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Abstract. Remote sensing observations from the AERONET
(AErosol RObotic NETwork) and GAW (Global Atmosphere
Watch) networks are intermittent in time and have a limited
field-of-view. A global high-resolution simulation (GEOS5
Nature Run) is used to conduct an Observing System Simu-5

lation Experiment (OSSE) for AERONET and GAW obser-
vations of AOT (Aerosol Optical Thickness) and AAOT (Ab-
sorbing Aerosol Optical Thickness) and estimate the spatio-
temporal representativity of individual sites for larger areas
(from 0.5o to 4o in size).10

GEOS5 NR and the OSSE are evaluated and shown to
have sufficient skill, although daily AAOT variability is sig-
nificantly underestimated while the frequency of AAOT ob-
servations is over-estimated (both resulting in an under-
estimation of temporal representativity errors in AAOT).15

Yearly representation errors are provided for a host of sce-
narios: varying grid-box size, temporal collocation protocols,
and site altitudes are explored. Monthly representation errors
show correlations from month to month, with a pronounced
annual cycle that suggests temporal averaging may not be20

very successfull in reducing multi-year representation errors.
The collocation protocol for AEROCOM (AEROsol Com-
parisons between Observations and Models) model evalua-
tion (using daily data) is shown to be sub-optimal and the
use of hourly data is advocated instead. A previous subjective25

ranking of site spatial representativity (Kinne et al., 2013) is
analysed and a new objective ranking proposed. Several sites
are shown to have yearly representation errors in excess of
40%.

Lastly, a recent suggestion (Wang et al., 2018) that30

AERONET observations of AAOT suffer a positive repre-
sentation bias of 30% globally is analysed and evidence is
provided that this bias is likely an overestimate (the current
paper finds 4%) due methodological choices.

1 Introduction 35

As the temporal sampling of observations is often intermit-
tent and their field-of-view limited, the ability of observa-
tions to represent the weather or climate system is negatively
affected (Nappo et al., 1982). This adverse effect can be de-
scribed through a representation error, which allows compar- 40

ison to e.g. observational errors or model errors.
Representation errors have been receiving more atten-

tion recently, in a variety of fields: solar surface radiation
(Hakuba et al., 2014b, a; Schwarz et al., 2017, 2018), sea sur-
face temperatures (Bulgin et al., 2016), trace gases (Sofieva 45

et al., 2014; Coldewey-Egbers et al., 2015; Lin et al., 2015;
Boersma et al., 2016), water vapour (Diedrich et al., 2016),
cloud susceptibility (Ma et al., 2018) and even climate data
(Cavanaugh and Shen, 2015; Director and Bornn, 2015).
In the field of aerosol, most work has been on the repre- 50

sentativity of satellite measurements (Kaufman et al., 2000;
Smirnov, 2002; Remer et al., 2006; Levy et al., 2009; Co-
larco et al., 2010; Sayer et al., 2010; Colarco et al., 2014; Ge-
ogdzhayev et al., 2014), either using satellite data or model
data. A new development is the use of local spatially rela- 55

tively dense measurement networks (Shi et al., 2018; Virta-
nen et al., 2018).

As aerosols are known to vary over short time and spatial
scales (Anderson et al., 2003; Kovacs, 2006; Santese et al.,
2007; Shinozuka and Redemann, 2011; Weigum et al., 2012; 60

Schutgens et al., 2013), aerosol studies are likely to expe-
rience large representation errors. Indeed, Schutgens et al.
(2016b) (S16b hereafter) showed that representation errors
due to temporal sampling in both satellite and AERONET
(AErosol RObotic NETwork) observations were of similar 65

magnitude as actual model errors and often larger than ob-
servational errors. Similarly, Schutgens et al. (2016a) (S16a
hereafter) showed that the narrow field-of-view of in-situ
measurements could lead to large differences from area av-
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erages (monthly RMS differences of 10−80% for 210×210
km2, depending on the type of measurement and the location
of the site). Recently, Schutgens et al. (2017) (hereafter S17)
considered the combined impact of spatio-temporal sampling
on the representativeness of remote sensing data (both satel-5

lite and ground-based). They provide representation uncer-
tainty estimates and optimal strategies when dealing with
different observing systems (ground networks, polar orbiting
satellites with varying revisit times, or geo-stationary satel-
lites).10

In this paper, a global one-year high-resolution simulation
of the atmosphere (GEOS5 Nature Run) is used to conduct an
Observing System Simulation Experiment to estimate repre-
sentation errors for remote sensing measurements of aerosol
optical thickness (and its absorptive counterpart) as observed15

by the global networks AERONET and GAW (Global At-
mosphere Watch). In S16a and S17, regional high-resolution
simulations covering a month were used to study repre-
sentation errors. This prevented an analysis of such errors
world-wide and on longer time-scales. In addition, the lim-20

ited spatio-temporal domains made evaluation of the high-
resolution simulation difficult. These issues are addressed in
the current study. Note that the current paper does not re-
place previous work (which also considers satellite, in-situ
and flight measurements) but extends it. In addition, the cur-25

rent study allows us to evaluate a recent suggestion by Wang
et al. (2018) that representation errors in AERONET AAOT
observations are positively biased (by ∼ 30%) which would
help to explain the observed underestimation of AAOT in
global models (Bond et al., 2013).30

Representation errors are not only determined by obser-
vational sampling but also by how these observations are
put to use. If observations are used to evaluate models, dif-
ferent protocols (or strategies) exist to temporally collocate
model data and observations. For instance, within AERO-35

COM (AEROsol Comparisons between Observations and
Models), an oft-used strategy is daily collocation: daily av-
erages of observations are collocated with daily model data.
The different sampling of model and observations throughout
the day are ignored (e.g. most remote sensing observations40

only observe a small part of the diurnal cycle). In contrast,
hourly collocation uses hourly model data that is collocated
with hourly averages of observations. S17 showed that in the
case of remote sensing observations daily collocation allows
significantly larger representation errors than hourly collo-45

cation. A third protocol would be yearly collocation which
is seldom used these days in model evaluation as it yields
large representation errors (S16b). However, if remote sens-
ing observations are used to construct a yearly climatology,
effectively a yearly collocation protocol is used.50

