
Response to reviewers on “Global sensitivity analysis of chemistry-climate model

budgets of tropospheric ozone and OH: Exploring model diversity” by Wild et

al.

Response to Reviewer 1:

The manuscript is very well written and the results and conclusions are clearly laid out.
The findings of the importance of the effect of water vapour for tropospheric OH and ozone
and that one of the three models shows a radically different sensitivity for OH are certainly
of great interest to the global chemistry modelling community as the causes of the diversity
across models is a long-standing problem.

We thank you for your very positive comments here, and address specific concerns below.

The only significant comment I would have is that given the somewhat arbitrary specifica-
tions for some of the ranges over which the different factors are varied, it is very difficult to
put these results into context. It is shown that varying water vapour by ±50% is the domi-
nant factor affecting ozone and OH, but how does the range of ±50% compare to the actual
variability across models? While emissions, including lightning NOx, have well defined and
regularly discussed ranges across models and other processes such as boundary layer mixing
are very poorly constrained, a range for water vapour across models should be more easily
quantified and given the importance of the process found here it should be more clearly jus-
tified. From a quick look at Figure 7 of Lamarque et al. (Geosci. Model Dev., 6, 179206,
2013) I think a variation of ±50% might be too large.

The parameter ranges we are working with are intentionally large to capture the full range of
uncertainty in each variable, and this provides us with response surfaces that fully encompass
the likely uncertainty. However, we agree that realistic, consistently-defined uncertainty
ranges are needed when comparing model sensitivity across different variables. These are
more difficult to determine for model processes than for emissions as the reviewer notes. The
likely uncertainty in water vapour across models is of the order of ±20% from the Lamarque
et al. 2013 study (which corresponds to temperature biases of about 2.5 K) and we implicitly
acknowledged this in our presentation of water vapour in Fig. 5, which the reviewer noted.

To address this issue, which the other reviewers also raise, we have repeated the sensitivity
analysis over a more restricted and directly comparable range of variability for each parame-
ter. We maintain the existing ranges for emissions, which are well grounded in the literature,
reduce the deposition ranges from ±80% to ±60%, although these remain highly uncertain,
and reduce the range for water vapour to ±20%. We reduce the range for cloud optical depth
to a factor of 3 based on Klein et al. (2013), and restrict the range for boundary layer mixing
to a factor of 10, which still encompasses both very weak and instantaneous mixing, both
of which are simple options that have been adopted in previous model studies. The new
sensitivities are now presented in the paper; while these differ from those over the full ranges
originally presented, with greater importance for emissions at the expense of humidity, our
key messages about the importance of water vapour and about the differing responses in OH
across the models remain unchanged, see Figure 1 below.
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Fig 1: Contributions of each variable to the total variance in the simulated tropospheric O3

burden (top row) and annual mean CH4 chemical lifetime (bottom row) in each model over

the revised sensitivity range.

To avoid complicating the paper with two sets of parameter ranges, one over which the
models were run, and one for the sensitivity analysis, we have adjusted the text to focus on
the new ranges, but include the results from the full ranges in supplementary material. We
highlight that this is an exploratory study demonstrating the value of the approaches adopted
here, and that the contribution of each parameter to the overall sensitivity is dependent not
only on the ranges selected but also on which parameters are considered. A much wider
choice of parameters is needed for a more in-depth study with greater explanatory power,
and this is noted in the paper.

Lines 32: While I understand the need for brevity here, I do find the statement that changes
in surface O3 since the preindustrial era are systematically underestimated (Stevenson et al.,
2013) to be a bit of an over-simplification of the situation. Recent work under TOAR (Tara-
sick et al., under review) and work with oxygen isotopes (Yeung et al, Nature, doi:10.1038/
s41586-019-1277-1, 2019) have found new reasons why the increase in tropospheric ozone
may not be as large as shown by the early surface measurements. I am not suggesting an
exhaustive discussion here, but just some acknowledgement that there is uncertainty.

These new papers highlight the uncertainty in preindustrial ozone, and the reviewer is correct
to point this out. We have toned down this statement to reflect this uncertainty, and now
refer the reader to the Tarasick et al. paper which discusses this in detail. We add “although
there is continuing uncertainty surrounding preindustrial levels (Tarasick et al., 2019).”

Line 109–110: How do you approach increasing wet deposition rates for a species such as
HNO3?

Wet deposition rates are altered by scaling the removal rate for each soluble tracer affected
by washout and rainout each model timestep. This is a crude but simple approach that can
be implemented consistently across models. While it has the potential to create instability
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where removal rates are greatly increased, the scalings used here are relatively small. A more
in-depth exploration would involve varying cloud water content, rainfall and the solubility
of different species independently. We have rephrased the text to make this clearer, stating
“we assume an uncertainty in removal rates of ±60%...”

Lines 176–177: In both Figures 5 and 6 the very different response of OH in GISS to humid-
ity is highlighted, but because humidity is only displayed as a percentage change relative to the
baseline it is not possible to ascertain whether the behaviour of GISS is due to some funda-
mentally different response of the chemical scheme to water vapour or whether the response
is due to the models being in a different part of the parameter space. Given the importance
of water vapour, is it possible to provide some absolute comparison of water vapour across
the three models? Ill also note that while the full range of NOx emissions are plotted for
these two figures, water vapour is only plotted as ±20% while the range of the sensitivity
experiments is ±50%.

The underlying humidities in the models are relatively similar, and the sensitivities for ozone
(Fig 6b) are also similar, suggesting that the differences for OH arise from chemical processes
rather than from humidity. However, we appreciate that different model base states may
be one reason for differing sensitivities, and we have therefore included a comparison of key
variables between the models in supplementary material, as suggested. This shows a high
degree of similarity between the models, but points to differences in NOx and PAN that we
discuss in the paper. The mean mass of water vapour in the GISS GCM runs (1.21x1016 kg)
is about 4% less than than in the FRSGC/UCI CTM runs (1.26x1016 kg), but this is well
within the uncertainty range we explore. We now include these numbers in the supplement,
and refer to the differences in our discussion in Section 4 of the paper. As noted above,
our restriction to a ±20% variation for water vapour tacitly acknowledges this more realistic
assessment of the likely uncertainty in this variable, and we now use ±20% throughout the
study.

Lines 198–202: In discussing Figure 7 and the different response of GISS, there is specula-
tion that GISS may have a very different treatment of NOy chemistry because of the more
widespread sensitivity to surface NOx and isoprene emission, particularly in the tropics. The
quantity plotted here is the percent variance of CH4 loss that can be assigned to each of the
different factors. Since water vapour in the GISS model explains almost none of the variance
in the tropics, doesnt the variance have to be assigned somewhere else. Is, in some absolute
measure, methane loss in the GISS model more sensitive to NOx and isoprene emissions
than the other two models or does it only assign more of the response to NOx and isoprene
emissions because of the negligible contribution from water vapour?

This is a valuable point, and the reviewer is correct to note that the absolute variance is
also of interest. We have recalculated the contributions using the new parameter ranges,
and now present the absolute variances in Figure 7, placing the relative contributions (more
formally, the sensitivity indices) in the supplementary material. It is much clearer from this
analysis that the sensitivity to NOx and isoprene emissions in the GISS GCM is comparable
to that in the other models, but that the sensitivity to humidity is substantially less. We
have adjusted the discussion in the paper to reflect this point, and show the revised figure
as Figure 2 below.
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Fig 2: Contributions of each variable to the absolute variance in the simulated tropospheric

O3 burden (top row) and annual mean CH4 chemical lifetime (bottom row) in each model over

the revised sensitivity range.

Response to Reviewer 2:

1. How were the key variables selected for the Gaussian process elimination? The selection
of variables should be justified. For example, Holmes et al. (2012) (No, I am not an author
on this paper) found that OH is most sensitive to the ozone column (at least when examining
interannual variability). This was not included in the present study. This choice needs to be
justified.

This is an exploratory study and we wanted to investigate a range of different inputs and
model processes, but were limited to eight variables for computational expediency and to
permit application across unrelated models. The variables we selected were based on one-at-
a-time sensitivity studies presented in Wild (2007), as explained in paragraph 4 of Section 2
(lines 83–95), where the impacts on ozone and OH were demonstrated to be substantial.
There are many other important variables, including the ozone column, that we were not
able to consider. Now that we have established the value of the approach in comparing
sensitivities across models, we will explore a more complete range of variables over a larger
parameter space. We highlight the necessarily restricted scope of this study in the text,
and have now revised it to acknowledge the importance of other variables more clearly. In
Section 2 we now state “while they do not encompass all sources of uncertainty, which also
include photochemical, transport and radiation processes, they are chosen to represent key
uncertainties while ensuring that the study remains computationally tractable”. We also
explicitly note in Section 4 that we have not explored chemical processes or ozone column
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in this study.

