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On behalf of all coauthors, I thank the reviewers and commenters for their time taken to read the 
manuscript and offer constructive comments.  They have served to significantly strengthen the 
analysis.  Below, we address each comment and, where applicable, detail how the manuscript 
was revised in response.  Original reviewer comments are shown in black font, and our responses 
are shown in blue. 
 
Reviewer 1 – Dr. Peer Nowack 

The	paper	by	Nicely	et	al.	uses	a	neural	network	approach	to	infer	drivers	of	differences	in	
OH/methane	liftetimes	among	chemistry-climate	models.	In	addition,	the	approach	is	used	to	
understand	modelled	historic	trends	and	variability	in	these	variables.	The	method	itself	has	been	
applied	in	similar	form	before	(cf.	Nicely	2017),	but	here	it	is	applied	to	a	novel	set	of	specified	
dynamics	CCMI	simulations.	 

Overall	this	paper	is	a	nice	example	of	how	machine	learning	can	be	used	to	provide	novel	insights	
into	chemistry-climate	model	differences	and	I	enjoyed	reading	it.	I	would	therefore	definitely	
recommend	rapid	publication	subject	some	revisions	and	clarifications	concerning	my	comments	
listed	below.	Major	comments:	 

• The	use	of	neural	nets	and	especially	their	cross-validation	requires	further	motivation	and	
explanation.	I	know	this	can	feel	like	unnecessary	repetition	to	the	authors	given	that	the	
method	has	been	described	previously,	but	it	is	an	essential	aspect	due	to	the	central	role	of	
the	method	here.	For	example,	when	I	first	read	the	paper	I	was	entirely	unclear	if	all	results	
might	be	subject	to	overfitting	and	if	the	sampling	was	done	in	space	or	time	as	well	as	how	
the	data	was	split	into	training,	cross-validation	and	test	datasets;	an	essential	aspect	of	any	
machine	learning	application.	I	now	understand	from	reading	the	other	paper	that	probably	
regressions	were	fit	on	an	80%/10%/10%	split	of	the	year	2000,	using	each	grid	cell	as	one	
sample	for	a	month	(rather	than	samples	being	ordered	by	time).	Is	this	still	valid?	Is	early-
stopping	really	the	only	method	you	used	to	manage	the	bias-variance	trade-off?	This	point	
is	particularly	important	as	evaluation	results	are	given	only	for	the	year	2000,	which	as	
mentioned	is	used	for	training.	Given	that	the	year	was	used	for	training	it	would	not	be	
surprising	if	the	neural	net	can	fit	the	data	almost	arbitrarily	well	if	overfitting	wasn’t	
sufficiently	counteracted.	Maybe	show	results/evaluate	for	all	years	that	you	did	not	use	for	
training?	I	would	also	explicitly	mention	the	sample	size	for	each	dataset	(all	models	are	
interpolated	to	the	same	resolution?).		

We agree with Dr. Nowack that the details of the method are important and have included more 
description in response.  Specifically, we now write in the main text, at L169: 

“Each model gridbox located below the tropopause (thermal, following the WMO definition, for all 
models except GEOS Replay, which uses a “blended” tropopause calculation combining thermal and 



potential vorticity definitions) is a single sample, so sample sizes are determined by a model’s vertical 
and spatial native resolution.  The number of tropospheric model grid points, and thus the training 
dataset sample size, is indicated for each model in Table S1 and always exceeds 100,000.  Because 
separate NNs are trained for each month, and monthly mean output from each model simulation is 
used as input and training data, the dataset does not represent diurnal variations in OH chemistry.” 

and at L205: 

“For training, the model output is randomly split 80%/10%/10% into training, validation, and test 
datasets.  During that process, the data from the training set is used to actively adjust weighting 
factors, and the validation set is evaluated to determine a training stopping point.  When errors in 
predicting the validation data grow after adjusting weighting factors some number of iterations in a 
row, it is determined that the NN model prior to the growth in errors likely reached a local minimum 
in its cost function.  This manner of “early stopping” helps to prevent over-fitting, though application 
of the NNs to alternative years is not immune to over-fitting, an issue discussed further in Section 
4.3.1.  For further application of this method across varying time scales, we would recommend a 
more methodical approach to sampling model output in time as well as in space.  The final 10% of 
data is then used to independently test the resulting NN, and compare between different training 
iterations.  A total of five trainings were performed for each NN, and the NN with best performance 
(evaluated by the correlation coefficient from comparison of NN-calculated and model-simulated OH 
values) was chosen as the NN to be used in further analysis.” 

To further detail the training datasets used here, we have added Table S1 to the Supplement, 
listing the sample size of the datasets (i.e., number of tropospheric model grid points) used for 
each model, for each month. 

We now include performance metrics of all NNs relative to year 2000, as were used in choosing 
between training versions.  Figures S1-S4 have been added, showing correlations of NN-
calculated and model-simulated OH, and new Tables S2 and S3 provide statistics of each NN 
used in this analysis.  Associated text is included at L300. 

We have also added evaluation of the NNs’ performance for years other than 2000, and have 
modified our analysis of the time series of CH4 lifetime based on this more quantitative 
identification of ill-performing (i.e., overfit) NNs (whereas before, we had subjectively removed 
a few cases of “spurious results” that stood out by eye).  We use the evaluation of NN 
performance for each year as a guide; if the r2 value of the NN-calculated OH (compared to the 
native model’s OH) is greater than some threshold for a given year, then we will use that NN for 
that year.  If not, that NN will be excluded, for that year.  We somewhat arbitrarily decided on an 
r2 threshold of 0.95, though we found the resulting variations and trends in CH4 lifetime to be 
relatively insensitive to varying this threshold within reason.  To demonstrate this, we have 
added the original Figs. 8 and 9, generated without the new quality check, to Supplement as Figs. 
S24 and S25. 

The implementation of this NN quality check changed our results slightly (the trend in !"#$ due 
to tropospheric O3, for instance, is a bit larger in magnitude), but the major conclusions of the 
analysis remain unchanged. 



We thank the reviewers for suggesting more attention to NN overfitting, and have revised the 
manuscript at L605 to describe our modified approach: 

“These examples of spurious results highlight an issue that must be treated with caution when using 
machine learning approaches.  Because the application of our NN method to time series analysis is an 
extension beyond the originally intended purpose, not all NNs are sufficiently generalizable to 
reliably reproduce OH for years other than the training year, 2000.  To account for this, we evaluate 
each NN for all years by inputting variables from each year.  With this test, all inputs are changed, not 
just a single input at a time.  The resulting OH, as depicted in Figures S16-S23 for select years, 
compares well to the native model’s OH field for that year in many cases, but not in all.  Considerable 
bias occurs at low OH mixing ratios, though we note that near-zero concentrations will likely not 
affect the resulting globally-integrated !"#$ unless values are grossly overestimated.  This evaluation 
also represents a rigorous test of the NNs, as significant shifts in numerous inputs at once might push 
the NN algorithm into new phase space not encountered during training, much more so than only 
changing one input at a time, which is our approach in the subsequent time-series analysis.  
Nonetheless, we limit the influence of poorly generalizable, or “overfit,” NNs by only including in 
the multi-model mean results for the years in which a NN reproduces its native model’s OH field with 
an r2 value greater than or equal to 0.95.  For four NNs (one per month) created for each of 8 CCMI 
models, across 36 years, the potential application of the NNs to 1152 calculations (4´8´36) is 
reduced to 696 calculations using this test.  Results from this point forward are subject to this quality 
check, and were found to be insensitive to the r2 threshold imposed.  This insensitivity is 
demonstrated by alternate versions of the figures to come, placed in Supplement, generated using all 
NNs rather than the quality-filtered NNs.” 

• I	would	like	an	additional	explanation	of	why	neural	nets	were	used	in	the	first	place.	I	
know	they	can	model	complex	non-linear	functions	(which	is	one	point	that	could	be	
mentioned),	but	there	are	many	algorithms	that	can	do	the	same	but	would	probably	be	
more	suited	for	inference	tasks	such	as	the	one	attempted	here.	Random	forests,	for	
example,	would	immediately	provide	feature	importances	for	the	regression	models	
themselves	and	it	would	be	easier	to	test	dependencies	between	correlated	variables	(e.g.	
ozone,	T,	humidity)	where	it	is	unclear	what	is	cause	and	effect.	I	do	not	ask	for	a	refit	with	
different	algorithms,	but	it	could	be	mentioned	in	terms	of	future	work/context.	 

We started this work, as proof-of-concept, ~year 2013 and, since we then had the framework in 
place to conduct the analysis, we largely adhered to our original method.  At that time, we were 
not aware of the random forest regressions approach, though we have since learned of the 
technique’s benefits, including the feature importance capability.  In the event that we are able to 
continue work in this area in the future, we view it as a high priority to explore the use of 
alternate techniques, though we remain confident that neural networks are suited to modeling the 
non-linear aspects of atmospheric chemistry when approached with appropriate caution and 
quality control measures. 

To ensure the reader is aware of these alternative approaches and their similar suitability, we 
have added text at L223 as follows: 

“We note that alternative machine learning algorithms have seen increased application to problems 
within atmospheric science in the last few years, and may be equally or even better suited than neural 
networks to studying non-linear chemical systems.  In particular random forest regressions and 
gradient boosting techniques offer greater computational efficiency and, in the case of random forests, 



have the capability to quickly identify which inputs are most strongly influencing the calculated 
output, known as “feature importance” (Hu et al., 2017; Keller and Evans, 2019; Liu et al., 2018).  
…As such, we encourage exploration of …additional algorithms for future machine learning 
applications to atmospheric chemistry.” 

We have also added text further justifying our use of neural nets, as suggested, at L103: 

“NNs in particular are capable of modelling complex non-linear functions, making them a suitable 
technique for studying the non-linear chemistry involved in OH production and loss.”	

• some	more	reflection	on	the	role	of	the	nudged	dynamics:	the	authors	mention	that	one	of	
the	reasons	why	temperature	is	less	important	in	explaining	inter-	model	differences	is	the	
fixation	to	a	common	atmospheric	background	state	by	nudging.	Alternatively,	correlations	
with	other	variables	such	as	ozone	are	offered	as	an	explanation.	Could	the	same	not	be	said	
about	water	vapour?	Maybe	this	would	also	explain	why	it	is	suddenly	so	much	more	
important	(relatively)	to	explain	variability?	What	did	you	observe	in	this	respect	for	the	
free-running	simulations?	 

We have added text to the Model Simulations description, stating that most of the specified 
dynamics simulations do not constrain their water vapor to reanalysis data.  While one would 
think these models would generally calculate water following temperature (which is constrained) 
as described by the Clausius-Clapeyron relation, this does not seem to be the case, as water 
appears as a “medium” driver of inter-model differences (4th in the ranking on Figure 5).  It’s 
likely that even small differences in water have a large effect on !"#$ due to its important role in 
primary production of OH. 

In the manuscript, we had previously referred to the results of the free-running simulation to 
interpret this point, at L418: 

“We note that T differences between the SD simulations are likely limited due the meteorological 
constraints imposed on the models.  However, examination of the free-running simulations, discussed 
in the Supplementary Material, also shows practically no impact of T on OH.  Thus, we conclude that 
the effect of temperature on OH chemistry is likely indirect, acting through pathways embodied by 
other variables, such as H2O and species that exhibit strongly temperature-dependent reaction rates.” 

We have also added a note regarding Dr. Nowack’s point that H2O is relatively more important 
in explaining temporal variability at L644: 

“It is interesting to note that H2O plays a stronger role in the overall temporal trend of !"#$, as 
compared to its role in explaining inter-model differences.  This is likely due to the fact that 
temperatures were constrained in the specified dynamics simulations, which in turn should determine 
the water vapor calculated within the models.” 

• the	randomness	of	neural	networks:	it	seems	that	only	one	network	is	fit	per	model.	
Unfortunately,	neural	networks	behave	somewhat	randomly,	which	is	essentially	the	result	
of	many	different	local	minima	in	the	cost	function	that	can	be	found	during	the	weight	
optimization	process.	Therefore,	I	would	expect	that	the	networks	for	each	model	would	
already	be	different	due	to	different	random	initializations	of	the	networks	even	if	the	



chemistry	models	would	be	identical.	I	would	strongly	encourage	the	authors	to	test	the	
relative	importance	of	this	randomness	aspect	compared	to	the	actual	inter-model	
differences.	For	example,	they	could	train	five-ten	neural	networks	for	two	of	the	models	
(subject	to	an	objective	optimization/early	stopping	procedure)	and	show	the	spread	in	the	
results	when	these	different	network	realizations	of	the	two	models	are	compared	(instead	
of	only	one	realization	for	each).	No	need	to	get	started	with	different	network	
architectures,	which	would	similarly	affect	the	results,	I	assume.	 

We trained five NNs initially for each model, and choose from among those the top performer, as 
we now explain in the text (see our response to the first comment, above).  We have performed 
the suggested analysis, reproducing Figure 4 from the main text for five trainings of the GMI and 
OsloCTM NNs.  These reproductions, using different NN versions, have been added to the 
Supplement as Figures S5 and S6.  Visual, qualitative comparison of all 5 versions reveals very 
similar spatial distributions and magnitudes for the most part, though the values of the change in 
CH4 lifetime do vary modestly, depending on the variable.  For instance, the standard deviations 
in Δ!"#$ from JO1D and HCHO swaps into the GMI NNs are about 0.2 years, though some of 
the NNs included were not as highly-performing as the chosen NN. 

In any case, we agree with Dr. Nowack on the importance of the reader being aware of this fact, 
and have added the following text in our discussion of Figure 4, at L363: 

“A fourth issue is the fact that NNs can exhibit some degree of random behaviour, based on how they 
were trained and initialized.  Our method involved training 5 NNs and selecting from those the one 
that performed best when compared to the independent test dataset.  That single NN was used in all 
subsequent analysis.  However, it is a useful exercise to evaluate the role of NN randomness in our 
results.  We show in Figures S5 and S6 the left and right panels of Fig. 4, reproduced for the alternate 
NN trainings of the GMI and OsloCTM models, respectively.  A visual comparison of tropospheric 
OH column differences among the five trainings of each model’s NN reveals markedly similar spatial 
distributions and magnitudes.  The values of calculated &'()* do differ somewhat between the 
training instance, with larger effects on some variable swaps than for others.  For instance, the 
standard deviation of the values of &'()* calculated for all five trainings of the GMI NN is about 0.2 
years for the J(O1D) and HCHO swaps, but less than 0.05 years for O3 and NOx.  We note, though, 
that some of the NNs displayed in Figures S5 and S6 exhibit worse performance than the one 
ultimately chosen for subsequent use.  As a result of this exercise, the uncertainties resulting from this 
analysis method may be considered, at most, to be ~0.2 years.” 

Minor	comments:		

• p.	4,	l.107-109:	revise	second	part	of	the	sentence. 

We have changed this line from “…seeks to further inter-model evaluation…” to “seeks to 
enable inter-model evaluation…”	

• p.	4/5;	model	simulations:	since	UV	fluxes	and	stratospheric	ozone	are	discussed	maybe	
briefly	mention	if	all/which	models	include	interactive	stratospheric	chemistry,	or	how	it	is	
treated	otherwise.	 



We have included the statement at L137 that “All models, here and including those described 
below, include interactive stratospheric chemistry.”	

• section	3.1	I	think	there	should	be	more	detail	here;	essentially	another	small	subsection	on	
the	cross-validation	method.	 

Please refer to our additions to the text described under the first major comment, above.  We 
believe this adds considerably to the detail concerning our method, as Dr. Nowack requests.	

• p.	5	l.	161:	‘mutually	exclusive’	-	what	do	you	mean	by	that	here?	 

We have changed the language here to “outside the ranges,” to improve clarity.	

• l.	165-170:	Maybe	try	a	variation	of	the	input	features?	The	cross-correlations	are	indeed	an	
obvious	problem	for	the	interpretation.	Did	you	consider	fitting	two	different	networks,	e.g.	
one	with	JO1D,	one	with	column	ozone	and	consider	how	well	they	do	on	the	cross-validation	
dataset?	I	am	also	wondering	how	these	different	networks	would	perform	in	different	
atmospheric	regimes,	e.g.	column	ozone	being	more	important	in	the	upper	troposphere.	
JO1D	(including	clouds)	becoming	relatively	more	important	in	the	lower	troposphere?	Can	a	
single	network	for	all	grid	cells	capture	these	different	regimes	appropriately?	 

We did evaluate inclusion of just JO1D (and not column ozone, which was the method of our 
original “proof-of-concept” study in Nicely et al., 2017), use of just column ozone (and not 
JO1D), and inclusion of both at the time of original development of the method.  While the first 
and third options were quite comparable in terms of NN performance, the second was not as 
effective, likely because overhead ozone is so far removed from the in situ OH quantity.  JO1D, 
on the other hand, is the immediately-relevant measure of the UV light affecting OH at a 
particular time and place.  Over the years we have worked on this, there has been a substantial 
amount of experimentation with the input variables chosen, and the set of inputs were 
determined to provide the best balance between strong performance on independent test data 
following training, and reasonable results following the inter-model swapping of variables (use 
of absolute values of CH4 would result in non-sensical output, for instance). 

