results in the weather forecast (Krishnamurti et al., 1999), climate 

studies (Haughton et al., 2015), air-quality forecasts (Casanova and Ahrens, 2009) and atmospheric dispersion predictions 

(Nakajima et al., 2017; Sato et al., 2018). The selected scheme is used in the air-quality simulations (Solazzo et al., 2012; 

Solazzo et al., 2013; Solazzo and Galmarini, 2015) and the atmospheric dispersion simulations (Riccio et al., 2012; Solazzo 

and Galmarini, 2015). The use of the non-pure average scheme, i.e., weighting and selected schemes, is increasing, and the 5 

technique has is a useful tool for estimating the reliable results among MMEs (Kioutsioukis et al., 2016). 

In this study, the MME with the weighting scheme that minimizes the variance between the simulations and observations is 

carried out to derive a more realistic distribution of radioactive caesium (Cs-137) at the surface. The Cs-137 in atmospheric 

particles was emitted from the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in March 2011. Thus far, many 

atmospheric dispersion models have simulated Cs-137 aerosols (e.g., Chino et al., 2011; Morino et al., 2011; Stohl et al., 10 

2012), and several MIPs were conducted (SCJ, 2014; Draxler et al., 2015; Sato et al., 2018). Under the MIPs, the MMEs 

provided reliable results in the assessed models (10 or more). However, ordinary modellers cannot easily carry out such 

MMEs using only using their own models. For such situations, we propose a useful method for limiting limited ensemble 

size in MMEs by applying an analytical optimization to determine the weights for the ensemble. The optimization is based 

on a linear minimum variance estimation (LMVE), which is a classical and basic type of data assimilation similar to the 15 

Kalman filter (e.g., Talagrand, 1997; Kanlay, 2003).  

This approach is unique from other MMEs of other species based on the following four factors: (1) The observed Cs-137 

concentration near the surface is available at approximately 100 sites, providing dense coverage of eastern Japan (Tsuruta et 

al., 2014; Oura et al., 2015). Since plumes including Cs-137 particles are transported and diffused very heterogeneously, 

dense measurements are essential to capture such plumes. (2) The spatial distribution of Cs-137 distribution is captured 20 

relatively easily since Cs-137 is emitted from the point source. For example, the PM2.5 distribution is rather difficult to 

capture in the atmosphere since it is emitted from complex sources and formed from various chemical reactions. (3) MME 

studies to identify a simple tracer with a high-resolution (3 km horizontal grid) model over complex terrain, such as 

Fukushima, are still limited. (4) It is very important for people to properly estimate the spatial and temporal distributions of 

Cs-137 emitted from the FDNPS. The better estimation of the Cs-137 distribution greatly helps us to understand the impacts 25 

of inhalation exposure on residents in Japan.  

In a previous study, Nakajima et al. (2017), which comprises the basis of our proposed method, was applied using multi-

models, including the Weather Research and Forecasting-Community Multi-scale Air Quality (WRF-CMAQ) model 

(Morino et al., 2013) and non-hydrostatic icosahedral atmospheric model (NICAM) (Goto et al., 2018), to derive a better Cs-

137 distribution. However, the estimation is still uncertain, and its ensemble results were not greatly improved, which was 30 

mainly because the results of the original model were still highly uncertain. In addition, Nakajima et al. (2017) did not 

discuss the availability of the use of LMVE for more than three members and the uncertainty of the relevant parameters in 

LMVE. After the study of Nakajima et al. (2017), both models were further developed by using finer horizontal resolution (3 

km) grid and by nudging a new meteorological field provided by Sekiyama et al. (2017) with higher accuracy. In this study, 
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the available results were increased via to the use of six members, including two atmospheric transport models and two or 

four sensitivity experiments. This proposed method using more than two members promises to be applicable for MIPs as a 

new ensemble method. Furthermore, the estimated Cs-137 concentrations will beare used for the estimation of inhalation 

exposure of Cs-137 emitted from FDNPS in March 2011 (M. Takagi et al., Reassessment of early I-131 inhalation doses by 

the Fukushima nuclear accident based on atmospheric Cs-137 and I-131/Cs-137 observation data and multi-ensemble of 5 

atmospheric transport and deposition models, to be submitted to J. Env. Rad.). 

Section 2 gives a description of two models, WRF-CMAQ and NICAM, including a design of the sensitivity experiments, an 

explanation of the ensemble method using LMVE, the used measurement datasets with designs to test several assumptions in 

the proposed ensemble method, and statistical metrics for model evaluation. Section 3.1 shows the estimated Cs-137 

concentrations and their comparison with the single-model results. Section 3.2 shows the tests used for the assumption of 10 

spatial interpolation in the LMVE equation using the distance between the nearest two sites, as shown in Section 2.2, by 

separating the measurement into learning and validation sites. In the proposed method, several parameters are assumed: the 

size, number and weighting values in the interpolation, the time window in the LMVE and the ensemble size. These 

parameters are investigated and discussed in Section 4. Section 5 shows a conclusion and the implication of this study. 

 15 

2 Methods 

2.1 Description of the two atmospheric transport models 

The ensemble size is six, and it includes two different atmospheric transport models, the WRF version 3.1 (Skamarock et al., 

2008) coupled with the CMAQ version 4.6 (Byun and Schere, 2006) and the NICAM (Tomita and Satoh, 2004; Satoh et al., 

2008; Satoh et al., 2014) coupled with the spectral radiation-transport model for aerosol species (SPRINTARS; Takemura et 20 

al., 2005; Goto et al., 2011). According to the rule of Nakajima et al. (2017), these models are hereafter referred to as the W-

model and N-model, respectively. The W-model analyses atmospheric processes, such as transport, diffusion and deposition 

of particles, but it was modified for radioactive particle use, such as Cs-137 emitted from the FDNPS accident in the target 

area in Japan (Morino et al., 2013). The basic experimental design in this study is commonwidely used in this field, such as 

in Morino et al. (2013). The N-model is a seamlessly multi-scaled model for air pollutants (Goto et al., 2018) on a global 25 

scale with a quasi-uniform grid (Suzuki et al., 2008; Dai et al., 2014), a semi-regional scale with a stretched grid (Goto et al., 

2015; Goto et al., 2019), and a perfect regional scale with a diamond grid system (Uchida et al., 2017; Nakajima et al., 2017). 