2. The selected range of the sensitivity variables is very important for the paper particularly
when comparing the sensitivity of one variable against another. The paper states the ranges
are loosely based on studies in the literature, but do not give the studies. To me, at least it is
not believable that cloud optical depth varies could vary by 100, or boundary layer mixing by
a factor of 10,000. Of more concern is that humidity varies globally by 50%. This is in fact
very large and colors the results and conclusions throughout the paper. In contrast, Holmes
et al (2012) gives a variation of 3% in humidity. While the variability might be calculated
differently in the two studies, a value of 50% seems huge. Would the range in variability
be better quantified by comparing across the models? I also do not believe it is reasonable
to take the variability from the smallest and largest values in the literature as this does not
likely capture the likely error in model simulations. In any case, the sensitivity and ranges
in variability need to be better quantified as this impacts much of the interpretation in the
paper. An arbitrary specification of the range in these parameters would seem to imply that
the resulting comparison of the different sensitivities is also arbitrary.

We selected large ranges to emulate to ensure that the resulting model response surfaces cap-
ture the full range of uncertainty possible for each variable. However, we agree that realistic,
consistently-defined uncertainty ranges are needed when comparing model sensitivity across
different variables, as the reviewer notes. In particular, the range for humidity is indeed
large, and climate model intercomparisons suggest an uncertainty in water vapour of the
order of ±20% (see Lamarque et al., 2013). To address the reviewer’s concerns, we have re-
peated the sensitivity analysis using restricted ranges for the variables that are more closely
aligned with previous assessments in the literature, and we cite the studies concerned. We
maintain the existing ranges for emissions, which are well grounded in the literature, reduce
the deposition ranges from ±80% to ±60%, and reduce the range for water vapour to ±20%.
We reduce the range for cloud optical depth to a factor of 3 based on Klein et al. (2013),
and restrict the range for boundary layer mixing unchanged to a factor of 10, which still
encompasses both very weak and instantaneous mixing, both of which are simple options
that have been adopted in previous model studies. The new sensitivities reflect a greater
importance for emissions at the expense of humidity, as expected, but our key messages
about the importance of water vapour and about the differing responses in OH across the
models remain unchanged.

3. Comparing the sensitivities across models only makes sense if the model forcing is simi-
lar. (For example, the sensitivity of any one model might be very different when comparing
between present day conditions and pre-industrial conditions). The authors need to show
that the tropospheric forcing in the three models is roughly the same (CH4, NOx emissions,
tropical ozone column etc). In particular I am concerned about the tropical ozone column
and perhaps more importantly the tropical photolysis rates. Might this explain the large dif-
ference in the methane oxidation rates between the different models? At any rate quantifying
the mean differences (at least in a supplement) seems important in better understanding the
results.

We standardised the model simulations as much as possible without altering their underlying
configuration, constraining the magnitudes of annual surface NOx emissions, lightning NO,
and isoprene emissions as outlined in the paper (lines 105–107) and using consistent fields
of CH4 (1760 ppb) under present-day climate. This mimics the conditions that are typically
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applied in model intercomparisons without greatly perturbing the characteristic behaviour of
the models. However, differences between tropical ozone columns, and many other variables,
are indeed likely, as they are in model intercomparison studies. As suggested, we have
therefore included a direct comparison of baseline model conditions in a supplement to
provide the reader with greater insight into the underlying differences between the models.
In general there is a broad consistency between them, although surface NOx and column
NO2 are slightly lower and PAN higher in the GISS GCM. The annual global average total
column ozone is somewhat less in the GISS GCM (294 vs 321 DU in FRSGC/UCI CTM), but
this is dominated by smaller columns at mid and high latitudes, and the tropical columns are
very similar (263 vs 265 DU). We now refer to these underlying differences in the discussion,
and refer the reader to the table and figures in the supplement for further details. We show
examples of this comparison for ozone column and humidity in Figure 3 below.

Fig 3: Annual mean total column ozone from the FRSGC/UCI CTM, GISS GCM and CAM-

Chem (top row) and specific humidity at 500 hPa in July from each model (bottom row).

4. The paper does not really pinpoint some of the basic causes of the discrepancies between the
models, in particular the different lifetimes of methane. As stated in the previous comment
some of the mean fields in the models should be given, for example the global burden of CH4,
atmospheric water vapor (perhaps with latitude?), etc. While the sensitivity tests between
the different models is revealing evaluating the mean difference between the GISS-GCM and
the other models may also be revealing. In a number of locations the authors hypothesize that
the difference is due to differences in humidity (lines 177-178, Pages 8 and Page9) or due
to differences in the formation/decomposition of PAN. Why dont the authors check? Im not
suggesting a lengthy analysis, but an inspection and comparison of some of the mean fields
should be sufficient to check some of these hypothesis and possibly reveal some of the key
model differences.

A deeper analysis of a much wider range of variables is needed to really pinpoint the origin of
the different behaviour observed, including chemical processes in particular, as noted in the
paper. However, the reviewer makes a valuable point that demonstrating the mean state of

6



the different models would support the analysis and is relatively straightforward. To address
this, we have included surface and mid-tropospheric distributions of a range of trace gases,
along with annual mean columns of ozone, NO2 and CO in the supplementary material, and
refer to these in the text. With the exception of differences in NOx and PAN, the models are
reasonably consistent, suggesting that a deeper analysis of chemistry and transport processes
is needed to diagnose the different responses in OH.

Minor Comments

1. Please state in the caption to Figure 1 that these results are over different years with
different emissions and meteorologies. Also please reference Table 1 in the Figure caption
where the references to the points can be found. Finally, please state what the dots refer to
in the right hand panel.

The caption has been amended as requested to state “Note that results in the left panel
represent differing emissions and meteorological years (study details are given in Table 1)”.
The dots in the right hand panel are simulations at intermediate points across the ranges
specified in the text, but these are not important for understanding the overall responses
and they have thus been removed.

2. The methodology behind the Gaussian process elimination should be explained in more
detail in methodology section. While I dont expect the authors to go into detail, neither
should it be necessary to reference the referenced papers to understand this analysis.

We have now added a brief introduction to Gaussian process emulation, as requested, in
Section 2. The section now reads: “To explore the sensitivity of tropospheric budgets to
uncertainty in several processes at once, we perform a global sensitivity analysis using Gaus-
sian process emulation, following the approach of Lee et al. (2011). An emulator is a simple
statistical model that reproduces the relationships between the inputs and outputs of a more
complex model, in this case an atmospheric chemistry model. The much shorter run time
of the emulator allows the model parameter uncertainty space to be explored fully through
Monte Carlo approaches that would not be feasible with the complex atmospheric model.
A Gaussian process is a multivariate normal distribution applied to a function, and we use
this non-parametric approach to fit the model input-output relationships as it is well-tested,
efficient and relatively easy to implement (O’Hagan, 2006; Lee et al., 2011; Ryan et al.,
2018). This allows us to reproduce the nonlinear model response across a multidimensional
parameter space based on a small ensemble of model training runs at points representing a
combination of inputs that are optimally chosen to fill the space.”

3. Does the sensitivity to boundary layer mixing simply involve changing the vertical diffusion
coefficient over the boundary layer depth, or something else?

Yes, this involves scaling the vertical diffusion coefficient through the depth of the diagnosed
boundary layer. The text describing this in Section 2 has been revised to make this clearer:
“by scaling the effective vertical diffusion coefficient through the depth of the boundary
layer”.

4. The paper states: The models differ in their sources of meteorology, but certainly the
sources of meteorology are important. Are the runs using specified dynamics or GCM gener-
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ated meteorology? This might be quite important to how well the relative humidity is specified.
In addition, using a single year might also introduce significant variability between the mod-
els. Please say something more specific about the meteorology used as well as comment on
the possible importance of the interannual variability. My guess is the latter might introduce
significant variability between the models.

Differences in meteorology are likely to be important, but it is impractical to prescribe a
particular source of meteorology given the range of models used. We aimed for consistency
with 2001 conditions, but substantial differences are likely to remain. Offline meteorologi-
cal fields from the ECMWF IFS for 2001 were used for the FRSGC/UCI CTM, the GISS
GCM used observed sea-surface temperatures and was nudged to NCEP reanalysis fields,
and CAM-Chem was run in GCM model. This information was omitted from the description
in Section 2, and has now been added: “Offline meteorological fields for 2001 from the Eu-
ropean Centre for Medium-Range Weather Forecasts Integrated Forecast System (ECMWF
IFS) were used for the FRSGC/UCI CTM. The GISS GCM used observed sea-surface tem-
peratures and was nudged to National Centers for Environmental Prediction (NCEP) re-
analysis fields (Kalnay et al., 1996), while CAM-Chem was run in GCM mode following the
Chemistry Climate Model Initiative (CCMI) REF-C1 protocol (Eyring et al., 2013).”

Interannual meteorological variability is likely to contribute some variability in ozone and
OH (Wild 2007 found variations of ozone burden of about 2% and of methane lifetime of
about 5% over three years), but this is likely to be less that that between entirely different
sources of meteorology, where different underlying biases may be present. We have revised
the text in Section 4 to acknowledge the importance of the meteorological fields, and to
note that these are one component of the structural uncertainty associated with the use of
different models. In particular, we now note: “Underlying differences in meteorological fields
governing vertical transport processes such as convection are also likely to be important in
this region.”

5. Page 5, line 15. but we scale. It is not altogether clear how this scaling is used. Please
specify. Given the non-linear response to NOx, does a linear scaling make sense?

