
Reviewer 1 (Andrew Sayer) 
 
I’d like to thank Andy for his dedication to this paper, providing many useful comments and suggesting several 
improvements.  
 
I am posting this review under my own name (Andrew Sayer) due to ongoing collaborations with the author. I feel I am 
able to provide an unbiased review. I reviewed the previous version of this manuscript, and recommended major revisions 
(mostly organizational/clarity rather than technical points). This revised manuscript has a more readable structure and 
better balance of figures. My technical comments raised in the previous round of review have also been addressed. Similar 
suggestions were made by the other referees. 
 
For me, a stand-out conclusion is that hourly collocation results in a more reasonable comparison between AERONET-like 
and model aerosol fields than daily or yearly. I suspect the same may be true for satellite AOD fields as well (although that 
is not a topic of this analysis). This suggests to me that it would be worthwhile generating hourly composites of AERONET 
data and satellite level 3 products, for a more direct comparison with model fields. This is important because a significant 
component of the representation error here is systematic due to clear sky bias (i.e. the average representation error tends 
to be negative, and going to hourly makes this less negative, as well as reducing the variation of the representation error). 
So I see this as a major action item on the data producer community. 
 
A second conclusion is that going from 1 degree grid boxes to 0.5 degree grid boxes has a much smaller influence (for 
AOT). This suggests that the 1 degrees used by many data sets now may be a sufficient balance of detail and storage 
overhead. However, for AAOT it seems the difference becomes more important (mean error and mean signless error 
roughly halve going from 1 to 0.5 degrees). Therefore, as AAOT comparisons become more prominent, perhaps it is worth 
the community (modelers plus satellite data sets) making the shift from 1 to 0.5 degrees as well. 
 
These two conclusions are highlighted by Figure 4 (and for North America, 5) and Table 6 for AOT, and Figure 12 for AAOT. 
Personally, I would suggest emphasizing this by adding to the title of the paper, “implies that hourly colocations will result 
in more meaningful, representative data comparisons” or something similar. This way the conclusion is even clear from the 
title. I leave this up to the author, however, as it’s a question of style preference. 
 
I do have a few further comments: 
 
Figure 10: My understanding is that the left part of this Figure should match the middle part of Figure 4. Both are the 
representation error in yearly AOT, at a 1 degree grid, based on level 2 direct Sun AOT sampling. However, if one compares 
the numbers above the figure, they are not quite the same. Is this an error, or am I misunderstanding something? This 
should be checked and either corrected or clarified. 
 
Well spotted. The difference is due to the selection of stations. In Fig. 10 I included only stations that observe 12 months 
out of the year since I am comparing yearly to monthly errors. In Fig. 4 I included all stations, so also those that might not 
have any observations during some months of the year. This different selection entirely explains the small differences 
between Fig. 4 and 10. I have added text to the caption of Fig. 10 to explain this.  Note that in both cases, only stations 
below 60 degree N/S latitude were used. 
 
Conclusions: In my previous review I had raised the question of “is a take-away that AERONET and satellites should provide 
hourly aggregates” and the author’s response was “But don’t these data already come at hourly or daily resolution?” They 
come at daily but not hourly, and this study suggests there can be quite some benefit from going to hourly. The 
Conclusions currently states that hourly colocation is beneficial, but I do think it is worthwhile to explicitly state “it would 
be good for data providers to provide hourly aggregates of certain parameters (e.g. AOT) to facilitate these comparisons”. 
I doubt that many data users will be motivated to go back and create their own hourly aggregates from available highest-
resolution data so if we want people to take this recommendation, I think it should be framed as a direct request to them 
(AERONET plus satellite). I know this study was not directly about satellites but again, if satellites are to be used as an 
evaluation resource for the models, the same points apply. 
 
I believe I was thinking of satellite data; at least for polar orbiters daily and hourly data will not be different (except at 
high latitudes). But the benefit of hourly (instead of daily/monthly) data is a point worth making, I will add this to the 
Conclusions.  
 
I also think it would be worth adding a couple of sentences about the possible merits of 0.5 degree grid boxes (for 
satellites, I think MISR and SeaWiFS are the only publicly-available data sets at this resolution?) compared to the 1 degree 
that is much more standard. Again, unless it is framed as an ask and data providers act on it, data users are unlikely to 
create them. Of course for e.g. AeroCom this is also dependent on model resolutions so perhaps that is a topic for 
discussion at the next AeroCom meeting. Still I would mention this in the Conclusions so it sticks in the mind of the reader. 
 



 
  

I am not sure my study allows conclusions to be drawn about optimal satellite aggregation levels. I’m assuming the truth 
in this case would be the 1 or 0.5 degree averaged AOD. In the case of clear-sky AOD, a perfect satellite retrieval would 
not show a representation error! In the case of all-sky AOD, I think it would depend on the length-scales involved: one for 
the obscuring cloud field; one for the observed aerosol field; which aggregation level performs better. In my 2017 ACP 
paper, I considered all-sky representation errors given a 1 degree satellite aggregate and truth grid box of 0.5 to 3 degrees 
(Fig. 15), showing that a mismatch between these sizes can easily double the representation error. But that is an answer 
to an altogether different question and I consider this issue of optimal satellite aggregation level unresolved. 
  
 
 
 
Other than that, I recommend that the paper be accepted for publication. I am happy to read any further revision if that 
would be helpful. 

  



Reviewer 5 (Tero Mielonen) 
 
I’d like to thank Tero for his work on this paper. His thorough reading found several typing errors and inconsistencies and 
helped to improve this paper.   
 
As I’m collaborating with the author on another topic, I’m writing this review with my own name. Despite this collaboration, 
I believe that I’m able to provide an objective review of this manuscript.  
 
In the manuscript Schutgens uses high resolution simulations (GEOS5) to evaluate the spatio-temporal representativity of 
AOT and AAOT observations done at AERONET and GAW sites. The topic is scientifically very interesting and the analysis is 
well executed. The author has satisfactorily addressed the concerns of the reviewers on the first round. I recommend that 
the manuscript is accepted for publication in ACP after minor revision. 
 
General and specific comments: 
 
Page 1, line 19: “correlate strongly throughout the year”, I’m not sure if I understood this correctly. Do you mean that the 
monthly representation errors correlate with each other or something else? 
 
They correlate well with each other, i.e. January errors correlate strongly with February errors but less strongly with June 
errors (although the correlation is far from zero). I have modified the text.  
 
Introduction: Several abbreviations (e.g. AERONET, GAW, AAOT, AEROCOM) are mentioned in the text but not defined. 
Abbreviations should be defined in the abstract and then again at the first instance in the rest of the text. 
 
Done. 
 
Page 3, line 21: Was there a minimum number of observations required for the calculation of an hourly average? Or do you 
assume that even a single observation is representative enough? 
 
Here a single value is assumed sufficient.  
 
Page 3, line 37: “although for dust and biomass burning aerosol higher AOT at 440 nm ≥ 0.5 were 
needed”, this was hard to follow. Do you mean that for dust and biomass burning aerosols the SSA errors are in the 0.03 
range only for AOTs larger than 0.5? 
 
Yes, text has been clarified. 
 
Page 3, line 56: Please clarify here what are the GAW-ABS measurements and how do you calculate the AAOT from them. 
“Surface properties” are mentioned which makes me think about aerosol surface properties but I’m guessing you mean 
ground-based in-situ observations of light absorption coefficients at some wavelenght(s)? If I guessed right, then how do 
you calculate the AAOT from the absorption coefficients? Do you assume some kind of a vertical profile and integrate that? 
 
I do not use GAW observations, only their geolocations. I then assume that a future GAW-ABS network will include 
AERONET like stations. 
 
Page 4, line 47: Figure S4 doesn’t seem to include any sites above 60 degrees latitude. 
 
Correct. The Figure stops at 60o N. I have corrected the text. 
 
Page 5, line 11: “the simulation captures spatial variation rather well”, this seems to be true on yearly time scale but do you 
know if it holds for shorter time scales as well? 
 
Fig 1 of course suggests that temporal variation at the AERONET sites is captured reasonably well but I do not know if that 
also means that, say, spatial variation in monthly averages is captured well. I redid the analysis in Fig 1 for the months of 
January and June with the following results for mean AOT: 
 
For a minimum of 100 observations per site: 

 Pcorr Nr of sites 
January 0.89 47 
June 0.89 96 

 
For a minimum of 10 observations per site: 

 Pcorr Nr of sites 



January 0.76 126 
June 0.83 145 

Compare this to Pcorr=0.75 and Nr=216 for a minimum of 100 observations per site in Fig. 1 
 
I would conclude that this also holds on monthly time-scales. 
 