In data assimilation the representation error is often (but
not always) thought to include effects from incorrectly mod-
elled sub-grid processes. In this paper, the representation er-
ror is purely thought of as resulting from the different sam-
pling by observations and models.55

Section 2 describes the high-resolution simulation data
and AERONET observations used in this study. The OSSE
for estimating representation errors is briefly explained in
Sect. 3 but more details can be found in S17. An evalua-
tion of the high-resolution simulation with a particular focus 60

on its use in an OSSE is given in Sect. 4. While the sim-
ulation shows deviations from AERONET observations, the
agreement is deemed sufficient to study representation errors.
Representation errors in AERONET AOT & AAOT are stud-
ied in Sect. 5. A ranking of AERONET sites in terms of their 65

representativity is given in Sect. 6. As may be expected, the
paper finishes with a summary of the conclusions (Sect. 7).

2 Data

2.1 GEOS-5 Nature Run

The GEOS-5 Nature Run (G5NR here-after) is a 2-year 70

global, non-hydrostatic simulation from June 2005 to May
2007 at a 0.0625o grid-resolution (∼ 7 km near the equator).
Not just a simulation of standard meteorological parameters
(wind, temperature, moisture, surface pressure), G5NR in-
cludes tracers for common aerosol species (dust, seasalt, sul- 75

fate, black and organic carbon) and several trace gases: O3,
CO and CO2. The simulation is driven by prescribed sea-
surface temperature and sea-ice, daily volcanic and biomass
burning emissions, as well as monthly high-resolution inven-
tories of anthropogenic sources (Putman et al., 2014). As it 80

is a nature run (i.e. no meteorological nudging), the mete-
orology in G5NR can deviate substantially from the actual
weather in 2006.

Aerosol in GEOS-5 are calculated using the Goddard
Chemistry, Aerosol, Radiation, and Transport (GOCART) 85

module (Chin et al., 2002) that uses 15 tracers to de-
scribe externally mixed species of organic carbon, black car-
bon, sulphate, sea-salt and dust. Biomass burning emissions
are obtained from QFED (Quick Fire Emissions Dataset)
(Suarez et al., 2013) with a diurnal cycle imposed on- 90

line. Anthropogenic emissions of organic and black car-
bon use EDGAR-HTAP (Emissions Database for Global
Atmospheric Research-Hemispheric Transport of Air Pol-
lution) emissions (Janssens-maenhout et al., 2012) which
were rescaled to match AEROCOM Phase II emissions. Non- 95

shipping anthropogenic SO2 emissions come from EDGAR
v4.1.

Evaluation of G5NR (Gelaro et al., 2015) against
NASA/GMAO MERRA (Modern-Era Retrospective analysis
for Research and Applications) Aerosol Reanalysis (da Silva 100

et al., 2012) suggest that global organic carbon, black car-
bon and sulphate AOT are underestimated by 30−40% while
dust AOT is overestimated by ∼ 50%. Global sea-salt AOT
is similar to MERRA within 10%. Hence, Castellanos et al.
(2019) derived global rescaling factors for aerosol speci- 105

ated AOT in G5NR but these are not used in the current
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study (true scaling factors are unlikely to be global, it is
unclear what to do about AAOT and the focus here is on
relative errors anyway). Comparison with AEROCOM mod-
els shows that G5NR sulphate life-times are quite low (at
2.7 days) while the other species fairly agree with the AE-5

ROCOM multi-model mean. G5NR shows reasonable cloud
fractions compared to CERES-SSF (Clouds and the Earth’s
Radiant Energy System-Single Scanner Footprints), although
in the equatorial/sub-tropical region (30S-30N), G5NR has a
deficit of partially cloudy scenes. In addition there are too10

few clouds off western continental coasts and the southern
branch of the ITCZ is too strong. CALIOP (Cloud-Aerosol
Lidar with Orthogonal Polarization) data suggests G5NR
cloud fraction are too low, especially over equatorial/sub-
tropical lands in the Northern Hemisphere, and too high in15

the northern polar region.
For this study, the following hourly G5NR data for 2006

were obtained: see Table 1.

Table 1. G5NR data used in this study

short name description

totexttau aerosol total column extinction at 550 nm
totscatau aerosol total column scattering at 550 nm
swtdn TOA∗ downward short-wave radiation
cldtot total cloud area fraction
phis surface geopotential height
bceman monthly anthropogenic burning BC emissions
bcembb monthly biomass burning BC emissions

*: Top Of Atmosphere

2.2 AERONET observations & geolocations

AERONET (Holben et al., 1998) data were obtained from20

https://aeronet.gsfc.nasa.gov. For 2006, AOT
from Direct Sun Version 3 L2.0 (Giles et al., 2019; Smirnov
et al., 2000) and AOT & AAOT from Inversion Version 2
L1.5 and L2.0 (Holben et al., 2006) were logarithmically in-
terpolated to values at 550 nm and averaged over an hour. For25

all years starting in 1992, geolocation data were obtained for
all sites (1144 in total).

The DirectSun dataset contains only AOT (at multiple
wavelengths). These observations are based on direct trans-
mission measurements of solar light and have high accuracy30

of ±0.01 (Eck et al., 1999; Schmid et al., 1999). The Inver-
sion dataset contains both AOT and AAOT (at multiple wave-
lengths) and these observations are based on measurements
of scattered solar light from multiple directions. This inver-
sion uses radiative transfer calculations (Dubovik and King,35

2000) and yields larger errors than the DirectSun measure-
ments. In particular, Dubovik et al. (2000) showed that Sin-
gle Scattering Albedo (SSA) errors decrease with increasing

AOT and estimated SSA errors of ±0.03 for water-soluble
aerosol at AOT at 440 nm≥ 0.2 and for dust or biomass burn- 40

ing aerosol at 440 nm ≥ 0.5. Consequently, one important
distinction between Inversion L1.5 and L2.0 data is a min-
imum threshold of AOT at 440 nm ≥ 0.4 used in the latter
(improved cloud screening is another distinction). Inversion
L2.0 is a subset of the L1.5 dataset. For an intercomparison 45

of AERONET SSA with flight campaign data, see Schafer
et al. (2014).