To encourage the reader to consider the importance of architecture/input choice testing, in the 
case that they attempt a similar analysis, we have added text at L229 stating: 

“We also do not intend to suggest that our chosen NN input list, architecture, and general method is 
the best approach; input variables were largely determined by available output, and architecture 
testing was conducted on the computing resources available at the time of the study.”	

• l.228:	performance	for	the	year	2000	is	strong	–	but	this	is	the	training	year.	Should	the	goal	
not	be	to	evaluate	on	out-of-sample	years.	Maybe	show	an	error	plot	for	all	years?	I	assume	it	
gets	worse	the	further	one	moves	away	from	the	training	year,	partly	due	to	the	extrapolation	
error?	 



We refer to our response to the first major comment, where we added evaluation of all NNs for 
years other than 2000 and adapted our time series analysis to remove poorly-performing NN 
instances.	

• general	remark	on	the	extrapolation	issues:	could	you	give	an	estimate	of	how	often	you	had	
to	correct	values	in	this	way	for	each	comparison/model	(e.g.	percentage	o	cases	depending	
on	the	year)?	This	would	give	the	reader	a	better	impression	of	how	important	this	factor	is	
when	considering	the	results.	In	addition,	did	you	ever	test	how	linear/non-linear	the	
regression	relationships	really	are?	Maybe	linear	regression	algorithms	such	as	Lasso/Ridge	
would	actually	circumvent	all	these	issues	by	being	able	to	extrapolate	better	and	still	extract	
feature	importances	in	a	sophisticated	enough	manner	(the	resulting	regressions	would	also	
be	easier	to	interpret).	 

The extrapolation control method we developed is only utilized in the inter-model comparison 
portion of this analysis.  Our reasoning for doing so is that any given model should simulate 
generally comparable conditions from year to year, aside from regime shifts in 
anthropogenically-emitted species and strong ENSO events that shift locations of convection, 
biomass burning, etc.  And, if our NNs are moderately generalizable, then small excursions 
outside the range of variable values on which the NNs were trained should be manageable 
(which we found was not always the case and have now accounted for, as explained under the 
first comment, above). 

We still agree with Dr. Nowack, though, that some indication of how frequently extrapolation 
control is employed in the inter-model comparison analysis would be informative.  To do this, 
we have written out flags for instances in which adjustments to swapped input variables are 
made.  We separate these instances into “coarse” and “fine” adjustments, the former describing 
the case when an incoming value falls completely outside the range of tropospheric values from 
the NN’s native model, incurring a presumably large adjustment, and the latter describing 
smaller changes made to conform the other model’s variable to the native model’s chemical 
regimes.  For the January NNs only (the extrapolation control code is rather inefficient; it took 
several weeks to generate these results alone), the percentage of cases (total number of 
tropospheric grid points) that undergo coarse adjustment are 3.5% on average, while cases in 
which fine adjustments are performed average 18.8%.  A large number of the fine adjustment 
cases are driven by inconsistencies in CH4, though individual models may have other factors that 
contribute significantly. 

The result of performing these adjustments is to dampen the calculated impact to OH and !"#$.  
However, the analysis already reveals instances with large changes to !"#$, so we think it is 
appropriate to state more conservative results with a higher level of confidence. 

We have added text to inform the reader how often extrapolation control is invoked at L248: 

“For reference, we tally the number of instances in which extrapolation control is invoked for two 
categories: coarse adjustments, when a NN input value from another model falls entirely outside the 
range of the NN input values from the native model, and fine adjustment, when a value from another 
model must be tweaked to preserve the native model’s chemical regimes.  On average, coarse 
adjustments are incurred for 3.5% of all swapped data points, while fine adjustments are made to 



18.8% of swapped values.  We find that extrapolation control is critical to achieve meaningful results 
with the NN inter-model comparison method, though it necessarily forces the attributed changes in 
OH and !"#$ to be conservative estimates.” 

We have not explored the use of linear regression techniques such as Lasso/Ridge in order to 
ameliorate issues pertaining to extrapolation, but we would like to encourage the reader to do so.  
We have added text at L228: 

“Additionally, linear regression algorithms such as Ridge and Lasso regression may be beneficial in 
curbing issues related to extrapolation.” 	

• l.	484:	maybe	I	approach	this	one	too	naively,	but	why	would	I	expect	to	model	a	CH4	trend	if	
CH4	is	normalized	by	its	maximum	value	in	each	year?	I	assume	the	maximum	value	shows	a	
trend	somewhat	proportional	to	the	average	trend?  

Dr. Nowack is correct on this point; we cannot attribute any meaning regarding the “CH4 
feedback factor” to the trend in !"#$ due to CH4 found here, as a result of CH4 being normalized.  
We have taken steps to remove language suggesting that a trend in OH due to CH4 is found, 
emphasized in some figures that CH4 is normalized by using the notation “CH4NORM”, and 
removed the trend due to CH4 data point from our final figure, comparing the CCMI model 
trends in !"#$ to our previous empirical study’s trends in [OH]TROP, since they are not 
comparable. 

We chose to leave “CH4NORM” in Figs. 7-9 because there is some meaning in this value; it 
represents changes in the spatial and vertical distribution of CH4 within the troposphere, which, 
based on how the CH4 collocates with high OH concentrations, can influence the resulting !"#$ 
value.  We have added explanation to this effect at L497, where we state: 

“Because we are relying on the same NNs used for the inter-model analysis, we emphasize that the 
CH4 fields used here are still normalized, separately for each year.  As a result, the variations in !"#$ 
due to CH4 should not be interpreted as a measure of the CH4 feedback factor (Prather et al., 2001).  
Instead of representing the change in OH with a change in absolute concentration of CH4, the 
numbers shown here signify the change in OH with a change in how CH4 is distributed within the 
atmosphere.  Largely, one would expect this to remain constant over time, though results from this 
analysis of the CCMI simulations suggests there are some modest changes in !"#$ attributed to the 
distribution of tropospheric CH4.  Should a similar method be applied to analysis of temporal 
variations in OH in the future, we would encourage training the machine learning algorithm on data 
spanning all years such that use of CH4 absolute values would be possible.”	

 

Reviewer 2 

Nicely	et	al.	(2019)	attributed	OH	differences	among	CCMI	models	into	a	number	of	parameters	
using	a	neural	network	approach.	They	found	the	major	drivers	for	the	decline	in	methane	lifetime	
are	tropospheric	O3,	JO1D,	NOx,	and	H2O,	with	CO	contributing	to	the	OH	interannual	variability.	It	
is	a	very	interesting	study	with	very	popular	machine	learning	technique.	The	manuscript	is	in	



general	well	written	and	well	organized.	I	recommend	acceptance	of	the	manuscript	after	
addressing	below	questions.	 

Neural	network	setup	

	
As	described	in	the	manuscript,	one	NN	is	trained	for	each	model	for	each	month	and	all	the	
training	is	performed	for	year	2000.	So	how	is	it	applicable	for	the	input	with	a	lengthy	period?	
Some	variables	would	undergo	significant	changes	from	the	1980s	to	2010s.	What	if	the	NN	trained	
for	year	2000	is	not	suitable	for	1980s	or	2010s?	

This is certainly a concern, and we have added new analysis that identifies how well the NNs, 
trained on output from year 2000, perform for other years.  The majority of NNs continue to 
perform strongly, though a number of them encounter conditions that cause large deviations in 
their predicted OH.   

We refer the reviewer to our response to Dr. Nowack’s first major comment, above, for an in-
depth description about how the manuscript has been changed to address this point, including 
adjusted analysis, new methodological details in the main text, and many new figures in the 
Supplement. 

There	is	one	concern	that	when	you	substitute	a	single	input	taken	from	one	model	into	another.	
Would	this	affect	the	original	chemical	regime	or	atmospheric	condition?	Would	there	be	some	
“relaxation”	in	the	system	to	approach	original	condition?	In	that	sense,	it	could	reduce	the	
sensitivity	of	OH	to	the	differences	in	the	input.		

We agree with the reviewer, that this analysis neglects “true atmospheric behavior,” as you might 
call it – feedbacks and relaxation effects are ignored as we instead are calculating an 
instantaneous change that would occur if you could magically perturb a single species or 
variable.  But we would still regard this as a useful exercise to both parse the main influencers of 
OH chemistry and identify the causes of inter-model differences, which are difficult to do 
otherwise.  We have added text acknowledging this point at L476: 

“A final qualification is this analysis constitutes a foundationally hypothetical experiment.  It 
essentially addresses the questions, “What if we could instantaneously switch the fields of just one 
chemical species between two global models?  What would be the impact on OH? on '()*?”  This 
approach, then, necessarily neglects the roles of feedbacks in the atmospheric system (e.g., if the NOx 
field is perturbed, this will propagate to changes in O3 as well, with time).  However, for the objective 
of teasing apart the influences on global OH abundance and '()* and explaining inter-model 
differences, a notoriously difficult task, we regard our approach as a valuable exercise.“ 

Lastly,	it	is	more	of	a	broad	question.	To	what	degree	that	the	trained	NN	can	realistically	represent	
the	non-linear	chemical	system.	In	this	work,	there	are	a	number	of	variables	are	input	to	the	NN.	
The	weighting	factors	can	be	adjusted	during	the	training	process,	but	if	there	are	more	inputs	or	
different	inputs,	the	weighting	factors	could	be	different?	Would	this	affect	conclusion?	How	to	deal	
with	this	issue?		



Neural networks are generally highly capable of modeling non-linear functions, which is the 
main reason why we chose this approach originally.  Within the NN architecture, we use 
hyperbolic tangent activation functions, which are non-linear.  As these functions are used many 
times over, in parallel, they enable complex fitting of multi-dimensional, non-linear surfaces.  
The reviewer is correct, though, that once the training process is complete, the weights of our 
chosen NN are fixed, and the insertion of different inputs can cause issues.  To deal with this, we 
implement the “extrapolation control” method described in the text.  In our revisions, we have 
also taken the extra step of evaluating our NNs across all years, to exclude NNs that do not 
generalize well (i.e., reproduce well the OH for a particular year, presumably due to some new 
conditions encountered) from our analysis. 

Specific	comments:	 

Page	4,	121-125,	is	water	vapor	nudged	for	all	the	REF-CISD	simulations?	If	not,	what	are	the	REF-
C1SD	simulations	that	nudge	water	vapor?		

We have added statements to the text describing which models include specific humidity 
nudging in their specified dynamics schemes, at L131: 

“Particularly relevant to this analysis is the nudging of specific humidity, which is only performed in 
the MOCAGE model, of the models we analysed.” 

and L156: 

“All CTMs except GEOS-Chem calculate water vapor interactively in the troposphere.  GEOS-Chem 
instead uses specific humidity fields from the MERRA reanalysis.” 

Page	8,	line	244,	but	also	over	tropical	ocean?	

Yes, it is true that changes to O3 and NOx influence OH over the tropical oceans as well as over 
the continents, though the maximum changes in OH appear over land.  We have changed this 
statement to read, at L319: 

“…exert the greatest influence on OH over the climatological tropics, with maximum impacts over 
land but extending over the oceans as well.” 

Page	9,	line	261-264,	could	you	elaborate	“buffering	effects”?		

The buffering effects we are referring to mostly involve more complex hydrocarbon chemistry, 
and so we have changed this example from CH4 to isoprene.  The text now reads, at L337: 

“For example, one model may be sensitive to an increase in isoprene, causing OH concentrations to 
drop in response.  Another model may incorporate buffering effects (such as reactions involving 
oxidized volatile organic compounds (Lelieveld et al., 2016; Taraborrelli et al., 2012) that allow OH 
to be recycled…” 

Page	9,	line	278-282,	this	is	similar	to	“relaxation”	that	mentioned	in	the	general	comments.		



The example given at this location, regarding the implementation of extrapolation control 
preventing a large change in CH4 from being conveyed to the NN, does not exactly represent a 
“relaxation” of the system, but rather, a logistical issue with the method, preventing our even 
testing a large perturbation in the NN out of an abundance of caution.  In general, though, we 
agree with the reviewer that the issue of relaxation is not directly addressed by our method, and 
so the text added at L476 (described in our response to the general comment, above) discusses 
this point. 

Page	11,	line	326	&ff,	Figure	5,	the	impacts	of	temperatures	are	small	due	to	the	specified	dynamics	
in	the	model.	What	about	water	vapor?	If	specified	water	vapor	is	also	imposed,	are	the	impacts	of	
water	vapor	still	large?	You	may	want	to	check	the	models	with	the	specified	water	vapor.		

This is a very interesting idea, though the only two models that used specified water vapor 
(MOCAGE and GEOS-Chem) used two different reanalysis data sources (ERA-I and MERRA, 
respectively).  The mean Δτ,-. values due to H2O for these two models are quite different, 
though there is at least overlap in the 1s about the mean, represented by the “whiskers” in Fig. 5.  
Had there been more models imposing a water vapor constraint, from the same reanalysis data, 
this would be worth exploring further. 

Page	11,	line	336-378,	what	do	you	mean	by	“reminder	term”?		

We describe the “remainder term” three paragraphs prior to the location identified by the 
reviewer, where it is instructive to refer to Table 1.  To improve clarity, we now include the text: 
“…the remainder term (or term labelled “Mech.” in Table 1)…” at L428. 

Page	16,	line	487-489,	are	you	talking	about	latitudinal	gradient	or	vertical	distribution?		

Because of use of normalized CH4 prevents inferences regarding the true “CH4 feedback” on 
OH, we have removed the discussion at Pg. 16, line 487.  However, new text placed earlier in the 
discussion (starting L497) also refers to the “distribution of methane.”  We have included “both 
vertically and spatially” as clarification, as changes in the collocation of OH and CH4, no matter 
where in space, could impact the calculated τ,-.. 

 

Reviewer 3 – Dr. Leif Denby 

I	am	only	commenting	on	the	machine	learning	aspect	of	the	submitted	manuscript.	Apologies	for	
overlooking	for	not	providing	more	general	feedback.	 

1.	In	section	3.2	I	would	rephrase	the	sentence	containing	"mimic	the	tropospheric	chemistry"	to	
include	"predict	the	instantaneous	OH"	concentration.	As	is	written	now	it	might	give	the	
impression	that	the	time	evolution	is	predicted	by	the	neural	networks	as	the	research	presented	is	
about	reactions.		

We agree with Dr. Denby on this use of language and have made the recommended change. 



2.	I	find	the	sentences	"Briefly,	one	NN	is	trained	for	one	model,	for	one	simulation	month	at	a	time."	
and	"To	reduce	computational	demands,	we	establish	NNs	for	four	months,	one	for	each	season..."	a	
little	contradictory.	Is	training	done	on	one	month	or	on	four	months	of	input?	How	is	it	possible	to	
do	both?	It	might	be	that	the	reader	should	simply	study	the	referenced	paper,	but	I	find	this	a	little	
unclear.		

We apologize for the confusing language here; training is done on one month of input; we 
generate separate NNs for each month that we look at; and we look at 4 months.  We have 
attempted to clarify this by changing the text to read, at L166: 

“Briefly, four NNs are trained for one model, each for one simulation month.  To reduce the 
computational demands of NN training, we only establish NNs for four months, one for each 
season…” 

3.	It	would	be	nice	to	a	brief	comment	on	why	models	were	trained	for	each	month	separately.	Was	
this	done	because	the	temporal	variability	couldn’t	be	captured	by	a	single	model?	Does	the	skill	of	
each	model	vary	through	the	month?	I	assume	that	at	the	ends	of	the	month	(where	there	is	
transition	between	which	model	is	used)	there	might	be	a	reduction	in	skill.	But	maybe	the	
predictions	match	seamlessly	when	switching	between	models.		

In our early years of developing this method, we encountered a couple of issues that resulted in 
our decision to only train an NN for a single month.  When we first attempted to ingest all model 
output for an entire year into the Matlab NN software, on which we still rely, and on a graduate 
student’s laptop (albeit a powerful one – on which we do not still rely), we unsurprisingly 
encountered memory issues when attempting to train the NN.  Then, during our limited attempts 
to randomly sample model output across all months to generate a training dataset, we found that 
the NNs did not perform well. 

Now that considerably more progress and application of machine learning to scientific questions 
has taken place, we would encourage a more methodical and strategic sampling of the model 
domain to create a training dataset.  To ensure the reader is aware of this point, we have added 
text at L231: 

“It is possible that a single NN could suffice for predicting OH variations throughout an entire year, 
rather than for just a single month, following methodical subsampling methods to create the initial 
training dataset.” 

Regarding questions about how the NN performs “through the month,” we use only monthly 
mean output from the CCMI models examined here (monthly mean output is commonly what is 
made available from these large model intercomparison projects).  So, we are not able to address 
issues of varying performance throughout a simulated month. 