Page 5, line 16: “overestimation of dust”, could you clarify here that do you mean the dust load or dust AOT? 
Overestimation of dust load could be explained by differences in meteorology and consequent changes in dust emissions 
but overestimation of dust AOT could also be influenced by the optical properties of dust used in the simulation. Did you 
check how the comparison looks if you separate Africa into northern and southern part? As the northern part is dominated 
by dust and the southern part by biomass burning aerosols, the analysis could help disentangle the contributions from dust 
and carbonaceous aerosols. 
 
This text refers to results by Gelaro et al. They studied AOT (not loads) and their analysis was based on global averages. 
 
Page 5, line 39: I’m not sure if you are aware, but AERONET Inversion L1.5 data has a handy flag called 
If_Retrieval_is_L2(without_L2_0.4_AOD_440_threshold). You could use that to relax the AOT limit but not the other 
requirements for L2.0. 
 
Good to know, I have found it in the V3 data. The flag is not present in V2 data which were used in this paper. 
 
Page 5, line 77: “Inversion data is generally closer to the equator”, not sure what you mean with this. Do you mean that 
inversion data has larger SZAs even though the sites that produce the most Inversion data are close to the Equator? This 
could be related to the differences in the measurement principles (direct vs. almucantar).  
 
Yes, likely. It’s a pattern in the data but I do not think it’s important to the present study. 
 
Page 5, line 78: I didn’t understand how the overestimation of dust AOT is related to the observational coverage. Could you 
please clarify? 
 
Notice that here I am talking about L2.0 Inversion data. One important constraint is that AOD@440nm > 0.4. If G5NR 
overestimates AOT at dust sites (which are over-represented in real Inversion data), this will lead to larger temporal 
coverage in the OSSE than in the real observations.   
 
Page 5, line 85: Instrument malfunction and maintenance will likely affect all observations, not just inversion products, so 
they are not likely to explain the difference between comparisons with direct and inversion data.   
 
True. I have adapted the text to reflect this. 
 
Page 6, line 25: You mentioned in the replies to the first round of reviewers that likely reason for the regional gradients is 
cloudiness. I believe it would be good to mention that in the text as well. This is an interesting detail because the MODIS 
AOT also has/had this kind of east-west trend over US. To my understanding, that was caused by land surface 
properties/orography.  
 
I think this is explained in the following paragraph, p. 6 l. 28-40  
 
Page 6, line 31: wet growth → hygroscopic growth 
 
Done. 
 
Page 6, line 39: Doesn’t the usage of clear-sky data make sense also for the AERONET observations, especially inversion 
products, as they are based on observations from cloudless parts of the atmosphere? 
 
Yes, and this is accounted for. No simulated AERONET site can observe under cloudy conditions. But the AERONET site 
“sees” only a small part of the atmosphere in a 1 or 2 degree grid-box. So part of that grid-box may be cloudy and yet the 
site may still be able to make observations. 
 
Page 6, line 101: “substantial reduction in representation error can be seen for for r > 1 sites”, this is true if you compare r = 
0 and r > 1 sites but there doesn’t seem to be such a big difference between r =1 and r > 1 sites, at leas based on the mean 
errors. 
 
> should have been >= . This has now been changed.  



 
Table 6: Please, clarify in the heading what does the “90 %” stand for.  
 
90% quantile. This has now been clarified. 
 
Section 5.2: There’s a large gap between the heading and the text. 
 
Very rarely Latex will do this to make other bits and pieces fit better. I will keep an eye out for it in final production. 
 
Page 7, line 50: Anthropogenic emissions didn’t have a diurnal cycle but biomass burning did. Did you look at the results 
from South America and southern Africa in this perspective? These kind of regional analysis could strengthen the 
conclusions here. 
 
An interesting idea but it would probably require substantial extra work. First there is the question of realism of the 
biomass burning diurnal profiles. G5NR’s documentation (Putman et al. 2014) is scant on detail but I gather a very simple 
diurnal profile has been imposed on-line (i.e. it is not part of the QFED emission dataset). In comparison, the diurnal 
profiles used in Schutgens et a. 2016, 2017 were based on statistics of traffic, industry etc. and integral to the emission 
dataset. In these two papers, substantial differences between daily and hourly collocation were found. Second, sites 
affected by biomass burning are also affected by other sources and there is no easy way to separate the two contributions. 
At the very least one would have to identify sites affected by biomass burning. A very preliminary and coarse attempt at 
such an analysis yielded nothing. 
 
That said, Fig. 2 shows that AAOT diurnal variation is under-estimated in G5NR, we know that the anthropogenic sources 
for absorbing aerosol have no diurnal cycle, and in Schutgens et al. 2016 (which does include realistic diurnal profiles) daily 
representation errors are significantly larger than hourly errors.  
 
Page 7, line 60: “Sect. 6, f”, there’s an extra “f” at the end of the line 
 
Corrected. 
 
Page 8, line 42: The shift from spatio-temporal to spatial representation errors comes rather suddenly. It would help the 
reader if there would be a short description (and a reference) how the spatial representation errors were calculated, either 
in this section or in the methods section.  
 
Agreed. I have included a brief explanation (at the start of the section). 
 
Page 8, line 69: Thank you for sharing this ranking data with easy access! Would it be possible to include also AERONET 
sites above 60 degrees latitude? You mentioned in the text that near the poles the simulated pixels become too small but is 
it an issue already at 70 or 80 degrees latitude? 
 
It is currently not possible to quantitatively assess when this becomes an issue but a G5NR grid-box at 60o latitude is only 
50% (3.5 km) the area of a grid-box near the equator (6.9 km). A grid-box at 70o is only 34% (2.4 km) and a grid-box at 80o 
only 17% (1.2 km). At the same time, the real field-of-view of an AERONET site does not change and will remain in the 
order of 5-10 km.   The current code is built on the assumption that a single G5NR grid-box represents this FOV. 
 
Section 6: If I understood this correctly, Kinne’s ranking is based on site centered analysis whereas in this study the grid was 
fixed so the sites may not be in the center of the grid boxes. For finer grids this probably doesn’t matter much but it might 
affect the results at 4 degree grid. What is your view on this? 
 
Correct, Kinne’s original ranking is based on grid-boxes centered around the site, in the current paper, however, the grid 
itself is fixed and sites may be near the edges of a grid-box. Note that in the case of model or satellite L3 evaluation, people 
will be forced to interpret Kinne’s ranking in the latter way. 
 
The analysis presented in the current paper (Fig 9) shows the impact of r on representation errors. Unless r and the 
location of sites within a grid-box are in some weird and unexpected way correlated, I do not expect an impact on the 
conclusions that I draw. 
 
Page 8, line 3: You mention several examples where the behaviour of site specific representation errors differ from the 
“rules” defined on the basis of all sites. It would be an interesting and valuable addition if you could give some explanation 
why things do not go as expected. Does it depend on local meteorology, aerosol types or something else? 
 
Yes, yes and something else as well J. I do not know if G5NR provides sufficient data to disentangle these aspects but it 
would be a lot of work. In addition, the deeper you delve into a model, the more apparent will become its deficiencies. 



While I understand the interest in the causes, I’m not sure what could be learned from it at this stage. The most important 
‘lesson’ is that one cannot take general ‘rules’ derived from the entire dataset and expect them to apply to each individual 
site. This is not surprising: local meteorology can be expected to cause a lot of variation in representation errors even when 
sources remain fixed and constant. 
 
Page 9, line 26: “ground-based remote sensing observations”, can you say it like this? If I understood correctly, the GAW 
absorption observations are in-situ observations. 
 
Yes and yes. I have assumed sun-photometers at the GAW-ABS that in reality do not exist. See also my earlier comment.  
 
Page 10, line 24: There’s something wrong in the author list: “K??rcher” 
 
Corrected. 
 
Figures 4, 6, 7, 9, 10, 12, S2, S3, S5-S8: What are the black circle and bar? I’m guessing mean and median, but which is 
which? 
 
Bar is median, circle is mean. This is now explained at the end of Sect. 3. 
 
Figure 8: Did you check how the representation errors behave as a function of AOT? I think GAW stations are often designed 
to observe the background concentrations, meaning lower AOTs, so I’m just wondering if the difference in the altitude 
dependence between AERONET and GAW is caused solely by topography or do aerosol concentrations also play a role. Of 
course they are linked so it is hard separate their effects. 
 
I would expect higher GAW stations to see less AOT (shorter air column, farther from sources) and this is indeed the case. 
However, the correlation of representation error with AOT is lower (-0.3) than with altitude (-0.5) suggesting maybe that 
height is the dominant factor.  
 
