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On behalf of all coauthors, I thank the reviewers and commenters for their time taken to read the 
manuscript and offer constructive comments.  They have served to significantly strengthen the 
analysis.  Below, we address each comment and, where applicable, detail how the manuscript 
was revised in response.  Original reviewer comments are shown in black font, and our responses 
are shown in blue. 
 
Reviewer 1 – Dr. Peer Nowack 

The	paper	by	Nicely	et	al.	uses	a	neural	network	approach	to	infer	drivers	of	differences	in	
OH/methane	liftetimes	among	chemistry-climate	models.	In	addition,	the	approach	is	used	to	
understand	modelled	historic	trends	and	variability	in	these	variables.	The	method	itself	has	been	
applied	in	similar	form	before	(cf.	Nicely	2017),	but	here	it	is	applied	to	a	novel	set	of	specified	
dynamics	CCMI	simulations.	 

Overall	this	paper	is	a	nice	example	of	how	machine	learning	can	be	used	to	provide	novel	insights	
into	chemistry-climate	model	differences	and	I	enjoyed	reading	it.	I	would	therefore	definitely	
recommend	rapid	publication	subject	some	revisions	and	clarifications	concerning	my	comments	
listed	below.	Major	comments:	 

• The	use	of	neural	nets	and	especially	their	cross-validation	requires	further	motivation	and	
explanation.	I	know	this	can	feel	like	unnecessary	repetition	to	the	authors	given	that	the	
method	has	been	described	previously,	but	it	is	an	essential	aspect	due	to	the	central	role	of	
the	method	here.	For	example,	when	I	first	read	the	paper	I	was	entirely	unclear	if	all	results	
might	be	subject	to	overfitting	and	if	the	sampling	was	done	in	space	or	time	as	well	as	how	
the	data	was	split	into	training,	cross-validation	and	test	datasets;	an	essential	aspect	of	any	
machine	learning	application.	I	now	understand	from	reading	the	other	paper	that	probably	
regressions	were	fit	on	an	80%/10%/10%	split	of	the	year	2000,	using	each	grid	cell	as	one	
sample	for	a	month	(rather	than	samples	being	ordered	by	time).	Is	this	still	valid?	Is	early-
stopping	really	the	only	method	you	used	to	manage	the	bias-variance	trade-off?	This	point	
is	particularly	important	as	evaluation	results	are	given	only	for	the	year	2000,	which	as	
mentioned	is	used	for	training.	Given	that	the	year	was	used	for	training	it	would	not	be	
surprising	if	the	neural	net	can	fit	the	data	almost	arbitrarily	well	if	overfitting	wasn’t	
sufficiently	counteracted.	Maybe	show	results/evaluate	for	all	years	that	you	did	not	use	for	
training?	I	would	also	explicitly	mention	the	sample	size	for	each	dataset	(all	models	are	
interpolated	to	the	same	resolution?).		

We agree with Dr. Nowack that the details of the method are important and have included more 
description in response.  Specifically, we now write in the main text, at L156: 

“Each model gridbox located below the tropopause (thermal, following the WMO definition, for all 
models except GEOS Replay, which uses a “blended” tropopause calculation combining thermal and 



potential vorticity definitions) is a single sample, so sample sizes are determined by a model’s vertical 
and spatial native resolution.  The number of tropospheric model grid points, and thus the training 
dataset sample size, is indicated for each model in Table S1 and always exceeds 100,000.  Because 
separate NNs are trained for each month, and monthly mean output from each model simulation is 
used as input and training data, the dataset does not represent diurnal variations in OH chemistry.” 

and at L187: 

“For training, the model output is randomly split 80%/10%/10% into training, validation, and test 
datasets.  During that process, the data from the training set is used to actively adjust weighting 
factors, and the validation set is evaluated to determine a training stopping point.  When errors in 
predicting the validation data grow after adjusting weighting factors some number of iterations in a 
row, it is determined that the NN model prior to the growth in errors likely reached a local minimum 
in its cost function.  This manner of “early stopping” helps to prevent over-fitting, though application 
of the NNs to alternative years is not immune to over-fitting, an issue discussed further in Section 
4.3.1.  For further application of this method across varying time scales, we would recommend a 
more methodical approach to sampling model output in time as well as in space.  The final 10% of 
data is then used to independently test the resulting NN, and compare between different training 
iterations.  A total of five trainings were performed for each NN, and the NN with best performance 
(evaluated by the correlation coefficient from comparison of NN-calculated and model-simulated OH 
values) was chosen as the NN to be used in further analysis.” 

To further detail the training datasets used here, we have added Table S1 to the Supplement, 
listing the sample size of the datasets (i.e., number of tropospheric model grid points) used for 
each model, for each month. 

We now include performance metrics of all NNs relative to year 2000, as were used in choosing 
between training versions.  Figures S1-S4 have been added, showing correlations of NN-
calculated and model-simulated OH, and new Tables S2 and S3 provide statistics of each NN 
used in this analysis.  Associated text is included at L268. 

We have also added evaluation of the NNs’ performance for years other than 2000, and have 
modified our analysis of the time series of CH4 lifetime based on this more quantitative 
identification of ill-performing (i.e., overfit) NNs (whereas before, we had subjectively removed 
a few cases of “spurious results” that stood out by eye).  We use the evaluation of NN 
performance for each year as a guide; if the r2 value of the NN-calculated OH (compared to the 
native model’s OH) is greater than some threshold for a given year, then we will use that NN for 
that year.  If not, that NN will be excluded, for that year.  We somewhat arbitrarily decided on an 
r2 threshold of 0.95, though we found the resulting variations and trends in CH4 lifetime to be 
relatively insensitive to varying this threshold within reason.  To demonstrate this, we have 
added the original Figs. 8 and 9, generated without the new quality check, to Supplement as Figs. 
S24 and S25. 

The implementation of this NN quality check changed our results slightly (the trend in 𝜏"#$ due 
to tropospheric O3, for instance, is a bit larger in magnitude), but the major conclusions of the 
analysis remain unchanged. 



