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Abstract

The presence of clouds above the tropopause over tropical convection centers has so far been

documented by spaceborne instruments that are either sun-synchronous, or insensitive to thin

cloud layers. Here we document, for the first time through direct observation by spaceborne lidar,

how the tropical cloud fraction evolves above the tropopause throughout the day. After confirming

previous studies that found such clouds are most frequent above convection centers, we show that

stratospheric clouds and their vertical extent above the tropopause follow a diurnal rhythm linked

to convective activity. The diurnal cycle of the stratospheric clouds displays two maxima: one in the

early night (19-20LT) and a later one (00-01LT). Stratospheric clouds extend up to 0.5-1km above

the tropopause during nighttime, when they are the most frequent. The frequency and the vertical

extent of stratospheric clouds is very limited during daytime, and when present they are found

very close to the tropopause. Results are similar over the major convection centers (Africa, South

America, Warm pool), with more clouds above land in DJF and less above ocean and JJA.
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1. Scientific context and objectives

The presence of ice clouds near the tropical  tropopause has long been documented by in-situ

measurements  (e.g.  Thomas  et  al.,  2002;  Jensen  et  al.,  2013;  Frey  et  al.,  2014).  Detecting

occurrences of clouds extending above the tropopause by remote sensing requires documenting

the vertical cloud profile with a fine resolution and a high sensitivity to optically thin clouds, which

few instruments can reach. Lidar measurements are able to document such occurrences (e.g. Nee

et al., 1998), but for a long time were limited to local case studies. Dessler (2009) was the first to

use the cloud detections by the CALIPSO lidar (Cloud Aerosol Lidar Infrared Pathfinder Satellite‐

Observations) to investigate how clouds extend above the tropopause on a global scale. Pan and

Munchak (2011) refined the results by using an advanced tropopause dataset. Both studies found

that clouds extending into the stratosphere are frequent above seasonal deep convection centers

and rarely elsewhere, especially in midlatitudes.  Both studies deplored that the fixed overpass

local time of the CALIPSO dataset is far from the late afternoon, when land convection is at its

maximum. More recently, Wang et al. (2019) documented the presence of laminar cirrus in 10

years  of  CALIPSO  data,  and  reported  a  non-negligible  cloud  amount  above  the  tropopause.

Because of the sun-synchronous orbit of CALIPSO, none of these studies were able to document

the diurnal cycle of the stratospheric clouds.

Low-stratospheric clouds impact the atmospheric system in several ways.  First, their larger heating

rate than the clear sky (Corti et al, 2006) increases the upward mass flux and fosters the large-scale

upward  transport  of  water  above  the  tropopause.  At  the  hour  timescale,  the  cloud  particles

penetrating the stratosphere via  overshooting convection leads,  on  the  one hand,  to  a  direct

stratospheric humidification (Schoeberl et al., 2018; Dauhut et al., 2018). On the other hand, these

particles can serve as support for  ice-scavenging:  under saturated conditions,  the water vapor

deposits on the particles, which grow and fall out (Corti et al., 2008), decreasing low-stratosphere

humidity  (Jensen  et  al.,  2013).  By  all  these  effects  the  stratospheric  clouds  modulate  the
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stratospheric water vapor concentrations (Iwasaki et al.,  2015) and affect the overall  dynamical

structure near the tropopause (Corti et al., 2006), at timescales down to one hour. This is why it is

important to understand the formation and the sub-daily evolution of such clouds.

Finding the processes responsible for the formation of tropical stratospheric clouds proves difficult,

just like with high-tropospheric clouds (Reverdy et al.,  2012). Two processes have been mainly

proposed. Overshooting convection can lead to the injection of ice crystals into the stratosphere

(Dauhut et al., 2018; Lee et al., 2018). Stratospheric cooling triggered by gravity waves (Pfister et

al., 2010) could also lead to so-called cloud “in-situ” formation (Pan and Munchak, 2011). The ratio

of stratospheric clouds that are formed in-situ has not been estimated yet. The current study does

not provide further estimate, but by describing the spatio-temporal evolution of the stratospheric

clouds, it highlights how important the convective activity is to drive the stratospheric cloudiness,

and  how  the  twice-daily  sampling  by  lidars  onboard  sun-synchronous  platforms  can  miss  the

highest and largest stratospheric cloud fraction over certain regions.

