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General Comments  

The manuscript “A Machine Learning Examination of Hydroxyl Radical Differences Among 
Model Simulations for CCMI-1” by Nicely et al. discusses a topic that is of high interest to the 
Atmospheric Chemistry and Physics community. Possibly the most perplexing issue in 
atmospheric chemistry is the unexpected stabilization of global methane concentrations from 
~2000-2006. This study attempts to unravel the individual CTM drivers of the hydroxyl radical 
in a suite of simulations, thus illuminating the changes, and reason for said changes, in the 
primary termination pathway for methane, as simulated by each CTM.  
While this work is important, we do have concerns about how some of the results are presented 
and methods are employed in this analysis, both of which constitute major comments. We will 
describe both in more detail below, followed by some minor comments.  

Major Comments 
1. In Figures 7-10, results from the CH4 signal, as it relates to changes in tropospheric OH, are 

presented. While the text does explicitly state that “CH4” is a normalized value based on the 
maximum tropospheric value, we believe the presentation of the results in Figures 7-10 and 
much of the language used throughout the manuscript can lead to substantial confusion on 
the part of the reader. The reader might reasonably interpret the results as an estimate of the 
sensitivity of 𝜏!"!!"# to changes in CH4 abundance (i.e. the CH4 feedback factor). One 
example: the inclusion of CH4 in Figure 10 makes a comparison of the “CH4” value reported 
in this study (i.e. NOT the CH4 feedback factor) with the calculated CH4 feedback factor 
from Nicely et al., 2018.  
 
Based on our interpretation of the methods employed here, the authors did not analyze the 
CH4 feedback factor. Since it seems the better characterization is that the global distributions 
of CH4 concentrations were analyzed, we think the authors need to re-write any discussions 
related to CH4 results throughout the manuscript to make this distinction abundantly more 
clear, and should possibly remove the characterization of “CH4” in Figures 7-10. Similarly, it 
is not clear why CH4 concentrations were normalized. Presumably, the same analysis using 
non-normalized values of CH4 would be able to capture the CH4 feedback? 
 

2. The sensitivity of 𝜏!"!!"#  to changes in CH4 abundance reported by CTM studies are 
reasonably consistent and range from -0.25 to -0.35 (Prather et al., 2001; Fiore et al., 2009; 
Holmes et al., 2013, Holmes 2018). That is, the tropospheric OH abundance declines by 
0.25%-0.35% for every 1% increase in CH4 abundance (Prather et al., 2001). The IPCC AR5 
reported that global CH4 abundance grew by ~13% from 1980 to 2010 (Ciais et al., 2013). 



Assuming the models used here respond in a similar manner to other published CTM studies, 
the CH4 feedback should have yielded a ~3.3%-4.6% decrease in tropospheric OH between 
1980-2010 (or equivalently, 1.1%-1.5% per decade). That driver should theoretically be 
captured in the net results presented in Figure 6.  

As noted on Line 457, the mean downward trend in 𝜏!"! of Figure 6 is 1.8% per decade. 
Therefore, the residual (i.e. all of the other factors outside of the CH4 feedback) should be ~(-
1.8% - 1.3%) à -3.2% per decade (note: 1.3% is the average of 1.1% and 1.5%). This is 
much larger than the ~residual of -1.9% reported on Line 457 (~residual because it does not 
include the CH4 feedback factor). Therefore, since the 𝜏!"! budget does not appear to be 
closed when adding up all of the variables (including the CH4 feedback), this suggests that 
the methods used here have difficulty in deriving the contributions of individual drivers. If 
so, that would be a fundamental issue with the methods used to derive Figures 7-10. Here are 
some ways we believe the authors can build confidence in the methods used here: 

 
a. A quick first step would be to add up all of the components for each model in 

Figure 7 and plot their change, side-by-side, to the values presented in Figure 6 
(normalized to 2000 values for consistency). Do the trends match? If yes, since 
the NN method does not account for the CH4 feedback and CTMs are known to 
have a robust and consistent CH4 feedback, why do they nonetheless match? If 
no, can the missing CH4 feedback explain the difference?  

b. A lengthier, but maybe necessary test: Experiment with one of the CTMs. For 
example, re-run GMI with the year 2000 repeating for all variables, except CO. 
This might only be necessary for a few select years, such as 1985 and 1998. Do 
these results match the dark blue line in Figure 7e? One or two examples of these 
types of validation steps would really increase our confidence in the driver 
analysis.  

c. When attributing specific, individual drivers to trends, Random Forests are 
considered better machine learning tools (Grange et al., 2018). It is likely easy to 
swap out the NN code in your analysis with a random forest. Experiment with one 
of the models. For example, run the random forest algorithm for GMI’s 2000 
results and repeat the process for Figure 7. How different are the results? 

 
Minor Comments 

• Figure 3 compares the tropospheric OH columns from WACCM and the ANN-WACCM 
predicted tropospheric OH columns. As noted on Line 174, the training methods in this 
analysis were the same as those carried out in Nicely et al., 2017, which stated that the 
training/validation/testing datasets comprised 80/10/10% of all data. Therefore, it seems that 
80% of the data that was used to construct the middle panel of Figure 3 was data that the 
ANN has seen before (i.e. from the NN training). Shouldn’t this part of the evaluation be 
restricted to only the testing dataset? 

• In the paragraphs spanning Lines 423-448, there is a discussion about “spurious results”. Are 
these results “spurious” just because they look out of place in Fig. 7, or are there some other 
quantifiable ways that might justify the label “spurious”?  



• Figure 9b: Don’t CTMs have difficulty in capturing observation-derived estimates of IAV 
(Holmes et al., 2013)? That should be noted.  

• Lines 482-498 should likely be removed. The comparison of the CH4 results here and the 
CH4 results in Nicely et al., 2018 are not an ‘apples-to-apples’ comparison, as noted by the 
authors in the sentence starting with “On one hand…” from Line 485.  
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