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Text S1 
 
Here we present and discuss our analysis of the REF-C1 historical free-running simulations from CCMI.  These simulations 

differ from those presented in the main body of the text in that the models do not constrain their meteorological fields in any 

way to historical meteorology.  Winds, temperature, pressure, and water vapor are internally calculated by the Chemistry 

Climate Models (CCMs), so it is unlikely that meteorological features, such as ENSO and drought-induced biomass burning, 

align with reality. 

The CCMs that provided REF-C1 simulations, including all output necessary to perform the same NN training and inter-model 

comparison described in the main text (Sections 3.1 and 3.2), are: ACCESS-CCM, CAM4-Chem, EMAC-L47MA, EMAC-

L90MA, GEOSCCM, MOCAGE, MRI-ESM1r1, NIWA-UKCA, SOCOL3, ULAQ-CCM, and WACCM.  Details of the REF-

C1 simulation, performed for 1960-2010, are found in Hegglin & Lamarque (2015) and Morgenstern et al. (2017).  One model, 

the Coupled Model (CM3) developed at the Geophysical Fluid Dynamics Laboratory (GFDL) (Donner et al., 2011) is added 

to the free-running analysis.  The simulation of the CM3 model used here is a 400-year time-slice run, with perpetual emissions 

representative of year 2000 (Westervelt et al., 2018).  Further details of the model setup are available in Westervelt et al. (2017).  

By including CM3 with the group of REF-C1 CCMI models, we analyse a total of 12 free-running models. 

The inter-model comparison conducted for the REF-C1 model simulations was performed following the same protocol as 

described in Section 3.2 of the main text.  The values of 𝛕𝐂𝐇𝟒 calculated for each month of year 2000 are shown in Figure S9, 

while the annual average changes in 𝛕𝐂𝐇𝟒 (𝚫𝛕𝐂𝐇𝟒) by model, for NN swaps of the indicated species, are shown in Figure S10.  

Overall, values of 𝚫𝛕𝐂𝐇𝟒 are larger than the same values calculated for the REF-C1SD specified dynamics simulations 

examined in the main text, and chemical mechanism differences appear to play a larger role.  For example, the variables 

responsible for the largest OH differences are O3 in the free-running simulations and JO1D in the specified dynamics simulations 

(Fig. 5).  The mean absolute value of the annual average 𝚫𝛕𝐂𝐇𝟒 due to O3 in the free-running models is 0.60±0.69 years, while 

the same aggregation of 𝚫𝛕𝐂𝐇𝟒 values due to JO1D in the specified dynamics models is 0.54±0.57 years.  The second-most 

important variables, NOx in the free-running simulations and O3 in the specified dynamics simulations, yield 𝚫𝛕𝐂𝐇𝟒 values of, 

on average, 0.48±1.11 years and 0.42±0.49 years, respectively.  The remainder 𝚫𝛕𝐂𝐇𝟒 attributed to chemical mechanism 

differences between models averages to 0.69±1.14 years in the free-running simulations as opposed to 0.36±0.46 years in the 

specified dynamics simulations. 

The larger values of 𝚫𝛕𝐂𝐇𝟒 in the free-running models may convey that meteorological differences are imparting an impact on 

OH through mechanisms that are not sufficiently represented in the input variables chosen for the NN analysis.  It is possible 

that other chemical species not included here that are substantially altered by meteorology or transport and in turn alter OH 

concentrations would manifest as larger values of 𝚫𝛕𝐂𝐇𝟒, particularly in the Mech. term.  On the other hand, if those missing 

species are correlated with one of the species or variables used as an input to the NN, the 𝚫𝛕𝐂𝐇𝟒 attributed to that input may 

also be inflated.  As a result, we caution that model variations in meteorological conditions, expected as a result of their free-

running setup in the REF-C1 simulation, could generate artifacts that are less likely to arise in the REF-C1SD simulation 

comparison, in which temperatures, transport, cloud cover, and water vapor should be reasonably similar. 

As with the inter-model comparison of the specified dynamics simulations, results of the free-running model analysis exhibit 

a multitude of interesting features.  While we cannot explore each one with the amount of attention it is due, we would like to 



discuss one example that highlights the utility of the NN method.  In Fig. S10, the 𝚫𝛕𝐂𝐇𝟒 attributed to JNO2 shows curious 

behavior for the SOCOL3 model.  The absence of spread about the mean value of 𝚫𝛕𝐂𝐇𝟒 is highly unusual, except for instances 

where a model shows no or very little response of OH to a NN input.  The relatively large value of 𝚫𝛕𝐂𝐇𝟒 for SOCOL3 