In this paper, we document for the first time the diurnal cycle of clouds above the tropopause in

the Tropics, and the extent of their penetration in the stratosphere, thanks to the high vertical and

temporal  resolution  of  the  cloud  detection  by  the  CATS  (Cloud-Aerosol  Transport  System)

spaceborne lidar (McGill et al., 2015). After describing CATS cloud data, and the method to retrieve

the tropopause heights used to detect clouds extending in the stratosphere (Sect. 2), we present

maps of stratospheric clouds and document their diurnal cycle in regions of interest (Sect. 3). We

then summarise our results and conclude (Sect. 4).

3

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

https://doi.org/10.5194/acp-2019-770
Preprint. Discussion started: 8 October 2019
c© Author(s) 2019. CC BY 4.0 License.



2. Data and Methods

2.1 CATS Cloud data

The CATS lidar operated from the International Space Station (ISS) between February 2015 and

November 2017. It reported profiles at a vertical resolution of 60m every 350m along-track, with

an average repeat cycle of nearly 3 days (Yorks et al., 2016). Thanks to the ISS non-synchronous

orbit, CATS was able to probe the vertical cloud distribution of a particular region at different times

of the day. Aggregating CATS detections over a region of interest and over enough time provides a

statistical overview of the diurnal evolution of cloud vertical profiles over that region (Noel et al.,

2018).

CATS Level 2 Operational layer files (L2O files, Palm et al., 2016) describe altitudes where cloud

layers were detected within profiles of backscatter coefficients measured at 1064nm by the CATS

lidar (Pauly et al., 2019), averaged 5km along-track. We considered all  such files over the CATS

operation period (February 2015 to November 2017) and inspected each 5-km profile within. For

profiles located in the Tropics (30S-30N), we inspected each atmospheric layer therein identified as

a cloud layer according to the CATS layer type information. As in Noel et al. (2018), we considered

layers with a Feature Type Score above 6, to avoid any possibly mislabeled aerosol  layers.  We

flagged the cloud layers  with a  top  altitude  above  the  tropopause.  Since  any  CATS  L2O layer

entirely above the tropopause is labelled as an aerosol layer (like in CALIPSO, Pan and Munchak,

2011), our study will not include clouds with their base in the stratosphere.

Davis et al (2010) noted that lidars in space may miss the thinnest subvisible cirrus clouds, but with

enough spatial averaging optical depths near 0.001 can be detected (Martins et al., 2011). Lidar

cloud detections also suffer from a lower sensitivity in the presence of sunlight,  which induces

significant additional noise in the lidar signal, but climatologies are still relevant (Noel et al., 2018). 
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2.2. Tropopause Heights

To obtain the tropopause height, we considered profiles of temperature and pressure from the

ERA-5 reanalysis dataset (Albergel et al., 2018). These profiles are available every 6 hours, on 37

vertical levels and a 0.25° x 0.25° horizontal grid. Such profiles in ERA-5 reanalysis agree well with

observations in the high tropical  troposphere (Podglajen et al.  2014).  Using these profiles,  we

computed the vertical lapse rate profile (as in Reichler et al. 2003), and interpolated it on a 100-m

vertical grid. We then applied the WMO criteria defining the presence of a tropopause -- i.e. the

lowest altitude at which the lapse rate falls below 2°C/km, provided the lapse-rate between this

level and all higher levels within 2 km does not exceed 2°C/km (WMO, 1957). Following the WMO

definition, we also allowed for the possibility of a second tropopause if the lapse rate exceeds

3°C/km at least 1 km above the first tropopause. In such a case, we started to look for another

tropopause above. To limit computation overhead we constrained the search below 22 km. Using

the WMO tropopause definition further allows us to compare our results to previous efforts based

on CALIPSO database that used the same definition (Pan and Munchak, 2011).