The N-model also considers the atmospheric processes of particles and focuses on the target area in this study. The basic 

experimental design in this study is generally common to Nakajima et al. (2017). Both the W-model and N-model participate 

in the international MIP for Cs-137 emitted from the FDNPS accident (Sato et al., 2018). The experimental design among 30 

the models was harmonized as best as possible, that is, all experiments were carried out by using the same emission 

inventory in Katata et al. (2015) and nudging the meteorological fields using the operational model for regional weather 
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forecasting around Japan (the non-hydrostatic model, named NHM; Saito et al., 2006) coupled with the LETKF (NHM-

LETKF) from Sekiyama et al. (2017), with almost a 3-km grid resolution. Using the W-model and N-model, six experiments 

were conducted, as shown in Table 1. The W-model was executed in four experiments by considering differences in the 

meteorological fields used as nudging data, the wet deposition process for Cs-137, and emission scenarios of Cs-137 from 

Terada et al. (2012). The N-model was performed in two experiments by considering only the difference in the 5 

meteorological fields. The hourly Cs-137 concentrations simulated in all the experiments in the lowest layer are linearly 

interpolated to a 1 km × 1 km grid cell (3rd mesh grid filled for people’s living areas to indicate inhalation exposure in Japan 

in Takagi et al. (submitted to J. Env. Rad.to be submitted)) for the ensemble process. The target region is eastern Japan as 

shown in Figure 1. The target period is from 11 March to 24 March 2011 (Japan Standard Time; JST). 

�10 

2.2 Ensemble method 

One of the optimization methods for the simulated Cs-137 concentration is a multi-model ensemble. When the simulated 

concentration in model i represents Ci and the number of models is two, the ensemble concentration Cens can be expressed as 

"#$% = '("( + '*"*,           (1) 

where ai (i=1,2) is a weighted coefficient for Ci (i=1,2). According to the idea of LMVE used in Nakajima et al. (2017), this 15 

study also defines the weighted coefficient as: 

'+ = (1 .+*⁄ ) (1 .(*⁄ + 1 .**⁄ )⁄ ,             (2) 

where σ2 represents a variance between the simulated Cs-137 (Csim) and observed Cs-137 (Cobs). 

σ2 is defined as 

.* = ∑ ("%+2 − "45%)*67,69 ,           (3) 20 

where dS is a spatial window, i.e., a specific domain, and dt is a time window, i.e., a specific period. This formulation is 

classical and widely used for various subjects, such as data assimilation (e.g., Rutherford, 1972; Talagrand, 1997; Kalnay, 

2003), and it can be applicable for MMEs as shown in theoretical works (Potempski and Galmarini, 2009; Kioutsioukis and 

Galmarini, 2014). This method leads to the minimization of the difference between the simulation and observation results 

without a large amount of computer resources. 25 

Different from the previous study of Nakajima et al. (2017), the number of ensemble members is not only two but also more 

than two. In this case, Eqs. (1) and (2) are generalized as follows: 

"#$% = ∑ '+"+:
+;( ,            (4) 

'+ = (1 .+*⁄ ) ∑ <1 .=*⁄ >:
=;(? ,          (5) 

where N is the number of ensemble members. Eq. (5) represents the non-biased conditions and the weight is satisfied as 30 

follows: 

∑ '=:
=;( = 1,            (6) 
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In this study, the term Ci in Eqs (3) and (4) is the logarithmic scale of Cs-137 concentrations because the Cs-137 

concentration is very heterologous and ranges from 0.1 Bq m-3 to 100000 Bq m-3 (Tsuruta et al., 2014). When the observed 

Cs-137 concentration is less than the detection limit, it is assumed to be 0.01 Bq m-3 in Eq. (3). 

In Eq (3), dt is set to 1 hour, which is an assumption and tested by setting dt to 3-48 hours (discussed in Section 4.1); and dS 

is set to one grid, i.e., 1 km by 1 km, where the observation site is located. In grids where an observation site or observed 5 

data at an observation site is are missing, σ2 is geostatistically calculated by interpolating two σ2 values at the nearest two 

available observation sites (grids). The interpolation of σ2 is applied for calculating Cens at all grids in the whole domain. In 

this study, Cens is not directly interpolated because it varies abruptly in space and time. The interpolation of σ2 at grid k (.@*) 

depends on the distance according to the inverse distance weighting (IDW) used in previous studies (e.g., Rutherford, 1972; 

Hollingsworth and Lönnberg, 1986) and can be expressed as follows: 10 

.@* = ∑ ABC (
DE,F
G
2

∑ C (
DH,F
G
2

I
+;(J K.=*LI

=;(           (7) 

where rj,k represents the distance between grid j and the grid k, M (=1,2,3) is the number of grids used in the interpolation, 

and m (=1,2) is the weighting power. The values of M and m are determined by the interpolation methods shown in Table 2. 