Figure 10: The mean statistics for yearly errors in this figure are not exactly the same as in Figure 4. Shouldn’t they be the 
same? Then another question about the monthly representation errors. How can you calculate monthly representation 
errors from yearly averages (the brown bar)? 
 
There is a small difference in selection of sites. In Fig 10 only sites that provided observations 12 months out of the year 
were used. This has now been explained in the caption. As to your second questions, I can’t! That brown bar represents a 
monthly collocation protocol. Caption has been changed to reflect this. 
 
Figure 11: How does the number and spatial distribution of the sites change during the year? I would guess that not all sites 
provide data constantly throughout the year due the seasonal changes and maintenance. Would the graph look the same if 
all the months had the same sites? 
 
Exactly for that reason this analysis was done using only sites that provide observations 12 months out of the year. Caption 
has been updated to reflect this. 
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Abstract. Remote sensing observations from the AERONET
(AErosol RObotic NETwork) and GAW (Global Atmosphere
Watch) networks are intermittent in time and have a limited
field-of-view. A global high-resolution simulation (GEOS5
Nature Run) is used to conduct an Observing System Simu-5

lation Experiment (OSSE) for AERONET and GAW obser-
vations of AOT (Aerosol Optical Thickness) and AAOT (Ab-
sorbing Aerosol Optical Thickness) and estimate the spatio-
temporal representativity of individual sites for larger areas
(from 0.5o to 4o in size).10

GEOS5 NR and the OSSE are evaluated and shown to
have sufficient skill, although daily AAOT variability is sig-
nificantly underestimated while the frequency of AAOT ob-
servations is over-estimated (both resulting in an under-
estimation of temporal representativity errors in AAOT).15

Yearly representation errors are provided for a host of sce-
narios: varying grid-box size, temporal collocation protocols,
and site altitudes are explored. Monthly representation er-
rors are shown to correlate strongly throughout the year

::::
show

:::::::::
correlations

:::::
from

::::::
month

::
to
::::::

month, with a pronounced an-20

nual cycle
:::
that

:::::::
suggests

:::::::::
temporal

::::::::
averaging

:::::
may

:::
not

:::
be

::::
very

:::::::::
successfull

::
in

:::::::
reducing

:::::::::
multi-year

::::::::::::
representation

:::::
errors.

The collocation protocol for AEROCOM (AEROsol Com-
parisons between Observations and Models) model evalua-
tion (using daily data) is shown to be sub-optimal and the25

use of hourly data is advocated instead. A previous subjective
ranking of site spatial representativity (Kinne et al., 2013) is
analysed and a new objective ranking proposed. Several sites
are shown to have yearly representation errors in excess of
40%.30

Lastly, a recent suggestion (Wang et al., 2018) that
AERONET observations of AAOT suffer a positive repre-
sentation bias of 30% globally is analysed and evidence is
provided that this bias is likely an overestimate (the current
paper finds 4%) due methodological choices.35

1 Introduction

As the temporal sampling of observations is often intermit-
tent and their field-of-view limited, the ability of observa-
tions to represent the weather or climate system is negatively
affected (Nappo et al., 1982). This adverse effect can be de- 40

scribed through a representation error, which allows compar-
ison to e.g. observational errors or model errors.

Representation errors have been receiving more atten-
tion recently, in a variety of fields: solar surface radiation
(Hakuba et al., 2014b, a; Schwarz et al., 2017, 2018), sea sur- 45

face temperatures (Bulgin et al., 2016), trace gases (Sofieva
et al., 2014; Coldewey-Egbers et al., 2015; Lin et al., 2015;
Boersma et al., 2016), water vapour (Diedrich et al., 2016),
cloud susceptibility (Ma et al., 2018) and even climate data
(Cavanaugh and Shen, 2015; Director and Bornn, 2015). 50

In the field of aerosol, most work has been on the repre-
sentativity of satellite measurements (Kaufman et al., 2000;
Smirnov, 2002; Remer et al., 2006; Levy et al., 2009; Co-
larco et al., 2010; Sayer et al., 2010; Colarco et al., 2014; Ge-
ogdzhayev et al., 2014), either using satellite data or model 55

data. A new development is the use of local spatially rela-
tively dense measurement networks (Shi et al., 2018; Virta-
nen et al., 2018).

As aerosols are known to vary over short time and spatial
scales (Anderson et al., 2003; Kovacs, 2006; Santese et al., 60

2007; Shinozuka and Redemann, 2011; Weigum et al., 2012;
Schutgens et al., 2013), aerosol studies are likely to expe-
rience large representation errors. Indeed, Schutgens et al.
(2016b) (S16b hereafter) showed that representation errors
due to temporal sampling in both satellite and AERONET 65

:::::::
(AErosol

::::::::
RObotic

:::::::::
NETwork)

:
observations were of similar

magnitude as actual model errors and often larger than ob-
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servational errors. Similarly, Schutgens et al. (2016a) (S16a
hereafter) showed that the narrow field-of-view of in-situ
measurements could lead to large differences from area aver-
ages (monthly RMS differences of 10� 80% for 201⇥ 210

::::::::
210⇥ 210

:
km2, depending on the type of measurement and5

the location of the site). Recently, Schutgens et al. (2017)
(hereafter S17) considered the combined impact of spatio-
temporal sampling on the representativeness of remote sens-
ing data (both satellite and ground-based). They provide rep-
resentation uncertainty estimates and optimal strategies when10

dealing with different observing systems (ground networks,
polar orbiting satellites with varying revisit times, or geo-
stationary satellites).

In this paper, a global one-year high-resolution simula-
tion of the atmosphere (GEOS5 Nature Run) is used to con-15

duct an Observing System Simulation Experiment to es-
timate representation errors for remote sensing measure-
ments of aerosol optical thickness (and its absorptive coun-
terpart) as observed by the global networks AERONET and
GAW

::::::
(Global

::::::::::
Atmosphere

:::::::
Watch). In S16a and S17, re-20

gional high-resolution simulations covering a month were
used to study representation errors. This prevented an anal-
ysis of such errors world-wide and on longer time-scales.
In addition, the limited spatio-temporal domains made eval-
uation of the high-resolution simulation difficult. These is-25

sues are addressed in the current study. Note that the current
paper does not replace previous work (which also consid-
ers satellite, in-situ and flight measurements) but extends it.
In addition, the current study allows us to evaluate a recent
suggestion by Wang et al. (2018) that representation errors30

in AERONET AAOT observations are positively biased (by
⇠ 30%) which would help to explain the observed underes-
timation of AAOT in global models (Bond et al., 2013).

Representation errors are not only determined by obser-
vational sampling but also by how these observations are35

put to use. If observations are used to evaluate models, dif-
ferent protocols (or strategies) exist to temporally collocate
model data and observations. For instance, within AERO-
COM

::::::::
(AEROsol

:::::::::::
Comparisons

::::::::
between

::::::::::::
Observations

:::
and

:::::::
Models), an oft-used strategy is daily collocation: daily av-40

erages of observations are collocated with daily model data.
The different sampling of model and observations throughout
the day are ignored (e.g. most remote sensing observations
only observe a small part of the diurnal cycle). In contrast,
hourly collocation uses hourly model data that is collocated45

with hourly averages of observations. S17 showed that in the
case of remote sensing observations daily collocation allows
significantly larger representation errors than hourly collo-
cation. A third protocol would be yearly collocation which
is seldom used these days in model evaluation as it yields50

large representation errors (S16b). However, if remote sens-
ing observations are used to construct a yearly climatology,
effectively a yearly collocation protocol is used.

In data assimilation the representation error is often (but
not always) thought to include effects from incorrectly mod-55

elled sub-grid processes. In this paper, the representation er-
ror is purely thought of as resulting from the different sam-
pling by observations and models.