2.3 Stratospheric cloud detection

For a given CATS 5-km profile (Sect. 2.1), we identified the ERA-5 tropopause height (Sect. 2.2)

closest in time and location. Given the 6-hour time resolution of the ERA-5 reanalysis, there is at

most 3 hours difference between the observation time and the thermodynamic information used

to retrieve the tropopause height. We used the cloud information contained in the 5-km profiles in

two ways. First, in 2°x5° lat-lon bins we counted how many profiles contained a cloud extending

above the tropopause, compared to the total  number of profiles in the bins. Aggregating such

numbers  observed in JJA and DJF over  the CATS operation period produced seasonal  maps of

above-tropopause cloud amounts  (Sect.  3.1).  Second,  from each CATS 5-km profile  we built  a
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vertical cloud mask, using the tropopause height as the vertical reference and considering clouds

that extend above it.  Within regions chosen based on the seasonal maps, we aggregated such

cloud masks over the same periods as above, keeping also track of the local time of observation for

the considered mask. This produced regional vertical cloud fraction profiles above the tropopause,

one profile for each local time of observation (Sect. 3.2).
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3. Results

3.1 Stratospheric cloud distributions

Figure 1 shows the fraction of CATS profiles in which a cloud is detected above the tropopause, in

all DJF (top) and JJA (bottom) months of CATS operation.

Figure  1:  Tropical  low-stratosphere  cloud  fraction  for  (top)  DJF  and  (bottom)  JJA  CATS
measurements between Feb 2015 and Nov 2017, calculated by considering all profiles in 2°x5° lat-
lon boxes. The rectangles are the regions in which cloud detections are aggregated in the rest of
the study. In DJF, from left to right : West Pacific (25S-15N, 180W-130W), South America (30S-10N,
90W-30W), Equatorial Africa (25S-10N, 20W-50E), and South Warm Pool (25S-15N, 90E-180E). In
JJA, from left to right : Central Africa (10S-25N, 20W-50E), North Warm Pool (0-25N, 70E-180E).
Only detections in the ±30° region are shown here. In the rest of the study, we considered profiles
over ocean in blue boxes and profiles over land in orange boxes.

Figure 1 shows that clouds in the tropical stratosphere are mostly detected over continents (South

America, Equatorial Africa and land masses in South Warm Pool in DJF; Central America, Central

Africa and land masses in North Warm Pool in JJA). The cloud fraction in the lower stratosphere is
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largest in DJF, up to 24% over central Amazonia and coastal areas in South Warm Pool, and up to

20% over Equatorial Africa. It is significantly lower in JJA, up to 12% over Africa and 16% over the

North Warm Pool, even though the lowermost stratosphere (380-420 K potential temperature) is

moister in JJA than in DJF (cf. e.g. Fig. 8c in Fueglistaler et al, 2009). Several factors may contribute

to this  seasonal  variation:  the density  and strength of  the convective systems (Liu and Zipser,

2005),  their  propensity  to propagate  or  to be stationary (Houze et  al,  2015),  the activity  and

efficiency of the in situ formation processes (Jensen et al., 2001; Jensen and Pfister, 2004). 

The spatio-temporal distribution of the stratospheric clouds is in very good agreement with the 4-

year climatology of Pan and Munchak (2011) from CALIPSO observations. The DJF distribution also

matches  very well  the CALIOP cirrus  detection at  100 hPa reported by Wang et  al  (2019)  for

January 2009. We report though lower cloud frequencies than Wang et al. (2019) which can be

explained  that  we  investigate  slightly  higher  levels.  Both  CATS  and  CALIPSO  datasets  find  1)

significantly weaker stratospheric cloud fraction in JJA than in DJF, and 2) near-zero stratospheric

clouds in the subtropics. These results are also consistent with the CALIPSO cloud fractions near

16km reported by Schoeberl et al. (2019). Since those studies consider cloud detections derived

from a spaceborne lidar instrument, over several years for most, their good agreement suggests

that the CATS stratospheric cloud detections at 1064 nm are as reliable as the CALIPSO ones at 532

nm. A first conclusion of our results is therefore that CATS measurements strongly support the

findings of all other studies using detections of high clouds from CALIPSO data.