The standard experiment adopts M=2 and m=1; i.e., represents the spatial linearity for σ2 between the nearest two 

observation grids, where the weighted coefficient at grid k depends on the inverse distance between the target grid (k) and 15 

the two nearest observation grids, which is known as inverse distance weighting (IDW) and shown in Table 2 as LIP 1. The 

dependence on distance has been implemented in previous studies (e.g., Rutherford, 1972; Hollingsworth and Lönnberg, 

1986). To confirm this assumption, an additional four IDW methods were also carried out by changing the values of M and 

m as shown in Table 2 (discussed in Section 4.21). One set of them values is the nearest neighbours (M=1 and m=1), which 

is a popular method of for interpolationg the concentrations; however, the spatial pattern of the σ2 value is not smoothly 20 

distributed. In two of the sensitivity tests, the dependence of the σ2 value on distance is stronger than that of the other method 

based on an inverse square-distance (m=2) to the interpolation.  

In Eq. (3), dt is set to 1 hour, which is an assumption and is tested by setting dt to 3-48 hours (discussed in Section 4.21); and 

dS is set to one grid, i.e., 1 km by 1 km, where the observation site is located. The ensemble size, N, is set to six, which is 

also tested by changing the number from six to two, three, four and five (discussed in Section 4.3). Hereafter, the proposed 25 

method is referred to as the ‘LMVE ensemble method’. 

 

2.3 Observation data 

The hourly measured Cs-137 concentrations at the surface are directly estimated by using the aerosol sampling tapes of the 

national suspended particulate matter (SPM) network (Tsuruta et al., 2014; Tsuruta et al., 2018). There are almost 400 SPM 30 

sites in eastern Japan, but now 101 sites have available data for Cs-137 (Oura et al., 2015). In this study, the measured Cs-

137 data at 100 sites (one site, Futaba, was eliminated because the site is located in the same model grid as FDNPS, which is 
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known as the change-of-support problem (Gotway and Young, 2002)) are used for the ensemble. In addition, at an extra site, 

Tokai (140.59°E, 36.45°N), which covers the missing area of Oura et al. (2015), daily measured Cs-137 concentrations 

(Furuta et al., 2011) are used. All 101 sites used in this study are plotted using four different colours in Figure 1. All 

measurements shown in Figure 1 (all colour sites) are used as learning data in the LMVE ensemble method as a control 

experiment (CTL). In the sensitivity tests discussed in section 4, we used all observation sites. 5 

 

The colours represent the sites used to learn or validate the data in the extra ensemble estimation to examine the effect of the 

spatial interpolation for the σ2 value on the MME concentrations. In the test experiments (SEN1, SEN2 and SEN3), some of 

the datasets are used as learning data and others are used as validation data, as shown in Table 3. The validation data are 

selected by choosing one of the sites with the largest number of observed samples as the representative site in the specific 10 

domain. When the specific domain is defined by a lattice of 0.125° by 0.125°, the sites in yellow are used as validation data 

for the experiments (SEN3). When the specific domain is defined as a lattice of 0.25° by 0.25°, the sites in yellow and green 

are used as validation data in the experiments (SEN2 and SEN3, respectively). When the specific domain is defined as a 

lattice of 0.5° by 0.5°, the sites in yellow, green and blue are used as validation data for the experiments (SEN1, SEN2 and 

SEN3). This means that in the SEN2 experiment, the 56 sites in blue and green can be used as validation data, whereas the 15 

45 sites in red and yellow are used as learning data. Since the area where Cs-137 is emitted from is the point source of 

FDNPS, a method used to randomly choose the learning/validation sites is not applied for accurately evaluating the spatial 

interpolation of the ensemble method. 

 

2.4 Statistic metrics for the MME evaluation 20 

The model evaluation should be carried out using multiple statistical metrics (e.g., Chang and Hanna, 2004). In this study, 

we introduce the geometric mean bias (GMB), root-mean-square-error (RMSE) using the geometric variance (GV), Pearson 

correlation coefficient (PCC), and the fraction of data within a factor of two of observations (FAC2): 

MNO = PQR<log "45%VVVVVVVVVV − log"%W2VVVVVVVVVV>          (78) 

XNYZ = ln(M\*)           (89) 25 

M\ = PQR](log "45% − log"%W2)*VVVVVVVVVVVVVVVVVVVVVVVVVVV^          (910) 

_"" = ∑(`abcdefg`abcdefVVVVVVV)(`ab cfHhg`abcfihVVVVVVV)
j∑(`abcdefg`abcdefVVVVVVV)k ∑(`ab cfHhg`abcfihVVVVVVV)k

        (1011) 

lm"2 = op'qrstu	to	w'r'	rℎ'r	y'rsyoz; 0.5	 ≤ `abcfHh
`abcdef

≤ 2.0      (1112) 

Because Cs-137 concentrations vary by several orders (e.g., Tsuruta et al., 2014), GMB and GV are preferred over the 

fractional bias method because they are suitable for extreme high and low values (Chang and Hanna, 2004). The RMSE is an 30 

indicator of uncertainty. In this study, the PCC is estimated using logarithmically scaled Cs-137 concentrations. Because the 
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logarithmic Cs-137 is undefined for zero values, a minimum threshold of logarithmic Cs-137 is set to the lower threshold in 

the measurement, i.e., 0.01 Bq m-3. The PCC using logarithmically scaled values is actually not a robust measure because the 

lower limitation is sensitive to the results. However, the PCC using logarithmically scaled values is a useful indicator 

because it becomes applicable even for highly skewed distributions; therefore, we also use the PCC for the model evaluation. 

FAC2 becomes the most flexible metric for evaluating the model results even if its probability distribution frequency is 5 

highly skewed, and it can be an indicator of precision. These statistical metrics are calculated for the case in which the 

observed Cs-137 exceeds the detection limit. The total sampling number is 7056 for all available sites and times in the CTL 

experiment, whereas it is 1865 (minimum value) for the SEN1 experiment. Because the sampling number is adequately large, 

a direct comparison of these statistical metrics among the different experiments can be performed.  