We thank the reviewers for suggesting more attention to NN overfitting, and have revised the 
manuscript at L526 to describe our modified approach: 

“These examples of spurious results highlight an issue that must be treated with caution when using 
machine learning approaches.  Because the application of our NN method to time series analysis is an 
extension beyond the originally intended purpose, not all NNs are sufficiently generalizable to 
reliably reproduce OH for years other than the training year, 2000.  To account for this, we evaluate 
each NN for all years by inputting variables from each year.  With this test, all inputs are changed, not 
just a single input at a time.  The resulting OH, as depicted in Figures S16-S23 for select years, 
compares well to the native model’s OH field for that year in many cases, but not in all.  Considerable 
bias occurs at low OH mixing ratios, though we note that near-zero concentrations will likely not 
affect the resulting globally-integrated 𝜏"#$ unless values are grossly overestimated.  This evaluation 
also represents a rigorous test of the NNs, as significant shifts in numerous inputs at once might push 
the NN algorithm into new phase space not encountered during training, much more so than only 
changing one input at a time, which is our approach in the subsequent time-series analysis.  
Nonetheless, we limit the influence of poorly generalizable, or “overfit,” NNs by only including in 
the multi-model mean results for the years in which a NN reproduces its native model’s OH field with 
an r2 value greater than or equal to 0.95.  For four NNs (one per month) created for each of 8 CCMI 
models, across 36 years, the potential application of the NNs to 1152 calculations (4´8´36) is 
reduced to 696 calculations using this test.  Results from this point forward are subject to this quality 
check, and were found to be insensitive to the r2 threshold imposed.  This insensitivity is 
demonstrated by alternate versions of the figures to come, placed in Supplement, generated using all 
NNs rather than the quality-filtered NNs.” 

• I	would	like	an	additional	explanation	of	why	neural	nets	were	used	in	the	first	place.	I	
know	they	can	model	complex	non-linear	functions	(which	is	one	point	that	could	be	
mentioned),	but	there	are	many	algorithms	that	can	do	the	same	but	would	probably	be	
more	suited	for	inference	tasks	such	as	the	one	attempted	here.	Random	forests,	for	
example,	would	immediately	provide	feature	importances	for	the	regression	models	
themselves	and	it	would	be	easier	to	test	dependencies	between	correlated	variables	(e.g.	
ozone,	T,	humidity)	where	it	is	unclear	what	is	cause	and	effect.	I	do	not	ask	for	a	refit	with	
different	algorithms,	but	it	could	be	mentioned	in	terms	of	future	work/context.	 

We started this work, as proof-of-concept, ~year 2013 and, since we then had the framework in 
place to conduct the analysis, we largely adhered to our original method.  At that time, we were 
not aware of the random forest regressions approach, though we have since learned of the 
technique’s benefits, including the feature importance capability.  In the event that we are able to 
continue work in this area in the future, we view it as a high priority to explore the use of 
alternate techniques, though we remain confident that neural networks are suited to modeling the 
non-linear aspects of atmospheric chemistry when approached with appropriate caution and 
quality control measures. 

To ensure the reader is aware of these alternative approaches and their similar suitability, we 
have added text at L199 as follows: 

“We note that alternative machine learning algorithms have seen increased application to problems 
within atmospheric science in the last few years, and may be equally or even better suited than neural 
networks to studying non-linear chemical systems.  In particular random forest regressions and 
gradient boosting techniques offer greater computational efficiency and, in the case of random forests, 



have the capability to quickly identify which inputs are most strongly influencing the calculated 
output, known as “feature importance” (Hu et al., 2017; Keller and Evans, 2019; Liu et al., 2018).  
…As such, we encourage exploration of …additional algorithms for future machine learning 
applications to atmospheric chemistry.” 

We have also added text further justifying our use of neural nets, as suggested, at L97: 

“NNs in particular are capable of modelling complex non-linear functions, making them a suitable 
technique for studying the non-linear chemistry involved in OH production and loss.”	

• some	more	reflection	on	the	role	of	the	nudged	dynamics:	the	authors	mention	that	one	of	
the	reasons	why	temperature	is	less	important	in	explaining	inter-	model	differences	is	the	
fixation	to	a	common	atmospheric	background	state	by	nudging.	Alternatively,	correlations	
with	other	variables	such	as	ozone	are	offered	as	an	explanation.	Could	the	same	not	be	said	
about	water	vapour?	Maybe	this	would	also	explain	why	it	is	suddenly	so	much	more	
important	(relatively)	to	explain	variability?	What	did	you	observe	in	this	respect	for	the	
free-running	simulations?	 

We have added text to the Model Simulations description, stating that most of the specified 
dynamics simulations do not constrain their water vapor to reanalysis data.  While one would 
think these models would generally calculate water following temperature (which is constrained) 
as described by the Clausius-Clapeyron relation, this does not seem to be the case, as water 
appears as a “medium” driver of inter-model differences (4th in the ranking on Figure 5).  It’s 
likely that even small differences in water have a large effect on 𝜏"#$ due to its important role in 
primary production of OH. 

In the manuscript, we had previously referred to the results of the free-running simulation to 
interpret this point, at L383: 

“We note that T differences between the SD simulations are likely limited due the meteorological 
constraints imposed on the models.  However, examination of the free-running simulations, discussed 
in the Supplementary Material, also shows practically no impact of T on OH.  Thus, we conclude that 
the effect of temperature on OH chemistry is likely indirect, acting through pathways embodied by 
other variables, such as H2O and species that exhibit strongly temperature-dependent reaction rates.” 

We have also added a note regarding Dr. Nowack’s point that H2O is relatively more important 
in explaining temporal variability at L559: 

“It is interesting to note that H2O plays a stronger role in the overall temporal trend of 𝜏"#$, as 
compared to its role in explaining inter-model differences.  This is likely due to the fact that 
temperatures were constrained in the specified dynamics simulations, which in turn should determine 
the water vapor calculated within the models.” 

• the	randomness	of	neural	networks:	it	seems	that	only	one	network	is	fit	per	model.	
Unfortunately,	neural	networks	behave	somewhat	randomly,	which	is	essentially	the	result	
of	many	different	local	minima	in	the	cost	function	that	can	be	found	during	the	weight	
optimization	process.	Therefore,	I	would	expect	that	the	networks	for	each	model	would	
already	be	different	due	to	different	random	initializations	of	the	networks	even	if	the	



chemistry	models	would	be	identical.	I	would	strongly	encourage	the	authors	to	test	the	
relative	importance	of	this	randomness	aspect	compared	to	the	actual	inter-model	
differences.	For	example,	they	could	train	five-ten	neural	networks	for	two	of	the	models	
(subject	to	an	objective	optimization/early	stopping	procedure)	and	show	the	spread	in	the	
results	when	these	different	network	realizations	of	the	two	models	are	compared	(instead	
of	only	one	realization	for	each).	No	need	to	get	started	with	different	network	
architectures,	which	would	similarly	affect	the	results,	I	assume.	 