Comparing our CATS results to the distributions of clouds at 90 hPa/17 km retrieved from HIRDLS

and CALIPSO for 2006-2007 by Massie et al. (2010), we also find good agreement in JJA but larger

differences in DJF. In CALIPSO and HIRDLS, the maxima are over the West-to-Central Pacific and the

convective  spot  in  South  America  is  shifted  West  towards  the  Pacific.  This  difference  can  be

explained by  the annual  variability:  in  DJF  2006-2007 the Southern  Oscillation Index  indicates
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rather El-Nino conditions, like in DJF 2015-2016 but in contrast with DJF 2016-2017, both being

included in our study.

Our  results  match  the  overall  distributions  of  cloud  tops  higher  than  17  km  retrieved  from

CloudSat 8-year observations by Kim et al. (2018). In particular, the Warm Pool exhibits the largest

area  with  significant  stratospheric  cloud  fraction,  both  during  DJF  and  JJA.  Little  differences

between CATS and CloudSat data sets appear in DJF: in the CATS dataset the South America show

slightly larger cloud fraction than the Equatorial Africa; in the CloudSat dataset, the largest cloud

fractions over Africa are located more south-east (Great Lakes and Madagascar straight). Note that

the CloudSat radar samples convection at 1:30 am and pm, potentially missing some continental

convective systems. These differences might also be due to the different periods considered: 2006-

2014 for CloudSat versus 2015-2017 for CATS. On the contrary, our results contrast with Liu and

Zipser (2005) distributions derived from the TRMM Precipitation Radar,  where the densities of

overshooting systems with tops in the lower stratosphere are remarkably larger in Central America

and Central Africa than over the Warm Pool. Since TRMM precipitation radar reflectivities are less

sensitive to thin ice particles than CATS and CALIOP lidars, we can interpret this difference by the

fact  that  the American  and African systems,  though frequently  overshooting the stratosphere,

produce less stratospheric clouds than the Asian systems.

Finally, our results agree well with the pioneering work of Jensen et al. (1996) who used passive

SAGE II observations at 17.5 km for 1989: their cloud fractions are larger because the considered

level is closer to the cold point tropopause but the geographical distributions are very close to

ours. The differences are: in DJF they observe more clouds over the Atlantic but less over South

America, in JJA they observe less clouds over the West Pacific. These differences may be due to the

year-to-year variability. The SAGE II instrument relies on a solar occultation method, completely

different from the active lidar observation by CATS and CALIPSO.
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3.2 Diurnal cycle of cloud fractions in the tropical stratosphere

Figure 2: Diurnal cycle of stratospheric cloud fraction, by tropical region as in Fig. 1, averaged over

DJF (top) and JJA (bottom).

In contrast with the previous studies, the CATS dataset allows us to analyse the diurnal cycle of the

cloud fraction in stratosphere. The cloud fraction at regional scale shows a consistent diurnal cycle,

robust over the different regions identified in the previous section (Fig. 2).  In particular and in

contrast to the diurnal cycle of surface precipitation, there is no land-ocean difference. All exhibit a

pronounced minimum about 2-4 % during the day time, from 7 to 16 LT. They all present a first

maximum at 19 or 20 LT (early-night peak), up to 18% over South Warm Pool; over North Warm

Pool this peak is slightly later. For all regions except South America, this maximum is the largest
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cloud fraction of the day. All regions also present a secondary peak at 0 or 1 LT (2 LT for Central

Africa), up to 16% over South America.