We apply a simple scaling to the emissions to ensure that the total magnitude is the same
in each model. There are differences in the location and timing of emissions, particularly
for lightning NO and biogenic isoprene where emission are determined interactively based
on model meteorology and vegetation schemes. It is impractical to harmonize these between
models, and the differences are effectively structural, as noted in the text. The differences
are relatively small, as is evident from the surface distributions of NOx and isoprene that
we have now included in the supplement.

6. Page 7, line 139-141 discrepancies highlight that uncertainty in chemistry and transport
processes not considered here may play a substantial role in governing the CH4 lifetime. Im
not sure I understand this conclusion. It seems it might simply mean, for example, that the
variability in water vapor is considerably over-estimated.

Reducing the uncertainty in water vapour narrows the distribution, but does not bring the
mean lifetime closer to the observed range. The discrepancy between the model and observed
values must therefore be due to uncertainty in processes and variables that have not been
considered in this study. Chemistry and transport processes are likely to be important here,
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along with other key variables such as the total column ozone. The text has been revised to
make this point clearer.

7. Page 7, line 149 it is notable that humidity has not been prescribed in previous model
intercomparison studies. Possibly, but again the large response in water vapor is dependent
on the large variation in water vapor.

The contribution of water vapour is smaller now that the uncertainty range has been reduced
to 20%, but it still makes a sizable contribution to the overall uncertainty, as noted in the
text here.

8. Page 8. The explanation in the future responses of the different models is nice and given
in several places in the paper. Personally, I think this might belong better in the conclusion
section.

We now refer to this in the conclusions, although we do not include the quantitative aspect
here to avoid any further repetition. We now explicitly state “... can provide substantial new
insight into the differing responses of models under different emission and climate scenarios.”

9. Page 9, line 180 suggesting a saturation in OH formation in this model. How does a
saturation occur?

It is unclear why OH is relatively insensitive to water vapour in this model, and it would
certainly be useful to explore this further with more targetted studies. Any additional for-
mation from higher water vapour must be balanced by additional removal, but the pathway
for this remains unclear. The statement here was intended to indicate that net formation
had reached a plateau, but this has now been rephrased to make it clearer: “suggesting
either little additional formation of OH or a matching OH sink in this model”.

10. More generally, I am curious about the conceptual difference between the sensitivity to
forcing parameters (NOX emissions, stratospheric ozone column) and internal model param-
eters. To what extent does it make sense to distinguish between the sensitivity between these
type of parameters?

The approaches used here can be applied to uncertainty in model inputs and internal param-
eters, and there is no conceptual difference. We make the distinction in the paper to highlight
that they can be applied to both, even though previous applications in other contexts have
tended to focus on one or the other.

Response to Reviewer 3:

This study is an important contribution towards understanding the reasons for model diversity
in the evolution of tropospheric ozone and methane lifetime. However, I found that the
approach applied here is inadequate to truly understand the reasons for diversity in these
non-linear quantities. My main concern (similar to the other two reviewers) is that the
sensitivities calculated for each model would depend on the control simulation given the non-
linear chemistry of ozone and methane. If the models differ in the forcings (meteorology and
emissions) to begin with then how do we know that the calculated sensitivity is not due to
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the initial state. Also, I found the description of the Gaussian emulation approach applied
here rather limited to appreciate its usefulness for understanding the reasons for diversity in
model response.

We thank the reviewer for these comments, which parallel those of the other reviewers, and
we have addressed the principal concerns here in our comments above. We standardised the
models in terms of the magnitude of key ozone precursor emissions and in methane burden,
and the baseline results of the models (which we have now included in a supplement) are
broadly similar. We have revised the text to include a brief introduction to Gaussian process
emulation so that readers unfamiliar with it can appreciate the approach, particularly for
representing non-linear responses, which present no problem.

L23–25: Clarify if this is referring to controls for climate or air pollution. Controls on NOx
emissions in the US (e.g., Clean Air Act) and Europe (e.g., LRTAP) have indeed brought
down surface ozone.

As pollutants and greenhouse gases these short-lived gases are attractive targets for both
types of control. However, selecting appropriate controls is challenging; while emission con-
trols have reduced surface ozone in the US, similar controls have led to increases in urban
ozone in China. The Science paper cited here targets climate change, air quality and food
security, and all three areas are of relevance here.

L27: Also another ACCMIP paper (Naik et al., 2013) and CCMI models (Zhao et al., 2019
https://www.atmos-chem-phys-discuss.net/acp-2019-281/)

The Naik et al. paper is very useful, but covers the same ACCMIP models described in the
study of Voulgarakis et al. that we cite. The Zhao et al., study includes valuable new data
from CCMI studies, but methane lifetimes are only available from a limited subset of the
models, most of which also contributed to the ACCMIP studies.

L32: There are large uncertainties in PI estimates of surface ozone as discussed by Tarasick
et al. (2019) https://www.elementascience.org/articles/10.1525/elementa.376/

As noted above in response to reviewer 1, we have rephrased this statement to acknowledge
the uncertainties involved and have cited the Tarasick paper which highlights the magni-
tude of these uncertainties very nicely. We add “although there is continuing uncertainty
surrounding preindustrial levels (Tarasick et al., 2019).”

L58: Observational estimates of global ozone are now available from satellites (Gaudel et al.
2019 https://www.elementascience.org/articles/10.1525/elementa.291/). How do the model
estimates discussed here compare with satellite estimates?

Satellite data provides a useful additional constraint on the global ozone burden, but most
assessments are limited to the 60oS–60oN latitude range. Only two IASI retrievals are avail-
able for the full globe (333 and 345 Tg), although these exclude regions in polar night. The
TOST ozonesonde product provides a global burden of 337 Tg, but this is very similar to the
ozonesonde-based estimates we already cite. We add an additional sentence acknowledging
these additional estimates: “Recent satellite and ozonesonde-based estimates of the global
burden range from 333–345 Tg (Gaudel et al., 2019).”
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L100–104: It would help to know how different the base state is in the models. What is
the ozone burden, prescribed methane concentration, methane lifetime, surface and lightning
NOx emissions, biogenic emissions, wet and dry deposition rates for all species, atmospheric
humidity, cloud optical depth, and boundary layer height in the base simulation for all the
three models?

We have now added a direct comparison of the base state of the models in the new supple-
mentary material, and provide a very brief summary in the text. As noted in the paper, the
magnitude of surface and lightning NO emissions and biogenic emissions are already con-
strained, as is the methane concentration, but we have included surface and mid-tropospheric
distributions of a range of trace gases, along with annual mean columns of ozone, NO2 and
CO in the supplementary material to provide a simple characterization of the models.

L114–115: How are the emulators built for a non-linear system such the O3-NOx-CH4 chem-
istry? Some description is needed to make the design of emulators transparent for the purpose
of this figure.

The ability to fully reproduce non-linear behaviour is one of the principal advantages of
Gaussian process emulation, and we now note this in the text. We have added a few sentences
to provide more details on the method used to generate the emulators: “An emulator is a
simple statistical model that reproduces the relationships between the inputs and outputs
of a more complex model, in this case an atmospheric chemistry model. The much shorter
run time of the emulator allows the model parameter uncertainty space to be explored fully
through Monte Carlo approaches that would not be feasible with the complex atmospheric
model. A Gaussian process is a multivariate normal distribution applied to a function, and
we use this non-parametric approach to fit the model input-output relationships as it is well-
tested, efficient and relatively easy to implement (O’Hagan, 2006; Lee et al., 2011; Ryan et al.,
2018). This allows us to reproduce the nonlinear model response across a multidimensional
parameter space based on a small ensemble of model training runs at points representing a
combination of inputs that are optimally chosen to fill the space.”

L142–143: It would be helpful to provide an equation to explain how sensitivity for each
variable is determined. As it stands, the process appears too opaque to me.

Variance decomposition is performed through calculation of the sensitivity indices using
the Sobol approach as described by Saltelli 2002. The mathematical foundation for this is
fully described in Ryan et al., 2018, which was written to fully document and evaluate the
approaches and their application to the models used here, and the code that was used is
provided at https://doi.org/10.5281/zenodo.1038667 We have added additional text here to
provide a clearer description of the approach taken, and refer the reader to this earlier paper
for the numerical theory, notation and equations which underpin it.

Saltelli, A.: Making best use of model evaluations to compute sensitivity indices, Comput.
Phys. Commun., 145, 280297, 2002.

L151: How different is humidity across the three models for the base run? Is it possible that
the three models show large sensitivity of ozone to humidity because such a large (±50%)
perturbation is used? How do the sensitivities for ozone calculated here compare with those
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calculated by Revell et al. (2018) https://www.atmos-chem-phys.net/18/16155/2018/acp-
18-16155-2018.pdf?

We have added a simple comparison of summertime humidity distributions in the supplement.
The patterns of humidity look very similar in the models, although the magnitudes are
slightly less in the GISS GCM. The mean mass of water vapour in the GISS GCM runs
(1.21x1016 kg) is about 4% less than than in the FRSGC/UCI CTM runs (1.26x1016 kg)
on an annual basis, and we now refer to this difference in our discussion in Section 4 and
include the numbers in a table in the supplement Revell et al. 2018 did not explicitly consider
sensitivity of ozone burden to humidity, but this is a valuable paper and we cite it as another
example of use of emulation to explore model sensitivity.