4.	The	"Inter-model	comparison"	is	nice.	With	the	restriction	on	the	numerical	range	of	the	values	
which	are	substituted	I	feel	that	feature	importance	could	similarly	be	inferred	by	simply	shuffling	
(across	time)	all	values	for	a	specific	feature,	similarly	to	how	it’s	done	for	random	forests.	Is	there	
a	reason	why	this	wasn’t	attempted	here?	Isn’t	there	a	concern	that	using	the	presented	method	
that	one	might	infer	low	feature	importance	for	fields	that	simply	vary	little	between	models?		



We thank Dr. Denby for the statement of support.  His follow-up questions relate to the ultimate 
goal of the analysis.  In our case, the objective is to explain why global models of atmospheric 
chemistry give different quantities of global mean OH and !"#$.  In that case, we are less 
concerned with quantities that are quite consistent among the models, even if they have the 
capability of strongly altering OH chemistry.  We go into this a bit in the Discussion (~L354), 
explaining that two conditions must be met to incur a change in OH: differences in the input 
between the two models, and sensitivity of OH to that input. 

The questions posed above would be interesting to address if one were examining which inputs 
have strong “feature importance,” which is not necessarily the goal of the inter-model 
comparisons, but is, in essence, what we have done in the time series evaluation. 

 

Short Comment 1 – Mr. Karl M. Seltzer, Dr. Prasad Kasibhatla  

General Comments  

The manuscript “A Machine Learning Examination of Hydroxyl Radical Differences Among 
Model Simulations for CCMI-1” by Nicely et al. discusses a topic that is of high interest to the 
Atmospheric Chemistry and Physics community. Possibly the most perplexing issue in 
atmospheric chemistry is the unexpected stabilization of global methane concentrations from 
~2000-2006. This study attempts to unravel the individual CTM drivers of the hydroxyl radical 
in a suite of simulations, thus illuminating the changes, and reason for said changes, in the 
primary termination pathway for methane, as simulated by each CTM.  

While this work is important, we do have concerns about how some of the results are presented 
and methods are employed in this analysis, both of which constitute major comments. We will 
describe both in more detail below, followed by some minor comments.  

Major Comments  

1. In Figures 7-10, results from the CH4 signal, as it relates to changes in tropospheric OH, are 
presented. While the text does explicitly state that “CH4” is a normalized value based on the 
maximum tropospheric value, we believe the presentation of the results in Figures 7-10 and 
much of the language used throughout the manuscript can lead to substantial confusion on 
the part of the reader. The reader might reasonably interpret the results as an estimate of the 
sensitivity of !CH4xOH to changes in CH4 abundance (i.e. the CH4 feedback factor). One 
example: the inclusion of CH4 in Figure 10 makes a comparison of the “CH4” value reported 
in this study (i.e. NOT the CH4 feedback factor) with the calculated CH4 feedback factor from 
Nicely et al., 2018. 

Based on our interpretation of the methods employed here, the authors did not analyze the 
CH4 feedback factor. Since it seems the better characterization is that the global distributions 
of CH4 concentrations were analyzed, we think the authors need to re-write any discussions 
related to CH4 results throughout the manuscript to make this distinction abundantly more 



clear, and should possibly remove the characterization of “CH4” in Figures 7-10. Similarly, it 
is not clear why CH4 concentrations were normalized. Presumably, the same analysis using 
non-normalized values of CH4 would be able to capture the CH4 feedback? 

We fully acknowledge that the impact of CH4 on the trend in '()*, as it is found here, does not 
represent the CH4 feedback factor.  This was a late realization, and some of the language and 
figures in the manuscript may have been misleading as a result.  We have taken steps to remove 
this misleading content in the following ways: 

• During early discussion of the “Time series evaluation” results, we attempt to present this 
issue in a forthright manner.  Starting at L497, the text now reads: 

“Because we are relying on the same NNs used for the inter-model analysis, we emphasize that 
the CH4 fields used here are still normalized, separately for each year.  As a result, the 
variations in '()* due to CH4 should not be interpreted as a measure of the CH4 feedback factor 
(Prather et al., 2001).  Instead of representing the change in OH with a change in absolute 
concentration of CH4, the numbers shown here signify the change in OH with a change in how 
CH4 is distributed within the atmosphere, both vertically and spatially.  Largely, one would 
expect this to remain constant over time, though results from this analysis of the CCMI 
simulations suggests there are some modest changes in '()* attributed to the distribution of 
tropospheric CH4.  Should a similar method be applied to analysis of temporal variations in OH 
in the future, we would encourage training the machine learning algorithm on data spanning all 
years such that use of CH4 absolute values would be possible.” 

• In Figures 7-9, we now label the time series/trends due to CH4 as “CH4NORM” to serve as 
a reminder that the CH4 with which we performed the analysis is normalized.  We chose 
to leave “CH4NORM” in Figs. 7-9 because there is some meaning in this value; it represents 
changes in the spatial and vertical distribution of CH4 within the troposphere, which, 
based on how the CH4 collocates with high OH concentrations, can influence the 
resulting '()* value. 

• We have removed entirely the CH4 data point in Figure 10 comparing the CCMI model 
trend, as evaluated by NN, to the Nicely et al. (2018) trend, and all discussion associated 
with it, as the two values do not provide an “apples to apples” comparison. 

Regarding why normalized CH4 was used in the first place, we sought to utilize the same NNs 
trained for the inter-model comparison application for the new analysis of OH time series.  
Absolute values of CH4 mixing ratio as NN inputs were initially attempted for the inter-model 
comparison, but yielded non-sensical results since the models calculated very different CH4 
fields in some cases.  In the case of CCMI, the models are fairly similar, since they use the same 
CH4 boundary condition, but the external models that did not formally participate in CCMI still 
pose the same problem. 

In the case that we could dedicate considerably more time to this work, we would ideally train 
new NNs for the time series analysis portion of the project using absolute CH4 mixing ratios.  
This would necessitate that we create a training data set consisting of samples across all years, 
lest we run into the same dilemma of having the NN trained on a relatively narrow range of CH4 
values.  This type of subsampling should be performed strategically, and, along with the actual 



training of the NNs, would be computationally demanding and require a substantial amount of 
time, thus we regard this as beyond the scope of our current manuscript. 

2. The sensitivity of !CH4xOH	to changes in CH4 abundance reported by CTM studies are 
reasonably consistent and range from -0.25 to -0.35 (Prather et al., 2001; Fiore et al., 2009; 
Holmes et al., 2013, Holmes 2018). That is, the tropospheric OH abundance declines by 
0.25%-0.35% for every 1% increase in CH4 abundance (Prather et al., 2001). The IPCC AR5 
reported that global CH4 abundance grew by ~13% from 1980 to 2010 (Ciais et al., 2013). 

Assuming the models used here respond in a similar manner to other published CTM studies, 
the CH4 feedback should have yielded a ~3.3%-4.6% decrease in tropospheric OH between 
1980-2010 (or equivalently, 1.1%-1.5% per decade). That driver should theoretically be 
captured in the net results presented in Figure 6.  

As noted on Line 457, the mean downward trend in !CH4	of Figure 6 is 1.8% per decade. 
Therefore, the residual (i.e. all of the other factors outside of the CH4 feedback) should be ~(- 
1.8% - 1.3%) à -3.2% per decade (note: 1.3% is the average of 1.1% and 1.5%). This is 
much larger than the ~residual of -1.9% reported on Line 457 (~residual because it does not 
include the CH4 feedback factor). Therefore, since the !CH4	budget does not appear to be 
closed when adding up all of the variables (including the CH4 feedback), this suggests that 
the methods used here have difficulty in deriving the contributions of individual drivers. If 
so, that would be a fundamental issue with the methods used to derive Figures 7-10. Here are 
some ways we believe the authors can build confidence in the methods used here:  

a. A quick first step would be to add up all of the components for each model in Figure 
7 and plot their change, side-by-side, to the values presented in Figure 6 (normalized 
to 2000 values for consistency). Do the trends match? If yes, since the NN method 
does not account for the CH4 feedback and CTMs are known to have a robust and 
consistent CH4 feedback, why do they nonetheless match? If no, can the missing CH4 
feedback explain the difference?  

b. A lengthier, but maybe necessary test: Experiment with one of the CTMs. For 
example, re-run GMI with the year 2000 repeating for all variables, except CO. This 
might only be necessary for a few select years, such as 1985 and 1998. Do these 
results match the dark blue line in Figure 7e? One or two examples of these types of 
validation steps would really increase our confidence in the driver analysis.  

c. When attributing specific, individual drivers to trends, Random Forests are 
considered better machine learning tools (Grange et al., 2018). It is likely easy to 
swap out the NN code in your analysis with a random forest. Experiment with one of 
the models. For example, run the random forest algorithm for GMI’s 2000 results 
and repeat the process for Figure 7. How different are the results? 

We acknowledge that these suggestions by Mr. Seltzer and Dr. Kasibhatla would make a 
rigorous test for the application of our method to time series and determination of trends in 
OH/!CH4.  We have taken steps to build confidence that the method is fundamentally sound 
following their item (a.) above. 



Below we have created a table listing the overall trends in !CH4, taken directly from the CCMI 
models (i.e., Figure 6), the overall trend calculated by totaling each component from the NN 
analysis (Figure 7, excluding the obviously spurious cases discussed in the text: EMAC CH4 and 
MOCAGE O3 Column), and the implied CH4 feedback factor found by subtracting the latter 
from the former. 

Model Native model trend in 
!CH4	(Fig. 6)            
(% decade–1) 

Summed trend in !CH4 
from NN-calculated 
components (Fig. 7) 

Implied CH4 
feedback (Column 2 
– Column 3) 

CAM4Chem –2.69 –3.15 +0.46 
EMAC-L47MA –1.22 –1.32 +0.10 
EMAC-L90MA –1.48 –1.50 +0.02 
GEOSCCM –0.70 –1.57 +0.87 
GMI –0.54 –1.86 +1.32 
MOCAGE –2.97 +1.32 –4.29 
MRI-ESM1r1 –2.31 –2.34 +0.03 
WACCM –2.72 –2.97 +0.25 

The values of the implied CH4 feedback are all of the correct sign, except for MOCAGE, which 
generally demonstrates quite different behavior from the other models.  The value for GMI is in 
good agreement with the 1.1-1.5 % decade–1 range that is cited in the comment above.  We 
would identify a couple of issues with validating the method in this manner, though. 

First, as described in our previous responses to reviewers, we now identify specific instances in 
which the NNs (for specific months and years) do not perform sufficiently well, and so the multi-
model mean trend results that we show now use NN calculations “filtered” for only the high 
performing NNs.  The numbers we quote in the above table, in Column 3, include all NN results 
except for the MOCAGE O3 column and EMAC CH4 contributions, and so admittedly include 
some dubious contributions.  Because NNs for individual months are filtered out in the new 
quality-check, it would not be straightforward to calculate new D!CH4 values, on a year-by-year 
basis, for a single model.  The aggregation of all models, into the multi-model mean results we 
present, allows us to assess the trends using results from all years. 

Second, we do only perform this analysis for four months out of the year, so a truly apples to 
apples comparison with, e.g., CH4 feedback factors from other studies would more aptly include 
all 12 months.  And finally, as we now acknowledge following our response to Reviewer 2, there 
are secondary effects and “relaxation” that occur in the real atmosphere and in the global models 
we are examining, which the NNs may not capture.  This analysis can instead be interpreted as 
evaluation of the instantaneous change in OH resulting from a hypothetical perturbation to a 
single chemical/radiative/physical variable.  One should be aware that these perturbations often 
do not occur in isolation, though, and so we now caution the reader that the responses shown by 
this analysis may not be directly applicable to the real world. 

Because we have chosen to remove discussion of our results regarding the trends in !CH4 due to 
CH4, we consider further analysis regarding the CH4 feedback factor as beyond the scope of the 
current work.  We do encourage further study of the issue, though, both by suggesting 



refinements to our method (i.e., creating a training dataset sampled across many years, to enable 
use of absolute CH4 values in the NNs ~L223) and by endorsing movement away from CH4 
boundary conditions (which we believe hampers useful studies of the CH4 budget with our 
present-day atmospheric chemistry models), toward interactive fluxes (L687). 

Minor Comments  

• Figure 3 compares the tropospheric OH columns from WACCM and the ANN-WACCM 
predicted tropospheric OH columns. As noted on Line 174, the training methods in this 
analysis were the same as those carried out in Nicely et al., 2017, which stated that the 
training/validation/testing datasets comprised 80/10/10% of all data. Therefore, it seems that 
80% of the data that was used to construct the middle panel of Figure 3 was data that the 
ANN has seen before (i.e. from the NN training). Shouldn’t this part of the evaluation be 
restricted to only the testing dataset?  

While the actual evaluation of the NN post-training was performed on the testing dataset, we also 
wanted in Figure 3 to convey the spatial distribution and magnitudes of tropospheric OH column 
amounts, relevant for the interpretation of Figure 4.  Since our NNs calculate OH on a 3-D basis, 
and we then integrate the columns in post-processing, generation of a similar figure showing 
only the 10% of model output used for training would not be possible (i.e., you likely wouldn’t 
have a full vertical profile of OH for any single lat/lon coordinate). 

We have, however, added considerable content displaying the performance of our NNs in the 
form of 2-D histograms in the Supplement, including for years other than 2000 (Figs. S16-S23).  
While we have newly adapted our analysis to rely only on the NNs that continue to show strong 
performance in reproducing its native model’s OH for a given year, the overall conclusions have 
changed little as a result (see our response to the first comment by Dr. Nowack for further 
detail). 

• In the paragraphs spanning Lines 423-448, there is a discussion about “spurious results”. Are 
these results “spurious” just because they look out of place in Fig. 7, or are there some other 
quantifiable ways that might justify the label “spurious”?  

We initially identified these “spurious results” by eye, but since looking more closely at the 
performance of our NNs across all years, we have instituted a quantitative threshold to determine 
when results from a particular NN/year should be disregarded.  We choose a somewhat arbitrary 
r2 threshold for this purpose, but we did test the effects of altering this threshold and found little 
change in our results (again, see our response to Dr. Nowack for further detail).  

• Figure 9b: Don’t CTMs have difficulty in capturing observation-derived estimates of IAV 
(Holmes et al., 2013)? That should be noted.  

We have added text noting this in our discussion of Figure 9b, at L637: 



“The interannual variability of '()* is also calculated as the standard deviation of the detrended time 
series, shown in Fig. 9b, though it is relevant to note that CTMs have historically not captured the full 
interannual variability exhibited by observed OH proxies (Holmes et al., 2013).” 

• Lines 482-498 should likely be removed. The comparison of the CH4 results here and the 
CH4 results in Nicely et al., 2018 are not an ‘apples-to-apples’ comparison, as noted by the 
authors in the sentence starting with “On one hand...” from Line 485.  

We concur; this text has been removed. 
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We thank Mr. Seltzer and Dr. Kasibhatla for these recommended references; we have added all 
but Ciais et al. (since our analysis does not quantify a CH4 feedback and thus discussion of the 
CH4 increase is less relevant) to our manuscript, where applicable. 
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Abstract. Hydroxyl radical (OH) plays critical roles within the troposphere, such as determining the lifetime of methane 

(CH4), yet is challenging to model due to its fast cycling and dependence on a multitude of sources and sinks.  As a result, 

the reasons for variations in OH and the resulting CH4 lifetime (!"#$), both between models and in time, are difficult to 

diagnose.  We apply a neural network (NN) approach to address this issue within a group of models that participated in the 40 

Chemistry-Climate Model Initiative (CCMI).  Analysis of the historical specified dynamics simulations performed for CCMI 
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indicates that the primary drivers of !"#$ differences among ten models are the flux of UV light to the troposphere (indicated 

by the photolysis frequency JO1D), mixing ratio of tropospheric ozone (O3), the abundance of nitrogen oxides 

(NOx≡NO+NO2), and details of the various chemical mechanisms that drive OH.  Water vapor, carbon monoxide (CO), the 

ratio of NO:NOx, and formaldehyde (HCHO) explain moderate differences in !"#$ , while isoprene, CH4, the photolysis 45 

frequency of NO2 by visible light (JNO2), overhead O3 column, and temperature account for little-to-no model variation in 

!"#$.  We also apply the NNs to analysis of temporal trends in OH from 1980 to 2015.  All models that participated in the 

specified dynamics historical simulation for CCMI demonstrate a decline in !"#$  during the analysed timeframe.  The 

significant contributors to this trend, in order of importance, are tropospheric O3, JO1D, NOx, and H2O, with CO also causing 

substantial interannual variability in OH burden.  Finally, the identified trends in !"#$ are compared to calculated trends in 50 

the tropospheric mean OH concentration from previous work, based on analysis of observations.  The comparison reveals a 

robust result for the effect of rising water vapor on OH and !"#$, imparting an increasing and decreasing trend of about 0.5 

% decade–1, respectively.  The responses due to NOx, O3 column, and temperature are also in reasonably good agreement 

between the two studies. 