We trained five NNs initially for each model, and choose from among those the top performer, as 
we now explain in the text (see our response to the first comment, above).  We have performed 
the suggested analysis, reproducing Figure 4 from the main text for five trainings of the GMI and 
OsloCTM NNs.  These reproductions, using different NN versions, have been added to the 
Supplement as Figures S5 and S6.  Visual, qualitative comparison of all 5 versions reveals very 
similar spatial distributions and magnitudes for the most part, though the values of the change in 
CH4 lifetime do vary modestly, depending on the variable.  For instance, the standard deviations 
in Δ𝜏"#$ from JO1D and HCHO swaps into the GMI NNs are about 0.2 years, though some of 
the NNs included were not as highly-performing as the chosen NN. 

In any case, we agree with Dr. Nowack on the importance of the reader being aware of this fact, 
and have added the following text in our discussion of Figure 4, at L328: 

“A fourth issue is the fact that NNs can exhibit some degree of random behaviour, based on how they 
were trained and initialized.  Our method involved training 5 NNs and selecting from those the one 
that performed best when compared to the independent test dataset.  That single NN was used in all 
subsequent analysis.  However, it is a useful exercise to evaluate the role of NN randomness in our 
results.  We show in Figures S5 and S6 the left and right panels of Fig. 4, reproduced for the alternate 
NN trainings of the GMI and OsloCTM models, respectively.  A visual comparison of tropospheric 
OH column differences among the five trainings of each model’s NN reveals markedly similar spatial 
distributions and magnitudes.  The values of calculated 𝚫𝝉𝑪𝑯𝟒 do differ somewhat between the 
training instance, with larger effects on some variable swaps than for others.  For instance, the 
standard deviation of the values of 𝚫𝝉𝑪𝑯𝟒 calculated for all five trainings of the GMI NN is about 0.2 
years for the J(O1D) and HCHO swaps, but less than 0.05 years for O3 and NOx.  We note, though, 
that some of the NNs displayed in Figures S5 and S6 exhibit worse performance than the one 
ultimately chosen for subsequent use.  As a result of this exercise, the uncertainties resulting from this 
analysis method may be considered, at most, to be ~0.2 years.” 

Minor	comments:		

• p.	4,	l.107-109:	revise	second	part	of	the	sentence. 

We have changed this line from “…seeks to further inter-model evaluation…” to “seeks to 
enable inter-model evaluation…”	

• p.	4/5;	model	simulations:	since	UV	fluxes	and	stratospheric	ozone	are	discussed	maybe	
briefly	mention	if	all/which	models	include	interactive	stratospheric	chemistry,	or	how	it	is	
treated	otherwise.	 



We have included the statement at L130 that “All models, here and including those described 
below, include interactive stratospheric chemistry.”	

• section	3.1	I	think	there	should	be	more	detail	here;	essentially	another	small	subsection	on	
the	cross-validation	method.	 

Please refer to our additions to the text described under the first major comment, above.  We 
believe this adds considerably to the detail concerning our method, as Dr. Nowack requests.	

• p.	5	l.	161:	‘mutually	exclusive’	-	what	do	you	mean	by	that	here?	 

We have changed the language here to “outside the ranges,” to improve clarity.	

• l.	165-170:	Maybe	try	a	variation	of	the	input	features?	The	cross-correlations	are	indeed	an	
obvious	problem	for	the	interpretation.	Did	you	consider	fitting	two	different	networks,	e.g.	
one	with	JO1D,	one	with	column	ozone	and	consider	how	well	they	do	on	the	cross-validation	
dataset?	I	am	also	wondering	how	these	different	networks	would	perform	in	different	
atmospheric	regimes,	e.g.	column	ozone	being	more	important	in	the	upper	troposphere.	
JO1D	(including	clouds)	becoming	relatively	more	important	in	the	lower	troposphere?	Can	a	
single	network	for	all	grid	cells	capture	these	different	regimes	appropriately?	 

We did evaluate inclusion of just JO1D (and not column ozone, which was the method of our 
original “proof-of-concept” study in Nicely et al., 2017), use of just column ozone (and not 
JO1D), and inclusion of both at the time of original development of the method.  While the first 
and third options were quite comparable in terms of NN performance, the second was not as 
effective, likely because overhead ozone is so far removed from the in situ OH quantity.  JO1D, 
on the other hand, is the immediately-relevant measure of the UV light affecting OH at a 
particular time and place.  Over the years we have worked on this, there has been a substantial 
amount of experimentation with the input variables chosen, and the set of inputs were 
determined to provide the best balance between strong performance on independent test data 
following training, and reasonable results following the inter-model swapping of variables (use 
of absolute values of CH4 would result in non-sensical output, for instance). 

To encourage the reader to consider the importance of architecture/input choice testing, in the 
case that they attempt a similar analysis, we have added text at L205 stating: 

“We also do not intend to suggest that our chosen NN input list, architecture, and general method is 
the best approach; input variables were largely determined by available output, and architecture 
testing was conducted on the computing resources available at the time of the study.”	

• l.228:	performance	for	the	year	2000	is	strong	–	but	this	is	the	training	year.	Should	the	goal	
not	be	to	evaluate	on	out-of-sample	years.	Maybe	show	an	error	plot	for	all	years?	I	assume	it	
gets	worse	the	further	one	moves	away	from	the	training	year,	partly	due	to	the	extrapolation	
error?	 



We refer to our response to the first major comment, where we added evaluation of all NNs for 
years other than 2000 and adapted our time series analysis to remove poorly-performing NN 
instances.	

• general	remark	on	the	extrapolation	issues:	could	you	give	an	estimate	of	how	often	you	had	
to	correct	values	in	this	way	for	each	comparison/model	(e.g.	percentage	o	cases	depending	
on	the	year)?	This	would	give	the	reader	a	better	impression	of	how	important	this	factor	is	
when	considering	the	results.	In	addition,	did	you	ever	test	how	linear/non-linear	the	
regression	relationships	really	are?	Maybe	linear	regression	algorithms	such	as	Lasso/Ridge	
would	actually	circumvent	all	these	issues	by	being	able	to	extrapolate	better	and	still	extract	
feature	importances	in	a	sophisticated	enough	manner	(the	resulting	regressions	would	also	
be	easier	to	interpret).	 