In the current study, only AOT at 550 nm is used and the
Inversion L2.0 AOT at 440 nm criterion is adapted to AOT at
550 nm≥ 0.25. This is the minimum value of AOT at 550 nm 50

present in actual Inversion L2.0 data, but also corresponds to
AOT at 440 nm = 0.4 for small particles (Ångström exponent
= 2.1). As a result, the OSSE in this paper is rather lenient
when it comes to selecting valid observations similar to In-
version L2.0. 55

2.3 GAW geolocations

GAW geolocation data were obtained from NILU (Norwe-
gian Institute for Air Research). Two networks were used: the
GAW-AOT network which comprises 29 sun-tracking sun
photometers that measure AOT; and the GAW-ABS network 60

which comprises 81 filter instruments that measure surface
properties. The real GAW-ABS network is not capable of
measuring a columnar (A)AOT but here we will assume it
does, similar to AERONET, and consider its representation
errors. 65

3 Method: analysis of representation errors

The representation error is defined as the difference between
a perfect observation (i.e. no observational error) and a truth
value (area average), see also S16a and S17. Here, a self-
consistent high resolution simulation will be used to generate 70

both observation and truth in a so-called Observing Systems
Simulation Experiment. The representation error may refer
to instantaneous values or time averages. This work concerns
itself mostly with yearly averages (and some monthly aver-
ages). For instantaneous and daily error values, see S16a and 75

S17. The mapping from G5NR data to the data used in this
study is given in Table 2.

Perfect observations are generated from the high-
resolution simulation by choosing the data at the location of
an AERONET or GAW site and sub-sampling those data in 80

time according to certain conditions for solar zenith angles
(SZA), cloud-fraction and AOT. Table 3 lists the threshold
conditions for which observations will be possible. Values
for SZA and AOT are inferred from real AERONET data
files. The maximum cloud-fraction was tuned to obtain sim- 85

ilar temporal coverage of observations as real AERONET
data (see Sect. 4 and Fig. 3 but the impact of tuning is small).
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Table 2. Mapping from G5NR data to data used in this study

G5NR this study units

totexttau AOT
totextau-totscatau AAOT
180
π

arccos(swtdn/1367) SZA degrees
cldtot cloud fraction
phis/9.81 geopotential altitude m
bceman+bcembb BC emissions kg/m2 s

Table 3. Conditions for valid AERONET observations as simulated
in this study

source maximum maximum minimum
SZA cloud-fraction AOT

DirectSun L2.0 80o 0.01 0.0
Inversion L1.5 80o 0.01 0.03
Inversion L2.0 80o 0.01 0.25

The truth is generated from the high-resolution simulation
by averaging AOT and AAOT over a large area (0.5o to 4o

grid-boxes) and further averaging in time. Here we should
distinguish three different protocols depending on how one
intends to use the observations, see Table 4. In the case of5

a gridded climatology derived from observations, the truth
should be an average over a continuous long-term time range
(say a year). In the case of model evaluation, it is possible
to resample model data to the times of the observations. E.g.
within the AEROCOM community, a daily collocation pro-10

tocol is often used, where daily model data is used for days
with observations only (irrespective of the temporal sampling
of those observations throughout the day). To assess repre-
sentation errors in this case, the truth needs to be sampled
accordingly to days with observations before yearly averages15

are determined. The same protocols were also explored in
S17.

Table 4. Collocation protocols

collocation
protocol purpose

yearly gridded climatology
daily model evaluation (AEROCOM)
hourly model evaluation

The current methodology differs slightly from S17 in that:

1. a different model is used to construct the OSSE,

2. previously, SZA was assumed to be sufficiently high for 20

a fixed fraction of the day (10 hours). In the current
work, SZA is calculated from downward-welling TOA
SW radiation and will vary with geo-location and time-
of-day,

3. previously, the truth was generated for grid-boxes 25

centered on the observations. In the current work,
those grid-boxes are assumed regularly spaced from
0o to 360o longitude and −90o to 90o latitude. The
AERONET and GAW sites can be located anywhere
within those grid-boxes (at their real geo-location), 30

4. previously, the high-resolution simulation had a con-
stant grid-size of (about) 10 km. In the current work,
the grid-size varies but has a constant angular size of
0.0625o (∼ 7 km at the equator).

The last point implies that the simulation grid-box used for 35

the observation decreases towards zero as we approach the
poles. Since this is clearly undesirable (field-of-view will re-
main on the order of several kilometers), we will limit our
analysis of representation errors to latitudes below 60o. The
exception is Fig. 5. 40

Our methodology allows separation of the factors that de-
termine the representation error: spatial extent of the grid-
box, and observational intermittency due to low SZA, high
cloud-fraction or low AOT. We will not present such causal
analysis in this paper (see S17 instead) but will refer to it to 45

explain results.
To show the distributions of representation errors, box-

whisker plots using the 2, 9, 25, 75, 91 and 98% quan-
tiles will be used in this paper (in addition, the median is
shown as a bar and the mean as a circle). For a normal dis- 50

tribution, these quantiles will be equally spaced. Any skew-
ness or extended wings in a distribution will be readily vis-
ible. In addition to quantiles, the values of mean error and
the mean sign-less error will be provided. The mean sign-
less error is deemed more relevant than the standard devi- 55

ation as 1) it includes biases; 2) the errors are seldom nor-
mally distributed, and a standard deviation is very sensitive
to larger errors ("out-liers"). For a normal distribution with
a mean of zero and a standard deviation of one, the mean
sign-less error is ∼ 0.8. The correlation used in this paper is 60

the Pearson correlation coefficient that assesses linear rela-
tionships. Regression slopes were calculated with a robust
Ordinary Least Squares regressor (OLS bisector from the
IDL sixlin function, Isobe et al. (1990)). This regressor
is recommended when there is no proper understanding of 65

the errors in the independent variable, see also Pitkänen et al.
(2016).