L167–169: and four models showing decreased lifetime - is the implication here that these
four models may have greater sensitivity to humidity and therefore show declining methane
lifetime? If so, how do we know that these models are like CAM-chem and FRSGC/UCI
CTM in their sensitivities?

Greater future humidity would suggest greater OH formation and hence reduced methane
lifetime, although this is balanced against reduced secondary OH formation if NOx emissions
are reduced. The point we make here is that the relative sensitivity to water vapour and NOx
emissions is important, and that the different model behaviours are very likely associated
with differing sensitivities. We cannot explain the behaviour of these other ACCMIP models
without further analysis, but suggest that exploring sensitivities with them would be very
revealing.

L192–194: The chemical loss of methane also depends on the concentration of methane in
the models. Are they the same across the models?

We constrain methane to a fixed concentration of 1760 ppb suitable for 2001 conditions, so
that methane is the same in all models. We neglected to highlight this in the text, and
have now amended the discussion in Section 2 to include this: “In each model we constrain
methane to a fixed mixing ratio of 1760 ppb suitable for 2001 conditions.”

L198: How different are the model chemical mechanisms implemented in the models? I would
imagine the differences in sensitivities due to NOx are due to the implemented chemical
mechanisms.

The chemical mechanisms in the models differ, and this is one set of processes that we were
not able to explore (as noted on lines 203–204), as it requires consideration of a much larger
number of variables than we were able accommodate (currently just eight). Previous studies
have explored the contribution of chemical processes in a single model (e.g., Newsome and
Evans, 2017, as cited in the paper), and further exploration of this across different models
using the approaches described here would be a valuable extension of this study, as we note
in the Conclusions.
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Abstract. Projections of future atmospheric composition change and its impacts on air quality and climate depend heavily

on chemistry-climate models that allow us to investigate the effects of changing emissions and meteorology. These models

are imperfect as they rely on our understanding of the chemical, physical and dynamical processes governing atmospheric

composition, on the approximations needed to represent these numerically, and on the limitations of the observations required

to constrain them. Model intercomparison studies show substantial diversity in results that reflect underlying uncertainties, but5

little progress has been made in explaining the causes of this or in identifying the weaknesses in process understanding or

representation that could lead to improved models and to better scientific understanding. Global sensitivity analysis provides

a valuable method of identifying and quantifying the main causes of diversity in current models. For the first time, we apply

Gaussian process emulation with three independent global chemistry transport models to quantify the sensitivity of ozone and

hydroxyl radicals (OH) to important climate-relevant variables, poorly-characterized processes and uncertain emissions. We10

show a clear sensitivity of tropospheric ozone to atmospheric humidity and precursor emissions which is similar for the models,

but find large differences between models for methane lifetime, highlighting substantial differences in the sensitivity of OH

to primary and secondary production. This approach allows us to identify key areas where model improvements are required

while providing valuable new insight into the processes driving tropospheric composition change.

Copyright statement. TEXT15

1 Introduction

Atmospheric photochemistry and transport processes play important roles in the Earth system by controlling the impact of

natural and anthropogenic trace gas emissions on air quality and global climate. Methane (CH4) and ozone (O3) are the

1



second and third most important greenhouse gases contributing to climate change since the preindustrial era (IPCC, 2013).

The atmospheric abundance of both gases has increased substantially due to anthropogenic activity, and their fates are strongly20

coupled through the short-lived hydroxyl (OH) radical. CH4 is an O3 precursor and O3 is a major source of OH, which

controls the oxidation of CH4 and many other trace gases. At the surface O3 contributes to poor air quality and is damaging

to human health, crop yields and natural ecosystems (Monks et al., 2015). The relatively short lifetime of these gases makes

them attractive targets for emission controls (Shindell et al., 2012), but scientific uncertainties associated with the processes

that govern their abundance and distribution has hindered implementation of effective control policies.25

Current global chemistry-climate models representing the co-evolution of atmospheric O3 and CH4 show differences in

CH4 lifetime of almost a factor of two (Wild, 2007; Voulgarakis et al., 2013). This prevents them from simulating the observed

atmospheric build-up of CH4 correctly or attributing its causes reliably, and leads to substantial uncertainty in the impact

of future emission changes on global climate (Stevenson et al., 2013; IPCC, 2013). The underlying cause is differences in

OH, which depends on humidity, sunlight, O3, and on a wide range of chemical and dynamical processes. For O3, on the30

other hand, the abundance, seasonality and spatial variation are represented relatively well in models under present-day condi-

tions, but observed changes in surface O3 since the preindustrial era are systematically underestimated (Stevenson et al., 2013)

:::::::

thought
::

to
::

be
::::::::::::::

underestimated
:::::::::::::::::::::

(Stevenson et al., 2013)
:

,
::::::::

although
:::::

there
::

is
::::::::::

continuing
::::::::::

uncertainty
:::::::::::

surrounding
:::::::::::

preindustrial
::::::

levels

:::::::::::::::::::

(Tarasick et al., 2019). Models have difficulty reproducing recent observed trends in surface O3 driven by changes in precursor

emissions, natural sources, stratospheric influx and transport patterns (Parrish et al., 2014). This is a major concern because35

changes in the tropospheric abundance of O3 influence our assessment of radiative forcing and also attainment of air quality

objectives on regional and urban scales (e.g., Akimoto, 2003). These discrepancies suggest that there are major weaknesses

in our fundamental understanding of the chemical, dynamical, and emission processes controlling the distribution, interaction

and fate of O3, CH4 and OH, or in how these processes are represented in global chemistry and climate models.

Global sensitivity analysis provides a valuable approach to determine the major drivers of model behaviour, and has been40

applied to atmospheric chemistry schemes to explore uncertainties in tropospheric O3 (Derwent and Murrells, 2013; Christian

et al., 2017; Ridley et al., 2017; Newsome and Evans, 2017). These studies have typically used Monte Carlo-based ensemble

approaches for simple models (e.g., Ridley et al., 2017) or structured random-sampling approaches for more computationally

intensive models (e.g., Christian et al., 2017), and have focussed on sensitivities in a single model framework. In this study

we demonstrate the use of Gaussian process emulation for global sensitivity analysis, applied previously to models of aerosol45

processes (Lee et al., 2011, 2013) and air quality (Beddows et al., 2017; Aleksankina et al., 2019), and apply it to explore the

sensitivity of global tropospheric O3 and CH4 lifetime to uncertainty in key model processes and inputs. We investigate how

the sensitivities differ across three independent chemistry-transport models, and demonstrate how this approach may be used

to explore the diversity in model responses and to identify where model results differ.
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Figure 1. Tropospheric oxidant budgets from previous published studies and model intercomparisons (left panel, a), along with measurement-

based estimates of the tropospheric O3 burden and CH4 lifetime (shaded regions). The right panel (b) shows results from one-at-a-time

sensitivity studies with a single model revealing the extent to which individual processes can influence the budgets (see Wild (2007) for

details). Note that
::::::

results
::

in the
::

left
:::::

panel
::::::::

represent
:::::::

differing
::::::::

emissions
::::

and
::::::::::::

meteorological
::::

years
::::::

(study
:::::

details
:::

are
:::::

given
::

in
:::::

Table
::

1),
::::

and
:::

that

::

the
:

right panel covers only part of the parameter space shown in the left panel.

2 Approach50

We consider here two important global diagnostics of model performance, the tropospheric O3 burden and the chemical lifetime

of CH4 in the troposphere. The tropospheric O3 burden is the annual mean mass of O3 below the tropopause, defined here by

the 150 ppb isopleth of monthly mean O3. The chemical lifetime of CH4 reflects the lifetime of CH4 to removal by OH in

the troposphere, and provides a useful proxy for global tropospheric oxidizing capacity. Global model studies in the literature

and previous model intercomparisons show a large diversity in modelled budgets (see Fig. 1), where the range in O3 burden55

and CH4 lifetime both span about a factor of two. There is no clear relationship between the budget terms on an annual

basis, highlighting the relatively complex relationship between tropospheric O3 and OH that reflects physical and dynamical

processes as well as photochemistry.