 10 

 

3 Results 

3.1 LMVE ensemble method using all available observations 

Cs-137 simulated by parts of the ensemble six members, i.e., W1 and N1, is evaluated under an MIP (Sato et al., 2018). The 

performances of these two members are moderate among the MIP-participating models. Here, all of the ensemble members 15 

and the ensemble results are compared with the measurements of the surface Cs-137 concentrations. Figure 2 shows the 

temporal variation in both simulated and observed Cs-137 at the sites near FDNPS and in the Kantou region. Generally, the 

ensemble results at these sites are the closest to the observations compared to the results of the single-member model. For 

example, at Naraha (Figure 2(a)), which is the closest site to FDNPS, the 1st and 2nd largest peaks in the observed Cs-137 are 

noteworthy during 15-17 March. The results of the ensemble members are largely dispersed, so the ensemble results become 20 

very close to the observations. In the other peaks, such as those on 16 March and 20-21 March at Furukawa (Figures 2(c)), 

the ensemble results are almost completely matched with the observations. However, the ensemble results are not close to 

the observations, when all the results of the ensemble members are underestimated compared to the observation, as is the 

case on 13 March at Haramachi (Figure 2(b)). In this case, the ensemble result has a peak on 12 March, which is earlier than 

the timing captured by the observation. In contrast, on 12 March at Naraha, some of the members have a peak in the 25 

simulated Cs-137; thus, the ensemble result also has a small peak, whereas the observation does not have such a peak. These 

cases are also shown on 20 March at Kawagoe (Figure 2(d)), which can be explained as follows: when the Cs-137 simulated 

by all members is underestimated compared to the observations, the variance in Cs-137 between the observations and the 

simulations, as defined in Eq. (3), must be too large and, thus, the weighted coefficient of the members, as defined in Eq. (5), 

becomes very small. Because the cross terms of the Cs-137 concentration and the weighted coefficient are small, the Cs-137 30 

concentrations estimated by the ensemble must be underestimated. In contrast, when Cs-137 simulated by some members is 

overestimated compared to the observations, the weighted coefficient becomes very small. However, because the cross terms 
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of the Cs-137 concentration and the weighted coefficient are not small, the Cs-137 concentrations estimated by the ensemble 

are overestimated, which represents one of the disadvantages of the LMVE ensemble method and prevents it from obtaining 

more accurate ensemble results relative to the observations. 

Figure 3 shows scatterplots for the observed and simulated Cs-137 at all sites using the ensemble results (a), the results of 

each member (b-g) and the median results (h) among the ensemble members. The statistical metrics are listed in Figure 4, 5 

including the bias (GMB), uncertainty (RMSE), correlation (PCC) and FAC2. The perfect model presents values of GMB=1 

(Csim=Cobs), RMSE=0 Bq m-3, PCC=1 and FAC2=1 (100%). The observation values at all 101 sites are used in the LMVE 

ensemble method as learning data. Compared with the results of the other ensemble members, the ensemble result is the 

closest to the observations, with GMB=1.53, RMSE=101.709 (=9.42) Bq m-3 (i.e., the lowest uncertainty), PCC=0.59 and 

FAC2=54%. The ensemble members produce slightly overestimated results ranging from GMB=1.21 to GMB=2.54 (for W1, 10 

W2, W3 and W4) and considerably overestimated results ranging from GMB=4.20 to GMB=4.30 (for N1 and N2), and they 

have low-to-moderate correlations ranging from PCC=0.29 to PCC=0.45 and uncertainties ranging from 101.283 (=19.2) Bq 

m-3 to 101.709 (=51.2) Bq m-3. The median result using all ensemble members has a moderate correlation of PCC=0.42 but a 

high GMB of 4.39 and high RMSE of 101.717 (=50.7) Bq m-3. The median and average value using many members is 

generally close to the best estimate compared to the original models (e.g., Draxler et al., 2015), although in this study, the 15 

median among the six members does not provide the best results. 

3.2 LMVE ensemble method using limited observations 

In Section 3.1, the results of the CTL are shown, and in this section, the sensitivity tests (SEN1, SEN2 and SEN3 as shown 

in Section 2.3) for the separation of learning and validation sites are conducted. The test results are evaluated at the sites that 

are independent (used as validation data) from the other sites (used as learning data) in the LMVE ensemble method (Table 20 

3). At the independent sites, the temporal variations in the simulated Cs-137 are compared at the four sites near FDNPS and 

in the Kantou region (Figure 5). The sensitivity depends on the location; the results of all sensitivity tests (SEN1, SEN2 and 

SEN3)in SEN3 are sometimes far from the observations at Fukushima, as shown in Figure 5(a) and 5(cb), whereas those of 

all the sensitivity tests (SEN1, SEN2 and SEN3) are generally close to the observations at the sites in the Kantou region 

(Figures 5(c) and 5(d)). This suggests that the interpolation of variance (and thus the Cs-137 concentrations) near the FDNPS 25 

is sometimes not applicable, which is probably because the plume of high-density Cs-137 near the FDNPS is very narrow 

and strongly depends on local winds (Nakajima et al., 2017). The wind, especially low wind speeds, tends to influence the 

results at the observation sites (Weil et al., 1992).  