The extrapolation control method we developed is only utilized in the inter-model comparison 
portion of this analysis.  Our reasoning for doing so is that any given model should simulate 
generally comparable conditions from year to year, aside from regime shifts in 
anthropogenically-emitted species and strong ENSO events that shift locations of convection, 
biomass burning, etc.  And, if our NNs are moderately generalizable, then small excursions 
outside the range of variable values on which the NNs were trained should be manageable 
(which we found was not always the case and have now accounted for, as explained under the 
first comment, above). 

We still agree with Dr. Nowack, though, that some indication of how frequently extrapolation 
control is employed in the inter-model comparison analysis would be informative.  To do this, 
we have written out flags for instances in which adjustments to swapped input variables are 
made.  We separate these instances into “coarse” and “fine” adjustments, the former describing 
the case when an incoming value falls completely outside the range of tropospheric values from 
the NN’s native model, incurring a presumably large adjustment, and the latter describing 
smaller changes made to conform the other model’s variable to the native model’s chemical 
regimes.  For the January NNs only (the extrapolation control code is rather inefficient; it took 
several weeks to generate these results alone), the percentage of cases (total number of 
tropospheric grid points) that undergo coarse adjustment are 3.5% on average, while cases in 
which fine adjustments are performed average 18.8%.  A large number of the fine adjustment 
cases are driven by inconsistencies in CH4, though individual models may have other factors that 
contribute significantly. 

The result of performing these adjustments is to dampen the calculated impact to OH and 𝜏"#$.  
However, the analysis already reveals instances with large changes to 𝜏"#$, so we think it is 
appropriate to state more conservative results with a higher level of confidence. 

We have added text to inform the reader how often extrapolation control is invoked at L224: 

“For reference, we tally the number of instances in which extrapolation control is invoked for two 
categories: coarse adjustments, when a NN input value from another model falls entirely outside the 
range of the NN input values from the native model, and fine adjustment, when a value from another 
model must be tweaked to preserve the native model’s chemical regimes.  On average, coarse 
adjustments are incurred for 3.5% of all swapped data points, while fine adjustments are made to 



18.8% of swapped values.  We find that extrapolation control is critical to achieve meaningful results 
with the NN inter-model comparison method, though it necessarily forces the attributed changes in 
OH and 𝜏"#$ to be conservative estimates.” 

We have not explored the use of linear regression techniques such as Lasso/Ridge in order to 
ameliorate issues pertaining to extrapolation, but we would like to encourage the reader to do so.  
We have added text at L204: 

“Additionally, linear regression algorithms such as Ridge and Lasso regression may be beneficial in 
curbing issues related to extrapolation.” 	

• l.	484:	maybe	I	approach	this	one	too	naively,	but	why	would	I	expect	to	model	a	CH4	trend	if	
CH4	is	normalized	by	its	maximum	value	in	each	year?	I	assume	the	maximum	value	shows	a	
trend	somewhat	proportional	to	the	average	trend?  

Dr. Nowack is correct on this point; we cannot attribute any meaning regarding the “CH4 
feedback factor” to the trend in 𝜏"#$ due to CH4 found here, as a result of CH4 being normalized.  
We have taken steps to remove language suggesting that a trend in OH due to CH4 is found, 
emphasized in some figures that CH4 is normalized by using the notation “CH4NORM”, and 
removed the trend due to CH4 data point from our final figure, comparing the CCMI model 
trends in 𝜏"#$ to our previous empirical study’s trends in [OH]TROP, since they are not 
comparable. 

We chose to leave “CH4NORM” in Figs. 7-9 because there is some meaning in this value; it 
represents changes in the spatial and vertical distribution of CH4 within the troposphere, which, 
based on how the CH4 collocates with high OH concentrations, can influence the resulting 𝜏"#$ 
value.  We have added explanation to this effect at L459, where we state: 

“Because we are relying on the same NNs used for the inter-model analysis, we emphasize that the 
CH4 fields used here are still normalized, separately for each year.  As a result, the variations in 𝜏"#$ 
due to CH4 should not be interpreted as a measure of the CH4 feedback factor (Prather et al., 2001).  
Instead of representing the change in OH with a change in absolute concentration of CH4, the 
numbers shown here signify the change in OH with a change in how CH4 is distributed within the 
atmosphere.  Largely, one would expect this to remain constant over time, though results from this 
analysis of the CCMI simulations suggests there are some modest changes in 𝜏"#$ attributed to the 
distribution of tropospheric CH4.  Should a similar method be applied to analysis of temporal 
variations in OH in the future, we would encourage training the machine learning algorithm on data 
spanning all years such that use of CH4 absolute values would be possible.”	

 

Reviewer 2 

Nicely	et	al.	(2019)	attributed	OH	differences	among	CCMI	models	into	a	number	of	parameters	
using	a	neural	network	approach.	They	found	the	major	drivers	for	the	decline	in	methane	lifetime	
are	tropospheric	O3,	JO1D,	NOx,	and	H2O,	with	CO	contributing	to	the	OH	interannual	variability.	It	
is	a	very	interesting	study	with	very	popular	machine	learning	technique.	The	manuscript	is	in	



general	well	written	and	well	organized.	I	recommend	acceptance	of	the	manuscript	after	
addressing	below	questions.	 

Neural	network	setup	

	
As	described	in	the	manuscript,	one	NN	is	trained	for	each	model	for	each	month	and	all	the	
training	is	performed	for	year	2000.	So	how	is	it	applicable	for	the	input	with	a	lengthy	period?	
Some	variables	would	undergo	significant	changes	from	the	1980s	to	2010s.	What	if	the	NN	trained	
for	year	2000	is	not	suitable	for	1980s	or	2010s?	

This is certainly a concern, and we have added new analysis that identifies how well the NNs, 
trained on output from year 2000, perform for other years.  The majority of NNs continue to 
perform strongly, though a number of them encounter conditions that cause large deviations in 
their predicted OH.   