Section 2 describes the high-resolution simulation data
and AERONET observations used in this study. The OSSE 60

for estimating representation errors is briefly explained in
Sect. 3 but more details can be found in S17. An evalua-
tion of the high-resolution simulation with a particular focus
on its use in an OSSE is given in Sect. 4. While the sim-
ulation shows deviations from AERONET observations, the 65

agreement is deemed sufficient to study representation errors.
Representation errors in AERONET AOT & AAOT are stud-
ied in Sect. 5. A ranking of AERONET sites in terms of their
representativity is given in Sect. 6. As may be expected, the
paper finishes with a summary of the conclusions (Sect. 7). 70

2 Data

2.1 GEOS-5 Nature Run

The GEOS-5 Nature Run (G5NR here-after) is a 2-year
global, non-hydrostatic simulation from June 2005 to May
2007 at a 0.0625o grid-resolution (⇠ 7 km near the equator). 75

Not just a simulation of standard meteorological parameters
(wind, temperature, moisture, surface pressure), G5NR in-
cludes tracers for common aerosol species (dust, seasalt, sul-
fate, black and organic carbon) and several trace gases: O3,
CO and CO2. The simulation is driven by prescribed sea- 80

surface temperature and sea-ice, daily volcanic and biomass
burning emissions, as well as monthly high-resolution inven-
tories of anthropogenic sources (Putman et al., 2014). As it
is a nature run (i.e. no meteorological nudging), the mete-
orology in G5NR can deviate substantially from the actual 85

weather in 2006.
Aerosol in GEOS-5 are calculated using the Goddard

Chemistry, Aerosol, Radiation, and Transport (GOCART)
module (Chin et al., 2002) that uses 15 tracers to de-
scribe externally mixed species of organic carbon, black car- 90

bon, sulphate, sea-salt and dust. Biomass burning emissions
are obtained from QFED (Quick Fire Emissions Dataset)
(Suarez et al., 2013) with a diurnal cycle imposed on-
line. Anthropogenic emissions of organic and black car-
bon use EDGAR-HTAP (Emissions Database for Global 95

Atmospheric Research-Hemispheric Transport of Air Pol-
lution) emissions (Janssens-maenhout et al., 2012) which
were rescaled to match AEROCOM Phase II emissions. Non-
shipping anthropogenic SO2 emissions come from EDGAR
v4.1. 100

Evaluation of G5NR (Gelaro et al., 2015) against
NASA/GMAO MERRA (Modern-Era Retrospective analysis
for Research and Applications) Aerosol Reanalysis (da Silva
et al., 2012) suggest that global organic carbon, black car-
bon and sulphate AOT are underestimated by 30�40% while 105

dust AOT is overestimated by ⇠ 50%. Global sea-salt AOT
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is similar to MERRA within 10%. Hence, Castellanos et al.
(2019) derived global rescaling factors for aerosol speci-
ated AOT in G5NR but these are not used in the current
study (true scaling factors are unlikely to be global, it is
unclear what to do about AAOT and the focus here is on5

relative errors anyway). Comparison with AEROCOM mod-
els shows that G5NR sulphate life-times are quite low (at
2.7 days) while the other species fairly agree with the AE-
ROCOM multi-model mean. G5NR shows reasonable cloud
fractions compared to CERES-SSF (Clouds and the Earth’s10

Radiant Energy System-Single Scanner Footprints), although
in the equatorial/sub-tropical region (30S-30N), G5NR has a
deficit of partially cloudy scenes. In addition there are too
few clouds off western continental coasts and the southern
branch of the ITCZ is too strong. CALIOP (Cloud-Aerosol15

Lidar with Orthogonal Polarization) data suggests G5NR
cloud fraction are too low, especially over equatorial/sub-
tropical lands in the Northern Hemisphere, and too high in
the northern polar region.

For this study, the following hourly G5NR data for 200620

were obtained: see Table 1.

Table 1. G5NR data used in this study

short name description

totexttau aerosol total column extinction at 550 nm
totscatau aerosol total column scattering at 550 nm
swtdn TOA⇤ downward short-wave radiation
cldtot total cloud area fraction
phis surface geopotential height
bceman monthly anthropogenic burning BC emissions
bcembb monthly biomass burning BC emissions

*: Top Of Atmosphere

2.2 AERONET observations & geolocations

AERONET
:::::::::::::::::
(Holben et al., 1998) data were obtained

from https://aeronet.gsfc.nasa.gov.
For 2006, AOT from Direct Sun Version 3 L2.025

:::::::::::::::::::::::::::::::::
(Giles et al., 2019; Smirnov et al., 2000) and AOT &
AAOT from Inversion Version 2 L1.5 and L2.0
:::::::::::::::::
(Holben et al., 2006) were logarithmically interpolated
to values at 550 nm and averaged over an hour. For all years
starting in 1992, geolocation data were obtained for all sites30

(1144 in total).
The DirectSun dataset contains only AOT (at multiple

wavelengths). These observations are based on direct trans-
mission measurements of solar light and have high accuracy
of ±0.01 (Eck et al., 1999; Schmid et al., 1999). The Inver-35

sion dataset contains both AOT and AAOT (at multiple wave-
lengths) and these observations are based on measurements
of scattered solar light from multiple directions. This inver-

sion uses radiative transfer calculations (Dubovik and King,
2000) and yields larger errors than the DirectSun measure- 40

ments. In particular, Dubovik et al. (2000) showed that Sin-
gle Scattering Albedo (SSA) errors decrease with increasing
AOT and estimated SSA errors of ±0.03 for water-soluble
aerosol at AOT at 440 nm � 0.2 although for dust and

:::
and

::
for

::::
dust

::
or

:
biomass burning aerosol higher AOT at 440 nm � 45

0.5were needed. Consequently, one important distinction be-
tween Inversion L1.5 and L2.0 data is a minimum threshold
of AOT at 440 nm � 0.4 used in the latter (improved cloud
screening is another distinction). Inversion L2.0 is a subset of
the L1.5 dataset.

::
For

:::
an

:::::::::::::
intercomparison

::
of
::::::::::
AERONET

::::
SSA 50

::::
with

::::
flight

:::::::::
campaign

::::
data,

:::
see

:::::::::::::::::
Schafer et al. (2014).

:

In the current study, only AOT at 550 nm is used and the
Inversion L2.0 AOT at 440 nm criterion is adapted to AOT at
550 nm � 0.25. This is the minimum value of AOT at 550 nm
present in actual Inversion L2.0 data, but also corresponds to 55

AOT at 440 nm = 0.4 for small particles (Ångström exponent
= 2.1). As a result, the OSSE in this paper is rather lenient
when it comes to selecting valid observations similar to In-
version L2.0.

2.3 GAW geolocations 60

GAW geolocation data were obtained from NILU (Norwe-
gian Institute for Air Research). Two networks were used: the
GAW-AOT network which comprises 29 sun-tracking sun
photometers that measure AOT; and the GAW-ABS network
which comprises 81 filter instruments that measure surface 65

properties. The real GAW-ABS network is not capable of
measuring a columnar (A)AOT but here we will assume it
does, similar to AERONET, and consider its representation
errors.

3 Method: analysis of representation errors 70

The representation error is defined as the difference between
a perfect observation (i.e. no observational error) and a truth
value (area average), see also S16a and S17. Here, a self-
consistent high resolution simulation will be used to generate
both observation and truth in a so-called Observing Systems 75

Simulation Experiment. The representation error may refer
to instantaneous values or time averages. This work concerns
itself mostly with yearly averages (and some monthly aver-
ages). For instantaneous and daily error values, see S16a and
S17. The mapping from G5NR data to the data used in this 80

study is given in Table 2.
Perfect observations are generated from the high-

resolution simulation by choosing the data at the location of
an AERONET or GAW site and sub-sampling those data in
time according to certain conditions for solar zenith angles 85

(SZA), cloud-fraction and AOT. Table 3 lists the threshold
conditions for which observations will be possible. Values
for SZA and AOT are inferred from real AERONET data
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Table 2. Mapping from G5NR data to data used in this study

G5NR this study units

totexttau AOT
totextau-totscatau AAOT
180
⇡ arccos(swtdn/1367) SZA degrees

cldtot cloud fraction
phis/9.81 geopotential altitude m
bceman+bcembb BC emissions kg/m2 s

files. The maximum cloud-fraction was tuned to obtain sim-
ilar temporal coverage of observations as real AERONET
data (see Sect. 4 and Fig. 3 but the impact of tuning is small).

Table 3. Conditions for valid AERONET observations as simulated
in this study

source maximum maximum minimum
SZA cloud-fraction AOT

DirectSun L2.0 80o 0.01 0.0
Inversion L1.5 80o 0.01 0.03
Inversion L2.0 80o 0.01 0.25

The truth is generated from the high-resolution simulation
by averaging AOT and AAOT over a large area (0.5o to 4o5

grid-boxes) and further averaging in time. Here we should
distinguish three different protocols depending on how one
intends to use the observations, see Table 4. In the case of
a gridded climatology derived from observations, the truth
should be an average over a continuous long-term time range10

(say a year). In the case of model evaluation, it is possible
to resample model data to the times of the observations. E.g.
within the AEROCOM community, a daily collocation pro-
tocol is often used, where daily model data is used for days
with observations only (irrespective of the temporal sampling15

of those observations throughout the day). To assess repre-
sentation errors in this case, the truth needs to be sampled
accordingly to days with observations before yearly averages
are determined. The same protocols were also explored in
S17.20

The current methodology differs slightly from S17 in that:

1. a different model is used to construct the OSSE,

2. previously, SZA was assumed to be sufficiently high for
a fixed fraction of the day (10 hours). In the current
work, SZA is calculated from downward-welling TOA25

SW radiation and will vary with geo-location and time-
of-day,

Table 4. Collocation protocols

collocation
protocol purpose

yearly gridded climatology
daily model evaluation (AEROCOM)
hourly model evaluation

3. previously, the truth was generated for grid-boxes
centered on the observations. In the current work,
those grid-boxes are assumed regularly spaced from 30

0o to 360o longitude and �90o to 90o latitude. The
AERONET and GAW sites can be located anywhere
within those grid-boxes (at their real geo-location),

4. previously, the high-resolution simulation had a con-
stant grid-size of (about) 10 km. In the current work, 35

the grid-size varies but has a constant angular size of
0.0625o (⇠ 7 km at the equator).