Figure 6 summarizes the statistical metrics among the sensitivity tests. This figure indicates that the GMB and RMSE values 

are larger and the PCC and FAC2 values are smaller as the distance between the learning and validation sites increases. The 30 

figure also shows that the differences in these metrics between the results using all and independent sites are small and thus 

clearly show the success of the linear interpolation of variance between the simulation and the observation in the LMVE 
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ensemble method. These results are consistent with the results shown in the Kantou region of Figures 5(c) and 5(d), 

indicating that the largely spread plumes are generally reproduced by the ensemble method. As shown in Figure 6, the 

relationship between the two axes, i.e., distance vs PCC, can be fitted as a linear line with a slope of 0.43 18 in for the both 

resultss using all/independent sites and 0.36 for the results using only the validation sites. The slope indicates that the PCC 

decreases by approximately 0.02-0.04 when the distance from the learning site to the validation site increases by 0.1°. 5 

According to the approximate line, the distance is calculated to be 01.053° when all sites are used and 0.4268° when the 

independent sites are used to obtain moderate correlation (PCC>0.4). Therefore, the proposed interpolation is generally 

applicable for the best estimation within a distance of 0.47°-0.51.0°, i.e., at least approximately 570 km, from the 

observation site. 

4 Discussion 10 

This section discusses the uncertainties caused by several assumptions in the LMVE ensemble method. As described in 

Section 2.2, the spatial interpolation of variance defined in Eq. (3) assumes IDW. The selection of the sites is also uncertain 

and is investigated in Section 4.1. The time window used in Eq. (3) is assumed to be 1 hour, which is discussed in Section 

4.2. The ensemble size defined in Eqs. (4) and (5) is also discussed in Section 4.3. In Section 4.4, the spatial distribution of 

the Cs-137 surface concentrations estimated by the LMVE ensemble method is shown as an example for estimating the 15 

impact of Cs-137 on inhalation exposure of residents in Japan. 

4.1 Sensitivity of spatial interpolation 

The spatial interpolation of variance defined in Eq. (3) adopts IDW using two of the nearest sites as denoted by LIP1 in 

Table 2. Here, four extra methods in Table 2 are used for testing SEN1, SEN2 and SEN3, as shown in Section 3.2. Figure 7 

illustrates the statistical metrics for 15 tests using the validation sites, which are not used in the LMVE ensemble method as 20 

learning data. For SEN1, all metrics in the five interpolation methods are estimated as 1.60±0.00 01 for GMB, 100.95±0.00 Bq 

m-3 for RMSE , 0.6364±0.00 for PCC and 52±0.0% for FAC2 by using 1865 data asmplessamples. The differences among 

the interpolation methods are close to zero. In SEN2 and SEN3, however, the differences among the 5 interpolation methods, 

especially between the nearest neighbours (named Nearest in Table 2) and the others, become slightly larger than the others. 

The largest difference is observed between Nearest and the others at 0.06 01 for GMB, 100.04 01 Bq m-3 for RMSE, 0.013 for 25 

PCC and 1% for FAC2. Judging from the slight differences and the simplest method, we use the LIP1 method (using the two 

nearest sites and the weighting coefficient of the inverse distance) in the standard experiment. It should be noted that other 

interpolations were considered in the discussion, although they provided much worse results than those shown in Figure 7 

(not shown). The method that used the covariance between the observations at the nearest observation site and the simulation 

at the target grid was not applicable to this study because the covariance values are generally negative or close to zero at 30 

most grids due to the heterogenous distribution of Cs-137. Another method that uses all sites (not two or three grids) for the 
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interpolation was also not applicable to this study because the influence of the ensemble coefficients at the grids far from the 

target grid cannot be ignored. 

 

4.2 Sensitivity of the time window 

To investigate the sensitivity of the time window in Eq. (3), the temporal variations in Cs-137 simulated by the ensemble 5 

methods are shown in Figure 8 using various time windows ranging from 1 hour to 49 hours (not all results are shown in 

Figure 8). The difference in the estimated Cs-137 concentrations is generally small but sometimes very large. In Figure 8 (a), 

for example, at Naraha on 20 March, the observed peak is sharp, whereas the sharpness of the estimated peaks depends on 

the time window values. As the time window increases, the sharpness of the peak becomes weak, i.e., the peak is broadly 

distributed. At Kawagoe (Figure 8(d)) on 20-22 March, the estimated Cs-137 concentrations using the longer time window 10 

are far from the observations and estimations using the shorter time window. Such situations are found at the other sites and 

during other periods (not shown). This also indicates that the peak in Cs-137 is very sharp temporally and spatially, so the 

time window must be shortened. The dependency of the time window on the results is investigated using the statistical 

metrics at all sites used in the LMVE ensemble method, as shown in Figure 9. The dependency of the time window on the 

GMB, RMSE, and PCC and FAC2 was found to be very weak while that on FAC2 was strong; moreover a shorter time 15 

window tends to provide a higher PCC and FAC2 values and lower GMD GMB and RMSE values. Therefore, the time 

window in the standard experiment is set to the shortest time, i.e., 1 hour. 

 

4.3 Sensitivity of the ensemble size 

The previous study of Nakajima et al. (2017) used only two members for the LMVE ensemble method, and the ensemble 20 

results were better than the original results for each member, but the difference in the PCC was very small (0.03-0.05; Table 

1 in Nakajima et al., 2017). Therefore, this study increases the number of LMVE ensembles to six members and investigates 

the sensitivity of the ensemble size to the results. Figure 10 shows the relationship between the ensemble size and the 

statistical metrics (GMB, RMSE, PCC and FAC2). The results clearly shows that as the ensemble size increases, the GMB 

and RMSE decrease, and the PCC and FAC2 increase. This tendency can also be found in previous studies (e.g., Pennell and 25 

Reichler, 2001; Kioutsioukis and Galmarini, 2014; Solazzo and Galmarini, 2015). Using two members, the average GMB is 

calculated to be 1.95, which is smaller than that obtained using a single member by 0.76; the average RMSE is calculated to 

be 101.208 (=16.2) Bq m-3, which is smaller than that obtained using a single member by 101.155 (=14.3) Bq m-3; the average 