Observation-based determination of these global quantities is difficult. However, assessment of three global O3 climatologies

derived from ozonesonde measurements over the 1980s and 1990s indicates an annual mean tropospheric O3 burden of 327–60

344 Tg when applying the same 150 ppb isopleth definition of the tropopause used in model analysis (Wild, 2007), suggesting

a burden of about 335±20 Tg.
::::::

Recent
::::::::

satellite
::::

and
::::::::::::::::

ozonesonde-based
:::::::::

estimates
::

of
::::

the
::::::

global
:::::::

burden
:::::

range
:::::

from
:::::::::::

333–345 Tg

::::::::::::::::::

(Gaudel et al., 2018)
:

. Ensemble mean O3 burdens from recent model intercomparisons lie close to this: 344±39 Tg from

3



Table 1. Global tropospheric metrics from previous model studies

Studies Number O3 burden CH4 lifetime References

Early literature studies 33 studies 307±38 Tg Wild (2007)

ACCENT intercomparison 21 models 344±39 Tg 9.6±1.4 yr Stevenson et al. (2006)

HTAP intercomparison 12 models 328±41 Tg 10.2±1.7 yr Fiore et al. (2009)

ACCMIP intercomparison 14 models 337±23 Tg 9.8±1.6 yr Young et al. (2013); Voulgarakis et al. (2013)

Observational estimates 335±20 Tg 11.2±1.3 yr Wild (2007); Prather et al. (2012)

ACCENT (Stevenson et al., 2006), 328±41 Tg from HTAP (Fiore et al., 2009) and 337±23 Tg from ACCMIP (Young et

al., 2013), see Table 1, but about half of published studies lie outside the observationally-constrained range (see Fig. 1). A65

thorough observation-based sensitivity analysis of the factors contributing to CH4 removal gave a whole-atmosphere lifetime

of 9.1±0.9 yr, and a corresponding CH4 chemical lifetime of 11.2±1.3 yr (Prather et al., 2012). The latter is substantially

longer than that derived from model intercomparisons: 9.6±1.4 yr from ACCENT (Stevenson et al., 2006), 10.2±1.7 yr from

HTAP (Fiore et al., 2009) and 9.8±1.6 yr from ACCMIP (Voulgarakis et al., 2013), and two thirds of the model studies shown

in Fig. 1 lie outside this range. However, it is difficult to judge the validity of existing model results without a clearer idea of70

the uncertainties involved and how they contribute to the corresponding biases.

The sensitivity of the budget terms to individual processes has been explored in previous studies using the Frontier Research

System for Global Change version of the University of California Irvine Chemical Transport Model (FRSGC/UCI CTM)

in Wild (2007). One-at-a-time sensitivity runs were performed varying surface NOx emissions (30–60 TgN yr−1), isoprene

emissions (0–650 TgC yr−1), lightning NOx emissions (0–7.5 TgN yr−1), convective lifting, stratospheric influx and depo-75

sition processes (all ±50%), temperature (±5o C) and humidity (±20%), and results are summarised in Fig. 1. This study

highlighted the responses of a single model to particular processes, but the variations spanned relatively little of the parame-

ter space defined by previous model studies, suggesting that substantial additional uncertainties were not accounted for here,

including process interactions, neglected processes, and structural differences between models.

To explore the sensitivity of tropospheric budgets to uncertainty in several processes at once, we perform a global sensitivity80

analysis using Gaussian process emulation, following the approach of Lee et al. (2011).
:::

An
:::::::::

emulator
::

is
:

a
:::::::

simple
:::::::::

statistical

:::::

model
::::

that
::::::::::

reproduces
::::

the
:::::::::::

relationships
::::::::

between
::::

the
:::::

inputs
::::

and
:::::::

outputs
:::

of
:

a
:::::

more
::::::::

complex
:::::::

model,
::

in
::::

this
::::

case
:::

an
:::::::::::

atmospheric

:::::::::

chemistry
::::::

model.
::::

The
:::::

much
:::::::

shorter
:::

run
:::::

time
::

of
:::

the
::::::::

emulator
:::::::

allows
:::

the
::::::

model
:::::::::

parameter
::::::::::

uncertainty
::::::

space
::

to
::

be
::::::::

explored
:::::

fully

:::::::

through
::::::

Monte
::::::

Carlo
::::::::::

approaches
::::

that
:::::::

would
:::

not
:::

be
:::::::

feasible
:::::

with
:::

the
:::::::::

complex
:::::::::::

atmospheric
:::::::

model.
::

A
:::::::::

Gaussian
:::::::

process
::

is
::

a

::::::::::

multivariate
:::::::

normal
:::::::::::

distribution
:::::::

applied
::

to
::

a
::::::::

function,
::::

and
:::

we
::::

use
::::

this
::::::::::::::

non-parametric
::::::::

approach
:::

to
::

fit
:::

the
:::::::

model
:::::::::::

input-output85

:::::::::::

relationships
::

as
::

it
::

is
::::::::::

well-tested,
::::::::

efficient
::::

and
::::::::

relatively
::::

easy
:::

to
:::::::::

implement
::::::::::::::::::::::::::::::::::::::::::::::

(O’Hagan, 2006; Lee et al., 2011; Ryan et al., 2018)
:

.

This allows us to reproduce the
::::::::

nonlinear
:

model response across a multidimensional parameter space based on a small ensemble

of model
:::::::

training
:

runs at points representing a combination of inputs that are optimally chosen to fill the space. We select eight

key variables that influence global oxidant budgets substantially, and that span a range of model inputs (e.g., emissions),
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processes (e.g., deposition) and meteorological variables, see Table 2. These are loosely based on the
:::::

based
:::

on
::::

our earlier90

one-at-a-time studies, and while they do not encompass all sources of uncertainty,
::::::

which
::::

also
:::::::

include
::::::::::::::

photochemical,
::::::::

transport

:::

and
:::::::::

radiation
:::::::::

processes,
:

they are chosen to represent key uncertainties while ensuring that the study remains computationally

tractable. We select surface emissions of NOx from natural and anthropogenic sources, the dominant precursor for O3 in the

troposphere; lightning emissions of NO, which are highly uncertain and have a disproportionately large impact on O3 and

OH due to the altitude of the source; and biogenic emissions of isoprene, which dominate global sources of volatile organic95

compounds. We include dry deposition, which is important for uptake of O3 and other species at the surface, and wet deposition

which is important for removal of soluble precursors. We vary the atmospheric humidity used by the model photochemistry,

which plays an important role in O3 chemistry and OH formation, but leave it untouched for other processes to avoid perturbing

model dynamical processes. We vary cloud optical depth, an uncertain variable which has a major influence on photolysis rates

in the lower troposphere. Finally, we vary turbulent mixing in the planetary boundary layer (PBL), which has an important role100

in lifting and dispersing surface oxidants, but which remains poorly constrained.

For each variable, we define a range that encompasses the maximum and minimum likely values that is loosely based on pub-

lished studies from the literature, and these are presented in Table 2.
:::

We
:::::::

assume
::::::::::

uncertainty
::::::

ranges
::

of
:::::::

±25%
:::

for
:::::::

surface NOx
:

,

:::::::::::

representing
::::::

30–50 TgN yr−1
:

,
::::::

±60%
::::

for
::::::::

lightning
::::

NO
:::::::::::::::::::::::::::::::

(Schumann and Huntrieser, 2007)
:::

and
::::::

±60%
::::

for
::::::::

isoprene
:::::::::

emissions

::::::::::::::::::::

(Ashworth et al., 2010)
:

.
:::

For
::::

dry
::::

and
:::

wet
:::::::::::

deposition,
:::

we
:::::::

assume
::

an
:::::::::::

uncertainty
::

in
::::::::

removal
::::

rates
:::

of
::::::

±60%
::::

that
::

is
:::::::

applied
::

to
:::

all105

::::::

species
:::::::::::

considered.
:::

We
:::::::

assume
:::

an
:::::::::::

uncertainty
::

of
::::::

±20%
::::

for
:::::::::::

atmospheric
:::::

water
:::::::

vapour,
:::::::::

reflecting
::::

the
::::::::

variation
::::::

across
:::::::

models

:::::::::::

contributing
::

to
:::

the
:::::::::

ACCMIP
:::::::::::::::

intercomparison
:::::::::::::::::::::

(Lamarque et al., 2013),
::::

and
:::

this
::

is
:::::::

applied
:::

in
:::

the
::::::

model
::::::::::::::

photochemistry
:::::::

scheme

::::

only.
::::

We
:::::::

assume
:::

an
:::::::::::

uncertainty
::

of
::

a
::::::

factor
:::

of
:::::

three
::

in
::::::

cloud
:::::::

optical
::::::

depth
:::::

based
:::

on
::::::::::::::::::

Klein et al. (2013)
:::

and
::::::

apply
::::

this
:::

for

:::::::::

photolysis
:::::::::::

calculations
:::::

only.
:::::::::

Boundary
:::::

layer
:::::::

mixing
::

is
:::::::::

perturbed
::

by
:::::::

scaling
:::

the
::::::::

effective
:::::::

vertical
:::::::::

diffusion
::::::::::

coefficient
:::::::

through

:::

the
:::::

depth
:::

of
:::

the
:::::::::

boundary
::::::

layer
::

so
::::

that
:::::::::

turbulent
:::::::

mixing
:::

of
::::::

tracers
::::::::

between
::::::

model
::::::

layers
::::::

varies
:::::

from
::::::::::

negligible
::

to
:::::::

almost110

::::::::

complete
:::::

every
::::::

model
:::::

time
::::

step.
:

Following Lee et al. (2011), we use maximin Latin hypercube sampling to optimally select 80 points from across the eight-

dimensional parameter space. Each point represents a combination of values chosen from the range for each variable, and

specifies the values to use for a full model simulation. An additional 24 points are selected to provide an independent test of

the validity of the emulators that are built. This defines a set of 104 model simulations to perform. For this study, we use three115

independent global chemistry-transport models: the FRSGC/UCI CTM (Wild, 2007), the Goddard Institute for Space Studies