The last point implies that the simulation grid-box used for
the observation decreases towards zero as we approach the
poles. Since this is clearly undesirable (field-of-view will re- 40

main on the order of several kilometers), we will limit our
analysis of representation errors to latitudes below 60o. The
exceptions are the Figures 5and S4

::::::::
exception

:
is
::::
Fig.

::
5.

Our methodology allows separation of the factors that de-
termine the representation error: spatial extent of the grid- 45

box, and observational intermittency due to low SZA, high
cloud-fraction or low AOT. We will not present such causal
analysis in this paper (see S17 instead) but will refer to it to
explain results.

To show the distributions of representation errors, box- 50

whisker plots using the 2, 9, 25, 75, 91 and 98% quan-
tiles will be used in this paper

:::
(in

:::::::
addition,

::::
the

::::::
median

::
is

:::::
shown

::
as

::
a
:::
bar

::::
and

:::
the

:::::
mean

::
as

:
a
::::::

circle). For a normal dis-
tribution, these quantiles will be equally spaced. Any skew-
ness or extended wings in a distribution will be readily vis- 55

ible. In addition to quantiles, the
:::::
values

::
of

:
mean error and

the mean sign-less error will be provided. The mean sign-
less error is deemed more relevant than the standard devi-
ation as 1) it includes biases; 2) the errors are seldom nor-
mally distributed, and a standard deviation is very sensitive 60

to larger errors ("out-liers"). For a normal distribution with
a mean of zero and a standard deviation of one, the mean
sign-less error is ⇠ 0.8. The correlation used in this paper is
the Pearson correlation coefficient that assesses linear rela-
tionships. Regression slopes were calculated with a robust 65

Ordinary Least Squares regressor (OLS bisector from the
IDL sixlin function, Isobe et al. (1990)). This regressor
is recommended when there is no proper understanding of
the errors in the independent variable, see also Pitkänen et al.
(2016). 70
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4 Evaluation of G5NR and OSSE

In this section, G5NR is evaluated with real AERONET ob-
servations of AOT and AAOT, with special focus on its use-
fulness in an OSSE. As G5NR generates its own meteorology
that deviates from 2006, one might expect differences be-5

tween simulation and observations. Simulated data were nev-
ertheless collocated to the time of the observations (within
the hour) to ensure the same temporal sampling throughout
the days, the months and the year.

The mean and standard deviation of AOT and AAOT per10

site are shown in Fig. 1, top row. In general, simulated site-
mean AOT shows good agreement with the observations with
correlations around 0.75 and slopes around 0.84. Simulated
site-mean AAOT does not agree as nicely with the observa-
tions but there is still correlation (0.48) (the evaluation of15

AAOT will be affected by large measurement errors). The
agreement in standard deviation suggests that simulated and
observed AOT and AAOT

::::
(and

:::::::
AAOT) show similar tem-

poral variation. But the global agreement also suggests that
the simulation captures spatial variation rather well. This is20

also true on shorter length scales, as an analysis by region
shows in Table 5. Europe appears to be the exception but this
is mostly due to a few southern sites. As the table shows:
without those sites, correlation increases significantly. This
may be related to the overestimation of dust and underesti-25

mation of carbonaceous & sulphate aerosol in G5NR (Gelaro
et al., 2015), which will affect north-south gradients in AOT
in Europe. DRAGON (Distributed Regional Aerosol Gridded
Observation Networks, see Holben et al. (2018)) campaigns
might allow evaluation of the spatial distribution of simu-30

lated AOT at even smaller length-scales (10’s of kilometers)
but are not available for 2006.

Table 5. Correlation in modelled and observed yearly site-mean
AOT

region nr correlation

World 216 0.75
Europe 55 0.26
Europe⇤ 26 0.68
Africa 32 0.86
Asia 34 0.82
N. America 49 0.81
S. America 13 0.91

*: southern AERONET sites removed from analysis

The top row of Fig. 1 was created using only sites that pro-
vide a minimum of 100 real observation throughout 2006.
The lower row shows how this criterion affects results. As35

the minimum number of observations per site increases, so
do the correlations, probably due to a reduction in statisti-
cal noise (partly due to different simulated and actual mete-

orologies). But the overall bias also increases. This criterion
selects for sites with lower cloudiness (higher number of ob- 40

servations) until predominantly northern African and Saudi
Arabian sites are left for a minimum of 500 observations per
site. The increase in bias is thus likely due to the overestima-
tion of dust AOT that was mentioned earlier.

Note that AAOT is here evaluated with L1.5 data. The L2.0 45

data have a minimum AOT threshold which results in fewer
observations and fewer available sites overall. Although L1.5
is considered a less reliable product, the evaluation with L2.0
(which now uses a minimum of 30 observations per site)
yields a similar but slightly poorer result for G5NR, see 50

Fig. S1, and over a shorter range of values.
Figure 2 shows mean values per site for the daily differ-

ence in maximum and minimum AOT. Again, good agree-
ment for simulated AOT is seen but AAOT compares rather
poorly. However, its correlation is still above 0.6 and it is 55

clear that the simulation underestimates daily AAOT varia-
tion. The impact of AAOT measurement error on daily vari-
ation is likely reduced as the variation is a difference be-
tween two measurements (pers. comm. with T. Eck and O.
Dubovik). 60

Figure 3 shows the temporal coverage (or frequency of ob-
servation) per site as a function of latitude. G5NR’s simu-
lated coverage is calculated using the conditions described in
Table 3 (and explained in Sec. 3). This coverage would be
100% if observations are available 24 hours a day, 365 days 65

a year. In practice it cannot be higher than 50% due to the
day-night cycle, and will be less due to cloudiness or low
AOT.

The bimodal structure that is visible in both the simula-
tion and observations is due to SZA variation (which reduces 70

coverage towards the poles) and cloudiness (which reduces
coverage near the equator). Simulated and real coverage per
site are not expected to agree well due to meteorological dif-
ferences and down times from site maintenance. Still, the re-
sults suggests that the OSSE predicts similar frequency of 75

Direct Sun observations as actually observed.
However, the OSSE also simulates more Inversion obser-

vations in the Northern hemisphere than actually occur. This
suggests there are additional factors in observational cover-
age that are not accounted for in Table 3. One factor is that 80

real Inversion measurements are attempted less frequently
(several times per day) than Direct Sun measurements (sev-
eral times per hour). Other factors may include inversion fail-
ure at low SZA (real observations show that Inversion data
generally have larger SZA than DirectSun data even though 85

Inversion data is generally closer to the equator) and overesti-
mation of dust AOT in G5NR (largest over-estimates of cov-
erage occur for Sahara and Saudi Arabia sites). Yet another
issue is that successful inversion requires a high degree of az-
imuthal symmetry in the measurements. In essence, this is a 90

built-in check on the magnitude of spatial representation er-
rors which will lower temporal coverage of the observations
but is not considered in the OSSE due to lack of information.



6 Nick Schutgens: AERONET & GAW representativity

Finally, instrument malfunction & maintenance are not taken
in to account,

::::::::
although

::::
that

:::::
would

::::::
affect

::::
AOT

::::::::
coverage

::
as

:::
well.

In all, it seems that G5NR can realistically simulate spa-
tial and temporal variation in AOT and AAOT, at least on5

the scales accessible by the available observations. There is
some underestimation of daily AOT variation and significant
underestimation of daily AAOT variation. G5NR can also be
used to fairly realistically simulate frequency of observation
(temporal coverage), although it will over-estimate this for10

the Inversion products in the Northern Hemisphere.