PCC is calculated to be 0.46, which is larger than that obtained using a single member by 0.08; and the average FAC2 is 

calculated to be 34%, which is larger than that obtained using a single member by 14%. Using more than two members, the 30 

PCC is calculated to be more than 0.4, i.e., a moderate correlation. Using five members, the average GMB is calculated to be 
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1.56, which is larger than the value of 1.53 obtained using six members; the average RMSE is calculated to be 100.984 (=9.63) 

Bq m-3 , which is but larger than the value of 100.960 (=9.12) Bq m-3 obtained using six members; the average PCC is 

calculated to be 0.57, which is smaller than the value of 0.59 obtained using six members, ; and the average FAC2 is 

calculated to be 51% but , smaller than the value of 54% obtained using six members. However, the best ensemble results 

obtained using five members are close to those obtained using six members, with differences of +0.1% for GMB, +1.5% for 5 

PCC, +0.0% for RMSE and +0.2% for FAC2. By contrast, the best ensemble results obtained using four members are worse 

than those obtained using six members, with the differences of -1.6% for GMB, -0.9% for PCC, +0.8% for RMSE and -4.0% 

for FAC2. Therefore, we conclude that the minimum number in the LMVE ensemble in this study is five, but only when the 

members are effectively selected. When the members cannot be selected, the best results can be obtained by reducing the 

weighting coefficients of the members through the calculation of the LMVE method, since the difference in the statistical 10 

metrics between six- and five-member ensembles is very small.  

Even in the best estimate using selected five- or six-members, the PCC value is less than 0.7, which means the ensemble 

results are moderately (NOT strongly) correlated with the observations. Therefore, to obtain values much closer to the 

observations, a new ensemble member is required. As explained in section 3.1, when one of the members provides results 

close to the observations even at 1 hour, the ensemble results proposed in this study become closer to the observations. 15 

For the median and average values using six members, the PCC is calculated to be 0.42 and 0.46, respectively, which are 

similar to the ensemble results obtained using two members. In By contrast, the GMDGMB, RMSE and FAC2 values for the 

median and average results obtained using six members are close to the results for the single members. Since the median and 

average values obtained using many members are generally closer to the best estimate compared to the original members, the 

original members used in this study are not independent of each other. Therefore, These these results indicate that the LMVE 20 

ensemble method is applicable even when the ensemble size is only two and even when they are not independent, although 

the bias, uncertainty, correlation and precision dramatically decrease as the ensemble size increases. The proposed ensemble 

method is very useful for properly estimating Cs-137 concentrations, even under a limited ensemble size.  

 

 25 

4.4 Cs-137 spatial distribution 

The above discussion indicates that the LMVE ensemble method can better estimate the Cs-137 distribution; the spatial 

distributions of Cs-137 concentrations that are integrated daily on 15 March 2011 are also shown (Figure 11). In the 

Fukushima prefecture, including the FDNPS, the results of Cs-137 simulated by each member are largely spread, so the 

ensemble results, especially in the area far from the observation sites, are very important. Figure 5 suggests that the ensemble 30 

results are moderately correlated with the observations around the area where the distance from the observation site is 

approximately 20-30 km. Therefore, in the Fukushima prefecture, which presents a complex terrain, parts of the results of 
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Cs-137 in this area are still uncertain, even when using models with a 3 km horizontal grid, because part of the area is far (30 

km away the coast of Fukushima, which is called Hama-dori in Japan), and the inner area is the location of many observation 

sites (called Naka-dori in Japan). In By contrast, although the difference in the simulated plumes among each member is 

very large over the Kantou region, the conclusion from Section 3.2 supports the results that the ensemble Cs-137 results are 

closer to the observations, with PCC>0.4, compared to the results of each member. This result is obtained because in the 5 

Kantou region, most areas are within approximately 50 70 km of any observation site. However, some of the prefectures in 

the Kantou region do not have measurement sites, so in these prefectures, the ensemble results are still uncertain. This 

suggests that in the future, it should be required to observe Cs-137 at distance intervals ofevery 20-30 km distance near the 

source region and every 50 70 km distance in other areas to properly estimate the best results of the Cs-137 spatial 

distribution. 10 

 

5 Conclusions 

The LMVE ensemble method is based on a classical idea but is still useful for estimating the best results using MMEs and 

observations without requiring a large amount of computer resources for high-resolution models. This method was first 

applied to estimate the Cs-137 distribution by Nakajima et al. (2017) and is extended in this study. The uniqueness of this 15 

approach compared with other MMEs for other species is based on the following: (1) the availability of observed Cs-137 

concentrations near the surface at approximately 100 sites, thus providing dense coverage over eastern Japan; (2) the 

simplicity of identifying the emission source of Cs-137 associated with the point source of FDNPS; (3) the novelty of 

implementing the MME approach with a high-resolution model over complex terrain in eastern Japan; and (4) the strong 

need to better estimate the Cs-137 distribution due to its inhalation exposure risk among residents in Japan. However, 20 

Nakajima et al. (2017) did not thoroughly discuss the availability of this method in depth, show the biases, uncertainties, 

precision and generalizability of this method under varying time-windows, space-windows and ensemble sizes. Radioactive 

Cs-137 was released from the FDNPS in March 2011, and many studies have investigated the distribution of Cs-137, but the 

proper estimations of Cs-137 are not still adequate. Therefore, this study first extended the LMVE ensemble method to an 

ensemble size of six for simulating Cs-137, including two models, the WRF-CMAQ and NICAM models, and observations 25 

and then investigated their uncertainties to confirm their performances to generalize this method and attempt to give the best 

estimate for the estimation of their inhalation impacts on humans, which is a companion study by Takagi et al. (submitted to 

J. Env. Rad.to be submitted). The results of the ensemble members are also updated from Nakajima et al. (2017) by using a 

finer horizontal resolution (3 km grid) and by nudging an improved meteorological field provided by Sekiyama et al. (2017). 