1  Introduction 55 

Hydroxyl radical (OH) is a key species of interest for numerous tropospheric chemistry studies over the past several decades.  

As a result of its role as the primary daytime oxidant in the lower atmosphere, OH determines how quickly many 

tropospheric gases and aerosols degrade or transform chemically.  Notably, loss of atmospheric methane (CH4) is dominated 

by its reaction with OH.  Uncertainties in the abundance of OH at the global scale, coupled with source terms of CH4 that are 

difficult to quantify, have driven disagreement in the causes of recent variations in the CH4 growth rate (Nisbet et al., 2019; 60 

Turner et al., 2019).  As a key element in the CH4 budget, tropospheric OH must be studied further to clarify its present-day 

abundance as well as its variability over time. 

Numerous studies have sought to constrain the OH abundance and resulting CH4 lifetime (!"#$) using observations, global 

atmospheric models, and combinations of the two.  Historically, chemical inversion of methyl chloroform (MCF: CH3CCl3) 

comprised the primary method capable of gleaning information about global-scale OH burdens (Bousquet et al., 2005; Krol 65 

et al., 1998; Lovelock, 1977; Montzka et al., 2000; Prinn et al., 1987; Ravishankara and Albritton, 1995; Spivakovsky et al., 

2000), though additional species that are lost by reaction with OH were also tested for this purpose (Jöckel et al., 2002; 

Liang et al., 2017; Miller et al., 1998; Nisbet et al., 2016, 2019; Singh, 1977; Weinstock and Niki, 1969).  Models have 

likewise been relied upon to derive tropospheric OH abundance and its evolution.  Stevenson et al. (2006) found a large 

spread in !"#$ (6.3 to 12.5 years) from a suite of atmospheric chemistry models in an analysis performed more than a decade 70 

ago.  Seven years later, the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) generated both 

historical (Naik et al., 2013) and future (Voulgarakis et al., 2013) simulations from numerous chemistry-climate models, 
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revealing still-large discrepancies not only in present-day !"#$ (with values ranging from 7.1 to 14.0 years) but also in how 

!"#$ is expected to vary through year 2100 given common emissions scenarios.  Note that, here and throughout, !"#$ refers 

to the lifetime of CH4 due to reaction with tropospheric OH only.  Most recently, the confluence of observations with 80 

advanced modelling techniques have enabled sophisticated analyses of global OH (Holmes et al., 2013; McNorton et al., 

2016; Prather et al., 2012; Rigby et al., 2017; Turner et al., 2017).  Despite the advent of numerous observing systems for 

species with some bearing on OH chemistry in the last several decades, it is widely acknowledged that current observations 

are insufficient to unambiguously derive current trends in OH (Nisbet et al., 2019; Prather & Holmes, 2017; Turner et al., 

2019, 2017). 85 

While global models are insufficient for clarifying the outstanding questions regarding OH and !"#$ on their own, they can 

serve as valuable testbeds in which to evaluate the factors influencing OH chemistry.  The dominant reactions responsible 

for producing, cycling, and sequestering OH (see, e.g., Spivakovsky et al. (2000)) are well characterized and represented, to 

varying degrees of explicitness, in modern chemical mechanisms.  Despite general consensus on the immediate drivers of 

OH chemistry, large differences in OH can manifest due to infrequently diagnosed differences in, e.g., ultraviolet (UV) flux 90 

to the troposphere (needed to initiate ozone (O3) photolysis for subsequent OH primary production) due to variations in 

cloud parameterizations and radiative transfer codes.  Similarly, differences in the representations of volatile organic 

compound (VOC) oxidation pathways can influence the extent to which OH is recycled following reactions with 

hydrocarbons.  Such nuances in the chemistry of OH make OH differences between models notoriously difficult to attribute.  

With properly coordinated simulations and sufficient model output, however, we have demonstrated that the barriers posed 95 

by complex, non-linear chemistry can be overcome. 

The multi-dimensional system that describes OH behaviour is well-suited for study via machine learning approaches.  We 

have previously demonstrated the utility of neural networks (NNs) for quantifying differences in OH among a small group of 

chemical transport models (CTMs), which rely on the specification of meteorological conditions (Nicely et al., 2017).  Other 

groups have similarly shown the promise of machine learning techniques to better parameterize within models such complex 100 

processes as convection (Gentine et al., 2018), radiative transfer (Krasnopolsky et al., 2009), ozone production (Nowack et 

al., 2018) and deposition (Silva et al., 2019), and to replace the numerical integrators that simulate chemistry within models 

(Keller and Evans, 2019).  NNs in particular are capable of modelling complex non-linear functions, making them a suitable 

technique for studying the non-linear chemistry involved in OH production and loss.  The community continues to develop 

best practices for harnessing the power of machine learning for applications in atmospheric science.  We build here on the 105 

specific application of NNs to better understand model representations of OH. 

In this study, we apply an NN approach to quantifying the causes of OH differences to the large group of models that 

participated in the Chemistry-Climate Model Initiative.  We repeat our earlier analysis that identifies the primary drivers of 
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OH and !"#$ differences among model simulations conducted with specified dynamics, for a single year.  We then expand 110 

the approach to study temporal variations in OH for 1980-2015, allowing for attribution of trends and interannual variability 

in !"#$ to specific parameters.  Finally, we compare the derived trends in OH simulated by the CCMI models to trends 

derived from a previous observation-based study. 

2 Model Simulations 

The Chemistry-Climate Model Initiative (CCMI), carried out as an official activity of the International Global Atmospheric 115 

Chemistry (IGAC) and the Stratospheric Processes And their Role in Climate (SPARC) communities, seeks to enable inter-

model evaluation of chemistry-climate models (Eyring et al., 2013).  Phase 1 of CCMI has designed a set of simulations, 

covering both historical and future timeframes, with prescribed emissions inventories such that the interactive chemistry and 

its interplay with dynamical and radiative processes can be robustly compared between models.  The analysis presented here 

focuses on one simulation, the historical specified dynamics (SD) simulation from 1980 to 2010 (REF-C1SD) (Hegglin and 120 

Lamarque, 2015; Morgenstern et al., 2017).  Details of the emissions inventories recommended for this simulation can be 

found in Eyring et al. (2013).  We have also performed the inter-model comparison portion of this analysis (Section 3.2) for 

the historical free-running simulation conducted from 1960 to 2010 (REF-C1).  However, since a comprehensive 

examination of OH within the REF-C1 simulations was conducted by Zhao et al. (2019), those results are presented in the 

Supplement.  We also include output from models that are not formal participants in CCMI, but provided simulations 125 

comparable to those being used here.  These additional models are described below.  Monthly mean fields are used for the 

various chemical, physical, and radiative parameters necessary for evaluating OH, described in Section 3.  We analyse all 

models that include and provided output for the complete list of these variables. 

Models that participated in the REF-C1SD simulation were nudged toward reanalysis meteorological fields such that 

dynamical conditions are represented with historical accuracy.  The details of how nudging – of the winds, temperature, and 130 

sometimes pressure and water vapor fields – is conducted can be found in Morgenstern et al. (2017), Table S30.  Particularly 

relevant to this analysis is the nudging of specific humidity, which is only performed in the MOCAGE model, of the models 

we analysed.  Models that produced REF-C1SD simulations for CCMI and provided the necessary output to complete this 

analysis include: CAM4-Chem (Tilmes et al., 2016), EMAC-L47MA, EMAC-L90MA (Jöckel et al., 2016), MOCAGE 

(Guth et al., 2016; Josse et al., 2004), MRI-ESM1r1 (Deushi and Shibata, 2011; Yukimoto et al., 2012), and WACCM 135 

(Garcia et al., 2016; Marsh et al., 2013; Solomon et al., 2015).  For both configurations of the EMAC model, the simulations 

that included nudging of wave-0 temperatures were used (Jöckel et al., 2016).  All models, here and including those 

described below, include interactive stratospheric chemistry. 
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Four models also contributed SD-type simulations to be analysed alongside the REF-C1SD CCMI simulations.  The 145 

Goddard Earth Observing System (GEOS) model (Molod et al., 2015) conducted a “Replay” run, meaning the general 

circulation model computes its own meteorological fields for a 3 hour simulation period, then calculates the increment 

necessary to match a pre-existing reanalysis data set, in this case the Modern Era Retrospective Analysis for Research 

Applications version 2 (MERRA-2).  The increment is then applied as a forcing to the meteorology at every time step during 

a second run of the same simulation period.  This simulation includes full interactive tropospheric and stratospheric 150 

chemistry from the Goddard Modeling Initiative (GMI) chemical mechanism (Nielsen et al., 2017) with output for years 

1980-2018 at 0.625° × 0.5° horizontal resolution and 72 vertical levels (Orbe et al., 2017; Stauffer et al., 2019; Wargan et 

al., 2018).  This simulation is referred to as “GEOS Replay.”  Additionally, three chemical transport models (CTMs), which 

directly rely on established meteorological fields such as MERRA-2 rather than calculate them, provided output used in this 

analysis.  The OsloCTM and GEOS-Chem CTMs output all required variables for year 2000, while the GMI CTM (Strahan 155 

et al., 2013) simulated the full 1980-2015 period.  All CTMs except GEOS-Chem calculate water vapor interactively in the 

troposphere.  GEOS-Chem instead uses specific humidity fields from the MERRA reanalysis.  We note that, while the 

GEOS Replay simulation described above used the GMI chemistry package, all discussion of the simulation from “GMI” 

refers to the separate, standalone CTM.  While CTMs read in and use external meteorological fields rather than “nudging” or 

“replaying” internally calculated fields, we expect them to similarly represent realistic meteorological conditions for a given 160 

year.  As such, we group them with the REF-C1SD simulations from CCMI, bringing the total number of SD-type 

simulations analysed to ten. 

3 Methods 

3.1 Neural network setup 

Neural networks are generated to predict the monthly mean OH mixing ratio for a given model following the method 165 

outlined in Nicely et al. (2017).  Briefly, four NNs are trained for one model, each for one simulation month.  To reduce the 

computational demands of NN training, we only establish NNs for four months, one for each season: January, April, July, 

and October.  Separate NNs are trained for the SD (main text) and free-running (Supplement) simulations, and all training is 

performed with output from year 2000.  Each model gridbox located below the tropopause (thermal, following the WMO 

definition, for all models except GEOS Replay, which uses a “blended” tropopause calculation combining thermal and 170 

potential vorticity definitions) is a single sample, so sample sizes are determined by a model’s vertical and spatial native 

resolution.  The number of tropospheric model grid points, and thus the training dataset sample size, is indicated for each 

model in Table S1 and always exceeds 100,000.  Because separate NNs are trained for each month, and monthly mean 

output from each model simulation is used as input and training data, the dataset does not represent diurnal variations in OH 

chemistry. 175 
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The training process adjusts weighting factors such that mixing ratios of OH are predicted accurately when 3-D fields of the 

following variables are input to the NN: pressure, latitude, temperature (T), ozone (O3), specific humidity (H2O), methane 

(CH4), the sum of nitrogen oxide and nitrogen dioxide (NOx≡NO+NO2), the ratio NO:NO2, carbon monoxide (CO), isoprene 

(“ISOP”=C5H8), formaldehyde (HCHO), the photolysis frequency of NO2 (“JNO2”), the photolysis frequency of O3 to 

excited state O(1D) (“JO1D”), and stratospheric O3 column (“O3 COL”).  Note that many of the inputs covary with one 185 

another depending on the chemical regime or meteorological conditions.  A strength of the NN approach is that the inputs 

chosen need not be independent of each other.  All chemical species are input to the NN as unitless mixing ratios, except for 

CH4, which is normalized by the maximum tropospheric value and indicated by the notation “CH4
NORM”.  This normalization 

enables direct comparison of CH4 distributions between models, despite the fact that the use of boundary conditions 

sometimes results in substantially different amounts of CH4 between models.  (While the CCMI models generally used 190 

roughly consistent boundary conditions, the additional simulations that were not formally part of CCMI exhibit CH4 

concentrations outside the ranges of those in the CCMI models.)  Pressure is provided in units of hPa, temperature in K, 

photolysis frequencies in s–1, and O3 COL in Dobson Units (DU).  Three of the inputs – HCHO, NO:NO2, and O3 COL – 

have been introduced to this analysis since Nicely et al. (2017), due to availability of output from all models and to the added 

information they encompass that may be relevant for OH chemistry.  For instance, having knowledge of the partitioning of 195 

NOx likely enables one to more accurately predict OH quantities compared to knowing just the total abundance of NOx.  

Likewise, the introduction of O3 COL is somewhat redundant when its primary effect on OH is through attenuation of 

ultraviolet (UV) flux to the troposphere, which is already encompassed by the input JO1D.  However, JO1D is also altered by 

other factors such as clouds, which cannot as easily be included as an input for this analysis (some models provide 2-D cloud 

fraction fields, others output 3-D fields, and still others do not give any metric regarding clouds).  Whether strong differences 200 

in JO1D are caused by clouds or overhead O3 should be clarified by inclusion of O3 COL as an input. 

The neural network architecture is consistent with that of Nicely et al. (2017) and is shown in Figure 1.  However, the 

number of computational nodes was doubled from 15 to 30 given the availability of more powerful computing resources.  

Two hidden layers each containing 30 nodes provided strong performance of the NN in reproducing the OH mixing ratios 

from a given model.  For training, the model output is randomly split 80%/10%/10% into training, validation, and test 205 

datasets.  During that process, the data from the training set is used to actively adjust weighting factors, and the validation set 

is evaluated to determine a training stopping point.  When errors in predicting the validation data grow after adjusting 

weighting factors some number of iterations in a row, it is determined that the NN model prior to the growth in errors likely 

reached a local minimum in its cost function.  This manner of “early stopping” helps to prevent over-fitting, though 

application of the NNs to alternative years is not immune to over-fitting, an issue discussed further in Section 4.3.1.  For 210 

further application of this method across varying time scales, we would recommend a more methodical approach to sampling 

model output in time as well as in space.  The final 10% of data is then used to independently test the resulting NN, and 

compare between different training iterations.  A total of five trainings were performed for each NN, and the NN with best 
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performance (evaluated by the correlation coefficient from comparison of NN-calculated and model-simulated OH values) 220 

was chosen as the NN to be used in further analysis.  Further details of the training process and evaluation metrics can be 

found in Nicely et al. (2017). 

We note that alternative machine learning algorithms have seen increased application to problems within atmospheric 

science in the last few years, and may be equally or even better suited than neural networks to studying non-linear chemical 

systems.  In particular random forest regressions and gradient boosting techniques offer greater computational efficiency 225 

and, in the case of random forests, have the capability to quickly identify which inputs are most strongly influencing the 

calculated output, known as “feature importance” (Grange et al., 2018; Hu et al., 2017; Keller and Evans, 2019; Liu et al., 

2018).  Additionally, linear regression algorithms such as Ridge and Lasso regression may be beneficial in curbing issues 

related to extrapolation.  We also do not intend to suggest that our chosen NN input list, architecture, and general method is 

the best approach; input variables were largely determined by available output, and architecture testing was conducted on the 230 

computing resources available at the time of the study.  It is possible that a single NN could suffice for predicting OH 

variations throughout an entire year, rather than for just a single month, following methodical subsampling methods to create 

the initial training dataset.  As such, we encourage exploration of modifications to this method as well as additional 

algorithms for future machine learning applications to atmospheric chemistry. 

3.2 Inter-model comparison approach 235 

Once NNs are established for each model, an analysis is conducted to quantify the OH and !"#$ differences attributable to 

individual input terms.  To accomplish this, each model, A, is paired with another model, B, such that one input to the NN of 

model A is substituted with the same field from model B.  All other inputs are held fixed, using fields from model A for year 

2000.  Fields are interpolated to the resolution of the native model, A in this case, bilinearly across latitude and longitude, 

and linearly in log(pressure) space for the vertical coordinate.  Any resulting changes in OH can then be directly attributed to 240 

the substituted variable. 

The “swaps” that are performed in the manner described above undergo a process we refer to as “extrapolation control,” 

which restricts the substituted variable from leaving the range of values over which the native model’s NN was trained.  If, 

e.g., O3 is being substituted from CAM4-Chem into the GMI NN, we not only check that a given CAM4-Chem O3 value lies 

within the minimum and maximum GMI tropospheric O3 values, but also that the GMI value of CO at that gridpoint can be 245 

associated with the new CAM4-Chem O3 value.  This check is performed across all variables, and essentially prevents the 

substitutions from venturing too far outside of the chemical regimes simulated within the native model.  In the case that a 

swapped variable exceeds the acceptable range of values, it is revised up or down accordingly.  For reference, we tally the 

number of instances in which extrapolation control is invoked for two categories: coarse adjustments, when a NN input value 

from another model falls entirely outside the range of the NN input values from the native model, and fine adjustment, when 250 
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a value from another model must be tweaked to preserve the native model’s chemical regimes.  On average, coarse 

adjustments are incurred for 3.5% of all swapped data points, while fine adjustments are made to 18.8% of swapped values.  