5 Results

5.1 Representation errors in yearly AOT

Figure 4 shows yearly representation errors for AERONET
DirectSun L2.0 AOT observations as a function of model15

grid-box size, for the three collocation protocols (see Ta-
ble 4). As grid-box size changes from 4o to 0.5o, errors for
hourly collocation are more than halved from 13% to 5%
while those for daily collocation change only from 17% to
12%. In contrast, errors for yearly collocation (⇠ 22%) are20

dominated by temporal sampling and do not depend much on
grid-box size. Smaller representation errors for hourly collo-
cation can also be seen in a regional analysis, see Fig. S2.
The hourly collocation is especially beneficial when using
the Inversion L2.0 AOT product, which allows large repre-25

sentation errors due to the condition of a minimum AOT at
440 nm (>= 0.4) for valid observations, see Fig. S3, even
though it results in a global 9% bias.

The impact of collocation protocol can also be shown
through the total number of sites that yield errors larger than,30

say, 10%: 821 (yearly), 653 (daily), 235 (hourly) out of 1108
AERONET stations in total, for a grid-box of 1o ⇥ 1o.

In addition to larger representation errors in general, the
yearly and daily collocation protocols also allow significant
biases across the AERONET network. Regionally, spatial35

patterns with east-west or north-south gradients in the rep-
resentation errors exist, see Fig. 5 and Fig. S4. Such patterns
are absent or at least much reduced for hourly collocation.

The biases in regional and global distributions of repre-
sentation errors for yearly and daily collocations are strongly40

affected by cloudiness. Higher humidity in the cloudy part of
a grid-box increases AOT through wet

::::::::::
hygroscopic

:
growth

The area averages used to calculate representation errors
have been derived for the entire grid-box (all-sky), both clear
and cloudy parts. Representation errors for clear-sky parts of45

grid-boxes are lower for the yearly and daily collocation pro-
tocols, see Fig. 6. In certain situations, it seems more realistic
to use only the clear part of the grid-box in calculating rep-
resentation errors: e.g. when the grid-box average stands in
for an aggregated satellite product. In this paper, focus will50

be on the all-sky representation error.

Table 6 shows absolute values of the yearly representa-
tion errors for different collocation protocols (yearly and
hourly) and grid-box sizes. The statistical metrics provided
are the mean of the sign-less representation error over all 55

AERONET sites, and the 90% quantile of the sign-less rep-
resentation error (an indication of the large representation er-
rors possible for some sites). Using absolute values allows a
comparison with the AERONET AOT measurement error of
0.01 (Eck et al., 1999; Schmid et al., 1999). This is the error 60

for individual measurements, and not that of a yearly average
which is likely to be much smaller. Clearly, representation er-
rors are larger than measurement errors.

Results so far suggest that the daily collocation is a signifi-
cant improvement over the yearly collocation. This is in con- 65

trast to S17 (Fig. 7) where the representation errors for daily
and monthly collocation were found to be similar. The ab-
sence of diurnal (anthropogenic) emission profiles in G5NR
may cause underestimation of representation errors for the
daily collocation in the current study. 70

It is interesting to compare the representation errors of two
different networks, AERONET and GAW. AERONET was
not designed with representativity in mind but the GAW net-
work was. Nevertheless, Fig. 7 suggests that GAW sites ex-
hibit slightly larger representation errors than AERONET. In 75

particular, GAW error statistics are strongly skewed to neg-
ative values. In the G5NR OSSE, GAW sites are located at
higher altitudes and more often on isolated mountains than
AERONET sites (G5NR site altitudes correlate very well
with real altitudes, R= 0.98, but tend to underestimate by 80

28 m on average, with a standard deviation of 171 m). A look
at yearly representation errors for the hourly collocation re-
veals a systematic altitude dependence, see Fig. 8. A high
altitude site on an isolated mountain will observe a shorter
atmospheric column than the surrounding grid-box (most of 85

which is at lower altitudes) which will cause a negative rep-
resentation error. Note that AERONET sites do not show this
dependence on altitude for 1o grid-boxes, probably because
they are located more often on mountains surrounded by sim-
ilar mountaineous terrain. 90

Finally, a comparison is made with a previous study into
AERONET representation errors (Kinne et al., 2013). Using
a range score r, see Table 7, they ranked sites according to
their representativity for larger domains. This ranking is sub-
jective in that it is non-quantitative, based on personal knowl- 95

edge of the sites and only defines representativity in broad
terms. The range scores are only available for sites that had
at least 5 months of data before 2008. Using the methodol-
ogy of this paper, representation errors were calculated for all
sites of a certain range score, see Fig. 9. For large grid boxes 100

of 4o (⇠ 450 km near equator), the impact of the range score
on representation error is quite small. While there is a visu-
ally arresting change in the error distribution for r > 1 (wide
flanks are changed into a broader center), the mean sign-less
error barely changes. This rather weak dependence on range 105

score suggests that Kinne et al. (2013) overestimated the size
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Table 6. Absolute representation errors for AERONET sites

metric protocol 4o 2o 1o 0.5o 0.0625o

mean yearly 0.043 0.042 0.042 0.042 0.044
hourly 0.021 0.015 0.011 0.008 0.000

90 % yearly 0.086 0.079 0.082 0.083 0.086

::::::
quantile hourly 0.052 0.033 0.029 0.017 0.000

of the domains (>= 500 km for r > 1) for which their sites
were representative. On the other hand, for a grid-box of 1o
a substantial reduction in representation error can be seen for
r > 1

::::
r � 1

:
sites. However, this only occurs for the hourly

collocation: Kinne et al. (2013) did not consider the temporal5

sampling of the observations which causes large representa-
tion errors. An alternative ranking of representativity will be
introduced in Sect. 6.

5.2 Representation errors in monthly AOT

Surprisingly, monthly representation errors are not that much10

larger than yearly errors, see Fig.10. If monthly errors for
the same site were independent and random, one would ex-
pect them to be ⇠

p
12⇡ 3.5 larger than yearly errors but

that is not the case. As a matter of fact, monthly errors are
strongly correlated from month to month, throughout the15

year, see Fig. 11. The increase in correlation with January
after September, is probably due to yearly cycles in mete-
orology and emissions and very likely to be a realistic as-
pect of representation errors. The implication of this is that
multi-year averages may not reduce representation errors as20

strongly as one would hope.
This analysis also provokes the question whether represen-

tation errors (per site) should be seen as mostly biases or ran-
dom errors (see also Schwarz et al. (2018)). Preliminary anal-
ysis suggests that both cases can occur. I.e. some sites show25

large variations (including sign changes) in representation er-
ror from month to month, and as a consequence a strongly re-
duced yearly representation error. Here monthly representa-
tion errors may be interpreted as mostly random. Other sites
show monthly representation errors with not much variation30

and as a consequence yearly representation errors are similar
to the monthly errors. There the representation error is bet-
ter characterised as a bias. A proper analysis of this would
require significantly longer time-series of data than are cur-
rently available. Further discusion of this can be found in35

Sect. 6.

5.3 Representation errors in AAOT

The discussion of representation errors for Inversion L1.5
AAOT will be shorter than that for DirectSun L2.0 AOT,
as the main conclusion is identical: the hourly collocation40

yields smaller representation errors than the other protocols,
see Fig. 12. Note also that representation errors in AAOT are
of a similar magnitude as for AOT. One obvious difference
is that AAOT representation errors tend to be positively bi-
ased while the AOT errors were negatively biased. While the 45

latter was due to cloudiness as discussed before, the positive
bias for AAOT is more difficult to explain. It appears that a
combination of conditions (location of the sites, necessity of
day-light, clear skies and a minimum AOT of 0.03) together
conspire to create these positive biases. Only over the Ama- 50

zon can a simple explanation be found: the clear sky condi-
tion prevents many observations outside the biomass burning
season, explaining large positive biases for yearly collocation
(see also Fig. S5, discussed later).

Even more than for AOT, representation errors for AAOT 55

are very similar for the daily and hourly collocations. As
discussed before, this is likely due to the absence of diur-
nal (anthropogenic) emissions profiles. The daily variation
of AAOT is strongly underestimated by G5NR (see Sect 4
and Fig. 2). 60

For completeness’ sake, an analysis of AAOT representa-
tion errors for different regions (Fig. S5), different products
(Fig. S6), different networks (Fig. S7) and different range
scores by Kinne et al. (Fig. S8) are given in the supplement.
Overall the conclusions are very similar to those for AOT. 65

The similarity in general behaviour of representation er-
rors for AOT and AAOT should not be taken to mean that
these errors are identical per site. As discussed in Sect. 6,
f representation errors for AOT and AAOT or

::
at individual

sites can be very different. Ultimately this is due to the dif- 70

ferent sources of AOT and AAOT which leads to different
spatio-temporal distributions in the atmosphere.