The proposed LMVE ensemble method provides the best results among the single members of the ensemble. This shows that 30 

the MME-estimated Cs-137 concentrations at all available 101 sites have the lowest bias against the observations, with 

GMB=1.53; the lowest uncertainties, with RMSE=9.42 Bq m-3; the highest correlation against the observations, with 
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PCC=0.58; and the highest precision against the observations, with FAC2=54%. Moreover, the single-model members 

provided higher biases (GMB=1.8320-4.29, except for 1.20 obtained from one member), higher uncertainties (RMSE=19.2-

51.2 Bq m-3), lower correlation coefficients (PCC=0.29-0.45) and lower precision (FAC2=10-29%). In the model grid 

excluding the observations, Cs-137 is estimated by a spatial interpolation of variance in the formulation of the LMVE using 

the inverse distance weighting between the nearest two sites. For the test of this assumption, the available measurements are 5 

divided into two sets, learning and validation data, and thus, the test finds that the assumption for linear interpolation 

promises a moderate PCC value (>0.4) within a distance of 0.47°-1.0.5°, i.e., approximately at least 50 70 km. Extra 

sensitivity tests for several parameters, i.e., the site number and the weighting coefficients in the spatial interpolation, the 

time window in the LMVE and the  ensemble size, are determined. As a result, the findings for the uncertainty in the 

proposed LMVE ensemble method are shown: (1) The LIP1 method (using two sites and IDW) is the simplest and provides 10 

better results than the other interpolations. (2) The time window in the LMVE ensemble method can be set to 1 hour. (3) A 

larger number of ensemble members (ensemble size) remarkably yielded better results, and more than two members had 

generates better results than each member alone, even when the members are not completely independent. In this study, the 

minimum ensemble size is found to be five, but only when the members are effectively selected. The best ensemble size can 

be six if the weighting coefficient of the member is minimized through the LMVE calculation without selecting any 15 

members.  

Therefore, the proposed LMVE ensemble method with a maximum ensemble size has the potential to provide the best 

estimate of the Cs-137 distribution, even under a limited ensemble size (at least two). 

It should be noted that, however, that the LMVE ensemble method presents certain limitations. When Cs-137 simulated by 

all members is too underestimated compared to the observations, the variance in Cs-137 between the observations and the 20 

simulations, as defined in Eq. (3), must be too large and, thus, the weighted coefficient of the members, as defined in Eq. (5), 

becomes very small. Because the cross terms of the Cs-137 concentration and the weighted coefficient are small, the Cs-137 

concentrations estimated by the ensemble must be underestimated. In By contrast, when Cs-137 simulated by some members 

is overestimated compared to the observationsby some members, the weighted coefficient becomes very small. However, 

because the cross terms of the Cs-137 concentration and the weighted coefficient are not small, the Cs-137 concentrations 25 

estimated by the ensemble are overestimated. 

In addition, the spatial interpolation used in this study does not obtain a moderate PCC value (>0.4) in the areas where the 

distance from the observation sites exceeds approximately 7050  km. Therefore, the estimated results over the area with very 

sporadic site locations are very uncertain, especially for the inner areas of the Kantou region, e.g., Gunma and Tochigi 

prefectures. The assumption of the spatial interpolation using IDW is difficult to apply to broadly distributed materials, such 30 

as Cs-137 emitted from the FDNPS, which is spatially and temporally distributed very heterogeneously (Nakajima et al., 

2017). It can be said that it is difficult to use any spatial interpolation, which basically assumes the spatially smoothness of 

the target’s concentrations based on the best estimation of the Cs-137 distribution. In the future, Cs-137 should be observed 
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at distance intervals of 20-30 km near the source region, including in complex terrain, and at intervals of at least 50 70 km in 

other areas to properly estimate the best results of the Cs-137 spatial distribution. 

This study only applies the LMVE ensemble method to radioactive Cs-137 in the atmosphere, but this method can be applied 

to Cs-137 deposition and atmospheric pollutants, such as PM2.5. However, the results obtained in this study are not directly 

used for estimation of the best estimate of the Cs-137 deposition because the simulated Cs-137 concentration and the 5 

simulated Cs-137 deposition flux are not generally correlated with each other, as suggested by previous model comparison 

studies (Kitayama et al., 2018). Recently, the large areal coverage of surface PM2.5 measurements is has become available 

in for most countries (https://aqicn.org/map/world/). In addition, since the PM2.5 distribution does not vary abruptly, the 

LMVE ensemble method is easily applied for PM2.5 estimations. Therefore, this method will be applied in our future study 

to estimate the PM2.5 distribution for better air quality prediction. 10 
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Table 1. Brief model description and the design of the experiments 

Name 
W-model 

(W1) 

W-model 

(W2) 

W-model 

(W3) 

W-model 

(W4) 

N-model 

(N1) 

N-model 

(N2) 

Dynamic core WRF WRF WRF WRF NICAM NICAM 

Module CMAQ4.6 CMAQ4.6 CMAQ4.6 CMAQ4.6 

Modified 

SPRINTAR

S1 

Modified 

SPRINTAR

S1 

Horizontal 

grid size (km) 
3 3 3 3 3 3 

Number of 

layers 

(lowest height) 

34 

(19 m) 

34 

(19 m) 

34 

(19 m) 

34 

(19 m) 

40 

(20 m) 

40 

(20 m) 

Meteorological 

fields (nudged) 

2 

SE17 MSM SE17 SE17 SE17 MSM 

Wet deposition 

for Cs-1373 
WSPEEDI WSPEEDI CMAQ WSPEEDI 

SPRINTAR

S 

SPRINTAR

S 

Emission 

scenario of Cs-

1374 

KA15 KA15 KA15 TE12 KA15 KA15 

1 Modified SPRINTARS optimizes SPRINTARS (Takemura et al., 2005) for simulating Cs-137 particles by assuming a one-

modal size distribution with a radius centre of 0.24 µm and high hygroscopicity, similar to sulfate (Nakajima et al., 2017). 
2 SE17 represents the meteorological fields calculated by NHM-LETKF in Sekiyama et al. (2017). MSM represents 

mesoscale objective analysis data (MANAL) from the Japan Meteorological Agency (JMA). 5 
3 WSPEEDI is a model for simulating the radioactive materials developed by JAEA (Terada et al., 2008). 
4 KA15 and TE12 represent Katata et al. (2015) and Terada et al. (2012), respectively. 