Global Climate Model, GISS GCM (Shindell et al., 2013), and the Community Atmosphere Model with Chemistry, CAM-

Chem (Lamarque et al., 2012). The models differ in their sources of meteorology, but are run for a full year (following 6–12

months spin-up) under conditions that are broadly consistent with 2001 meteorology, a year without strong climate phenomena

such as El Niño.
::::::

Offline
::::::::::::::

meteorological
::::::

fields
:::

for
:::::

2001
:::::

from
::::

the
:::::::::

European
:::::::

Centre
:::

for
:::::::::::::::

Medium-Range
::::::::

Weather
:::::::::

Forecasts120

:::::::::

Integrated
::::::::

Forecast
:::::::

System
:::::::::

(ECMWF
:::::

IFS)
:::::

were
::::

used
:::

for
::::

the
::::::::::::

FRSGC/UCI
:::::

CTM.
::::

The
::::::

GISS
:::::

GCM
:::::

used
:::::::::

observed
::::::::::

sea-surface

:::::::::::

temperatures
::::

and
::::

was
:::::::

nudged
::

to
::::::::

National
:::::::

Centers
:::

for
::::::::::::::

Environmental
:::::::::

Prediction
::::::::

(NCEP)
:::::::::

reanalysis
:::::

fields
:::::::::::::::::::

(Kalnay et al., 1996)

:

,
:::::

while
::::::::::::

CAM-Chem
::::

was
::::

run
:::

in
:::::

GCM
::::::

mode
:::::::::

following
::::

the
::::::::::

Chemistry
::::::::

Climate
::::::

Model
:::::::::

Initiative
::::::::

(CCMI)
::::::::

REF-C1
::::::::

protocol

::::::::::::::::::

(Eyring et al., 2013).
:::

In
::::

each
:::::::

model
:::

we
:::::::::

constrain
::::::::

methane
::

to
::

a
:::::

fixed
:::::::

mixing
::::

ratio
:::

of
:::::

1760
::::

ppb
:::::::

suitable
::::

for
:::::

2001
::::::::::

conditions.
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Table 2. Variables and uncertainty ranges used in this study

Variables Range

Surface NOx emissions 30–50 TgN yr−1

Lightning NO emissions 2–8 TgN yr−1

Biogenic isoprene emissions 200–800 TgC yr−1

Dry deposition rates ± 80
::

60%

Wet deposition rates ± 80
::

60%

Atmospheric humidity ± 50
::

20%

Cloud optical depth × 0.1–10
:::::::

0.33–3.0

Boundary layer mixing × 0.01–100
::::::::

0.10–10.0

Natural and anthropogenic emissions differ somewhat across the models, reflecting different assumptions and online generation125

of natural emissions, but we scale the magnitude of global annual emissions to 40 TgN yr−1 for surface NOx, 5 TgN yr−1 for

lightning NO and 500 TgC yr−1 for isoprene in the control run, accepting that differences in emission distributions in the

models contribute to
::::::::

represent
::

a
:::::::

source
::

of
:

structural uncertainty. We assume uncertainty ranges of ±25% for surface and

±60% for lightning NO (Schumann and Huntrieser, 2007) and isoprene emissions (Ashworth et al., 2010). Other variables are

scaled according to the factors shown in Table 2 without further standardization between models. Dry and wet deposition rates130

are scaled for all species considered; atmospheric water vapour is scaled for the model photochemistry scheme only and cloud

optical depth based on prescribed or calculated cloud fields is scaled for the model photolysis scheme only. Boundary layer

mixing is perturbed through scaling the effective vertical diffusion coefficient so that turbulent mixing of tracers between layers

varies from negligible to almost complete every model time step.

Emulators are then built for each model for each output of interest using the methods described in Lee et al. (2011) and135

Ryan et al. (2018). We focus here on global annual mean tropospheric O3 burden and CH4 chemical lifetime for simplicity.

The emulators are tested through use of the additional 24 validation simulations to evaluate their performance. For the outputs

considered here, the model response surfaces are relatively smooth, reflecting the stable behaviour of the global O3 burden

and CH4 lifetime, and the emulators fit the validation runs very closely with a correlation coefficient r > 0.99 (see Ryan et al.,

2018). The emulators reproduce the response of the full model within the variable ranges defined, and can be used in place of140

the model for intensive analysis such as uncertainty propagation through the use of Monte-Carlo approaches that would not be

computationally feasible with the full model. This allows us to define formal error bars for the response of each model, and

to carry out global sensitivity analysis by determining the contribution of each variable to the overall variance in modelled O3

burden and CH4 lifetime.
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Figure 2. Probability distributions for the global annual mean tropospheric O3 burden (top row) and tropospheric chemical lifetime of CH4

(bottom row) for each model. The mean and standard deviation over 10,000 realizations are shown on the upper right of each panel, and

observation-based estimates of O3 burden and CH4 lifetime are shown shaded.

3 Model responses and contributions to variance145

We first use the emulators built for each model to propagate the uncertainty in the selected variables to uncertainty in O3 burden

and CH4 lifetime. We use a Monte Carlo approach to randomly select 10,000 points from across the response space for each

model, sampling uniformly across the full input range of each variable, and use this to generate the probability distribution

for each model. Figure 2 shows the distribution in global O3 burden and CH4 lifetime from each model. The behaviour of

the models is similar, with a normalised standard deviation of 12–13
::::

7–8% for O3 burden and 9–13
:::

7–9% for CH4 lifetime,150

and the distributions are slightly skewed, reflecting the nonlinear response of these budget terms to the governing processes.

The 1σ uncertainty in each budget term is comparable in magnitude to that seen between different models in recent model

intercomparisons
::

the
:::::::::

ACCMIP
::::::

model
:::::::::::::::

intercomparison (see Table 1); while this may be fortuitous, it demonstrates that process

uncertainty contributes substantially to model diversity.

For each model, the mean O3 burden lies within the observational uncertainty range, along with 32–38
::::::

44–60% of the distri-155

bution. A large
:::::::::

substantial
:

proportion of each distribution lies outside the observational range, suggesting that the uncertainty

ranges adopted for some of the variables were larger than needed, or that a normal distribution of uncertainty could have been

assumed across each range in place of a uniform distribution. For mean CH4 lifetime, agreement with observations is less

7
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Figure 3. Contributions of each variable to the total variance in the simulated tropospheric O3 burden in each model.

good, with the GISS GCM and CAM-Chem lying at opposite boundaries of the observed range and the FRSGC/UCI CTM

lying outside it. For the GISS GCM, 53
:::

63% of the distribution lies inside the observed range, while for the FRSGC/UCI CTM160

it is only 24%. These discrepancies highlight
::::

10%.
::::

The
:::::::::::::

discrepancies
::::::::

between
:::

the
:::::::::

modelled
:::

and
:::::::::

observed
:::::::::

estimates
:::::::

suggest

that uncertainty in chemistry and transport processesnot considered here ,
::::::

which
:::::

have
::::

not
::::

been
::::::::::

considered
:::::

here,
:

may play a

substantial role in governing the CH4 lifetime.

The sensitivity for
:

to
:

each variable is determined by variance decomposition, which quantifies the contribution of each vari-

able to the variance in the model output, and is shown in Fig. 3.
::::

This
::

is
::::::::::

performed
:::::::

through
::::::::::

calculation
:::

of
:::

the
:::::::::

sensitivity
:::::::

indices165

:::::

using
:::

the
::::::

Sobol
::::::::

approach
::::::::::::::::::

(e.g., Saltelli, 2002)
:

,
:::

and
:::

the
:::::::::::::

mathematical
::::::::::

foundation
:::

for
::::

this
::

is
::::::::

described
:::

in
::::::::::::::::

Ryan et al. (2018)
:

. We

neglect the contribution of interactions between variables, which can be identified through this approach but which remain

below 4% of the variance for the model responses examined here. For the global O3 burden, the models show relatively similar

sensitivities , with atmospheric humidity contributing 55–60
::

to
:::::::::::

atmospheric
:::::::::

humidity
::::::

which
::::::::::

contributes
:::::::

20–23% of the vari-

ance in all three models, and
:

to
:

dry deposition processes contributing 15–20
:::::

which
:::::::::

contribute
::::::

21–25%, see Fig. 3. The models170

show different
:::::::::

However,
:::::

there
:::

are
::::::::::

substantial
::::::::::

differences
::

in
:

sensitivities to lightning , isoprene emissions and wet deposition

, but the contribution of these terms is relatively small. While a large sensitivity to humidity is expected, given the important

role of atmospheric water vapour as a chemical sink of
::::

NO,
::::::

which
:::::

varies
:::::

from
:::::

13%
::

in
:::

the
:::::

GISS
::::::

GCM
::

to
:::::

40%
::

in
::::::::::::

CAM-Chem,

:::

and
::

to
::::::::

isoprene
::::::::::

emissions,
::::::

which
:::

are
:::::

14%
::

in
::::::::::::

FRSGC/UCI
:::::