We refer the reviewer to our response to Dr. Nowack’s first major comment, above, for an in-
depth description about how the manuscript has been changed to address this point, including 
adjusted analysis, new methodological details in the main text, and many new figures in the 
Supplement. 

There	is	one	concern	that	when	you	substitute	a	single	input	taken	from	one	model	into	another.	
Would	this	affect	the	original	chemical	regime	or	atmospheric	condition?	Would	there	be	some	
“relaxation”	in	the	system	to	approach	original	condition?	In	that	sense,	it	could	reduce	the	
sensitivity	of	OH	to	the	differences	in	the	input.		

We agree with the reviewer, that this analysis neglects “true atmospheric behavior,” as you might 
call it – feedbacks and relaxation effects are ignored as we instead are calculating an 
instantaneous change that would occur if you could magically perturb a single species or 
variable.  But we would still regard this as a useful exercise to both parse the main influencers of 
OH chemistry and identify the causes of inter-model differences, which are difficult to do 
otherwise.  We have added text acknowledging this point at L439: 

“A final qualification is this analysis constitutes a foundationally hypothetical experiment.  It 
essentially addresses the questions, “What if we could instantaneously switch the fields of just one 
chemical species between two global models?  What would be the impact on OH? on 𝝉𝑪𝑯𝟒?”  This 
approach, then, necessarily neglects the roles of feedbacks in the atmospheric system (e.g., if the NOx 
field is perturbed, this will propagate to changes in O3 as well, with time).  However, for the objective 
of teasing apart the influences on global OH abundance and 𝝉𝑪𝑯𝟒 and explaining inter-model 
differences, a notoriously difficult task, we regard our approach as a valuable exercise.“ 

Lastly,	it	is	more	of	a	broad	question.	To	what	degree	that	the	trained	NN	can	realistically	represent	
the	non-linear	chemical	system.	In	this	work,	there	are	a	number	of	variables	are	input	to	the	NN.	
The	weighting	factors	can	be	adjusted	during	the	training	process,	but	if	there	are	more	inputs	or	
different	inputs,	the	weighting	factors	could	be	different?	Would	this	affect	conclusion?	How	to	deal	
with	this	issue?		



Neural networks are generally highly capable of modeling non-linear functions, which is the 
main reason why we chose this approach originally.  Within the NN architecture, we use 
hyperbolic tangent activation functions, which are non-linear.  As these functions are used many 
times over, in parallel, they enable complex fitting of multi-dimensional, non-linear surfaces.  
The reviewer is correct, though, that once the training process is complete, the weights of our 
chosen NN are fixed, and the insertion of different inputs can cause issues.  To deal with this, we 
implement the “extrapolation control” method described in the text.  In our revisions, we have 
also taken the extra step of evaluating our NNs across all years, to exclude NNs that do not 
generalize well (i.e., reproduce well the OH for a particular year, presumably due to some new 
conditions encountered) from our analysis. 

Specific	comments:	 

Page	4,	121-125,	is	water	vapor	nudged	for	all	the	REF-CISD	simulations?	If	not,	what	are	the	REF-
C1SD	simulations	that	nudge	water	vapor?		

We have added statements to the text describing which models include specific humidity 
nudging in their specified dynamics schemes, at L124: 

“Particularly relevant to this analysis is the nudging of specific humidity, which is only performed in 
the MOCAGE model, of the models we analysed.” 

and L143: 

“All CTMs except GEOS-Chem calculate water vapor interactively in the troposphere.  GEOS-Chem 
instead uses specific humidity fields from the MERRA reanalysis.” 

Page	8,	line	244,	but	also	over	tropical	ocean?	

Yes, it is true that changes to O3 and NOx influence OH over the tropical oceans as well as over 
the continents, though the maximum changes in OH appear over land.  We have changed this 
statement to read, at L287: 

“…exert the greatest influence on OH over the climatological tropics, with maximum impacts over 
land but extending over the oceans as well.” 

Page	9,	line	261-264,	could	you	elaborate	“buffering	effects”?		

The buffering effects we are referring to mostly involve more complex hydrocarbon chemistry, 
and so we have changed this example from CH4 to isoprene.  The text now reads, at L305: 

“For example, one model may be sensitive to an increase in isoprene, causing OH concentrations to 
drop in response.  Another model may incorporate buffering effects (such as reactions involving 
oxidized volatile organic compounds (Lelieveld et al., 2016; Taraborrelli et al., 2012) that allow OH 
to be recycled…” 

Page	9,	line	278-282,	this	is	similar	to	“relaxation”	that	mentioned	in	the	general	comments.		



The example given at this location, regarding the implementation of extrapolation control 
preventing a large change in CH4 from being conveyed to the NN, does not exactly represent a 
“relaxation” of the system, but rather, a logistical issue with the method, preventing our even 
testing a large perturbation in the NN out of an abundance of caution.  In general, though, we 
agree with the reviewer that the issue of relaxation is not directly addressed by our method, and 
so the text added at L439 (described in our response to the general comment, above) discusses 
this point. 

Page	11,	line	326	&ff,	Figure	5,	the	impacts	of	temperatures	are	small	due	to	the	specified	dynamics	
in	the	model.	What	about	water	vapor?	If	specified	water	vapor	is	also	imposed,	are	the	impacts	of	
water	vapor	still	large?	You	may	want	to	check	the	models	with	the	specified	water	vapor.		

This is a very interesting idea, though the only two models that used specified water vapor 
(MOCAGE and GEOS-Chem) used two different reanalysis data sources (ERA-I and MERRA, 
respectively).  The mean Δτ,-. values due to H2O for these two models are quite different, 
though there is at least overlap in the 1s about the mean, represented by the “whiskers” in Fig. 5.  
Had there been more models imposing a water vapor constraint, from the same reanalysis data, 
this would be worth exploring further. 

Page	11,	line	336-378,	what	do	you	mean	by	“reminder	term”?		

We describe the “remainder term” three paragraphs prior to the location identified by the 
reviewer, where it is instructive to refer to Table 1.  To improve clarity, we now include the text: 
“…the remainder term (or term labelled “Mech.” in Table 1)…” at L393. 

Page	16,	line	487-489,	are	you	talking	about	latitudinal	gradient	or	vertical	distribution?		