We find that extrapolation control is critical to achieve meaningful results with the NN inter-model comparison method, 

though it necessarily forces the attributed changes in OH and !"#$ to be conservative estimates. 260 

Metrics used to evaluate the results of variable swaps include tropospheric OH integrated columns for visualization and 

changes in !"#$ for a globally-summed quantity.  Tropospheric columns are integrated vertically and weighted by the mass 

of CH4 and the temperature-dependent rate constant of reaction between OH and CH4.  The global mean lifetime of CH4 is 

found using Eq. 1: 

!"#$ =
∑/012×3"#$

∑[5#]×789:;9$×/012×3"#$
 ,          (1) 265 

where Mair is the mass of air within a grid box, brackets denote number density, χ denotes mixing ratio, kOH+CH4 is the 

reaction rate constant for the OH + CH4 reaction calculated for each grid box temperature, and summations are performed 

over all tropospheric model grid boxes.  This formulation is equivalent to the standard lifetime calculation of burden divided 

by loss rate, adapted to the quantities most directly related to model outputs available (Chipperfield et al., 2014).  Again, we 

note that this is strictly the atmospheric lifetime of CH4 with respect to loss by tropospheric OH.  If one additionally includes 270 

all stratospheric grid boxes within the above summation, annual average lifetimes of almost all models consistently increase 

by ~1.2 years. 

3.3 Time series evaluation approach 

A new element of this analysis applies the already-established NNs of each model to examine the time evolution of OH over 

several decades of simulation.  For this, we focus on the REF-C1SD simulation set, as it contains the most realistic 275 

representation of historical emissions and meteorological conditions, and thus is most likely to resemble true OH variations.  

All models that provided SD-type simulations as described in Sections 2.2 and 2.3 are included, with the exception of 

GEOS-Chem and OsloCTM, both of which only provided output for year 2000.  Using a similar swapping technique as 

described in Section 3.2, the NN for a given model is used to quantify the effect of substituting individual inputs from 

different years.  No inter-model substitutions are conducted; instead, a single input is taken from the various years of the 280 

simulation (1980-2015) while all other inputs are fixed to their 2000 values.  Because all swaps are performed on an intra-

model basis, extrapolation control is largely unnecessary, since that model’s chemical regimes do not vary drastically from 

the original year 2000 training output.  However, we do see some instances, noted in Section 4.3, of anomalous behaviour in 

the !"#$ results because some variables undergo significant changes, particularly between the 1980s and training year 2000.  

Overall, the NN technique should be sufficiently generalizable to provide meaningful results even when using inputs lying 285 
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modestly outside of the range of training values.  Robustness of the results is demonstrated by the emergence of several 

consistent features between the eight models examined, as discussed in Section 4. 

4 Results and Discussion 290 

4.1 Native model and NN performance 

Figure 2 shows values of !"#$ found for all models that produced SD-type simulations.  Annually and globally averaged 

lifetimes vary from 6.59 years (OsloCTM) to 8.41 years (GMI).  All models exhibit the expected seasonal variation in !"#$, 

with minimum values in the Northern Hemisphere (NH) summer months due to higher OH at this time of year.  Specifically, 

the seasonal variation in the global mean is a result of greater anthropogenic influence in the NH and resulting increases in 295 

concentration of two OH precursors: O3 and NOx. 

An example of NN performance is shown for the January WACCM model in Figure 3, relative to the native model OH 

fields.  Tropospheric OH columns are shown for the model and NN alongside the absolute value of the difference between 

the two.  In general, the NNs from all models show similar magnitudes and spatial patterns in their calculated OH field, with 

errors somewhat randomly scattered and maximizing locally to values of ~10% of the total column value.  Supplementary 300 

Figures S1-S4 show the performance of all NNs, for each of ten SD-type model simulations and for each of four months, 

while Table S2 provides further statistics on all NNs used here.  Performance of all model NNs for year 2000 is strong, with 

values of !"#$calculated from the NN-generated OH field within 0.006 years of the parent model’s !"#$ on average.  The 

maximum error in !"#$ , an overestimate by 0.012 years, occurs for the MRI-ESM1r1 model in the month of January.  

Performance is generally poorest in boreal winter, with average offsets in !"#$  of 0.007 years, and strongest in boreal 305 

summer, for which the mean bias is only 0.004 years.   

4.2 Inter-model comparison 

The inter-model comparison component of this analysis can be understood fundamentally by the OH and !"#$ differences 

generated by substituting input fields between models.  An example of the OH column and !"#$ changes that are calculated 

through individual variable swaps is shown in Figure 4.  The two models with the highest and lowest values of !"#$, GMI 310 

and OsloCTM, respectively, are chosen for this example.  Swaps performed between the two models for the month of 

January reveal that local O3, JO1D, HCHO, and NOx account for the largest differences in !"#$ for this particular model 

pairing.  A complete budgeting of the changes in !"#$ attributable to all inputs for GMI and OsloCTM is shown in Table 1.  

Note that the values of !"#$ shown in Table 1 correspond to lifetimes for the month of January rather than annual averages 

and so will differ from the lifetimes noted at the beginning of Section 4.1. 315 
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It is worth discussing several features that are evident in the visualized OH changes shown in Fig. 4.  First is the spatial 

distribution of the OH variations.  Depending on how the sink or source term undergoing the swap affects OH chemistry, the 

strongest impacts may occur in localized areas or may distribute evenly over the globe.  For instance, varying local O3 and 

NOx (Fig. 4a, b and 4g, h, respectively) exert the greatest influence on OH over the climatological tropics, with maximum 

impacts over land but extending over the oceans as well.  This is likely a result of the anthropogenic or biomass burning 320 

emissions sources, which limit the largest differences in O3 and NOx between the two models to areas proximate to the South 

American, African, and Indonesian source regions for the month of January.  The OH changes resulting from substitutions of 

the inputs JO1D and HCHO, however, are distributed over oceans as well as over land masses and, in the case of HCHO, are 

strongest in remote marine regions.  This pattern is common for species that influence OH chemistry through mechanisms 

that are largely independent of local emissions.  In the case of HCHO, its role as a secondary source of OH through CH4 325 

oxidation is relatively more important in the absence of large VOC concentrations, thus its stronger influence is seen away 

from terrestrial vegetation. 

The second feature to note in Fig. 4 is the symmetry between input swaps in opposing directions.  In other words, the swap 

of an input from OsloCTM into the GMI NN generally yields OH column and !"#$ changes that are equal but opposite to the 

changes resulting from use of a GMI input in the OsloCTM NN.  With few exceptions, almost all regions of OH increase 330 

(red) in one model’s NN are matched by OH decreases (blue) in the other model’s NN in Fig. 4.  The changes in !"#$ are 

correspondingly similar in magnitude but opposite in sign.  This behaviour is expected because a swap that may, e.g., 

increase an OH precursor and subsequently cause an increase in OH for one model will manifest as a decrease in that same 

precursor when the substitution occurs in the NN of the other model.  While this pattern occurs for the vast majority of cases 

across all model pairings and swaps performed for this analysis, there are instances when symmetry is not maintained.  This 335 

could happen for two reasons.  First, the sensitivities of the two models to a particular change in an OH precursor or sink 

could differ.  For example, one model may be sensitive to an increase in isoprene, causing OH concentrations to drop in 

response.  Another model may incorporate buffering effects (such as reactions involving oxidized volatile organic 

compounds (Lelieveld et al., 2016; Taraborrelli et al., 2012) that allow OH to be recycled following its reaction with 

isoprene, causing it to be less sensitive to the same change in CH4.  We refer to these variations in model sensitivities as 340 

chemical mechanism differences, as they are most likely a result of the chemical reactions, species representations, or 

reaction rates implemented within a model’s chemical mechanism.  The second explanation for lack of symmetry in the OH 

response to a model swap is a forced asymmetry in the swapped inputs themselves, imposed by the extrapolation control 

technique described in Section 3.2.  It is possible that the swap of an input in one direction, i.e. from Model A into Model B, 

could proceed with no alteration to the substituted variable, while the swap in the other direction, i.e. from B to A, results in 345 

the variable lying outside the trained range of Model A.  The extrapolation control process will revise the substitute variable 

field from Model B, such that the difference between it and the native field from Model A is lessened.  As such, the first 

swap into the NN of Model B will yield a larger magnitude change in the input as compared to the swap into the NN of 
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Model A.  The impact of these factors is indirectly quantified through a remainder term that falls out of a full budgeting 

analysis, described below. 

A third consideration in interpreting the information presented in Fig. 4 is the conditions that must be met in order for a large 

change in OH to manifest through this analysis.  First, the two models between which a swap is conducted must exhibit 355 

differences in the parameter of interest.  Should the two models exhibit, e.g., very similar O3 fields, then swapping one 

model’s O3 with the other’s will produce little difference in the NN-calculated OH.  Second, the model must have some OH 

sensitivity to the variable being swapped.  If a model is insensitive to changes in CH4, swapping in a drastically different 

CH4 field may not cause a perceivable difference in OH.  Therefore, the absence of an OH response does not necessarily 

mean that input fields are similar between models.  Conversely, the existence of large OH changes indicates that differences 360 

in the swapped input field exist between the two models and that the native model demonstrates a dependence of OH on that 

input variable. 

A fourth issue is the fact that NNs can exhibit some degree of random behaviour, based on how they were trained and 

initialized.  Our method involved training 5 NNs and selecting from those the one that performed best when compared to the 

independent test dataset.  That single NN was used in all subsequent analysis.  However, it is a useful exercise to evaluate 365 

the role of NN randomness in our results.  We show in Figures S5 and S6 the left and right panels of Fig. 4, reproduced for 

the alternate NN trainings of the GMI and OsloCTM models, respectively.  A visual comparison of tropospheric OH column 

differences among the five trainings of each model’s NN reveals markedly similar spatial distributions and magnitudes.  The 

values of calculated Δ!"#$ do differ somewhat between the training instance, with larger effects on some variable swaps than 

for others.  For instance, the standard deviation of the values of Δ!"#$ calculated for all five trainings of the GMI NN is 370 

about 0.2 years for the J(O1D) and HCHO swaps, but less than 0.05 years for O3 and NOx.  We note, though, that some of the 

NNs displayed in Figures S5 and S6 exhibit worse performance than the one ultimately chosen for subsequent use.  As a 

result of this exercise, the uncertainties resulting from this analysis method may be considered, at most, to be ~0.2 years. 

The final point of interest in Fig. 4 is the general consistency in the signs of OH and !"#$	changes for each model.  The 

substitutions of all four variables generally cause an increase in OH within the GMI NN (and corresponding decrease in 375 

!"#$) and a decrease in OH (increase in !"#$) within the OsloCTM.  This feature is most pronounced for this particular pair 

of models due to our reasoning for choosing them: they exhibit the largest difference in !"#$ among our group of 10 models.  

Because the native GMI model has a longer !"#$  value compared to OsloCTM, it makes sense that incorporation of 

OsloCTM’s various OH precursor and sink fields into the GMI NN will tend to decrease the GMI !"#$, bringing it into 

closer agreement with that of OsloCTM.  This characteristic points to the utility of this analysis as a budgeting tool for 380 

quantifying the cause of the difference in !"#$ between two models.  The !"#$ accounting for the GMI and OsloCTM set of 

swaps conducted for January is shown in Table 1.  When considering all 12 variable swaps that were performed, the NN 
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analysis more than explains the original gap in !"#$ between the two models.  The GMI January lifetime of 9.24 years is 

decreased to 6.71 years (!5>?@ + Δ!) after summing all Δ! values, while the OsloCTM lifetime is increased from 7.18 years 

to 9.48.  This budgeting rarely provides a perfect accounting of the !"#$  gap due to the same reasons that give rise to 385 

asymmetric OH responses to a given swap: chemical mechanism differences and asymmetric swaps of inputs due to 

extrapolation control.   As a result, a remainder term, found as the difference between the other model’s !5>?@  and the 

present model’s !5>?@ + Δ!, is attributed to these factors.  This term is listed in the last row of Table 1 with the label 

“Mech.” 

Results from analysing individual model pairs reveal a multitude of insights regarding idiosyncrasies in emissions of, global 390 

distributions of, and OH sensitivities to the various input parameters.  These results, available at our FTP site provided in 

Data Availability, may be especially useful to the reader with an interest in a particular species or model.  However, with 

over 4000 plots (12 species × 10 models × 9 sub models × 4 months = 4320) and 180 !"#$ budget tables generated, it is 

beyond the scope of this paper to highlight and explain every interesting feature.  Instead, we aggregate the results across all 

models to identify some primary conclusions.  Figure 5 shows the change in !"#$ for a specific model and substituted input 395 

variable, averaged over all nine pairings.  For example, the data point shown for CAM4-Chem JO1D is calculated from the 

nine Δ!"#$ values obtained when swapping the JO1D fields from the other nine models into the CAM4-Chem NN.  The 

circular point represents the mean of those nine values, while the whiskers indicate one standard deviation about the mean.  

Aggregate results shown in this manner are compiled both for individual months (available on the FTP site noted above) as 

well as for annually averaged output.  The latter is calculated as the average of the four monthly mean and standard deviation 400 

values, and is shown in Fig. 5. 

As with the individual OH tropospheric column change plots (Fig. 4), numerous conclusions can be drawn by studying the 

aggregated results in Fig. 5.  The method for reading the data in Fig. 5 is demonstrated in the following example.  The mean 

Δ!"#$ value attributable to JO1D for the WACCM model is +0.99 years.  This indicates that use of JO1D fields from other 

models causes !"#$ to increase by ~1 year, meaning the native JO1D field from WACCM imparts a low bias to !"#$ of 1 405 

year, relative to the other models.  A low !"#$ would result from OH concentrations being too high.  Since OH and JO1D are 

positively correlated (i.e., JO1D can be thought of as a source for OH) the too-high OH is an indication of too-high JO1D.  In 

general, positive values of Δ!"#$ correspond to relative high biases in input parameters that are source terms for OH and to 

low biases for species that instead serve as sinks.  This reasoning is less straightforward for species such as HCHO, which 

can both produce and consume OH, while it is also produced by OH-initiated oxidation.  We stress that these comparisons 410 

are strictly relative to other models, not to any observation or other indication of truth.  So, points that appear as outliers in 

Fig. 5 should not necessarily be interpreted as an erroneous result, but rather should be considered as an area for further 

examination. 
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The ordering of variables along the x-axis of Fig. 5 denotes the average magnitude of Δ!"#$ values across all models, with  

parameters on the left accounting for the largest !"#$ differences.  As such, JO1D is the largest driver of OH differences in 415 

the CCMI SD model simulations, followed by local O3 and NOx.  The subsequent variables H2O, CO, the NO:NOx ratio, and 

HCHO cause moderate variations in tropospheric OH, while ISOP, CH4, JNO2, O3 COL, and T are not responsible for inter-

model spread in !"#$.  We note that T differences between the SD simulations are likely limited due the meteorological 

constraints imposed on the models.  However, examination of the free-running simulations, discussed in the Supplementary 

Material, also shows practically no impact of T on OH.  Thus, we conclude that the effect of temperature on OH chemistry is 420 

likely indirect, acting through pathways embodied by other variables, such as H2O and species that exhibit strongly 

temperature-dependent reaction rates.  Finally, the Mech. term, described in the discussion of Table 1, appears on the far 

right, indicating its origins as a remainder term from the budget analysis of individual model pairs.  The magnitudes of Δ!"#$ 

values attributed to chemical mechanism differences and asymmetric swaps between models are large enough to consistently 

rank the Mech. term third, between O3 and NOx, in terms of importance for OH in this analysis.  Especially in model 425 

simulations conducted with common emissions inventories, we expect some of the disparity in a short-lived species like OH 

to emerge from differences in chemical mechanism implementations.  In other words, when responses in OH to a given 

change in a source or sink term differ between two models, the remainder term (or term labelled “Mech.” in Table 1) will 

increase, representing variations in the sensitivity of OH that presumably arise due to the two different implementations of 

the chemical mechanism.  It is possible that other factors are represented by this term; e.g., other chemical species that 430 

influence OH chemistry but are not considered in the NN analysis could contribute to the Mech. term.  However, previous 

analysis using a 0-D chemical box model as a “standard” mechanism in Nicely et al. (2017)  suggested a correlation between 

actual biases in OH imparted by a given model’s chemical mechanism and the remainder term resulting from the NN 

analysis.  Therefore, we have some confidence that the Mech. term is meaningful, though significant further study would be 

required to parse the actual mechanistic differences responsible for imparting bias in OH calculations. 435 

Significant inter-model differences in the largest driver of !"#$ spread, JO1D, could arise from two possible sources.  The 

amount of solar UV light penetrating down to the troposphere is largely dictated by the stratospheric column O3 amount.  