CTM
::::

and
:::::

GISS
::::::

GCM
:::

but
:::::

only
:::

1%
:::

in
::::::::::::

CAM-Chem.
::::

The
:::::::::

consistent

::::::::::

sensitivities
:::

to
:::::::::

humidity
::::

and
:::

dry
::::::::::

deposition
::::

are
:::::::::

expected,
::::::

given
:::

the
::::::::::

important
:::::

roles
::::

that
:::::

these
:::::

play
:::

as
:::::

sinks
:::

of O3 , it is175

notable that humidity has not been prescribed in previous model intercomparison studies and is rarely diagnosed except where

changes in climate are expected (e.g., Lamarque et al., 2013). It may therefore constitute a substantial fraction of the diversity in

tropospheric
::

in
:::

the
:::::::::::

troposphere.
::

A
::::::

strong
::::::::::

sensitivity
::

to
::::::::

lightning
::::

NO
::

is
::::

also
::::::::

expected
:::::

given
:::

the
:::::::

greater
::::::::

chemical O3 burden seen

across these studies.
:::::::::

production
:::::::::

efficiency
:::

of NOx
::

in
:::

the
:::::

mid-
::::

and
::::::

upper
:::::::::::

troposphere,
::::

but
:::

the
::::::::

differing
:::::::::::

sensitivities
::::::::

between

::::::

models
::::::

likely
::::::

reflect
:::::

both
::::::::::

differences
::

in
:::::::::

chemical
::::::::::::

environment
:::

and
:::

in
::::::::

lightning
:::::::

source
:::::::::::

distribution.
:::::::::

Similarly,
:::::::::::

differences
::

in180

:::::::::

sensitivity
::

to
::::::::

isoprene
:::

are
::::::

likely
::

to
::::::

reflect
::::::::::

differences
::

in
:::

the
:::::::::::

complexity
::

of
:::

the
::::::::::::::

photochemical
::::::::

schemes
::

in
:::

the
:::::::

models
::::

and
::

in
:::

the

::::::::

resulting
::::::::

chemical
::::::::::::

environment
::

in
:::

the
:::::::

tropical
:::::::::

boundary
:::::

layer.
:
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Figure 4. Contributions of each variable to the total variance in the simulated annual mean CH4 chemical lifetime in each model.

For the tropospheric CH4 lifetime, the models show markedly
::::::

notably
:

different sensitivities, with humidity contributing

nearly 60
:::::

about
:::

20% of the variance for the FRSGC/UCI CTM and CAM-Chem, but less than 5
::

3% for the GISS GCM, where

emissions of
:::

see
::::

Fig.
::

4.
::::::

There
::

is
::::::

broad
:::::::::::

consistency
::::::::

between
:::

the
::::::::::::

FRSGC/UCI
::::::

CTM
::::

and
::::::::::::

CAM-Chem,
::::::

where
:::::::::::

uncertainty
::

in185

::::::::

lightning
::::

NO
::

is
:::

the
::::::

largest
:::::::::::

contributor
:::

and
::::::::::

emissions
::

of
::::::::

isoprene
::::

and
:::::::

surface NOx
:::

are
:::::

about
:::::

30%
:::

and
:::::

50%
:::::

less,
:::::::::::

respectively,

:::

but
::

in
:::

the
::::::

GISS
:::::

GCM
:::

the
:::::::::

strongest
:::::::::

sensitivity
::

is
:::

to
:::::::

surface NOx and isoprene are responsible for nearly 80% of the variance,

see Fig. 4.
:::::::::

emissions.
:

It is clear that the factors governing tropospheric OH are very
:::::::::::

substantially
:

different in the models, high-

lighting differences in chemical environment and transport patterns that affect the location and magnitude of CH4 oxidation.

Sensitivity to humidity suggests that primary sources of OH dominate through photolysis of O3 and subsequent reaction of190

O1D with water vapour
:::

are
:::::::::

important. Sensitivity to NOx emissions suggests that
:::::::

reflects
:::

the
::::::::::

importance
:::

of secondary sources

of OH dominate through oxidation of NO, and sensitivity to isoprene highlights the importance of VOC as a source and sink of

OH and as a mechanism for locking up and transporting NOx. Interestingly, the GISS GCM also shows substantial sensitivity

to boundary layer mixing, highlighting the importance of transport of fresh emissions from the surface for secondary OH for-

mation.
::::

The
:::::::::::

FRSGC/UCI
::::::

CTM
:::::

shows
::::::

some
:::::::::

sensitivity
::

to
::::

wet
::::::::::

deposition,
::::::::::

suggesting
::::

that
::::::::::

scavenging
::

of
:::::

nitric
:::::

acid
:::

has
:

a
::::::

direct195

::::::

impact
:::

on
:::

OH
::::::::

through
::

its
:::::::::

influence
:::

on
:::

the
::::::::::

abundance
::

of
:

NOx.
:

These differences have important implications for assessment of future composition change. Future scenarios projecting

increased emissions of greenhouse gases and reduced emissions of O3 precursors (e.g., RCPs 4.5, 6.0 and 8.5) are likely to lead

to increased future humidity and reduced surface NOx. The FRSGC/UCI CTM and CAM-Chem would be expected to show a

reduction in CH4 lifetime due to greater OH concentrations associated with higher water vapour, while the GISS GCM would200

show an increase in CH4 lifetime due to lower secondary production of OH associated with reduced
::::::

surface
:

NOx emissions.

Analysis of future changes in CH4 lifetime for models contributing to the ACCMIP intercomparison suggests that this is

indeed the case, with the GISS GCM one of three models showing increased lifetime by 2100 for the RCP6.0 pathway, and

four models showing decreased lifetime (Voulgarakis et al., 2013). An understanding of the causes of this differing sensitivity

is thus important for explaining the different model responses.205
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4 Investigating model differences

The sensitivity of modelled O3 burden and CH4 lifetime to two key variables, humidity and surface NOx emissions, is shown

for the FRSGC/UCI CTM and GISS GCM in Fig. 5. These response surfaces are generated using the emulator for each model

assuming that the other six variables are unchanged. While the O3 burden is slightly higher in the GISS GCM , the
::::

than
:::

the

:::::::::::

FRSGC/UCI
::::::

CTM,
::::

342
:::

vs
::::

314
:::

Tg
:::

in
:::

the
:::::::

model
::::::

control
::::::

runs,
:::

the
:

gradients across the response surfaces are similar in the210

models. High
:::

The
:::::::

highest
:

O3 burdens occur as the gradient steepens at low humidity values, explaining the greater skew in

the distribution evident for the GISS GCM in Fig. 2 and suggesting that atmospheric humidity may be lower in this model.

However, the
:

at
:::::

high NOx
:::::::::

emissions
:::

and
::::

low
:::::::::

humidity,
::::::::

reflecting
:::::::

greater
::::::::::

production
:::

and
::::::::

reduced
::::

loss,
:::::::::::

respectively.
::::

The relative

changes in O3 burden with NOx emissions and humidity are very similar across all three models, see
::

as
::::::

shown
:::

in Fig. 6. The

responses for CH4 lifetime show notably different behaviour, with much greater sensitivity to NOx and very little
:::::

much
::::

less215

sensitivity to humidity in the GISS GCM compared to the other models. At high humidities the CH4 lifetime appears almost

insensitive to humidity, suggesting a saturation in OH formation
:::::

either
:::::

little
:::::::::

additional
:::::::::

formation
::

of
::::

OH
::

or
::

a
::::::::

matching
::::

OH
::::

sink

in this model. In contrast, the other models show a very similar degree of sensitivity to humidity in both O3 burden and CH4

lifetime that ranges from +7% to -5% across the humidity range considered here. This indicates
:

,
:::

see
::::

Fig.
:::

6.
::::

This
::::::::

suggests
:

a

much stronger coupling between O3 and OH formation, and highlights the dominance
:::::::

greater
::::::::::

importance
:

of the primary OH220

source in these models.

The response surfaces shown here allow us to estimate the impact of changes in future humidity and surface NOx emissions

in the absence of other changes. A reduction in NOx emissions from 40 to 30 TgN yr−1 and increase in humidity of 15%,

corresponding loosely to the changes between 2000 and 2050 expected along the RCP8.5 pathway (van Vuuren et al., 2011),

would lead to an increase in CH4 lifetime of 1.3 yr in the GISS GCM (from 11.7 to 13.0 yr), an increase of 0.2 yr in CAM-Chem,225

and no change in the FRSGC/UCI CTM. While this neglects the influence of other emission and climate changes, particularly

the increase in CH4 concentrations which would extend the lifetime in all models, it demonstrates the very different sensitivities

anticipated for different models under future climate scenarios.