Because of use of normalized CH4 prevents inferences regarding the true “CH4 feedback” on 
OH, we have removed the discussion at Pg. 16, line 487.  However, new text placed earlier in the 
discussion (starting L459) also refers to the “distribution of methane.”  We have included “both 
vertically and spatially” as clarification, as changes in the collocation of OH and CH4, no matter 
where in space, could impact the calculated τ,-.. 

 

Reviewer 3 – Dr. Leif Denby 

I	am	only	commenting	on	the	machine	learning	aspect	of	the	submitted	manuscript.	Apologies	for	
overlooking	for	not	providing	more	general	feedback.	 

1.	In	section	3.2	I	would	rephrase	the	sentence	containing	"mimic	the	tropospheric	chemistry"	to	
include	"predict	the	instantaneous	OH"	concentration.	As	is	written	now	it	might	give	the	
impression	that	the	time	evolution	is	predicted	by	the	neural	networks	as	the	research	presented	is	
about	reactions.		

We agree with Dr. Denby on this use of language and have made the recommended change. 



2.	I	find	the	sentences	"Briefly,	one	NN	is	trained	for	one	model,	for	one	simulation	month	at	a	time."	
and	"To	reduce	computational	demands,	we	establish	NNs	for	four	months,	one	for	each	season..."	a	
little	contradictory.	Is	training	done	on	one	month	or	on	four	months	of	input?	How	is	it	possible	to	
do	both?	It	might	be	that	the	reader	should	simply	study	the	referenced	paper,	but	I	find	this	a	little	
unclear.		

We apologize for the confusing language here; training is done on one month of input; we 
generate separate NNs for each month that we look at; and we look at 4 months.  We have 
attempted to clarify this by changing the text to read, at L153: 

“Briefly, four NNs are trained for one model, each for one simulation month.  To reduce the 
computational demands of NN training, we only establish NNs for four months, one for each 
season…” 

3.	It	would	be	nice	to	a	brief	comment	on	why	models	were	trained	for	each	month	separately.	Was	
this	done	because	the	temporal	variability	couldn’t	be	captured	by	a	single	model?	Does	the	skill	of	
each	model	vary	through	the	month?	I	assume	that	at	the	ends	of	the	month	(where	there	is	
transition	between	which	model	is	used)	there	might	be	a	reduction	in	skill.	But	maybe	the	
predictions	match	seamlessly	when	switching	between	models.		

In our early years of developing this method, we encountered a couple of issues that resulted in 
our decision to only train an NN for a single month.  When we first attempted to ingest all model 
output for an entire year into the Matlab NN software, on which we still rely, and on a graduate 
student’s laptop (albeit a powerful one – on which we do not still rely), we unsurprisingly 
encountered memory issues when attempting to train the NN.  Then, during our limited attempts 
to randomly sample model output across all months to generate a training dataset, we found that 
the NNs did not perform well. 

Now that considerably more progress and application of machine learning to scientific questions 
has taken place, we would encourage a more methodical and strategic sampling of the model 
domain to create a training dataset.  To ensure the reader is aware of this point, we have added 
text at L207: 

“It is possible that a single NN could suffice for predicting OH variations throughout an entire year, 
rather than for just a single month, following methodical subsampling methods to create the initial 
training dataset.” 

Regarding questions about how the NN performs “through the month,” we use only monthly 
mean output from the CCMI models examined here (monthly mean output is commonly what is 
made available from these large model intercomparison projects).  So, we are not able to address 
issues of varying performance throughout a simulated month. 

4.	The	"Inter-model	comparison"	is	nice.	With	the	restriction	on	the	numerical	range	of	the	values	
which	are	substituted	I	feel	that	feature	importance	could	similarly	be	inferred	by	simply	shuffling	
(across	time)	all	values	for	a	specific	feature,	similarly	to	how	it’s	done	for	random	forests.	Is	there	
a	reason	why	this	wasn’t	attempted	here?	Isn’t	there	a	concern	that	using	the	presented	method	
that	one	might	infer	low	feature	importance	for	fields	that	simply	vary	little	between	models?		



We thank Dr. Denby for the statement of support.  His follow-up questions relate to the ultimate 
goal of the analysis.  In our case, the objective is to explain why global models of atmospheric 
chemistry give different quantities of global mean OH and 𝜏"#$.  In that case, we are less 
concerned with quantities that are quite consistent among the models, even if they have the 
capability of strongly altering OH chemistry.  We go into this a bit in the Discussion (~L319), 
explaining that two conditions must be met to incur a change in OH: differences in the input 
between the two models, and sensitivity of OH to that input. 

The questions posed above would be interesting to address if one were examining which inputs 
have strong “feature importance,” which is not necessarily the goal of the inter-model 
comparisons, but is, in essence, what we have done in the time series evaluation. 

 

Short Comment 1 – Mr. Karl M. Seltzer, Dr. Prasad Kasibhatla  

General Comments  

The manuscript “A Machine Learning Examination of Hydroxyl Radical Differences Among 
Model Simulations for CCMI-1” by Nicely et al. discusses a topic that is of high interest to the 
Atmospheric Chemistry and Physics community. Possibly the most perplexing issue in 
atmospheric chemistry is the unexpected stabilization of global methane concentrations from 
~2000-2006. This study attempts to unravel the individual CTM drivers of the hydroxyl radical 
in a suite of simulations, thus illuminating the changes, and reason for said changes, in the 
primary termination pathway for methane, as simulated by each CTM.  

While this work is important, we do have concerns about how some of the results are presented 
and methods are employed in this analysis, both of which constitute major comments. We will 
describe both in more detail below, followed by some minor comments.  

Major Comments  

1. In Figures 7-10, results from the CH4 signal, as it relates to changes in tropospheric OH, are 
presented. While the text does explicitly state that “CH4” is a normalized value based on the 
maximum tropospheric value, we believe the presentation of the results in Figures 7-10 and 
much of the language used throughout the manuscript can lead to substantial confusion on 
the part of the reader. The reader might reasonably interpret the results as an estimate of the 
sensitivity of 𝜏CH4xOH to changes in CH4 abundance (i.e. the CH4 feedback factor). One 
example: the inclusion of CH4 in Figure 10 makes a comparison of the “CH4” value reported 
in this study (i.e. NOT the CH4 feedback factor) with the calculated CH4 feedback factor from 
Nicely et al., 2018. 