Figure 3: Diurnal cycle of cloud fraction as a function of height above the tropopause, by tropical 

region as in Fig. 1, in DJF (top 2 rows) and JJA (bottom row).

Figure 3 shows how far above the tropopause the clouds extend, depending on the local time in

each tropical region (Sect. 3.1). Some regions are considered in DJF, others in JJA, because the

stratospheric cloud distribution changes throughout the year (Fig. 1), following the ITCZ position.

Patterns  appear  very  consistent  in  all  the  regions  considered.  In  all  regions  the  largest  cloud

fractions are found near the tropopause, with few clouds extending higher. Cloud fractions extend

relatively high (up to 1km above the tropopause) during the early night. The first peak of cloud

fraction, near 19-20LT (Fig. 2), is associated with the all-day maximum of cloud vertical extent, with

clouds in 5% of profiles reaching 1km above the tropopause in DJF regions. During the rest of the

night (after 00 LT) clouds are still present but extend less high. During daytime (0600-1800) clouds

appear very close to the tropopause. Cloud fractions are overall much smaller in JJA (max 5-10%,

bottom row) than in DJF (max 10-12%, rows 1 and 2). 
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In addition to describing the evolution of the stratospheric cloud cover at hourly timescales, these

observations help interpret observations with limited temporal sampling (Noel et al., 2018). The

Microwave Limb Sounder (MLS), like CALIPSO and all other instruments onboard platforms of the

A-Train, samples the atmosphere at 01:30 and 13:30 LT, providing one single night and one single

day observation. Some authors (e.g., Dion et al., 2019) attempt to retrieve the diurnal cycle of the

observed  water  contents  in  the  tropopause  region,  combining  MLS  observations  with  higher

temporal  resolution  observation  of  convective  activity  based  on  TRMM  observation  of

precipitation. Dion et al. (2019) assumed an in-phase relationship between precipitation and ice

water content in the upper troposphere and at the tropopause level.  For the stratospheric ice

water content, MLS data still provides a too low signal-to-noise ratio. For future investigations, our

results indicate that the stratospheric cloud fraction at 13:30 LT is, whatever the region, close to

the minimal value of its diurnal  cycle, whereas at  01:30 LT it  is  more typical  of the secondary

maximum. Carminati et al. (2014) investigated, from MLS measurements between 2005 and 2012,

the  differences  between day  and night  ice  water  contents  in  the  upper  troposphere  and the

tropopause level. Unlike the stratospheric cloud fraction, tropopause ice water contents are larger

at 13:30 LT than at 01:30 LT over Equatorial Africa during DJF, Central Africa during JJA, and over

South  America  during  both  seasons.  A  possible  explanation  to  reconcile  our  results  is  that

tropopause ice water content is more sensitive to fresh convective activity (very deep convection

occurrence) whereas the stratospheric cloud cover is more sensitive to the diffusion of the injected

ice in the stratosphere.
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4. Conclusion

Our results show how clouds in the tropical stratosphere are strongly concentrated above deep

convection centers, are almost absent in subtropical regions, are more frequent in DJF than JJA,

and  over  land  than  over  ocean.  In  addition  to  these  results,  which  are  consistent  with  most

previous  studies,  we  also  show  that  both  the  cloud  fraction  and  its  extension  above  the

tropopause follow a diurnal rhythm with a maximum during the early nighttime and a near-zero

minimum during daytime. During daytime, the stratospheric clouds are limited to the first hundred

meters above the tropopause. During nighttime, significant average cloud fraction is found up to 1

km above the tropopause. A secondary maximum of stratospheric cloud fraction is observed over

all  regions,  generally  little  after  midnight.  Further  investigation  is  necessary  to  identify  the

processes driving this diurnal cycle, and leading in particular to the minimal stratospheric cloud

fraction during daytime and the secondary peak during nighttime, both consistent over all regions.

Finally further research is needed to understand why the timing of this diurnal cycle is very similar

over land and over ocean.
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