To help identify the cause of the differing model responses, we show the contribution of the dominant
:::

key
:

variables to the

variance in the annual mean tropospheric column CH4 chemical loss rate at each model grid point in Fig. 7. This shows how the230

contribution of the different processes governing CH4 removal varies geographically and reveals further differences between

the models. For the FRSGC/UCI CTM and CAM-Chem, humidity dominates the variance at most locations, particularly

downwind of midlatitute emission regions, and is minimum in equatorial regions where there is a greater sensitivity to lightning

. The effect of isoprene and
::::::

makes
::

an
:::::::::

important
:::::::::::

contribution
:::

to
:::

the
::::::::

variance
::

in
:::::::

tropical
:::::::

regions
::::

and
::

at
::::::::::::

mid-latitudes,
::::

and
::::::

makes

:

a
:::::::

smaller
::::::::::::

contribution
::

at
::::

the
:::::::

equator,
:::::::

where
:::

the
::::::::

greatest
:::::::::::

contribution
:::

is
:::::

from
::::::::

lightning
::::

NO
:::

in
:::

all
:::::

three
::::::::

models.
:::::::::

Humidity235

::::::

makes
::::

very
::::

little
::::::::::::

contribution
::

to
:::

the
::::::::

variance
::

in
:::

the
::::::

GISS
::::::

GCM,
:::

and
::::

this
::::::::::

principally
::::::

occurs
::::::::::

downwind
::

of
::::::

major
:::::::::::::

anthropogenic

::::::::

emission
:::::::

regions.
::::

The
::::::::::

underlying
::::::::::

humidities
::

in
:::

the
:::::::

models
:::

are
::::::::

relatively
:::::::

similar
::::

(see
:::::::::::

distributions
:::::::::

presented
::

in
:::

the
::::::::::::

supplement),

:::

and
:::

the
:::::::

annual
:::::

mean
::::::

global
:::::::::::

atmospheric
::::::

water
::::::

burden
::

is
::::

also
:::::::

similar,
:::::

only
:::

4%
::::

less
::

in
::::

the
:::::

GISS
:::::

GCM
:::::

than
::

in
:::

the
::::::::::::

FRSGC/UCI

:::::

CTM.
::::::

Given
:::

the
:::::::

similar
::::::::::

humidities
::::

and
:::::::

similar
:::::::::

responses
::

in
:

O3
:::::::

burden,
:::

this
::::::::

suggests
::::

that
:::::

there
::::

are
:::::::::

significant
:::::::::::

differences
::

in

10



Figure 5. Sensitivity of tropospheric O3 burden and CH4 chemical lifetime to changes in surface NOx emissions and humidity in the

FRSGC/UCI CTM and GISS GCM.
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Figure 6. Relative changes in tropospheric O3 burden (a, b) and CH4 chemical lifetime (c, d) to changes in surface NOx emissions and

humidity alone in each model.

::::::::

chemical
:::::::::

processes
:::::::

specific
::

to
:::::

OH.
:::::::

Despite
:::

the
::::::

larger
:::::::

relative
::::::::::

importance
:::

of surface NOx emissions are largely limited to the240

source regions of these gases, indicating that their impacts on OH are relatively localised. For the
::

in
:::

the
:

GISS GCM, humidity

dominates at mid-latitudes, but contributes little in tropical regions, where primary emissions of
:::

the
::::::::

absolute
:::::::::::

contribution
::

to
:::

the

:::::::

variance
::

in
::::

the
::::

three
:::::::

models
::

is
:::::::

similar.
:::::::

Surface NOx and isoprene dominate. Of particular interest is the widespread impact from
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surface emissions , which contribute
::::

have
:

a
:::::::::::

widespread
:::::::

impact,
:::::::::::

contributing substantially to CH4 lifetime
:::::::

removal
:

over remote

ocean regions. The effect of NOx on OH in these locations suggests that substantial nitrogen is transported to these regions in245

the form of reservoir species such as peroxyacetyl nitrate (PAN), and this is supported by the patterns of transport seen in the

isoprene contribution, where the effects are not localised to source regions as they are for the other two models.
:

.
::::

The
:::::::

greatest

:::::

effect
::

of
::::::::

isoprene
:::::::::

emissions
::

is
::::::::

localised
:::

in
:::

the
:::::::

tropical
::::::::::

continental
::::::

source
:::::::

regions
::::

due
::

to
:::

the
:::::::::

relatively
:::::

short
:::::::

lifetime
::

of
::::::::

isoprene

:::

and
:::

its
:::::::::

oxidation
::::::::

products,
::::

but
:::::

there
:::

are
::::::::::

substantial
::::::::::::

contributions
::::::::::

downwind
::::

over
::::

the
:::::::

oceans,
::::::::::

particularly
:::

in
:::::::::::

CAM-Chem
::::

and

:::

the
:::::

GISS
::::::

GCM.
::::::::::::::::

Mid-tropospheric
:::::

PAN
:::::::::::::

concentrations
::::

are
:::::

much
:::::::

greater
::

in
::::

the
:::::

GISS
::::::

GCM,
::::

and
:::::::::::

comparison
::

of
::::::::::::

tropospheric250

NO2
:::::::

columns
:::::::

suggest
::::

that
:::::

there
:::

are
::::::

higher
::::::

levels
::

of NOx
::::

over
:::::::

oceanic
:::::::

regions
::

in
::::

this
::::::

model
::::

(see
:::::::::::::

supplementary
:::::::::

material).
:

It is

therefore likely that differing treatments of NOy chemistry are one cause of the different model sensitivities. However, a more

detailed exploration of the sensitivity to chemical
:::::::::::::

photochemical
:

processes would be needed to confirm this.
::::::::::::

Tropospheric

:::

OH
::

is
::::::::::

dependent
:::

on
:::

the
:::::

total
::::::

ozone
:::::::

column
::

in
::::

the
::::::

tropics
::::::::

through
:::

its
:::::

effect
:::

on
::::::::::

photolysis
:::::

rates,
::::

and
::::

this
::::

may
:::::

play
:

a
:::::

role
::

in

:::::

model
:::::::::::

differences,
:::::::::

although
:::

we
::::

note
::::

that
::::::

mean
:::::::

tropical
::::::

ozone
:::::::

column
:::

in
:::

the
:::::::

present
:::::::

models
::

is
:::::

very
:::::::

similar
::

at
::::::::

258–265
::::

DU255

::::

(see
:::::

Table
::::

S2).
:::::::::::

Underlying
::::::::::

differences
::

in
::::::::::::::

meteorological
:::::

fields
::::::::::

governing
:::::::

vertical
::::::::

transport
:::::::::

processes
:::::

such
:::

as
::::::::::

convection
:::

are

::::

also
:::::

likely
::

to
:::

be
:::::::::

important
::

in
::::

this
::::::

region.
:

Our analysis provides a valuable guide to locations where model responses are likely

to differ most, such as in tropical oceanic regions, and further investigation of OH sensitivity in these regions should bring

improvements in our understanding of atmospheric processes and in their representation in current global-scale models.

5 Conclusions260

We have demonstrated the value of Gaussian process emulation in performing global sensitivity analysis of computationally-

intensive global atmospheric chemistry transport models, and in applying this across a number of models to investigate model

diversity. The approach provides a simple way of exploring the sensitivity of key terms in the tropospheric oxidant budget to

governing processes and inputs, and we show that it can provide substantial new insight into the causes of differences between

models
:::::::

differing
:::::::::

responses
:::

of
:::::::

models
:::::

under
::::::::

different
:::::::::

emission
:::

and
:::::::

climate
:::::::::

scenarios.265

Our study has highlighted the large sensitivity of the tropospheric O3 burden to atmospheric water vapour, suggesting that

this variable should be diagnosed or perhaps constrained in future model intercomparisons to permit clearer characterization

of differences in model chemistry.
::

We
::::

also
::::

find
::

a
::::::

strong
::::::::::

sensitivity
::

to
:::::::::

precursor
:::::::::

emissions
::::

and
::

to
:::

dry
::::::::::

deposition
::::::::::

processes,
::

as

::::::::

expected.
:

More surprisingly, we find that the drivers of variability in global OH can be very different between models, and this

may contribute to the large diversity in modelled tropospheric CH4 lifetimes seen in recent model intercomparisons. Given270

the importance of atmospheric oxidising capacity for both air quality and climate change, this difference in OH behaviour is a

major cause for concern and is a clear priority for further investigation.

While we have shown the value of emulation approaches for exploring model behaviour much more thoroughly than through

simple one-at-a-time sensitivity studies, this study has been largely exploratory in nature, investigating the effects of a very

limited number of variables. A more detailed global uncertainty analysis is required that considers a wider range of model275

processes and inputs and incorporates a more rigorous assessment of uncertainty in each variable. Application of observation-
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Figure 7. Contributions (in %) to the total variance in the annual tropospheric column CH4 chemical loss rate
:

(in mg m−2 yr−1

:

)
::

in each

model from the dominant variables: humidity, isoprene emissions and surface NOx emissions.
::::::::

Fractional
:::::::::::

contributions
:::::::::

(sensitivity
:::::::

indices)

::

are
::::::::

presented
::

in
::::

Fig.
:::

S3
::

in
:::

the
::::::::::

supplement.

based constraints is then needed to restrict the size of the response space to calibrate the models and identify specific processes

in need of refinement. Applying this approach across different models accommodates the structural uncertainties in model

formulation, permitting a more robust assessment of process understanding. This would provide a strong evaluation framework

for improving understanding of the physical and chemical processes driving atmospheric composition change and its effects280

on air quality and climate.
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