�
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Table 2. Test experiments in the ensemble method for linear interpolation (LIP) 

Name Nearest LIP1 LIP2 LIP3 LIP4 

Number of 

grids (M) 
1 2 2 3 3 

Method 
Nearest 

neighbours 
LIP LIP LIP LIP 

Weighting 
No 

(m=1) 

Inverse 

distance 

(m =1) 

Inverse 

square-

distance 

(m =2) 

Inverse 

distance 

(m =1) 

Inverse 

square-

distance 

(m =2) 

Spatial 

seamlessness 
No Yes Yes Yes Yes 

The parameters M and m are defined in Eq. (7). 
 

 

Table 3. Test experiments in the ensemble method using the selected sites 5 

Description CTL SEN1 SEN2 SEN3 

Number of learning sites 101 77 45 23 

Number of validation sites 0 24 56 78 

Maximum distance between 

the learning and validation 

sites 

- 0.125° 0.25° 0.5° 

Colours in the 

used learning 

sites 

Red Yes Yes Yes Yes 

Yellow Yes Yes Yes No 

Green Yes Yes No No 

Blue Yes No No No 
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Figure 1: Cs-137 observation sites used as a learning site in (a) the standard (CTL), (b) SEN1, (c) SEN2 and (d) SEN3 experiments 

in this study. The closed black circle is the location of the FDNPS. The closed circles in red, yellow, green and blue are the 

locations of the learning data sites used in the standard CTL experiment (CTL). The closed circle in yellow is the learning data 

location used for the ensemble in CTL, SEN1 and SEN2. The closed circle in green is the learning data location used for the 5 
ensemble in CTL and SEN1. The closed circle in blue is the learning data location used for the ensemble in the CTL only. The 

number of sites is 23 (red), 22 (yellow), 32 (green) and 24 (blue). The details are also explained in Table 3. The words in italics are 
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the names of prefectures. The Kantou region includes seven prefectures; : Tokyo, Kanagawa, Chiba, Saitama, Ibaraki, Tochigi 

and Gunma. The background map for the elevation is obtained from the ETOPO (Amante and Eakins, 2009). 

 

 

Figure 2: Temporal variations in Cs-137 at the relevant sites (Naraha, Haramachi, Furuga and Kawagoe). The locations in 5 
brackets represent the names of prefectures. The results are shown for the observations (‘Obs’ in black), ensemble members (W1, 

W2, W3, W4, N1 and N2 in colours) and the ensemble model (red). The time is Japan Standard Time (JST). 
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Figure 3: Relationship between the simulated Cs-137 and the observed Cs-137 at all available sites using the (a) ensemble model 

with all models shown in (b)-(g), (b)-(g) original one-member model (W1, W2, W3, W4, N1 and N2) and (h) median model using all 

models shown in (b)-(g). The blue line is the 1:1 line. 
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Figure 4: Statistical metrics defined in Section 2.4 using the simulated Cs-137 and observed Cs-137 at the available 101 sites. The 

metrics shows the (a) geometric mean bias (GMB), (b) root-mean-square-error (RMSE), (c) Pearson correlation coefficient (PCC) 

and (d) fraction of data within a factor of two (FAC2). The results correspond to Figure 3. 
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Figure 5: Temporal variations in Cs-137 at the independent sites (not learning but validation sites) using the LMVE ensemble 

method for CTL, SEN1, SEN2 and SEN3. The time is JST. 
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Figure 6: Statistical metrics (GMB, RMSE, PCC and FAC2) at the available sites for CTL, SEN1, SEN2 and SEN3. The statistical 

metrics are calculated using all sites (in black) and the independent sites (in grey), which are not used in the LMVE ensemble 

method. The names of the experiments are shown in each panel. The X-axis represents a maximum distance between the learning 

and validation sites in units of degree. 5 
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Figure 7: Statistical metrics (GMB, RMSE, PCC and FAC2) for the three sensitivity tests (SEN1, SEN2 and SEN3) as described in 

Table 3 using the five interpolation methods (nearest, LIP1, LIP2, LIP3 and LIP4) described in Table 2. The X-axis represents the 

sensitivity experiments with the sampling number (N). 
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Figure 8: Same as Figure 2 except for the use of the ensemble results with various time windows ranging from 1 hour (tw01hr) to 

49 hours (tw49hr). 
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Figure 9: Statistical metrics (GMB, RMSE, PCC and FAC2) at the 101 available sites against various time windows (X-axis) 

ranging from 1 hour to 49 hours. 
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Figure 10: Statistical metrics (GMB, RMSE, PCC and FAC2) at the available sites against the number of the ensemble members, 

the median and the average (X-axis). The black line indicates an average of the ensemble results for each number, whereas the 

dash line indicates the maximum and minimum results of the ensemble results for each number.  
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Figure 11: Spatial distribution of the (a) observed and (b-h) simulated daily integrated Cs-137 concentrations on 15 March 2011 

(JST). 