(+0.69±0.09 years) paired with the small variation in this quantity across all the model pairings most likely indicates an issue 

in the model.  Figure S11 shows the JNO2 fields, taken directly from each CCM for January, 2000, at 850 hPa.  There is much 

diversity in this quantity across all the models, but the SOCOL3 model exhibits markedly high values, within the tropics 

especially.  Revell et al. (2018) also identify this issue and suggest that the treatment of solar backscatter from clouds may be 

responsible for biases in the photolysis look-up table calculations.  Additionally, a geometric spatial pattern is evident between 

the latitudes 0° and 30°S, which is unlikely to result from any physical process in the true atmosphere.  This may indicate a 

problem in the way time averaging is conducted to achieve the monthly mean fields reported, a dependence within the 

photolysis code on a non-continuous time variable (since the pattern repeats regularly every 30° of longitude), or a similar 

issue.  To reduce the likelihood of a bias due to differences in the way that monthly means are calculated, it may be useful for 

future inter-model comparison efforts to clearly define a desired method of averaging (e.g., composing daily averages from 

hourly output then averaging the daily means as opposed to averaging a month’s worth of 6-hourly instantaneous output).  It is 

of course possible to identify this variety of idiosyncrasy by careful inspection of each model field that is output from a model, 

but that is a time- and labor-intensive task.  Instead, the NN method is capable of pointing a user directly to the offending fields, 

at least for the variables that are of sufficient relevance to OH chemistry that we have included them here as inputs.  In the case 

that a user wants simply to detect outlier model fields as in this case, it is entirely feasible that the NN method could be adapted 

for that purpose. 
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Figure S1.  The ratio of JO1D at the surface to JO1D at the last pressure level within the troposphere before crossing the 
tropopause for the month in which each simulation set exhibited the largest 𝝉𝑪𝑯𝟒 differences attributed to JO1D. (a) shows results 
from the REF-C1SD simulations for the month of April; (b) shows the REF-C1 simulations for the month of January.  Suppression 
of this ratio below 1.0 is expected to result from cloud cover or other forms of absorption or scattering (by tropospheric O3, 
aerosols, etc.). 
  



  

Figure S2.  Time series of annually averaged CO mixing ratios at pressures greater than 700 hPa and latitudes between 30°S and 
30°N from (a) the specified dynamics REF-C1SD simulations and (b) the free-running REF-C1 simulations.  



 
 

Figure S3.  Time series of annually averaged H2O mixing ratios at pressures greater than 700 hPa and latitudes between 30°S and 
30°N from (a) the specified dynamics REF-C1SD simulations and (b) the free-running REF-C1 simulations.  



 

Figure S4.  Time series of annually averaged J(O1D) frequencies at pressures greater than 700 hPa and latitudes between 30°S and 
30°N from (a) the specified dynamics REF-C1SD simulations and (b) the free-running REF-C1 simulations.  



 

Figure S5.  Time series of annually averaged NOx mixing ratios at pressures greater than 700 hPa and latitudes between 30°S and 
30°N from (a) the specified dynamics REF-C1SD simulations and (b) the free-running REF-C1 simulations.  



 

Figure S6.  Time series of annually averaged O3 mixing ratios at pressures greater than 700 hPa and latitudes between 30°S and 30°N 
from (a) the specified dynamics REF-C1SD simulations and (b) the free-running REF-C1 simulations. 

  



 

Figure S7.  The ratio of local CH4 mixing ratio to the maximum CH4 mixing ratio found in the troposphere of a given model-simulated 
month, visualized for the pressure level nearest the surface, for the models, months, and years indicated.  Results shown are for the 
REF-C1SD simulations.  The normalized CH4 quantity is used as an input to the neural networks to avoid issues introduced by non-
overlapping fields of CH4 absolute values between models and between years.  This scaled CH4 quantity is thus more accurately 
described as a measure of the CH4 distribution within the troposphere.  While the CH4 distribution remains near-constant from year 
to year for a given month for most models (e.g., WACCM, bottom), the two configurations of the EMAC model show deviations from 
the trained (year 2000) distribution.  Most notably between the mid-1980s and mid-1990s, CH4 in the Southern Hemisphere decreases, 
relative to the higher CH4 values in the Northern Hemisphere.  It is these deviations in the EMAC CH4 distributions that are likely 
driving the anomalous 𝝉𝑪𝑯𝟒 response in Fig. 7. 

  



 

Figure S8.  July total ozone columns from the GEOSCCM (top) and MOCAGE (bottom) REF-C1SD simulations for year 1980 (left), 
2000 (center), and 2010 (right).  While model differences between GEOSCCM and MOCAGE are apparent, it is the stark difference 
between year 1980 and 2000 in the MOCAGE model that is concerning and likely driving the anomalous 𝝉𝑪𝑯𝟒 response in the early- 
to mid-1980s, seen in Fig. 7.  Other models, such as GEOSCCM, do not show such drastic differences between year 1980 and 2000 
ozone column amounts.  



 
 
Figure S9.  Seasonal variation in CH4 lifetime for year 2000 for the CCMI free-running (REF-C1) model simulations. 

  



 
 
Figure S10.  Averaged changes in CH4 lifetime for the free-running (REF-C1) CCMI simulations.  Values of 𝜟𝝉𝑪𝑯𝟒 are accrued for 
a specified model (color), across all swaps of the indicated variable (x-axis) from all other models.  Results are shown annually 
averaged for year 2000 of the specified dynamics REF-C1SD CCMI and chemical transport model simulations.  Circle indicates the 
mean change in CH4 lifetime; bars represent the 1𝝈 standard deviation from all model pairings.  Variables along the x-axis are 
ranked by averaged magnitude of the 𝜟𝝉𝑪𝑯𝟒 values (i.e., inputs located farther left are responsible for larger differences in CH4 
lifetime), except for the “Mech.+Nonlin.” term, which is shown last to indicate its role as a remainder term. 

  



 



Figure S11.  JNO2 values directly from each model at the pressure level closest to 850 hPa for January, 2000 of (a) the REF-C1SD 
simulations and (b) the REF-C1 simulations. 
 