However, the differences in total O3 column are generally small and insufficient to cause the variations in JO1D seen among 

the CCMI models.  Rather, JO1D likely varies to a great extent due to differences in cloud cover, and dissimilar treatments of 

clouds within model photolysis codes.  Figure S7 highlights this effect by showing the ratio of JO1D at the surface to JO1D in 440 

the upper troposphere (UT) for each model.  The relatively small column amounts of O3 within the troposphere should 

account for very little absorbed UV light, making it much more likely that deviations in this ratio from 1.0 are driven by 

scattering due to clouds and possibly aerosols.  The fact that models show large spatial differences in this ratio is a strong 

indication that clouds underlie the model differences in JO1D. 
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While the model differences in JO1D, O3, NOx, and chemical mechanisms appear to drive the bulk of the !"#$ spread among 

this group of CCMI models, we emphasize that individual models may not adhere to these conclusions.  As such, any efforts 

to improve a particular model should instead focus on the results specific to that model.  For instance, HCHO plays a very 

small role in describing inter-model differences in OH on average, but for the OsloCTM model, HCHO is a much more 450 

important factor.  Thus, we refrain from offering an across-the-board solution for remedying the large model spread in !"#$ 

and instead suggest a more individualized approach of studying plots such as those shown in Fig. 4 for more spatially and 

temporally resolved information.  Visualizations of all model swaps, for all months and species, are available at our FTP site 

provided in Data Availability for this purpose. 

There are several other qualifications to note when considering the results of the inter-model comparison.  One is the 455 

negating effect between the JO1D and tropospheric O3 variables.  Many, but not all, model Δ!"#$ values for JO1D in Fig. 5 

are opposite in sign to the Δ!"#$ values attributed to O3.  Physically, photolysis of tropospheric O3 by light at wavelengths 

below 336 nm to form excited state O(1D) and subsequent reaction with H2O to form OH is a loss pathway for O3.  

Therefore, more UV flux will tend to decrease tropospheric O3 concentrations while increasing OH, and vice versa.  This 

physical mechanism, then, can explain the frequent cancellation of the Δ!"#$ values attributed to these two factors.  Should a 460 

modeler attempt to alter a model’s OH field by forcing adjustments in its JO1D, the opposing impact of tropospheric O3 may 

result in no change for the value of !"#$.  However, this does not preclude the finding that both JO1D and tropospheric O3 

are substantially different in the models for reasons we do not fully understand.  Tropospheric O3 can also vary between 

models for reasons external to the radiative environment.  For instance, differences in the stratosphere-troposphere exchange, 

wet and dry deposition, and lightning NOx emissions can each cause substantial variations in tropospheric O3 among models 465 

(Wild, 2007).  Further parsing of the reasons for the O3 differences seen among the CCMI models is difficult without 

specialized output, including tracers such as ozone of stratospheric origin and NOx generated by lightning.  We recommend a 

targeted study to address the underlying reasons for the variations in tropospheric O3. 

Another qualification concerns the issue of causation versus correlation.  Machine learning techniques, and NNs in 

particular, are generally more adept at identifying the predictors of a certain phenomenon than traditional methods, such as 470 

multiple linear regression.  However, it is still possible that an input that is tightly correlated with the output may be 

misidentified as a driver of variations in the output.   This is particularly relevant to keep in mind for species that serve as 

sinks of OH, such as CO and CH4.  Whether a decline in OH initiates or results from an increase in its sinks is difficult to 

differentiate, even with advanced analysis methods.  Therefore, descriptions of CO and CH4 as drivers of OH variations in 

this text may just as well be interpreted conversely, as downstream indicators of the change in oxidizing capacity. 475 

A final qualification is this analysis constitutes a foundationally hypothetical experiment.  It essentially addresses the 

questions, “What if we could switch the fields of just one chemical species between two global models?  What would be the 
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instantaneous impact on OH? on !"#$?”  This approach, then, necessarily neglects the roles of feedbacks in the atmospheric 

system (e.g., if the NOx field is perturbed, this will propagate to changes in O3 as well, with time).  However, for the 480 

objective of teasing apart the influences on global OH abundance and !"#$  and explaining inter-model differences, a 

notoriously difficult task, we regard our approach as a valuable exercise. 

4.3 Time series evaluation 

The second half of our NN analysis interrogates temporal trends in OH and !"#$.  Figure 6 shows the evolution of !"#$ in 

the SD-type simulations conducted for 1980-2010.  Two models, GEOS-Chem and OsloCTM, only provided output for year 485 

2000, and so only appear as single points in Fig. 6.  In addition, some models provided output beyond year 2010; output 

from years through the end of 2015 was included when available.  The lifetimes all show a general downward trend over 

time, consistent with the upward trend in global mean tropospheric OH concentration shown by Zhao et al. (2019b) (their 

figure 4).  Results concerning attribution of the !"#$  time series are presented in subsection 4.3.1, while derivation and 

analysis of trends are shown in subsection 4.3.2. 490 

4.3.1 Attribution of the BCDE time series 

Swaps of input variables to a NN are conducted on an intra-model basis, with the goal of determining which OH precursors 

and sinks are responsible for OH variations over time.  The results of these swaps are shown for each model in Figure 7.  

Changes in !"#$  attributable to each parameter are displayed as a function of year.  Because we use the same NNs 

established for the inter-model comparison described in Section 3.2 trained on output from year 2000, the values of Δ!"#$ 495 

for all species in year 2000 of Fig. 7 is zero by design.  As an input field from another year is swapped into the NN, however, 

OH differences manifest and are denoted by the corresponding change in !"#$.  Because we are relying on the same NNs 

used for the inter-model analysis, we emphasize that the CH4 fields used here are still normalized, separately for each year.  

As a result, the variations in !"#$ due to CH4 should not be interpreted as a measure of the CH4 feedback factor (Fiore et al., 

2009; Holmes, 2018; Holmes et al., 2013; Prather et al., 2001).  Instead of representing the change in OH with a change in 500 

absolute concentration of CH4, the numbers shown here signify the change in OH with a change in how CH4 is distributed 

within the atmosphere, both vertically and spatially.  Largely, one would expect this to remain constant over time, though 

results from this analysis of the CCMI simulations suggests there are some modest changes in !"#$  attributed to the 

distribution of tropospheric CH4.  Should a similar method be applied to analysis of temporal variations in OH in the future, 

we would encourage training the machine learning algorithm on data spanning all years such that use of CH4 absolute values 505 

would be possible. 

While significant diversity in the drivers of OH variability across models is evident from Fig. 7, there are also several 

distinctive features that appear repeatedly.  For instance the response of !"#$ to changes in CO shows a prominent peak in 
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year 1998 in all models except one.  To gauge the role of emissions in this response, we show in Supplemental Figures S8-12 

the time series of CO mixing ratios and other parameters averaged for the region most impactful to !"#$: the tropical lower 

troposphere (latitudes between 30°S and 30°N, pressures greater than or equal to 700 hPa).  Indeed, CO mixing ratios 

maximize in almost all models in year 1998, likely as a result of the emissions inventory reflecting the extreme biomass 515 

burning and strong El Niño Southern Oscillation (ENSO) event during that and the preceding year (Duncan et al., 2003 and 

references therein).  The increase in !"#$  can thus be explained by the increased CO sink of OH, causing a temporary 

depletion of the oxidant.  In addition, less distinctive peaks in !"#$ due to CO are identified in other years with strong El 

Niño conditions, notably 1982-1983, 1987, and 1991-1992 (Duncan et al., 2003). 

The impacts of several other variables on !"#$ also demonstrate behaviour with reasonably identifiable causes.  A prolonged 520 

decrease in !"#$ due to JO1D from 1992 to 1998 is evident in the analysis of the CAM4-Chem, GEOS Replay, GMI, MRI-

ESM1r1, and WACCM NNs.  This may correspond to several confounding events that acted to increase the flux of UV light 

to the troposphere, increasing the primary production of OH and decreasing !"#$, as seen in Fig. 7.  First, solar activity 

reached a maximum around 1990, after which the decline in sunspots correlated strongly with a decline in tropical total O3 

columns (Duncan and Logan, 2008).  Second, the eruption of Mount Pinatubo in 1991 likely impacted JO1D through the 525 

decrease in stratospheric O3 that resulted (Aquila et al., 2013; Tie and Brasseur, 1995).  Finally, the prolonged ENSO event 

of 1990-1995 (Allan & D’arrigo, 1999) may have caused reduction in cloud cover due to drought conditions (Duncan et al., 

2003).  Interestingly, the !"#$ response to H2O is moderately anticorrelated with CO.  This is particularly evident for year 

1998 in many of the models, when large biomass burning events occurred in many regions of the world, such as the boreal 

forests of both Asia and North America, Central America and Mexico, and Indonesia, which were attributed in part to a 530 

strong El Niño in 1997 that transitioned in a strong La Niña in 1998.  Although strong ENSO events cause drought 

conditions over some regions, it is more fundamentally associated with warming sea surface temperatures and increased 

evaporation, particularly in the tropical Pacific Ocean.  Thus, it is reasonable that larger values of specific humidity will tend 

to increase OH primary production during an El Niño year, as suggested by the decrease in !"#$  shown in Fig. 7.  An 

apparent increase in O3 also coincides with the 1998 ENSO event, determined by the decreasing component of !"#$.  The 535 

prevalence of biomass burning would indeed cause increases in tropospheric O3 through increased emissions of its 

precursors, CO, VOCs, and NOx.  Additionally, the !"#$  response to O3 shows the most distinguishable trend of all the 

variables over the full 1980-2015 period.  Steady decreases in !"#$ due to O3 imply an increasing tropospheric O3 burden, a 

modelling result supported by observations (Verstraeten et al., 2015). 

We also note the appearance of spurious results in several cases.  The !"#$ responses to CH4 in EMAC-L47MA and EMAC-540 

L90MA as well as to O3 COL in MOCAGE extend to very large negative values in the early part of the time series.  To show 

the full extent of the EMAC !"#$ responses to CH4, we show alternate versions of Figs. 7b and 7c with expanded y-axis 
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ranges in Supplementary Figure S13.  Chemical conditions during the 1980s would differ most markedly from the regimes 

simulated in year 2000, on which the NNs are based.  Particularly for concentrations of CH4, which underwent monotonic 565 

rise aside from a stabilisation period from 2000 to 2007 (Turner et al., 2019), conditions in 1980 could be quite different.  

However, as was noted in Section 3.1, CH4 inputs to the NNs are normalized against the maximum tropospheric value.  The 

field of CH4 for each year is likewise normalized against the maximum CH4 for that year, so a strong response in !"#$ must 

indicate a significant change in the distribution of CH4, not just in changes in its concentration over time.  Indeed, 

Supplementary Figure S14 shows the normalized CH4 values used as input to the NNs for the pressure level closest to the 570 

surface.  For each EMAC configuration (for the month in which the !"#$  response shown in Fig. 7 is largest and most 

unphysical), the CH4 distributions in the 1980s do show notable change from the year 2000 distribution used for training.  

Specifically, relative CH4 mixing ratios in the Southern Hemisphere drop relative to the larger concentrations in the Northern 

Hemisphere.  Other models, such as WACCM shown in the bottom panels of Fig. S14, show practically no inter-annual 

change in the CH4 distribution for a given month.  This behaviour in the EMAC model likely results from implementation of 575 

a Newtonian relaxation scheme to determine a time-varying, latitude-dependent lower boundary condition for CH4 (Jöckel et 

al., 2016).  Our spurious NN result may indeed be explained by a slowdown in the rate of increase in CH4 concentrations at 

the lower boundary initiated in 1980, evident in supplementary figure E1 of Jöckel et al. (2016).  While this method of 

determining boundary conditions generally represents a more sophisticated treatment of CH4, within the context of this 

analysis, it imparts an artificially strong signal in OH and !"#$.  Therefore, the unphysical results in Fig. 7b and 7c due to 580 

CH4 indicate an artefact due to the NN method, not a problem in the EMAC model itself. 

For the other occurrence of anomalous behaviour, MOCAGE shows an unrealistically large response of !"#$ to O3 COL in 

the 1980s (Fig. 7f), a result not corroborated by any other model.  Supplementary Figure S15 illustrates the likely cause of 

this behaviour.  While most models exhibit modest changes in total O3 COL between 1980 and 2000, including GEOS 

Replay shown in the top set of panels, the MOCAGE model (bottom panels) shows much larger column amounts in year 585 

1980.  These values fall well outside the range of O3 COL amounts on which the NN was trained, so unrealistic behaviour of 

the NN in this case is not surprising. 

These examples of spurious results highlight an issue that must be treated with caution when using machine learning 

approaches.  Because the application of our NN method to time series analysis is an extension beyond the originally intended 

purpose, not all NNs are sufficiently generalizable to reliably reproduce OH for years other than the training year, 2000.  To 590 

account for this, we evaluate each NN for all years by inputting variables from each year.  With this test, all inputs are 

changed, not just a single input at a time.  The resulting OH, as depicted in Figures S16-S23 for select years, compares well 

to the native model’s OH field for that year in many cases, but not in all.  Considerable bias occurs at low OH mixing ratios, 

though we note that near-zero concentrations will likely not affect the resulting globally-integrated !"#$ unless values are 

grossly overestimated.  This evaluation also represents a rigorous test of the NNs, as significant shifts in numerous inputs at 595 
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once might push the NN algorithm into new phase space not encountered during training, much more so than only changing 

one input at a time, which is our approach in the subsequent time-series analysis.  Nonetheless, we limit the influence of 

poorly generalizable, or “overfit,” NNs by only including in the multi-model mean results for the years in which a NN 

reproduces its native model’s OH field with an r2 value greater than or equal to 0.95.  For four NNs (one per month) created 605 

for each of 8 CCMI models, across 36 years, the potential application of the NNs to 1152 calculations (4´8´36) is reduced to 

696 calculations using this test.  Results from this point forward are subject to this quality check, and were found to be 

insensitive to the r2 threshold imposed.  This insensitivity is demonstrated by alternate versions of the figures to come, 

placed in Supplement, generated using all NNs rather than the quality-filtered NNs. 

Figure 8 shows the multi-model mean attribution of variations in !"#$.  Many of the same features identified in Fig. 7 also 610 

emerge here: clear definition of strong ENSO years in the CO response, apparent Mt. Pinatubo effects in the JO1D response, 

and a general downward trend in !"#$  due to O3 are all observed.  Also, as might be expected from the inter-model 

comparison results discussed in the prior section, JO1D, O3, NOx, H2O, and CO account for many of the strongest OH 

variations over time (Fig. 7) as well as between models (Fig. 5).  Supplementary Figure S24 shows the analogue of Fig. 8, 

without the quality filter applied to the NNs described above.  I.e., all NN results from Fig. 7 are included, except the 615 

spurious cases of EMAC CH4 and MOCAGE O3 COL. 

4.3.2 Trends and interannual variability in the BCDE time series 

We also perform linear fits to each response time series in Fig. 8.  The resulting trends in !"#$ are shown in Figure 9, panel 

(a).  The interannual variability of !"#$ is also calculated as the standard deviation of the detrended time series, shown in Fig. 

9b, though it is relevant to note that CTMs have historically not captured the full interannual variability exhibited by 620 

observed OH proxies (Holmes et al., 2013).  Supplementary Figure S25 shows the equivalent of Fig. 9, without application 

of the NN quality filter described above.  Negative trends in !"#$ due to O3, H2O, JO1D, and NOx stand out as largest in 

magnitude.  The sum of all factors shown in Fig. 9a is –2.3±0.4% decade–1, which is comparable to the mean downward 

trend in !"#$ seen in Fig. 6, –1.8% decade–1.  Time series of the model input variable fields show corresponding trends, with 

parameters that serve as source terms of OH increasing over time (Supplemental Figures S9-12).  Tropospheric O3 and NOx 625 

show clear upward trends over time, while H2O and JO1D show upward trends with more variability, which is also conveyed 

by the error bars in Fig. 9a.  It is interesting to note that H2O plays a stronger role in the overall temporal trend of !"#$, as 

compared to its role in explaining inter-model differences.  This is likely due to the fact that temperatures were constrained 

in the specified dynamics simulations, which in turn should determine the water vapor calculated within the models.  The 

interannual variability attributed to CO in Fig. 9b is also consistent with the large year-to-year swings in tropical lower 630 

tropospheric CO mixing ratios shown in Supplemental Figure S8.  While Fig. 9a suggests that CO exhibits very little overall 

trend between 1980 and 2015, we note there is a discernible increase in CO prior to ~1998 in Fig. S8 followed by a steady 
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decline thereafter.  This is consistent with remote site measurements that show significant negative trends in CO since the 

late 1990s (Zeng et al., 2012). 