Based on our interpretation of the methods employed here, the authors did not analyze the 
CH4 feedback factor. Since it seems the better characterization is that the global distributions 
of CH4 concentrations were analyzed, we think the authors need to re-write any discussions 
related to CH4 results throughout the manuscript to make this distinction abundantly more 



clear, and should possibly remove the characterization of “CH4” in Figures 7-10. Similarly, it 
is not clear why CH4 concentrations were normalized. Presumably, the same analysis using 
non-normalized values of CH4 would be able to capture the CH4 feedback? 

We fully acknowledge that the impact of CH4 on the trend in 𝝉𝑪𝑯𝟒, as it is found here, does not 
represent the CH4 feedback factor.  This was a late realization, and some of the language and 
figures in the manuscript may have been misleading as a result.  We have taken steps to remove 
this misleading content in the following ways: 

• During early discussion of the “Time series evaluation” results, we attempt to present this 
issue in a forthright manner.  Starting at L459, the text now reads: 

“Because we are relying on the same NNs used for the inter-model analysis, we emphasize that 
the CH4 fields used here are still normalized, separately for each year.  As a result, the 
variations in 𝝉𝑪𝑯𝟒 due to CH4 should not be interpreted as a measure of the CH4 feedback factor 
(Prather et al., 2001).  Instead of representing the change in OH with a change in absolute 
concentration of CH4, the numbers shown here signify the change in OH with a change in how 
CH4 is distributed within the atmosphere, both vertically and spatially.  Largely, one would 
expect this to remain constant over time, though results from this analysis of the CCMI 
simulations suggests there are some modest changes in 𝝉𝑪𝑯𝟒 attributed to the distribution of 
tropospheric CH4.  Should a similar method be applied to analysis of temporal variations in OH 
in the future, we would encourage training the machine learning algorithm on data spanning all 
years such that use of CH4 absolute values would be possible.” 

• In Figures 7-9, we now label the time series/trends due to CH4 as “CH4NORM” to serve as 
a reminder that the CH4 with which we performed the analysis is normalized.  We chose 
to leave “CH4NORM” in Figs. 7-9 because there is some meaning in this value; it represents 
changes in the spatial and vertical distribution of CH4 within the troposphere, which, 
based on how the CH4 collocates with high OH concentrations, can influence the 
resulting 𝝉𝑪𝑯𝟒 value. 

• We have removed entirely the CH4 data point in Figure 10 comparing the CCMI model 
trend, as evaluated by NN, to the Nicely et al. (2018) trend, and all discussion associated 
with it, as the two values do not provide an “apples to apples” comparison. 

Regarding why normalized CH4 was used in the first place, we sought to utilize the same NNs 
trained for the inter-model comparison application for the new analysis of OH time series.  
Absolute values of CH4 mixing ratio as NN inputs were initially attempted for the inter-model 
comparison, but yielded non-sensical results since the models calculated very different CH4 
fields in some cases.  In the case of CCMI, the models are fairly similar, since they use the same 
CH4 boundary condition, but the external models that did not formally participate in CCMI still 
pose the same problem. 

In the case that we could dedicate considerably more time to this work, we would ideally train 
new NNs for the time series analysis portion of the project using absolute CH4 mixing ratios.  
This would necessitate that we create a training data set consisting of samples across all years, 
lest we run into the same dilemma of having the NN trained on a relatively narrow range of CH4 
values.  This type of subsampling should be performed strategically, and, along with the actual 



training of the NNs, would be computationally demanding and require a substantial amount of 
time, thus we regard this as beyond the scope of our current manuscript. 

2. The sensitivity of 𝜏CH4xOH	to changes in CH4 abundance reported by CTM studies are 
reasonably consistent and range from -0.25 to -0.35 (Prather et al., 2001; Fiore et al., 2009; 
Holmes et al., 2013, Holmes 2018). That is, the tropospheric OH abundance declines by 
0.25%-0.35% for every 1% increase in CH4 abundance (Prather et al., 2001). The IPCC AR5 
reported that global CH4 abundance grew by ~13% from 1980 to 2010 (Ciais et al., 2013). 

Assuming the models used here respond in a similar manner to other published CTM studies, 
the CH4 feedback should have yielded a ~3.3%-4.6% decrease in tropospheric OH between 
1980-2010 (or equivalently, 1.1%-1.5% per decade). That driver should theoretically be 
captured in the net results presented in Figure 6.  

As noted on Line 457, the mean downward trend in 𝜏CH4	of Figure 6 is 1.8% per decade. 
Therefore, the residual (i.e. all of the other factors outside of the CH4 feedback) should be ~(- 
1.8% - 1.3%) à -3.2% per decade (note: 1.3% is the average of 1.1% and 1.5%). This is 
much larger than the ~residual of -1.9% reported on Line 457 (~residual because it does not 
include the CH4 feedback factor). Therefore, since the 𝜏CH4	budget does not appear to be 
closed when adding up all of the variables (including the CH4 feedback), this suggests that 
the methods used here have difficulty in deriving the contributions of individual drivers. If 
so, that would be a fundamental issue with the methods used to derive Figures 7-10. Here are 
some ways we believe the authors can build confidence in the methods used here:  

a. A quick first step would be to add up all of the components for each model in Figure 
7 and plot their change, side-by-side, to the values presented in Figure 6 (normalized 
to 2000 values for consistency). Do the trends match? If yes, since the NN method 
does not account for the CH4 feedback and CTMs are known to have a robust and 
consistent CH4 feedback, why do they nonetheless match? If no, can the missing CH4 
feedback explain the difference?  

b. A lengthier, but maybe necessary test: Experiment with one of the CTMs. For 
example, re-run GMI with the year 2000 repeating for all variables, except CO. This 
might only be necessary for a few select years, such as 1985 and 1998. Do these 
results match the dark blue line in Figure 7e? One or two examples of these types of 
validation steps would really increase our confidence in the driver analysis.  

c. When attributing specific, individual drivers to trends, Random Forests are 
considered better machine learning tools (Grange et al., 2018). It is likely easy to 
swap out the NN code in your analysis with a random forest. Experiment with one of 
the models. For example, run the random forest algorithm for GMI’s 2000 results 
and repeat the process for Figure 7. How different are the results? 

We acknowledge that these suggestions by Mr. Seltzer and Dr. Kasibhatla would make a 
rigorous test for the application of our method to time series and determination of trends in 
OH/𝜏CH4.  We have taken steps to build confidence that the method is fundamentally sound 
following their item (a.) above. 