4 Evaluation of G5NR and OSSE

In this section, G5NR is evaluated with real AERONET ob-
servations of AOT and AAOT, with special focus on its use- 70
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fulness in an OSSE. As G5NR generates its own meteorology
that deviates from 2006, one might expect differences be-
tween simulation and observations. Simulated data were nev-
ertheless collocated to the time of the observations (within
the hour) to ensure the same temporal sampling throughout5

the days, the months and the year.
The mean and standard deviation of AOT and AAOT per

site are shown in Fig. 1, top row. In general, simulated site-
mean AOT shows good agreement with the observations with
correlations around 0.75 and slopes around 0.84. Simulated10

site-mean AAOT does not agree as nicely with the observa-
tions but there is still correlation (0.48) (the evaluation of
AAOT will be affected by large measurement errors). The
agreement in standard deviation suggests that simulated and
observed AOT (and AAOT) show similar temporal variation.15

But the global agreement also suggests that the simulation
captures spatial variation rather well. This is also true on
shorter length scales, as an analysis by region shows in Ta-
ble 5. Europe appears to be the exception but this is mostly
due to a few southern sites. As the table shows: without those20

sites, correlation increases significantly. This may be related
to the overestimation of dust and underestimation of carbona-
ceous & sulphate aerosol in G5NR (Gelaro et al., 2015),
which will affect north-south gradients in AOT in Europe.
DRAGON (Distributed Regional Aerosol Gridded Observa-25

tion Networks, see Holben et al. (2018)) campaigns might
allow evaluation of the spatial distribution of simulated AOT
at even smaller length-scales (10’s of kilometers) but are not
available for 2006.

Table 5. Correlation in modelled and observed yearly site-mean
AOT

region nr correlation

World 216 0.75
Europe 55 0.26
Europe∗ 26 0.68
Africa 32 0.86
Asia 34 0.82
N. America 49 0.81
S. America 13 0.91

*: southern AERONET sites removed from analysis

The top row of Fig. 1 was created using only sites that pro-30

vide a minimum of 100 real observation throughout 2006.
The lower row shows how this criterion affects results. As
the minimum number of observations per site increases, so
do the correlations, probably due to a reduction in statisti-
cal noise (partly due to different simulated and actual mete-35

orologies). But the overall bias also increases. This criterion
selects for sites with lower cloudiness (higher number of ob-
servations) until predominantly northern African and Saudi
Arabian sites are left for a minimum of 500 observations per

site. The increase in bias is thus likely due to the overestima- 40

tion of dust AOT that was mentioned earlier.
Note that AAOT is here evaluated with L1.5 data. The L2.0

data have a minimum AOT threshold which results in fewer
observations and fewer available sites overall. Although L1.5
is considered a less reliable product, the evaluation with L2.0 45

(which now uses a minimum of 30 observations per site)
yields a similar but slightly poorer result for G5NR, see
Fig. S1, and over a shorter range of values.

Figure 2 shows mean values per site for the daily differ-
ence in maximum and minimum AOT. Again, good agree- 50

ment for simulated AOT is seen but AAOT compares rather
poorly. However, its correlation is still above 0.6 and it is
clear that the simulation underestimates daily AAOT varia-
tion. The impact of AAOT measurement error on daily vari-
ation is likely reduced as the variation is a difference be- 55

tween two measurements (pers. comm. with T. Eck and O.
Dubovik).

Figure 3 shows the temporal coverage (or frequency of ob-
servation) per site as a function of latitude. G5NR’s simu-
lated coverage is calculated using the conditions described in 60

Table 3 (and explained in Sec. 3). This coverage would be
100% if observations are available 24 hours a day, 365 days
a year. In practice it cannot be higher than 50% due to the
day-night cycle, and will be less due to cloudiness or low
AOT. 65

The bimodal structure that is visible in both the simula-
tion and observations is due to SZA variation (which reduces
coverage towards the poles) and cloudiness (which reduces
coverage near the equator). Simulated and real coverage per
site are not expected to agree well due to meteorological dif- 70

ferences and down times from site maintenance. Still, the re-
sults suggests that the OSSE predicts similar frequency of
Direct Sun observations as actually observed.

However, the OSSE also simulates more Inversion obser-
vations in the Northern hemisphere than actually occur. This 75

suggests there are additional factors in observational cover-
age that are not accounted for in Table 3. One factor is that
real Inversion measurements are attempted less frequently
(several times per day) than Direct Sun measurements (sev-
eral times per hour). Other factors may include inversion fail- 80

ure at low SZA (real observations show that Inversion data
generally have larger SZA than DirectSun data even though
Inversion data is generally closer to the equator) and overesti-
mation of dust AOT in G5NR (largest over-estimates of cov-
erage occur for Sahara and Saudi Arabia sites). Yet another 85

issue is that successful inversion requires a high degree of az-
imuthal symmetry in the measurements. In essence, this is a
built-in check on the magnitude of spatial representation er-
rors which will lower temporal coverage of the observations
but is not considered in the OSSE due to lack of information. 90

Finally, instrument malfunction & maintenance are not taken
in to account, although that would affect AOT coverage as
well.
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In all, it seems that G5NR can realistically simulate spa-
tial and temporal variation in AOT and AAOT, at least on
the scales accessible by the available observations. There is
some underestimation of daily AOT variation and significant
underestimation of daily AAOT variation. G5NR can also be5

used to fairly realistically simulate frequency of observation
(temporal coverage), although it will over-estimate this for
the Inversion products in the Northern Hemisphere.