5.4 Comparison to recent results from Wang et al. ’18

Recently Wang et al. (2018) suggested that the observed
underestimation of AAOT by AEROCOM models (Bond 75

et al., 2013) may be due to spatial representation er-
rors.

:::::
Spatial

::::::::::::
representation

::::::
errors

:::
are

::::::::
entirely

:::
due

:::
to

:::
the

::::::
narrow

:::::::::::
field-of-view

:::
of

::::::::::
AERONET

:::::::::::
observations

::::
(i.e.

:::
the

:::::::::
intermittent

:::::::::
temporal

::::::::
sampling

:::
of

::::::
these

:::::::::::
observations

::
is

:::::::
ignored).

:
Their analysis found that AERONET Inversion 80

L1.5 AAOT representation errors exhibit a global bias of
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Table 7. Range scores for AERONET sites in (Kinne et al., 2013)

range score spatial domain number of sites comments

0 100 km 120 includes mountainous sites
1 300 km 106
2 500 km 28
3 900 km 6

30% for 2o⇥2o model grid-boxes, which would help explain
the aforementioned underestimation by the global models.
As AERONET sites need to be serviceable, they are often
found near roads and urban build-up, i.e. near sources of ab-
sorbing aerosol. Compared to the larger area of global model5

grid-boxes, these sites would quite naturally observe larger
AAOT. Thus, Wang et al. (2018) concluded that at least part
of the underestimation of modelled AAOT is an artefact, cre-
ated by the location of the AERONET sites.

Wang et al.’s idea is quite persuasive and indeed one can10

see evidence of such positive representation errors in Fig. 13
where sites in major cities like London, Paris, Madrid and
Barcelona clearly exhibit positive representation errors. (For
another example, see Fig. 3b in S17 concerning surface black
carbon concentrations). But Wang’s study found such biases15

for the majority of AERONET sites, not just a few located
in big cities. As a matter of fact, the current study shows no
evidence of this global bias of 30%. Instead it finds a global
bias of only 9%, dominated by a few sites with large positive
representation errors (median bias over all sites: 4%).20

Wang et al. (2018) performed an analysis very much like
the one in this study with one crucial difference. As they did
not have a global simulation at high resolution like G5NR,
they downscaled results from a standard global simulation at
2.5o ⇥ 1.27o resolution. The downscaling was accomplished25

with the help of a high-resolution (0.1o⇥ 0.1o) black carbon
emission map (Wang et al., 2016). It is possible to simulate
this procedure using the high-resolution G5NR black carbon
emission maps and AAOT simulations (the AAOT simula-
tion was first coarsened over 2o ⇥ 2o) and explain the differ-30

ent results in Wang et al. (2018) and the current study.
Figure 14 shows AAOT spatial representation errors as es-

timated by the current study and by Wang’s methodology as
simulated with G5NR data. A global bias of 25%, not very
different from the original 30% mentioned in Wang et al.35

(2018), is found for the Wang analysis whose representation
errors yield a strongly skewed distribution over all sites. In
contrast, the present study yields a more symmetric distribu-
tion with a much smaller bias. Unlike in the Wang analysis
this bias is dominated by just a few sites with large positive40

representation errors.
The analysis above is a self-consistent evaluation of

Wang’s methodology. Using high-resolution black carbon

emission data to downscale coarse model AAOT fields ig-
nores redistribution of absorbing aerosol due to small scale 45

(at and below the coarse model’s grid-box) advective and
turbulent transport as well as removal by local precipitation
(Wang et al. were aware of this limitation but could not assess
its impact). It also ignores local orography and the contribu-
tion of absorbing dust to AAOT. The result is that there is 50

very little correlation between representation errors as esti-
mated by the two methods, see Fig. 15. As a matter of fact,
representation errors from the current study do not show a
systematic dependence on emission distributions, unlike the
representation errors from Wang’s methodology. 55

6 A ranking of representativity for the AERONET sites

A ranking of AERONET and GAW sites in terms of their
spatial representativity for AOT and AAOT can be found at
Schutgens (2019). Only sites below 60o latitude are consid-
ered, and temporal sampling of observations is ignored. The 60

latter was done for two reasons: 1) as discussed in Sect 2
and 4, temporal sampling of observations is considered less
accurately modelled by the OSSE than spatial variability; 2)
both S17 and the current study show that once hourly collo-
cation is used, the remaining representation error is similar 65

although slightly larger than the spatial representation error.
Relative representation errors are classed according to

bins: 0-5% (rank 1), 5-10% (rank 2), 10-20% (rank 3), 20-
40% (rank 4), 40% and higher (rank 5). The accuracy of
this ranking depends of course on the skill of G5NR and the 70

OSSE, but also on statistical noise due to the use of a single
year of data. The latter source of uncertainty was assessed
using a block bootstrap method (Efron, 1979) on the time-
series per site. Typically more than 85% of all resampled
time-series yield a representation error in the same class as 75

the original time-series. For large grid-boxes (4o) and small
errors (< 10%), this may drop down to 66% of the resam-
pled time-series. For those resampled time-series that yielded
a different ranking, this ranking was only off by 1. It then
seems that statistical noise does not prevent a robust classi- 80

fication of yearly relative spatial representation errors. The
impact of G5NR and OSSE skill on the classification can
currently not be assessed.
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Compared to the subjective ranking by Kinne et al. (2013),
the new ranking is objective because the rank is related to a
well-defined representation error that is quantified bottom-up
from known emission sources and calculated meteorology.
That in itself is of course no guarantee for accuracy.5

Inspection of the rankings turns up several interest-
ing points. Analysis in the previous sections determined
a few "rules" for the behaviour of representation errors
(e.g. errors decrease when the grid-box size decreases) but
these can easily be "broken" for specific sites: a smaller10

grid-box may actually lead to larger representation errors
(e.g. AOE_Baotou, Ascension_Island, Aras_de_los_Olmos),
monthly errors may be substantially larger than yearly errors
(e.g. ARM-Darwin, BORDEAUX). Also, representation er-
rors for AOT and AAOT may be very different: Bayfordbury15

shows small yearly representation errors for AOT but large
errors for AAOT, while Mace_Head shows the opposite.

7 Conclusions

Remote sensing observations from the AERONET and GAW
networks are intermittent in time and have a limited field-20

of-view. Consequently such observations have limited abil-
ity to represent (Absorbing) Aerosol Optical Thickness, or
(A)AOT, over larger areas. The resulting spatio-temporal rep-
resentation error is here analysed using a high-resolution
simulation of global aerosol (GEOS5 Nature Run, ⇠ 7 km25

resolution near equator). Using G5NR, an Observing System
Simulation Experiment (OSSE) was constructed that simu-
lates the frequency of AERONET observations taking Solar
Zenith Angle, cloud fraction and AOT values into account.

This work extends previous work on temporal represen-30

tation with global low-resolution models (Schutgens et al.,
2016b) to spatio-temporal representation. It also extends pre-
vious work on spatio-temporal representation with regional
high-resolution simulations (Schutgens et al., 2016a, 2017)
to the global domain. The current work is more limited in35

scope than the previous studies and only considers ground-
based remote sensing observations. For satellite remote sens-
ing, see Schutgens et al. (2016b) and Schutgens et al. (2017).
For in-situ measurements, see Schutgens et al. (2016a) and
Schutgens et al. (2017).40

G5NR and the OSSE are evaluated and found to show
significant skill in AOT and reasonable skill in AAOT.
AERONET mean AOT per site, as well as yearly and daily
variability were estimated quite correctly, usually within a
factor less than 2⇥. Considering that G5NR generates its45

own meteorology, G5NR AOT correlated very well (R⇡
0.75) with the observations. Similarly, the OSSE was surpris-
ingly good at simulating the overall pattern of observational
coverage (frequency of AOT observation). Results were not
as good for AAOT but still acceptable. Yearly AAOT vari-50

ability was slightly underestimated while daily AAOT vari-
ability was severely underestimated. The latter is possibly re-

lated to the absence of diurnal anthropogenic emission pro-
files in G5NR. For representativity studies that take diurnal
variations into account, see Schutgens et al. (2016a, 2017). 55

In addition, the OSSE tended to overestimate the frequency
of AAOT observations per site (although this was shown to
have no impact on representation errors).