Finally, the attributed trends in !"#$ from the CCMI models (Fig. 9a) are compared in Figure 10 to trends in tropospheric 645 

mean OH concentration (“[OH]TROP”) from a previous observation-based analysis (Nicely et al., 2018).  In that work, 

TOMS/OMI/SBUV observations of total column O3 were used to infer radiative effects on the OH burden, while water vapor 

from the AIRS instrument, CH4 from surface observations, NOx from a global model simulation constrained to realistic 

emissions, and temperature from the MERRA-2 reanalysis were analysed to calculate chemical impacts on [OH]TROP.  In 

Nicely et al. (2018), the trend in [OH]TROP due to NOx encompassed the effects of both the total abundance and the 650 

partitioning of NOx, while the O3 COL factor encompassed all radiative effects on OH.  Thus, to perform a “like for like” 

comparison, the !"#$ trends due to NOx and NO:NOx are combined, as are the trends due to O3 COL and JO1D shown in Fig. 

9a.  Error bars shown in Fig. 10 represent the 1F uncertainty in the slope of the linear fit and, in the case of combined trends, 

are found by summing in quadrature the individual uncertainties.  Because !"#$ varies with the inverse of OH concentration, 

note that the x-axis of Fig. 10 is inverted and a –1:1 line is shown in grey. 655 

The trends in !"#$ from this analysis and in [OH]TROP from Nicely et al. (2018) are in reasonably good agreement for H2O, 

NOx, O3 COL, and temperature.  In particular, the two trends due to H2O agree within the uncertainties, with !"#$ decreasing 

by ~0.5 % decade–1 and [OH]TROP increasing at almost the same rate.  The impacts of NOx and O3 COL are found to increase 

OH concentrations in both studies, though the impacts on !"#$ from the CCMI models are found to be larger in magnitude 

than the observational estimate.  The small impact of temperature, tending to lessen the OH burden, is also in close 660 

agreement between the two studies, with the CCMI models again showing a slightly stronger response.  The role of NOx in 

driving ~0.3 % decade–1 decline in !"#$ is roughly consistent as well.  Only the effect of O3 column falls relatively far from 

the –1:1 line, with analysis of the CCMI models suggesting a stronger decrease in !"#$ between 1980 and 2015, albeit with 

large uncertainties.  This may result from inaccurate representations of stratospheric O3 in the CCMI models, 

mischaracterization of the impacts on UV photolysis in the troposphere, or a combination of both.  Overall, the results 665 

depicted in Fig. 10 show relatively robust findings regarding the responses of [OH]TROP and !"#$ to the factors examined 

through these two independent studies. 

Because the CH4 used as input for the CCMI NNs was normalized, as discussed above, the trend in !"#$  found in this 

analysis due to CH4 did not represent a CH4 feedback factor in the traditional sense.  As such, it is not comparable to the 

trend in [OH]TROP due to CH4 found by Nicely et al. (2018) and so was not included in Figure 10.  However, even in the 670 

event that one were to retrain new NNs using absolute values of CH4 and sampling across all years to generate the training 

dataset, we would question the physical meaning of the resulting trends.  With the current necessity of providing boundary 

conditions for surface CH4 rather than fluxes in models, our ability to realistically simulate CH4 is hampered.  We encourage 
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the further examination of the response of OH to CH4 on the global scale, which is likely a large influencer of tropospheric 705 

OH abundance, as indicated in Nicely et al. (2018) and Holmes et al. (2013). 

5 Conclusions 

We perform a neural network analysis of the monthly mean output from historical simulations of ten models that participated 

in CCMI for the purposes of understanding OH and !"#$ differences and temporal trends.  NNs are trained to reproduce OH 

mixing ratios for a given model using 3-D fields of 12 OH precursor and sink parameters.  Performing swaps of the NN 710 

inputs between models produces a quantitative estimate of the difference in !"#$ that can be attributed to variations in the 

substituted variable.  Among the ten models that we examine, on average, variations in JO1D, local O3, NOx, and chemical 

mechanisms account for the largest differences in !"#$.  Model diversity in representations of H2O, CO, the partitioning of 

NOx, and HCHO is responsible for moderate OH differences, while isoprene, CH4, JNO2, overhead O3 column, and 

temperature account for little-to-no variation in OH.  However, the relative importance of a particular variable is highly 715 

model-dependent, so any effort to improve the representation of OH within a given model should be guided by that particular 

model’s results. 

We also analyse time series of !"#$ using the year 2000 NNs generated for the first half of the study.  All models exhibit a 

downward trend in !"#$ between 1980 and 2015, varying from –0.54 % decade–1 to –2.97 % decade–1 (average of –1.83 % 

decade–1).  Swaps of NN inputs are conducted between years rather than between models, so attributions of the factors 720 

influencing trends in !"#$  are found for each model and then combined into a multi-model mean result.  This analysis 

indicates that the largest contributors to the decreasing trend in !"#$ are O3, JO1D, NOx, and H2O, while CO also imparts a 

large degree of interannual variability.  Features due to strong ENSO events and associated biomass burning as well as the 

eruption of Mount Pinatubo are discernible in the time series of attributed variations in !"#$.  In particular, the species CO, 

H2O, and O3 instigate prominent responses during strong El Niño years.  Finally, the attributed trends in !"#$ from the NN 725 

analysis of CCMI model output are compared to trends in tropospheric mean OH concentration found previously in the 

observation-based study of Nicely et al. (2018).  While the strong response of !"#$ to increasing H2O over time appears to be 

a robust result, disagreement on the CH4 feedback on OH between the two studies highlights limitations in the approaches of 

both, in addition to more systemic issues in the community’s ability to model CH4. 

The NN and machine learning methods in general provide a valuable tool for performing insightful model intercomparisons 730 

of complex systems in a computationally-efficient manner.  These approaches, however, must be undertaken with care to 

avoid erroneous results and recognition of their limitations.  At present, we have devised a method to identify the drivers of 

OH variations, whether between models or between years, at coarse temporal resolution.  Much future work is needed, 

though: observations must be incorporated to introduce a ground truth element to this analysis in a manner that either adjusts 

Deleted: ,735 

Deleted: known as the CH4 feedback, 

Deleted:   This topic has been of interest for some time (Holmes et 
al., 2013; Prather et al., 2001), though the necessity of providing 
boundary conditions for surface CH4 rather than fluxes in models 
hampers our ability to realistically simulate CH4.  Regardless, a 740 
model approach using fully-coupled tropospheric chemistry, such as 
that performed by Holmes et al. (2013) for three CTMs, would 
provide a more direct measure of the CH4 feedback on OH than both 
approaches depicted in Fig. 10.  Except for trends attributed to CH4, 

Moved up [1]: the results depicted in Fig. 10 show relatively 745 
robust findings regarding the responses of [OH]TROP and !"#$ to the 
factors examined through two independent studies.



21 
 

for or avoids disconnects between coarse versus local/instantaneous spatiotemporal scales and appropriately accounts for 

measurement uncertainty; an analysis of model output with much higher temporal frequency is needed to identify exactly 

where model differences in chemical mechanisms lie; and subsequent studies of why the various OH precursor and sink 750 

fields differ are required to make this analysis of greatest utility for improving model representations of !"#$.  While these 

challenges are significant, they are not insurmountable, especially as machine learning and other advanced statistical analysis 

techniques continue to be developed and honed. 

Data Availability 

All output from most of the models that participated in CCMI is available at the Centre for Environmental Data Analysis 755 

(CEDA), the Natural Environment Research Council’s Data Repository for Atmospheric Science and Earth Observation, at 

http://data.ceda.ac.uk/badc/wcrp-ccmi/data/CCMI-1/output.  WACCM and CAM4-Chem output for CCMI is available for 

download at http://www.earthsystemgrid.org.  For instructions for access to both archives see 

http://blogs.reading.ac.uk/ccmi/badc-data-access.  Output from the models that were not formal participants in CCMI Phase 

1 is available from the co-authors who performed the model simulations; please contact the corresponding author with 760 

requests.  A complete set of figures and tables generated by the model intercomparison and time series analyses is available 

at the FTP site https://acd-ext.gsfc.nasa.gov/anonftp/acd/atmos/jnicely/.  In the event that this site is no longer active, please 

contact the corresponding author for access to all results. 
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Table 1.  Accounting of CH4 lifetime differences between GMI and OsloCTM simulations for January, 2000. 

  GMI OsloCTM 
!"#H,5>?@a (year)  9.24 7.18 

Δ!"#H due tob: O3 –0.91 +0.79 
 JO1D –0.59 +0.60 
 HCHO –0.64 +0.51 
 NOx –0.45 +0.33 
 JNO2 –0.34 +0.15 
 Isoprene –0.03 +0.28 
 CO +0.19 –0.07 
 H2O +0.10 –0.13 
 CH4

NORM +0.11 –0.06 
 NO/NOx +0.07 –0.05 
 O3 COL –0.02 –0.06 
 T –0.02 +0.00 

Δ!"#H,J5Jc  –2.52 +2.30 
!"#H,5>?@ + 	Δ!"#H,J5J  6.71 9.48 

Mech.d  +0.47 –0.24 
a!"#H,5>?@ represents value of !"#H evaluated directly from the model. 
b	Δ!"#H calculated from output of NN when noted variable is substituted with values from the 
other model. 
cSum of all Δ!"#H values calculated for each input substitution. 
dRemainder of original !"#H  difference not accounted for by NN substitutions; calculated as 
!"#H,5>?@(model A) – [!"#H,5>?@(model B) + Δ!"#H,J5J(model B)]. 

 

 1000 
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Figure 1.  Architecture for neural networks generated in this study.  Blue boxes designate inputs (left) and output (right), red 
triangles indicate bias terms, green circles indicate nodes at which activation functions are performed, and grey arrows represent 
the weighting terms, which are optimized through the training process.  For full details of the neural network setup and training, 1005 
we refer readers to Nicely et al. [2017].  Although 15 nodes are shown here in each hidden layer, 30 were actually used for all NNs 
in this study. 
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Figure 2.  Seasonal variation in CH4 lifetime for year 2000 for the CCMI specified dynamics (REF-C1SD) and chemical transport 1010 
model simulations. 
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Figure 3.  Tropospheric OH columns for the WACCM model REF-C1SD simulation, January 2000.  (a) Columns calculated 
directly from the WACCM output; (b) columns calculated from the output from the WACCM January NN run with inputs from 1015 
the native model; (c) difference in column values, (NN – model).  Methane lifetime values calculated from 3-D OH fields from 
WACCM and from the WACCM NN are inscribed in panels (a) and (b), respectively.  The methane lifetime difference, (NN – 
model), is noted in panel (c). 

 
1020 
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Figure 4.  Changes in tropospheric OH column resulting from swap of indicated variable from another model into the NN of the 
native model for the specified dynamics simulation of January, 2000.  Swaps of the inputs O3 (a, b), J(O3àO1D) (c, d), HCHO (e, 
f), and NOx (g, h) are shown for the GMI (left) and OsloCTM (right) NNs.  
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 1025 
Figure 5.  Averaged changes in CH4 lifetime accrued for a specified model (color), across all swaps of the indicated variable (x-
axis) from all other models.  Results are shown annually averaged for year 2000 of the specified dynamics REF-C1SD CCMI and 
chemical transport model simulations.  Circle indicates the mean change in CH4 lifetime; bars represent the 1K standard deviation 
from all model pairings.  Variables along the x-axis are ranked by averaged magnitude of the LBCDE values (i.e., inputs located 
farther left are responsible for larger differences in CH4 lifetime), except for the “Mech.+Nonlin.” term, which is shown last to 1030 
indicate its role as a remainder term.  Model name abbreviations are “CAM4” for CAM4-Chem, “EM47” for EMAC-L47MA, 
“EM90” for EMAC-L90MA, “GRep" for GEOS Replay, “GCHM” for GEOS-Chem, “GMI” for GMI, “MOC” for MOCAGE, 
“MRI” for MRI-ESM1r1, “OSLO” for OsloCTM, and “WACC” for WACCM. 
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 1035 
 

Figure 6.  Time series of CH4 lifetime from REF-C1SD models.  Only one year of output was available for two models (OsloCTM 
and GEOS-Chem), so their results are shown only as a single data point at year 2000. 
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Figure 7.  Attributions of changes in CH4 lifetime relative to year 2000 of the REF-C1SD simulations.  Within the NN of a given 
model, use of individual inputs (indicated by color) from years other than 2000 result in a change and OH and subsequent CH4 
lifetime, shown here.  The variations attributable to CH4 are labeled “CH4

NORM to designate the use of normalized CH4 fields as 
inputs to the NNs, as described in Sections 3.1 and 4.3.  As a result, OH changes due to CH4

NORM represent impacts of changes in 1045 
how CH4 is distributed within the troposphere, rather than how CH4 concentrations are changing over time. 
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 1050 

Figure 8.  Same as Figure 7, but the average across all eight models, except filtered to remove NN results for individual months 
and years during which NN performance is poor, as detailed in the text. 

  

Deleted: with the CH4 line from EMAC-L47MA and EMAC-
L90MA and O3 Column from MOCAGE removed…1055 
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Figure 9.  Multi-model mean linear trend (a) and interannual variability (b) in BCDE attributed to each variable examined through 
the NN method. 
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Figure 10.  Comparison of the attributed trends in BCDE found in this work according to the REF-C1SD simulations performed for 
CCMI (y-axis) to the attributed trends in tropospheric mean OH (“[OH]TROP”) found based on observations in Nicely et al. [2018].  
The grey dashed line indicates the –1:1 line, as values should be anti-correlated.  The BCDE trend numbers from this work for NOx 1065 
combine the NOx total abundance and partitioning (NO/NOx) values from Figure 9, and for O3 Column combine the J(O1D) and 
O3 Column values, as both effects are encompassed in the determination of [OH]TROP. 
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Text S1 
 
Here we present and discuss our analysis of the REF-C1 historical free-running simulations from CCMI.  These simulations 

differ from those presented in the main body of the text in that the models do not constrain their meteorological fields in any 

way to historical meteorology.  Winds, temperature, pressure, and water vapor are internally calculated by the Chemistry 

Climate Models (CCMs), so it is unlikely that meteorological features, such as ENSO and drought-induced biomass burning, 

align with reality. 

The CCMs that provided REF-C1 simulations, including all output necessary to perform the same NN training and inter-model 

comparison described in the main text (Sections 3.1 and 3.2), are: ACCESS-CCM, CAM4-Chem, EMAC-L47MA, EMAC-

L90MA, GEOSCCM, MOCAGE, MRI-ESM1r1, NIWA-UKCA, SOCOL3, ULAQ-CCM, and WACCM.  Details of the REF-

C1 simulation, performed for 1960-2010, are found in Hegglin & Lamarque (2015) and Morgenstern et al. (2017).  One model, 

the Coupled Model (CM3) developed at the Geophysical Fluid Dynamics Laboratory (GFDL) (Donner et al., 2011) is added 

to the free-running analysis.  The simulation of the CM3 model used here is a 400-year time-slice run, with perpetual emissions 

representative of year 2000 (Westervelt et al., 2018).  Further details of the model setup are available in Westervelt et al. (2017).  

By including CM3 with the group of REF-C1 CCMI models, we analyse a total of 12 free-running models. 

The inter-model comparison conducted for the REF-C1 model simulations was performed following the same protocol as 

described in Section 3.2 of the main text.  The values of !"#$ calculated for each month of year 2000 are shown in Figure S26, 

while the annual average changes in !"#$ (%!"#$) by model, for NN swaps of the indicated species, are shown in Figure S27.  

Overall, values of %!"#$ are larger than the same values calculated for the REF-C1SD specified dynamics simulations 

examined in the main text, and chemical mechanism differences appear to play a larger role.  For example, the variables 

responsible for the largest OH differences are O3 in the free-running simulations and JO1D in the specified dynamics simulations 

(Fig. 5).  The mean absolute value of the annual average %!"#$ due to O3 in the free-running models is 0.60±0.69 years, while 

the same aggregation of %!"#$ values due to JO1D in the specified dynamics models is 0.54±0.57 years.  The second-most 

important variables, NOx in the free-running simulations and O3 in the specified dynamics simulations, yield %!"#$ values of, 

on average, 0.48±1.11 years and 0.42±0.49 years, respectively.  The remainder %!"#$ attributed to chemical mechanism 

differences between models averages to 0.69±1.14 years in the free-running simulations as opposed to 0.36±0.46 years in the 

specified dynamics simulations. 

The larger values of %!"#$ in the free-running models may convey that meteorological differences are imparting an impact on 

OH through mechanisms that are not sufficiently represented in the input variables chosen for the NN analysis.  It is possible 

that other chemical species not included here that are substantially altered by meteorology or transport and in turn alter OH 

concentrations would manifest as larger values of %!"#$, particularly in the Mech. term.  On the other hand, if those missing 

species are correlated with one of the species or variables used as an input to the NN, the %!"#$ attributed to that input may 

also be inflated.  As a result, we caution that model variations in meteorological conditions, expected as a result of their free-

running setup in the REF-C1 simulation, could generate artifacts that are less likely to arise in the REF-C1SD simulation 

comparison, in which temperatures, transport, cloud cover, and water vapor should be reasonably similar. 