5 Results

5.1 Representation errors in yearly AOT10

Figure 4 shows yearly representation errors for AERONET
DirectSun L2.0 AOT observations as a function of model
grid-box size, for the three collocation protocols (see Ta-
ble 4). As grid-box size changes from 4o to 0.5o, errors for
hourly collocation are more than halved from 13% to 5%15

while those for daily collocation change only from 17% to
12%. In contrast, errors for yearly collocation (∼ 22%) are
dominated by temporal sampling and do not depend much on
grid-box size. Smaller representation errors for hourly collo-
cation can also be seen in a regional analysis, see Fig. S2.20

The hourly collocation is especially beneficial when using
the Inversion L2.0 AOT product, which allows large repre-
sentation errors due to the condition of a minimum AOT at
440 nm (>= 0.4) for valid observations, see Fig. S3, even
though it results in a global 9% bias.25

The impact of collocation protocol can also be shown
through the total number of sites that yield errors larger than,
say, 10%: 821 (yearly), 653 (daily), 235 (hourly) out of 1108
AERONET stations in total, for a grid-box of 1o× 1o.

In addition to larger representation errors in general, the30

yearly and daily collocation protocols also allow significant
biases across the AERONET network. Regionally, spatial
patterns with east-west or north-south gradients in the rep-
resentation errors exist, see Fig. 5 and Fig. S4. Such patterns
are absent or at least much reduced for hourly collocation.35

The biases in regional and global distributions of repre-
sentation errors for yearly and daily collocations are strongly
affected by cloudiness. Higher humidity in the cloudy part
of a grid-box increases AOT through hygroscopic growth
The area averages used to calculate representation errors40

have been derived for the entire grid-box (all-sky), both clear
and cloudy parts. Representation errors for clear-sky parts of
grid-boxes are lower for the yearly and daily collocation pro-
tocols, see Fig. 6. In certain situations, it seems more realistic
to use only the clear part of the grid-box in calculating rep-45

resentation errors: e.g. when the grid-box average stands in
for an aggregated satellite product. In this paper, focus will
be on the all-sky representation error.

Table 6 shows absolute values of the yearly representa-
tion errors for different collocation protocols (yearly and50

hourly) and grid-box sizes. The statistical metrics provided

are the mean of the sign-less representation error over all
AERONET sites, and the 90% quantile of the sign-less rep-
resentation error (an indication of the large representation er-
rors possible for some sites). Using absolute values allows a 55

comparison with the AERONET AOT measurement error of
0.01 (Eck et al., 1999; Schmid et al., 1999). This is the error
for individual measurements, and not that of a yearly average
which is likely to be much smaller. Clearly, representation er-
rors are larger than measurement errors. 60

Results so far suggest that the daily collocation is a signifi-
cant improvement over the yearly collocation. This is in con-
trast to S17 (Fig. 7) where the representation errors for daily
and monthly collocation were found to be similar. The ab-
sence of diurnal (anthropogenic) emission profiles in G5NR 65

may cause underestimation of representation errors for the
daily collocation in the current study.

It is interesting to compare the representation errors of two
different networks, AERONET and GAW. AERONET was
not designed with representativity in mind but the GAW net- 70

work was. Nevertheless, Fig. 7 suggests that GAW sites ex-
hibit slightly larger representation errors than AERONET. In
particular, GAW error statistics are strongly skewed to neg-
ative values. In the G5NR OSSE, GAW sites are located at
higher altitudes and more often on isolated mountains than 75

AERONET sites (G5NR site altitudes correlate very well
with real altitudes, R= 0.98, but tend to underestimate by
28 m on average, with a standard deviation of 171 m). A look
at yearly representation errors for the hourly collocation re-
veals a systematic altitude dependence, see Fig. 8. A high 80

altitude site on an isolated mountain will observe a shorter
atmospheric column than the surrounding grid-box (most of
which is at lower altitudes) which will cause a negative rep-
resentation error. Note that AERONET sites do not show this
dependence on altitude for 1o grid-boxes, probably because 85

they are located more often on mountains surrounded by sim-
ilar mountaineous terrain.

Finally, a comparison is made with a previous study into
AERONET representation errors (Kinne et al., 2013). Using
a range score r, see Table 7, they ranked sites according to 90

their representativity for larger domains. This ranking is sub-
jective in that it is non-quantitative, based on personal knowl-
edge of the sites and only defines representativity in broad
terms. The range scores are only available for sites that had
at least 5 months of data before 2008. Using the methodol- 95

ogy of this paper, representation errors were calculated for all
sites of a certain range score, see Fig. 9. For large grid boxes
of 4o (∼ 450 km near equator), the impact of the range score
on representation error is quite small. While there is a visu-
ally arresting change in the error distribution for r > 1 (wide 100

flanks are changed into a broader center), the mean sign-less
error barely changes. This rather weak dependence on range
score suggests that Kinne et al. (2013) overestimated the size
of the domains (>= 500 km for r > 1) for which their sites
were representative. On the other hand, for a grid-box of 1o 105

a substantial reduction in representation error can be seen
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Table 6. Absolute representation errors for AERONET sites

metric protocol 4o 2o 1o 0.5o 0.0625o

mean yearly 0.043 0.042 0.042 0.042 0.044
hourly 0.021 0.015 0.011 0.008 0.000

90 % yearly 0.086 0.079 0.082 0.083 0.086
quantile hourly 0.052 0.033 0.029 0.017 0.000

for r ≥ 1 sites. However, this only occurs for the hourly col-
location: Kinne et al. (2013) did not consider the temporal
sampling of the observations which causes large representa-
tion errors. An alternative ranking of representativity will be
introduced in Sect. 6.5

5.2 Representation errors in monthly AOT

Surprisingly, monthly representation errors are not that much
larger than yearly errors, see Fig.10. If monthly errors for
the same site were independent and random, one would ex-
pect them to be ∼

√
12≈ 3.5 larger than yearly errors but10

that is not the case. As a matter of fact, monthly errors are
strongly correlated from month to month, throughout the
year, see Fig. 11. The increase in correlation with January
after September, is probably due to yearly cycles in mete-
orology and emissions and very likely to be a realistic as-15

pect of representation errors. The implication of this is that
multi-year averages may not reduce representation errors as
strongly as one would hope.