Both yearly and monthly representation errors are pro-
vided for observations from ground sites that attempt to rep- 60

resent larger areas (from 0.5o to 4o in size). The monthly
representation errors are shown to be strongly correlated
throughout the year. For some sites this is an expression of a
bias but that is not universally the case. In any case, monthly
representation errors can not be treated as independent and 65

this has (negative) consequences for the reduction of rep-
resentation errors in multi-year averages. Other conclusions
are: 1) AERONET derived climatologies allow for substan-
tial representation errors (yearly collocation allows errors of
typically 20%, see Fig. 4); 2) AEROCOM evaluation proto- 70

col is sub-optimal (daily collocation can show errors of 25%
in coherent regional patterns). Instead hourly collocation is
advocated. Also,

:
,
::
3) the representativity of AERONET and

GAW sites was shown to be not very different, although
AERONET sites seem to be more affected by nearby sources 75

while GAW sites seem more affected by their altitude. Fi-
nally, a subjective ranking (Kinne et al., 2013) of the spatial
representativity of sites was analysed and shown to broadly
agree with the current study, although it appears to overes-
timate represented spatial domain sizes and judges several 80

sites as less representative than the current analysis. A new
objective ranking is also presented.

:::::
While

:::
the

::::::
current

::::::
study’s

:::::
focus

::
is
:::
on

::::::::
strategies

:::
for

:::::
model

::::::::
evaluation

:::::
with

:::::::
original

::::
(’All

::::::::
Points’)

::::::::::
AERONET

::::
data,

::
it

::::
does

:::::
allow

:::::::::::::::
recommendations

:::
to

::
be

::::::
made

:::
for

:::
the

:::::::
optimal 85

:::::::::
aggregation

:::::
level

::
of

:::::::::::
observational

:::::
data.

::::::
Hourly

:::::::
products

:::
are

:::::::
preferred

::
to
:::::
daily

::
or

:::::::
monthly

::::::::
products

::
as

::::
they

:::::
allow

::::
users

::
to

::::::
perform

::::::
hourly

::::::::::
collocation

:::::
which

::
in

::::
turn

:::::
yields

::::::::::
significantly

::::::
smaller

::::::::::::
representation

:::::::
errors.

::::
This

:::::::
should

::::
hold

::::
for

::::
both

::::::
satellite

::::
and

:::::::::
AERONET

:::::
data. 90

Spatial representation errors have been used to reconcile
observations and global simulations of AAOT. Bond et al.
(2013) showed that global models tend to significantly un-
derestimate AAOT but Wang et al. (2018) suggested that
AERONET AAOT observations may suffer from a global 95

30% representation bias. In contrast, the current analysis
finds a much smaller bias of 9% which is more-over strongly
influenced by a few sites with large positive representation
errors due to their proximity to black carbon sources. Judi-
ciously excluding those sites significantly reduces the bias 100

even further (4%). The large positive representation errors
found by Wang et al. are shown to be due to methodological
choices that limit the realism of their OSSE.

Several questions remain and seem interesting for follow-
up studies: 1) how can we evaluate the representativity rank- 105

ings?; 2) how do OSSE errors affect estimated representation
errors?; 3) how will diurnal emission profiles impact results?;
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4) can representation errors at any site be decomposed in a
bias and random error (possibly with temporal correlations
over several months)?; 5) what are representation errors like
in multi-year averages?

Code and data availability. G5NR data can be obtained from5

https://gmao.gsfc.nasa.gov/global_mesoscale/
7km-G5NR/data_access, AERONET data can be obtained
from https://aeronet.gsfc.nasa.gov. Analysis code
was written in IDL and is available from the author upon request.
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Figure 1. Evaluation of the G5NR simulation of AOT and AAOT with AERONET data. The top row shows evaluation against three different
datasets. Each dot represents the yearly mean or standard deviation for a single AERONET site (with at least 100 observations in 2006); the
mean value is shown in red and the standard deviation in blue. The coloured text summarizes the statistics over all data points in the figure.
In the bottom row, the impact of the minimum required number of observations per site on those summary statistics (for means) is shown.
Colours relate lines to axes and have different meaning than in the top row. Red solid is correlation, red dashed is slope, blue solid is mean,
and blue dashed is standard deviation. In all figures, hourly G5NR model data was collocated in time & space with AERONET observations
before calculating site statistics.
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Figure 2. Evaluation of the G5NR simulation of AOT and AAOT with AERONET data. Each dot represents the yearly average of daily
variation (maximum minus minimum value) for a single AERONET site (with at least 100 observations in 2006). The grey text summarizes
the statistics over all data points in the figure. In all figures, hourly G5NR model data was collocated in time & space with AERONET
observations before calculating site statistics.



14 Nick Schutgens: AERONET & GAW representativity

−50 0 50
0

10

20

30

40
AERONET DirectSun L2.0

−50 0 50
Latitude

0

10

20

30

40

C
o

ve
ra

g
e

 [
%

]

Simulated: 11.6 %
Real         : 10.5 %

Simulated: 15.8 %
Real         : 11.9 %

−50 0 50
0

10

20

30

40
AERONET Inversion L1.5

−50 0 50
Latitude

0

10

20

30

40

C
o

ve
ra

g
e

 [
%

]

Simulated:  9.8 %
Real         :  7.5 %

Simulated: 16.8 %
Real         :  6.6 %

−50 0 50
0

10

20

30

40
AERONET Inversion L2.0

−50 0 50
Latitude

0

10

20

30

40

C
o

ve
ra

g
e

 [
%

]

Simulated:  2.1 %
Real         :  0.7 %

Simulated:  8.9 %
Real         :  1.4 %

Figure 3. Evaluation of the temporal coverage predicted by the OSSE with AERONET observations. Each dot represents temporal coverage
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Figure 4. Yearly representation errors for AOT from DirectSun
L2.0 AERONET for different model grid-box sizes. The colours
indicate different collocation protocols: yearly (brown), daily (or-
ange) and hourly (red). Numbers on top are mean of the errors and
mean of the sign-less errors.
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Figure 5. Yearly representation errors [%] for AOT from DirectSun
L2.0 AERONET in Northern America, for two different collocation
protocols (top: daily; bottom: hourly) and a model grid-box size of
1o.
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Figure 6. Yearly representation errors for AOT from from Direct-
Sun L2.0 AERONET using all-sky or clear sky conditions and
model grid-box size of 4o (left) or 1o (right). The colours indicate
different collocation protocols: yearly (brown), daily (orange) and
hourly (red). Numbers on top are mean of the errors and mean of
the sign-less errors.
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Figure 7. Yearly representation errors for AOT from Direct Sun
L2.0 AERONET and GAW and a model grid-box size of 1o. The
colours indicate different collocation protocols: yearly (brown),
daily (orange) and hourly (red). Numbers on top are mean of the
errors and mean of the sign-less errors.
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Figure 8. Yearly representation errors for AOT from Direct Sun
L2.0 AERONET (red circles) and GAW (black squares) as a func-
tion of site altitude, for a model grid-box size of either 4o or 1o;
using hourly collocation.
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Figure 9. Yearly representation errors for AOT from DirectSun
L2.0 AERONET for different range scores r by Kinne et al. (2013),
for a model grid-box size of either 4o or 1o. The colours indicate
different collocation protocols: yearly (brown), daily (orange) and
hourly (red). Numbers on top are mean of the errors and mean of
the sign-less errors.
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Figure 10. Yearly and monthly representation errors for AOT Di-
rectSun L2.0 AERONET, for a model grid-box size of 1o.
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Figure 11. Correlation in monthly representation errors with errors
for January, for AOT DirectSun L2.0 AERONET, for a model grid-
box size of 1o.
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Figure 12. Yearly representation errors for AAOT from Inversion
L1.5 AERONET for different model grid-box sizes. The colours
indicate different collocation protocols: yearly (brown), daily (or-
ange) and hourly (red). Numbers on top are mean of the errors and
mean of the sign-less errors.

Figure 13. Black carbon emissions over France, Europe, with the
representation errors in AAOT from Inversion L1.5 AERONET
super-imposed. The top colourbar (white-black) represents emis-
sions ([kg/m2s]), and the bottom colourbar (blue-red) represents
relative representation errors ([%]). Only spatial representation er-
rors are shown, i.e. the temporal sampling of observations is ig-
nored.
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Figure 14. Yearly representation errors for AAOT from Inversion
L1.5 AERONET as estimated in this paper or using the methodol-
ogy from Wang et al. (2018) and a model grid-box size of 2o. The
representation error shown is the spatial representation error (Schut-
gens et al., 2017), i.e. temporal sampling of observations is ignored.
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Figure 15. Comparison of yearly representation errors for AAOT
from Inversion L1.5 AERONET as estimated in this paper or us-
ing the methodology from Wang et al. (2018) and a model grid-box
size of 2o. The representation error shown is the spatial represen-
tation error (Schutgens et al., 2017), i.e. temporal sampling of ob-
servations is ignored. Also shown are the Pearson linear correlation
(PCorr) and rank correlation (RCorr) between the data. The dashed
line shows y = x.