As with the inter-model comparison of the specified dynamics simulations, results of the free-running model analysis exhibit 

a multitude of interesting features.  While we cannot explore each one with the amount of attention it is due, we would like to 
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discuss one example that highlights the utility of the NN method.  In Fig. S27, the %!"#$ attributed to JNO2 shows curious 

behavior for the SOCOL3 model.  The absence of spread about the mean value of %!"#$ is highly unusual, except for instances 

where a model shows no or very little response of OH to a NN input.  The relatively large value of %!"#$ for SOCOL3 

(+0.69±0.09 years) paired with the small variation in this quantity across all the model pairings most likely indicates an issue 

in the model.  Figure S28 shows the JNO2 fields, taken directly from each CCM for January, 2000, at 850 hPa.  There is much 

diversity in this quantity across all the models, but the SOCOL3 model exhibits markedly high values, within the tropics 

especially.  Revell et al. (2018) also identify this issue and suggest that the treatment of solar backscatter from clouds may be 

responsible for biases in the photolysis look-up table calculations.  Additionally, a geometric spatial pattern is evident between 

the latitudes 0° and 30°S, which is unlikely to result from any physical process in the true atmosphere.  This may indicate a 

problem in the way time averaging is conducted to achieve the monthly mean fields reported, a dependence within the 

photolysis code on a non-continuous time variable (since the pattern repeats regularly every 30° of longitude), or a similar 

issue.  To reduce the likelihood of a bias due to differences in the way that monthly means are calculated, it may be useful for 

future inter-model comparison efforts to clearly define a desired method of averaging (e.g., composing daily averages from 

hourly output then averaging the daily means as opposed to averaging a month’s worth of 6-hourly instantaneous output).  It is 

of course possible to identify this variety of idiosyncrasy by careful inspection of each model field that is output from a model, 

but that is a time- and labor-intensive task.  Instead, the NN method is capable of pointing a user directly to the offending fields, 

at least for the variables that are of sufficient relevance to OH chemistry that we have included them here as inputs.  In the case 

that a user wants simply to detect outlier model fields as in this case, it is entirely feasible that the NN method could be adapted 

for that purpose. 
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Table S1. The sample size, i.e., number of tropospheric model gridboxes, used for the training 
of each model's NN, for each month 

Model January April July October 
CAM4Chem 424,381 422,602 430,701 427,699 
EMAC-L47MA 179,048 178,435 184,163 182,065 
EMAC-L90MA 167,025 166,307 173,231 170,621 
GEOS-Replay 396,694 395,066 401,571 398,479 
GEOS-Chem 101,305 100,587 102,441 101,758 
GMI 398,655 397,802 401,866 400,860 
MOCAGE 427,194 426,621 430,437 432,303 
MRI-ESM1r1 270,651 267,521 284,988 273,127 
OsloCTM 378,332 376,794 382,529 379,338 
WACCM 424,298 422,580 430,601 427,766 
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Table S2. Constrained meteorology (REF-C1SD) CCMI model neural network training 
statistics, including mean squared error with regularization (MSE_REG), mean squared error 
(MSE), sum of squared errors (SSE) and Pearson correlation coefficient (R). 

Model Month MSE_REG MSE SSE R 
CAM4Chem 1 

4 
7 
10 

0.37923 
0.29407 
0.10253 
0.19263 

4.1261´10–4 
2.1851´10–4 
3.2249´10–4 
2.5806´10–4 

175.11 
92.341 
138.90 
110.37 

0.99985 
0.99987 
0.99991 
0.99980 

EMAC-
L47MA 

1 
4 
7 
10 

0.18339 
0.18699 

0.087789 
0.17907 

6.7995´10–4 
2.0219´10–4 
3.4581´10–4 
1.9427´10–4 

121.74 
36.078 
63.685 
35.369 

0.99976 
0.99986 
0.99991 
0.99983 

EMAC-
L90MA 

1 
4 
7 
10 

0.35482 
0.099595 
0.080911 
0.20788 

5.2862´10–4 
2.0500´10–4 
4.1468´10–4 
1.7210´10–4 

88.293 
34.093 
71.836 
29.364 

0.99981 
0.99985 
0.99989 
0.99985 

GEOS-Replay 1 
4 
7 
10 

0.20707 
0.18929 

0.080128 
0.22672 

2.6069´10–4 
1.2464´10–4 
2.8015´10–4 
1.5059´10–4 

103.41 
49.240 
112.50 
60.009 

0.99990 
0.99991 
0.99992 
0.99988 

GEOSChem 1 
4 
7 
10 

0.22284 
0.061255 
0.14682 
0.14627 

1.5205´10–4 
1.1911´10–4 
1.3059´10–4 
1.0033´10–4 

15.404 
11.981 
13.378 
10.210 

0.99993 
0.99994 
0.99997 
0.99993 

GMI 1 
4 
7 
10 

0.074667 
0.094182 
0.11295 
0.14209 

4.8862´10–4 
1.8318´10–4 
3.1920´10–4 
2.0734´10–4 

194.79 
72.869 
128.27 
83.115 

0.99980 
0.99987 
0.99990 
0.99984 

MOCAGE 1 
4 
7 
10 

0.71640 
0.48984 
0.34163 
0.31921 

9.0308´10–4 
5.0834´10–4 
8.6047´10–4 
6.3376´10–4 

385.79 
216.87 
370.38 
273.98 

0.99969 
0.99961 
0.99976 
0.99944 

MRI-ESM1r1 1 
4 
7 
10 

0.23535 
0.10819 

0.099627 
0.14278 

5.9525´10–4 
4.0592´10–4 
6.2950´10–4 
3.6378´10–4 

161.10 
108.59 
179.40 
99.36 

0.99972 
0.99975 
0.99986 
0.99971 

OsloCTM 1 
4 
7 
10 

0.099237 
0.19119 
0.17034 
0.16749 

7.7313´10–4 
2.1283´10–4 
4.0701´10–4 
1.9759´10–4 

292.50 
80.193 
155.69 
74.955 

0.99972 
0.99986 
0.99988 
0.99984 

WACCM 1 
4 
7 
10 

0.075339 
0.23018 
0.11848 

0.087687 

5.1098´10–4 
1.9571´10–4 
2.4019´10–4 
3.0286´10–4 

216.81 
82.702 
103.43 
129.55 

0.99980 
0.99986 
0.99991 
0.99974 

 

 



Table S3. Free-running (REF-C1) CCMI model neural network training statistics, as in Table 
S2. 

Model Month MSE_REG MSE SSE R 
ACCESS-CCM 1 

4 
7 
10 

0.11715 
0.16688 
0.19878 

0.089005 

9.6330´10–4 
2.3802´10–4 
3.3644´10–4 
3.6215´10–4 

163.80 
40.386 
58.507 
62.611 

0.99968 
0.99987 
0.99991 
0.99974 

CAM4Chem 1 
4 
7 
10 

0.055129 
0.11032 
0.13067 
0.12742 

6.6306´10–4 
2.8507´10–4 
3.8054´10–4 
2.5473´10–4 

127.79 
54.614 
75.732 
49.706 

0.99974 
0.99980 
0.99988 
0.99978 

CM3 1 
4 
7 
10 

0.11112 
0.16528 

0.026817 
0.082181 

4.6630´10–4 
1.8858´10–4 
8.8304´10–4 
3.2942´10–4 

125.73 
50.816 
239.79 
91.146 

0.99980 
0.99989 
0.99980 
0.99971 

EMAC-
L47MA 

1 
4 
7 
10 

0.072276 
0.086863 
0.10271 
0.11785 

9.2591´10–4 
2.4612´10–4 
4.7184´10–4 
2.0844´10–4 

171.04 
45.659 
90.056 
39.311 

0.99969 
0.99983 
0.99988 
0.99982 

EMAC-
L90MA 

1 
4 
7 
10 

0.16911 
0.076460 
0.081041 
0.12357 

7.2262´10–4 
2.3894´10–4 
5.0940´10–4 
2.2109´10–4 

126.75 
42.177 
92.539 
39.097 

0.99976 
0.99982 
0.99988 
0.99982 

GEOSCCM 1 
4 
7 
10 

0.18199 
0.064835 
0.18798 
0.11525 

3.9622´10–4 
2.3637´10–4 
3.2447´10–4 
2.5013´10–4 

158.05 
94.576 
130.95 
100.29 

0.99984 
0.99984 
0.99991 
0.99982 

MOCAGE 1 
4 
7 
10 

0.34317 
0.70165 
0.54001 
0.31103 

1.3971´10–3 
4.7860´10–4 
9.6137´10–4 
5.6591´10–4 

617.16 
210.00 
431.00 
254.71 

0.99957 
0.99963 
0.99976 
0.99938 

MRI-ESM1r1 1 
4 
7 
10 

0.25895 
0.20258 
0.22064 
0.24607 

6.1599´10–4 
3.8259´10–4 
4.3767´10–4 
3.4118´10–4 

166.11 
101.85 
121.15 
92.663 

0.99970 
0.99977 
0.99987 
0.99971 

NIWA-UKCA 1 
4 
7 
10 

0.065453 
0.17948 
0.13032 
0.18349 

1.1373´10–3 
2.5409´10–4 
3.8962´10–4 
2.9323´10–4 

193.66 
43.007 
68.185 
50.539 

0.99959 
0.99986 
0.99989 
0.99981 

SOCOL3 1 
4 
7 
10 

0.10894 
0.15187 
0.16907 
0.14254 

7.6744´10–4 
1.6699´10–4 
3.5237´10–4 
2.4928´10–4 

85.386 
18.597 
40.847 
28.546 

0.99940 
0.99978 
0.99985 
0.99953 

ULAQ-CCM 1 
4 
7 

0.058951 
0.047113 
0.057370 

2.7677´10–4 
2.0840´10–4 
2.9026´10–4 

12.950 
9.6693 
14.398 

0.99989 
0.99982 
0.99990 



10 0.065023 1.3451´10–4 6.5473 0.99988 
WACCM 1 

4 
7 
10 

0.050710 
0.11753 

0.053290 
0.13621 

5.7059´10–4 
1.9040´10–4 
3.2026´10–4 
2.3013´10–4 

110.51 
36.453 
63.519 
44.987 

0.99975 
0.99984 
0.99988 
0.99977 

 
  



Figure S1.  LOG10 of OH mixing ratio 
calculated by NN versus that simulated 
by the native global model, for January.  
Colors indicate 2-D histogram to give 
indication of density of data points.  All 
tropospheric model grid points are 
shown, including training, validation, 
and test data.  Native model is indicated 
in the upper left corner of each panel, r2 
value is inscribed in the lower right, and 
1:1 line is depicted as dashed grey line. 
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Figure S2.  Same as Figure S1 except 
for month of April. 
  



Figure S3.  Same as Figure S1 except 
for month of July. 
  



Figure S4.  Same as Figure S1 except 
for month of October. 
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Figure S7.  The ratio of JO1D at the surface to JO1D at the last pressure level within the troposphere before crossing the 
tropopause for the month in which each simulation set exhibited the largest ()*$ differences attributed to JO1D. (a) shows results 
from the REF-C1SD simulations for the month of April; (b) shows the REF-C1 simulations for the month of January.  Suppression 
of this ratio below 1.0 is expected to result from cloud cover or other forms of absorption or scattering (by tropospheric O3, 
aerosols, etc.). 
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Figure S8.  Time series of annually averaged CO mixing ratios at pressures greater than 700 hPa and latitudes between 30°S and 
30°N from (a) the specified dynamics REF-C1SD simulations and (b) the free-running REF-C1 simulations.  
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Figure S9.  Time series of annually averaged H2O mixing ratios at pressures greater than 700 hPa and latitudes between 30°S and 
30°N from (a) the specified dynamics REF-C1SD simulations and (b) the free-running REF-C1 simulations.  
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Figure S10.  Time series of annually averaged J(O1D) frequencies at pressures greater than 700 hPa and latitudes between 30°S and 
30°N from (a) the specified dynamics REF-C1SD simulations and (b) the free-running REF-C1 simulations.  

Deleted: 4



 

Figure S11.  Time series of annually averaged NOx mixing ratios at pressures greater than 700 hPa and latitudes between 30°S and 
30°N from (a) the specified dynamics REF-C1SD simulations and (b) the free-running REF-C1 simulations.  
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Figure S12.  Time series of annually averaged O3 mixing ratios at pressures greater than 700 hPa and latitudes between 30°S and 
30°N from (a) the specified dynamics REF-C1SD simulations and (b) the free-running REF-C1 simulations. 
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Figure S13.  As in Figure 7 of the main text, panels (b) and (c), but with expanded y-axes to show the full range of the ()*$ 
responses to CH4

NORM from the two EMAC model configurations.  
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Figure S14.  The ratio of local CH4 mixing ratio to the maximum CH4 mixing ratio found in the troposphere of a given model-
simulated month, visualized for the pressure level nearest the surface, for the models, months, and years indicated.  Results shown 
are for the REF-C1SD simulations.  The normalized CH4 quantity is used as an input to the neural networks to avoid issues 
introduced by non-overlapping fields of CH4 absolute values between models and between years.  This scaled CH4 quantity is thus 
more accurately described as a measure of the CH4 distribution within the troposphere.  While the CH4 distribution remains near-
constant from year to year for a given month for most models (e.g., WACCM, bottom), the two configurations of the EMAC model 
show deviations from the trained (year 2000) distribution.  Most notably between the mid-1980s and mid-1990s, CH4 in the Southern 
Hemisphere decreases, relative to the higher CH4 values in the Northern Hemisphere.  It is these deviations in the EMAC CH4 
distributions that are likely driving the anomalous ()*$ response in Fig. 7. 
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Figure S15.  July total ozone columns from the GEOSCCM (top) and MOCAGE (bottom) REF-C1SD simulations for year 1980 
(left), 2000 (center), and 2010 (right).  While model differences between GEOSCCM and MOCAGE are apparent, it is the stark 
difference between year 1980 and 2000 in the MOCAGE model that is concerning and likely driving the anomalous ()*$ response in 
the early- to mid-1980s, seen in Fig. 7.  Other models, such as GEOSCCM, do not show such drastic differences between year 1980 
and 2000 ozone column amounts.  
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Figure S16.  NN performance plots, as in Figure S1, but for only the REF-C1SD simulation of the CAM4-Chem model, evaluated 
for years 1980, 1990, 2000, and 2010 (from top to bottom).  For each month (represented by the column), the same NN, trained on 
year 2000 model output, is subsequently run with inputs taken from the alternative years. 
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Figure S17.  As in Figure S16, but for the REF-C1SD simulation of the EMAC-L47MA model. 
  

Formatted: Font: Bold



 
Figure S18.  As in Figure S16, but for the REF-C1SD simulation of the EMAC-L90MA model. 
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Figure S19.  As in Figure S16, but for the REF-C1SD simulation of the GEOS-Replay model. 
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Figure S20.  As in Figure S16, but for the REF-C1SD simulation of the GMI model. 
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Figure S21.  As in Figure S16, but for the REF-C1SD simulation of the MOCAGE model. 
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Figure S22.  As in Figure S16, but for the REF-C1SD simulation of the MRI-ESM1r1 model. 
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Figure S23.  As in Figure S16, but for the REF-C1SD simulation of the WACCM model. 
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Figure S24.  As in Figure 8 of the main text, but without application of the NN quality check described in Section 4.3.1.  In other 
words, all NN results, from all models and years shown in Fig. 7 of the main text, for the attribution of ()*$ changes are included in 
the multi-model mean, except for the three cases that stood out by eye as spurious: EMAC-L47MA CH4, EMAC-L90MA CH4, and 
MOCAGE O3 COL.  
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Figure S25.  As in Figure 9 of the main text, but without application of the NN quality check described in Section 4.3.1. 
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Figure S26.  Seasonal variation in CH4 lifetime for year 2000 for the CCMI free-running (REF-C1) model simulations. 
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Figure S27.  Averaged changes in CH4 lifetime for the free-running (REF-C1) CCMI simulations.  Values of +()*$ are accrued for 
a specified model (color), across all swaps of the indicated variable (x-axis) from all other models.  Results are shown annually 
averaged for year 2000 of the specified dynamics REF-C1SD CCMI and chemical transport model simulations.  Circle indicates the 
mean change in CH4 lifetime; bars represent the 1, standard deviation from all model pairings.  Variables along the x-axis are 
ranked by averaged magnitude of the +()*$ values (i.e., inputs located farther left are responsible for larger differences in CH4 
lifetime), except for the “Mech.+Nonlin.” term, which is shown last to indicate its role as a remainder term. 
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Figure S28.  JNO2 values directly from each model at the pressure level closest to 850 hPa for January, 2000 of (a) the REF-C1SD 
simulations and (b) the REF-C1 simulations. 
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