Below we have created a table listing the overall trends in 𝜏CH4, taken directly from the CCMI 
models (i.e., Figure 6), the overall trend calculated by totaling each component from the NN 
analysis (Figure 7, excluding the obviously spurious cases discussed in the text: EMAC CH4 and 
MOCAGE O3 Column), and the implied CH4 feedback factor found by subtracting the latter 
from the former. 

Model Native model trend in 
𝜏CH4	(Fig. 6)            
(% decade–1) 

Summed trend in 𝜏CH4 
from NN-calculated 
components (Fig. 7) 

Implied CH4 
feedback (Column 2 
– Column 3) 

CAM4Chem –2.69 –3.15 +0.46 
EMAC-L47MA –1.22 –1.32 +0.10 
EMAC-L90MA –1.48 –1.50 +0.02 
GEOSCCM –0.70 –1.57 +0.87 
GMI –0.54 –1.86 +1.32 
MOCAGE –2.97 +1.32 –4.29 
MRI-ESM1r1 –2.31 –2.34 +0.03 
WACCM –2.72 –2.97 +0.25 

The values of the implied CH4 feedback are all of the correct sign, except for MOCAGE, which 
generally demonstrates quite different behavior from the other models.  The value for GMI is in 
good agreement with the 1.1-1.5 % decade–1 range that is cited in the comment above.  We 
would identify a couple of issues with validating the method in this manner, though. 

First, as described in our previous responses to reviewers, we now identify specific instances in 
which the NNs (for specific months and years) do not perform sufficiently well, and so the multi-
model mean trend results that we show now use NN calculations “filtered” for only the high 
performing NNs.  The numbers we quote in the above table, in Column 3, include all NN results 
except for the MOCAGE O3 column and EMAC CH4 contributions, and so admittedly include 
some dubious contributions.  Because NNs for individual months are filtered out in the new 
quality-check, it would not be straightforward to calculate new D𝜏CH4 values, on a year-by-year 
basis, for a single model.  The aggregation of all models, into the multi-model mean results we 
present, allows us to assess the trends using results from all years. 

Second, we do only perform this analysis for four months out of the year, so a truly apples to 
apples comparison with, e.g., CH4 feedback factors from other studies would more aptly include 
all 12 months.  And finally, as we now acknowledge following our response to Reviewer 2, there 
are secondary effects and “relaxation” that occur in the real atmosphere and in the global models 
we are examining, which the NNs may not capture.  This analysis can instead be interpreted as 
evaluation of the instantaneous change in OH resulting from a hypothetical perturbation to a 
single chemical/radiative/physical variable.  One should be aware that these perturbations often 
do not occur in isolation, though, and so we now caution the reader that the responses shown by 
this analysis may not be directly applicable to the real world. 

Because we have chosen to remove discussion of our results regarding the trends in 𝜏CH4 due to 
CH4, we consider further analysis regarding the CH4 feedback factor as beyond the scope of the 
current work.  We do encourage further study of the issue, though, both by suggesting 



refinements to our method (i.e., creating a training dataset sampled across many years, to enable 
use of absolute CH4 values in the NNs ~L207) and by endorsing movement away from CH4 
boundary conditions (which we believe hampers useful studies of the CH4 budget with our 
present-day atmospheric chemistry models), toward interactive fluxes (L592). 

Minor Comments  

• Figure 3 compares the tropospheric OH columns from WACCM and the ANN-WACCM 
predicted tropospheric OH columns. As noted on Line 174, the training methods in this 
analysis were the same as those carried out in Nicely et al., 2017, which stated that the 
training/validation/testing datasets comprised 80/10/10% of all data. Therefore, it seems that 
80% of the data that was used to construct the middle panel of Figure 3 was data that the 
ANN has seen before (i.e. from the NN training). Shouldn’t this part of the evaluation be 
restricted to only the testing dataset?  

While the actual evaluation of the NN post-training was performed on the testing dataset, we also 
wanted in Figure 3 to convey the spatial distribution and magnitudes of tropospheric OH column 
amounts, relevant for the interpretation of Figure 4.  Since our NNs calculate OH on a 3-D basis, 
and we then integrate the columns in post-processing, generation of a similar figure showing 
only the 10% of model output used for training would not be possible (i.e., you likely wouldn’t 
have a full vertical profile of OH for any single lat/lon coordinate). 

We have, however, added considerable content displaying the performance of our NNs in the 
form of 2-D histograms in the Supplement, including for years other than 2000 (Figs. S16-S23).  
While we have newly adapted our analysis to rely only on the NNs that continue to show strong 
performance in reproducing its native model’s OH for a given year, the overall conclusions have 
changed little as a result (see our response to the first comment by Dr. Nowack for further 
detail). 

• In the paragraphs spanning Lines 423-448, there is a discussion about “spurious results”. Are 
these results “spurious” just because they look out of place in Fig. 7, or are there some other 
quantifiable ways that might justify the label “spurious”?  

We initially identified these “spurious results” by eye, but since looking more closely at the 
performance of our NNs across all years, we have instituted a quantitative threshold to determine 
when results from a particular NN/year should be disregarded.  We choose a somewhat arbitrary 
r2 threshold for this purpose, but we did test the effects of altering this threshold and found little 
change in our results (again, see our response to Dr. Nowack for further detail).  

• Figure 9b: Don’t CTMs have difficulty in capturing observation-derived estimates of IAV 
(Holmes et al., 2013)? That should be noted.  

We have added text noting this in our discussion of Figure 9b, at L551: 



“The interannual variability of 𝝉𝑪𝑯𝟒 is also calculated as the standard deviation of the detrended time 
series, shown in Fig. 9b, though it is relevant to note that CTMs have historically not captured the full 
interannual variability exhibited by observed OH proxies (Holmes et al., 2013).” 

• Lines 482-498 should likely be removed. The comparison of the CH4 results here and the 
CH4 results in Nicely et al., 2018 are not an ‘apples-to-apples’ comparison, as noted by the 
authors in the sentence starting with “On one hand...” from Line 485.  

We concur; this text has been removed. 
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We thank Mr. Seltzer and Dr. Kasibhatla for these recommended references; we have added all 
but Ciais et al. (since our analysis does not quantify a CH4 feedback and thus discussion of the 
CH4 increase is less relevant) to our manuscript, where applicable. 