This analysis also provokes the question whether represen-
tation errors (per site) should be seen as mostly biases or ran-20

dom errors (see also Schwarz et al. (2018)). Preliminary anal-
ysis suggests that both cases can occur. I.e. some sites show
large variations (including sign changes) in representation er-
ror from month to month, and as a consequence a strongly re-
duced yearly representation error. Here monthly representa-25

tion errors may be interpreted as mostly random. Other sites
show monthly representation errors with not much variation
and as a consequence yearly representation errors are similar
to the monthly errors. There the representation error is bet-
ter characterised as a bias. A proper analysis of this would30

require significantly longer time-series of data than are cur-
rently available. Further discusion of this can be found in
Sect. 6.

5.3 Representation errors in AAOT

The discussion of representation errors for Inversion L1.535

AAOT will be shorter than that for DirectSun L2.0 AOT,
as the main conclusion is identical: the hourly collocation
yields smaller representation errors than the other protocols,
see Fig. 12. Note also that representation errors in AAOT are
of a similar magnitude as for AOT. One obvious difference40

is that AAOT representation errors tend to be positively bi-
ased while the AOT errors were negatively biased. While the
latter was due to cloudiness as discussed before, the positive
bias for AAOT is more difficult to explain. It appears that a
combination of conditions (location of the sites, necessity of 45

day-light, clear skies and a minimum AOT of 0.03) together
conspire to create these positive biases. Only over the Ama-
zon can a simple explanation be found: the clear sky condi-
tion prevents many observations outside the biomass burning
season, explaining large positive biases for yearly collocation 50

(see also Fig. S5, discussed later).
Even more than for AOT, representation errors for AAOT

are very similar for the daily and hourly collocations. As
discussed before, this is likely due to the absence of diur-
nal (anthropogenic) emissions profiles. The daily variation 55

of AAOT is strongly underestimated by G5NR (see Sect 4
and Fig. 2).

For completeness’ sake, an analysis of AAOT representa-
tion errors for different regions (Fig. S5), different products
(Fig. S6), different networks (Fig. S7) and different range 60

scores by Kinne et al. (Fig. S8) are given in the supplement.
Overall the conclusions are very similar to those for AOT.

The similarity in general behaviour of representation er-
rors for AOT and AAOT should not be taken to mean that
these errors are identical per site. As discussed in Sect. 6, 65

representation errors for AOT and AAOT at individual sites
can be very different. Ultimately this is due to the different
sources of AOT and AAOT which leads to different spatio-
temporal distributions in the atmosphere.

5.4 Comparison to recent results from Wang et al. ’18 70

Recently Wang et al. (2018) suggested that the observed un-
derestimation of AAOT by AEROCOM models (Bond et al.,
2013) may be due to spatial representation errors. Spatial
representation errors are entirely due to the narrow field-of-
view of AERONET observations (i.e. the intermittent tempo- 75

ral sampling of these observations is ignored). Their analysis
found that AERONET Inversion L1.5 AAOT representation
errors exhibit a global bias of 30% for 2o× 2o model grid-
boxes, which would help explain the aforementioned under-
estimation by the global models. As AERONET sites need 80

to be serviceable, they are often found near roads and ur-
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Table 7. Range scores for AERONET sites in (Kinne et al., 2013)

range score spatial domain number of sites comments

0 100 km 120 includes mountainous sites
1 300 km 106
2 500 km 28
3 900 km 6

ban build-up, i.e. near sources of absorbing aerosol. Com-
pared to the larger area of global model grid-boxes, these
sites would quite naturally observe larger AAOT. Thus, Wang
et al. (2018) concluded that at least part of the underestima-
tion of modelled AAOT is an artefact, created by the location5

of the AERONET sites.
Wang et al.’s idea is quite persuasive and indeed one can

see evidence of such positive representation errors in Fig. 13
where sites in major cities like London, Paris, Madrid and
Barcelona clearly exhibit positive representation errors. (For10

another example, see Fig. 3b in S17 concerning surface black
carbon concentrations). But Wang’s study found such biases
for the majority of AERONET sites, not just a few located
in big cities. As a matter of fact, the current study shows no
evidence of this global bias of 30%. Instead it finds a global15

bias of only 9%, dominated by a few sites with large positive
representation errors (median bias over all sites: 4%).

Wang et al. (2018) performed an analysis very much like
the one in this study with one crucial difference. As they did
not have a global simulation at high resolution like G5NR,20

they downscaled results from a standard global simulation at
2.5o× 1.27o resolution. The downscaling was accomplished
with the help of a high-resolution (0.1o× 0.1o) black carbon
emission map (Wang et al., 2016). It is possible to simulate
this procedure using the high-resolution G5NR black carbon25

emission maps and AAOT simulations (the AAOT simula-
tion was first coarsened over 2o× 2o) and explain the differ-
ent results in Wang et al. (2018) and the current study.

Figure 14 shows AAOT spatial representation errors as es-
timated by the current study and by Wang’s methodology as30

simulated with G5NR data. A global bias of 25%, not very
different from the original 30% mentioned in Wang et al.
(2018), is found for the Wang analysis whose representation
errors yield a strongly skewed distribution over all sites. In
contrast, the present study yields a more symmetric distribu-35

tion with a much smaller bias. Unlike in the Wang analysis
this bias is dominated by just a few sites with large positive
representation errors.

The analysis above is a self-consistent evaluation of
Wang’s methodology. Using high-resolution black carbon40

emission data to downscale coarse model AAOT fields ig-
nores redistribution of absorbing aerosol due to small scale
(at and below the coarse model’s grid-box) advective and

turbulent transport as well as removal by local precipitation
(Wang et al. were aware of this limitation but could not assess 45

its impact). It also ignores local orography and the contribu-
tion of absorbing dust to AAOT. The result is that there is
very little correlation between representation errors as esti-
mated by the two methods, see Fig. 15. As a matter of fact,
representation errors from the current study do not show a 50

systematic dependence on emission distributions, unlike the
representation errors from Wang’s methodology.

6 A ranking of representativity for the AERONET sites

A ranking of AERONET and GAW sites in terms of their
spatial representativity for AOT and AAOT can be found at 55

Schutgens (2019). Only sites below 60o latitude are consid-
ered, and temporal sampling of observations is ignored. The
latter was done for two reasons: 1) as discussed in Sect 2
and 4, temporal sampling of observations is considered less
accurately modelled by the OSSE than spatial variability; 2) 60

both S17 and the current study show that once hourly collo-
cation is used, the remaining representation error is similar
although slightly larger than the spatial representation error.

Relative representation errors are classed according to
bins: 0-5% (rank 1), 5-10% (rank 2), 10-20% (rank 3), 20- 65

40% (rank 4), 40% and higher (rank 5). The accuracy of
this ranking depends of course on the skill of G5NR and the
OSSE, but also on statistical noise due to the use of a single
year of data. The latter source of uncertainty was assessed
using a block bootstrap method (Efron, 1979) on the time- 70

series per site. Typically more than 85% of all resampled
time-series yield a representation error in the same class as
the original time-series. For large grid-boxes (4o) and small
errors (< 10%), this may drop down to 66% of the resam-
pled time-series. For those resampled time-series that yielded 75

a different ranking, this ranking was only off by 1. It then
seems that statistical noise does not prevent a robust classi-
fication of yearly relative spatial representation errors. The
impact of G5NR and OSSE skill on the classification can
currently not be assessed. 80

Compared to the subjective ranking by Kinne et al. (2013),
the new ranking is objective because the rank is related to a
well-defined representation error that is quantified bottom-up
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from known emission sources and calculated meteorology.
That in itself is of course no guarantee for accuracy.

Inspection of the rankings turns up several interest-
ing points. Analysis in the previous sections determined
a few "rules" for the behaviour of representation errors5

(e.g. errors decrease when the grid-box size decreases) but
these can easily be "broken" for specific sites: a smaller
grid-box may actually lead to larger representation errors
(e.g. AOE_Baotou, Ascension_Island, Aras_de_los_Olmos),
monthly errors may be substantially larger than yearly errors10

(e.g. ARM-Darwin, BORDEAUX). Also, representation er-
rors for AOT and AAOT may be very different: Bayfordbury
shows small yearly representation errors for AOT but large
errors for AAOT, while Mace_Head shows the opposite.

7 Conclusions15

Remote sensing observations from the AERONET and GAW
networks are intermittent in time and have a limited field-
of-view. Consequently such observations have limited abil-
ity to represent (Absorbing) Aerosol Optical Thickness, or
(A)AOT, over larger areas. The resulting spatio-temporal rep-20

resentation error is here analysed using a high-resolution
simulation of global aerosol (GEOS5 Nature Run, ∼ 7 km
resolution near equator). Using G5NR, an Observing System
Simulation Experiment (OSSE) was constructed that simu-
lates the frequency of AERONET observations taking Solar25

Zenith Angle, cloud fraction and AOT values into account.
This work extends previous work on temporal represen-

tation with global low-resolution models (Schutgens et al.,
2016b) to spatio-temporal representation. It also extends pre-
vious work on spatio-temporal representation with regional30

high-resolution simulations (Schutgens et al., 2016a, 2017)
to the global domain. The current work is more limited in
scope than the previous studies and only considers ground-
based remote sensing observations. For satellite remote sens-
ing, see Schutgens et al. (2016b) and Schutgens et al. (2017).35

For in-situ measurements, see Schutgens et al. (2016a) and
Schutgens et al. (2017).

G5NR and the OSSE are evaluated and found to show
significant skill in AOT and reasonable skill in AAOT.
AERONET mean AOT per site, as well as yearly and daily40

variability were estimated quite correctly, usually within a
factor less than 2×. Considering that G5NR generates its
own meteorology, G5NR AOT correlated very well (R≈
0.75) with the observations. Similarly, the OSSE was surpris-
ingly good at simulating the overall pattern of observational45

coverage (frequency of AOT observation). Results were not
as good for AAOT but still acceptable. Yearly AAOT vari-
ability was slightly underestimated while daily AAOT vari-
ability was severely underestimated. The latter is possibly re-
lated to the absence of diurnal anthropogenic emission pro-50

files in G5NR. For representativity studies that take diurnal
variations into account, see Schutgens et al. (2016a, 2017).

In addition, the OSSE tended to overestimate the frequency
of AAOT observations per site (although this was shown to
have no impact on representation errors). 55

Both yearly and monthly representation errors are pro-
vided for observations from ground sites that attempt to rep-
resent larger areas (from 0.5o to 4o in size). The monthly
representation errors are shown to be strongly correlated
throughout the year. For some sites this is an expression of a 60

bias but that is not universally the case. In any case, monthly
representation errors can not be treated as independent and
this has (negative) consequences for the reduction of rep-
resentation errors in multi-year averages. Other conclusions
are: 1) AERONET derived climatologies allow for substan- 65

tial representation errors (yearly collocation allows errors of
typically 20%, see Fig. 4); 2) AEROCOM evaluation proto-
col is sub-optimal (daily collocation can show errors of 25%
in coherent regional patterns). Instead hourly collocation is
advocated, 3) the representativity of AERONET and GAW 70

sites was shown to be not very different, although AERONET
sites seem to be more affected by nearby sources while GAW
sites seem more affected by their altitude. Finally, a subjec-
tive ranking (Kinne et al., 2013) of the spatial representativ-
ity of sites was analysed and shown to broadly agree with the 75

current study, although it appears to overestimate represented
spatial domain sizes and judges several sites as less represen-
tative than the current analysis. A new objective ranking is
also presented.

While the current study’s focus is on strategies for model 80

evaluation with original (’All Points’) AERONET data, it
does allow recommendations to be made for the optimal ag-
gregation level of observational data. Hourly products are
preferred to daily or monthly products as they allow users to
perform hourly collocation which in turn yields significantly 85

smaller representation errors. This should hold for both satel-
lite and AERONET data.

Spatial representation errors have been used to reconcile
observations and global simulations of AAOT. Bond et al.
(2013) showed that global models tend to significantly un- 90

derestimate AAOT but Wang et al. (2018) suggested that
AERONET AAOT observations may suffer from a global
30% representation bias. In contrast, the current analysis
finds a much smaller bias of 9% which is more-over strongly
influenced by a few sites with large positive representation 95

errors due to their proximity to black carbon sources. Judi-
ciously excluding those sites significantly reduces the bias
even further (4%). The large positive representation errors
found by Wang et al. are shown to be due to methodological
choices that limit the realism of their OSSE. 100

Several questions remain and seem interesting for follow-
up studies: 1) how can we evaluate the representativity rank-
ings; 2) how do OSSE errors affect estimated representation
errors; 3) how will diurnal emission profiles impact results;
4) can representation errors at any site be decomposed in a 105

bias and random error (possibly with temporal correlations
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over several months); 5) what are representation errors like
in multi-year averages?

Code and data availability. G5NR data can be obtained from
https://gmao.gsfc.nasa.gov/global_mesoscale/
7km-G5NR/data_access, AERONET data can be obtained5

from https://aeronet.gsfc.nasa.gov. Analysis code
was written in IDL and is available from the author upon request.
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Figure 1. Evaluation of the G5NR simulation of AOT and AAOT with AERONET data. The top row shows evaluation against three different
datasets. Each dot represents the yearly mean or standard deviation for a single AERONET site (with at least 100 observations in 2006); the
mean value is shown in red and the standard deviation in blue. The coloured text summarizes the statistics over all data points in the figure.
In the bottom row, the impact of the minimum required number of observations per site on those summary statistics (for means) is shown.
Colours relate lines to axes and have different meaning than in the top row. Red solid is correlation, red dashed is slope, blue solid is mean,
and blue dashed is standard deviation. In all figures, hourly G5NR model data was collocated in time & space with AERONET observations
before calculating site statistics.
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Figure 2. Evaluation of the G5NR simulation of AOT and AAOT with AERONET data. Each dot represents the yearly average of daily
variation (maximum minus minimum value) for a single AERONET site (with at least 100 observations in 2006). The grey text summarizes
the statistics over all data points in the figure. In all figures, hourly G5NR model data was collocated in time & space with AERONET
observations before calculating site statistics.
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Figure 3. Evaluation of the temporal coverage predicted by the OSSE with AERONET observations. Each dot represents temporal coverage
(or frequency of observation) for a single AERONET site (with at least 100 observations in 2006, at least 30 observations for Inversion L2.0).
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temporal coverages estimated by hemisphere.
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Figure 4. Yearly representation errors for AOT from DirectSun
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indicate different collocation protocols: yearly (brown), daily (or-
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mean of the sign-less errors.
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Figure 5. Yearly representation errors [%] for AOT from DirectSun
L2.0 AERONET in Northern America, for two different collocation
protocols (top: daily; bottom: hourly) and a model grid-box size of
1o.
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Figure 6. Yearly representation errors for AOT from from Direct-
Sun L2.0 AERONET using all-sky or clear sky conditions and
model grid-box size of 4o (left) or 1o (right). The colours indicate
different collocation protocols: yearly (brown), daily (orange) and
hourly (red). Numbers on top are mean of the errors and mean of
the sign-less errors.
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Figure 7. Yearly representation errors for AOT from Direct Sun
L2.0 AERONET and GAW and a model grid-box size of 1o. The
colours indicate different collocation protocols: yearly (brown),
daily (orange) and hourly (red). Numbers on top are mean of the
errors and mean of the sign-less errors.
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Figure 8. Yearly representation errors for AOT from Direct Sun
L2.0 AERONET (red circles) and GAW (black squares) as a func-
tion of site altitude, for a model grid-box size of either 4o or 1o;
using hourly collocation.
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Figure 9. Yearly representation errors for AOT from DirectSun
L2.0 AERONET for different range scores r by Kinne et al. (2013),
for a model grid-box size of either 4o or 1o. The colours indicate
different collocation protocols: yearly (brown), daily (orange) and
hourly (red). Numbers on top are mean of the errors and mean of
the sign-less errors.
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Figure 10. Yearly and monthly representation errors for AOT Di-
rectSun L2.0 AERONET, for a model grid-box size of 1o. In con-
trast to Fig. 4, only sites that provide observations 12 months out
of the year are used in this analysis. The colours indicate differ-
ent collocation protocols: yearly (brown), daily (orange) and hourly
(red). Obviously, for the brown bar on the right a monthly protocol
was used. Numbers on top are mean of the errors and mean of the
sign-less errors.
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Figure 11. Correlation in monthly representation errors with errors
for January, for AOT DirectSun L2.0 AERONET, for a model grid-
box size of 1o. Only sites that provide observations 12 months out
of the year are used in this analysis. The colours indicate different
collocation protocols: monthly (brown), daily (orange) and hourly
(red).
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Figure 12. Yearly representation errors for AAOT from Inversion
L1.5 AERONET for different model grid-box sizes. The colours
indicate different collocation protocols: yearly (brown), daily (or-
ange) and hourly (red). Numbers on top are mean of the errors and
mean of the sign-less errors.

Figure 13. Black carbon emissions over France, Europe, with the
representation errors in AAOT from Inversion L1.5 AERONET
super-imposed. The top colourbar (white-black) represents emis-
sions ([kg/m2s]), and the bottom colourbar (blue-red) represents
relative representation errors ([%]). Only spatial representation er-
rors are shown, i.e. the temporal sampling of observations is ig-
nored.
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Figure 14. Yearly representation errors for AAOT from Inversion
L1.5 AERONET as estimated in this paper or using the methodol-
ogy from Wang et al. (2018) and a model grid-box size of 2o. The
representation error shown is the spatial representation error (Schut-
gens et al., 2017), i.e. temporal sampling of observations is ignored.
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Figure 15. Comparison of yearly representation errors for AAOT
from Inversion L1.5 AERONET as estimated in this paper or us-
ing the methodology from Wang et al. (2018) and a model grid-box
size of 2o. The representation error shown is the spatial represen-
tation error (Schutgens et al., 2017), i.e. temporal sampling of ob-
servations is ignored. Also shown are the Pearson linear correlation
(PCorr) and rank correlation (RCorr) between the data. The dashed
line shows y = x.


