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Abstract. The outflow of East Asian haze (EAH) has gathered much attention in recent years. For downstream areas, it is 10 

meaningful to understand the impact of crucial upstream sources and the process analysis during transport. This study evaluated 

the impact of PM2.5 from the three biggest industrial regions in Asian continent: Bohai Rim industrial region (BRIR), Yangtze 

River Delta industrial region (YRDIR), and Pearl River Delta industrial region (PRDIR) on Taiwan and discussed the processes 

during transport with the help of air quality modeling. The simulation results revealed the contributions of monthly average 

PM2.5 from BRIR and YRDIR were 0.7〜1.1 µg m-3 and 1.2〜1.9 µg m-3 (〜5 % and 7.5% of total concentration) on Taiwan, 15 

respectively in January 2017. When the Asian anticyclone moved from Asian continent to the West Pacific, e.g. on Jan 9th 

2017, the contributions from BRIR and YRDIR to northern Taiwan could reach 6〜8 and 9〜12 µg m-3. The transport of EAH 

from BRIR and YRDIR to low latitude regions was horizontal advection (HADV), vertical advection (ZADV), and vertical 

diffusion (VDIF) over Bohai Sea and East China Sea. Over Taiwan Strait and northern South China Sea, cloud processes 

(CLDS) was the major production process of PM2.5 due to high relative humidity environment. Along the transport from high 20 

latitude regions to low latitude regions, Aerosol chemistry (AERO) and Dry deposition (DDEP) were the major removal 

processes. When the EAH intruded northern Taiwan, the major production processes of PM2.5 at northen Taiwan were HADV 

and AERO. The stronger the EAH was the easier the EAH could influence central and southern Taiwan. Although PRDIR was 

located at the downstream of Taiwan under northeast wind, the PM2.5 from PRDIR could transport upward above boundary 

layer and moved eastwards. When the PM2.5 plume moved overhead Taiwan, PM2.5 could transport downward via boundary 25 

layer mixing (VDIF) and further enhanced by the passing cold surge. In contrast, for the simulation of July 2017, the influence 

from three industrial regions was almost negligible unless there was special weather system like thermal lows, which may 

carried pollutants from PRDIR to Taiwan, but the occurrence was rare.  

1. Introduction 

The damage of PM2.5 (aerodynamic diameter is equal or less than 2.5 μm) on respiratory system has been proved (Kagawa, 30 

1985; Schwartz et al., 1996；Zhu et al., 2011). The short-term human exposure to PM2.5 could inflict cardiovascular and 

respiratory diseases, reducing lung functions, and increasing respiratory symptoms such as rapid breath, cough, and asthma. 

While the long-term influences include the mortality from heart or lung disease, cardiovascular illness (Pope et al., 2004；

Brook et al., 2004；Ohura et al., 2005), and overuse of medical resources (Atkinson et al., 2001). Environmentally, the PM2.5 

not only absorbs and scatters solar radiation but also impairs visibility (Na et al., 2004), influences the balance of radiation and 35 

global climate (Hu et al., 2017), and the heterogeneous reactions of oxidants in the troposphere (Tie et al., 2005). 

The East Asian haze (EAH) usually occurs in spring and winter around the East Asia due to the rapid development of Asian 

countries over the last few decades (Fu et al., 2014; Yang et al., 2016). When the Asian anticyclones was formed at the Siberia 

moved southeastwards, the peripheral circulation usually transported EAH to downwind regions including Korea, Japan, and 
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Taiwan (Zhang et al., 2015). Most literatures discussing the transport of EAH in recent years generally applied two methods: 40 

the trajectories statistics (TS) and the chemical transport modeling (CTM). The TS method calculated the frequency of the 

backward trajectories passing through specific surrounding regions. The frequency of the trajectories passing through a specific 

region implied the impact level of this region. The trajectories could be calculated from the archived meteorological data from 

NOAA ARL (www.ready.noaa.gov/archives.php) or the model outputs of MM5 (Mesoscale Model version 5, Dudhia, 1993) 

or WRF (Weather Research and Forecasting, Skamarock and Klemp, 2008). Pawar et al. (2015) utilized the TS method to 45 

assess the impacts of short-range and long-range transport (LRT) PM2.5 on Mohali in north-west Indo-Gangetic plain. Similar 

method was applied to evaluate the contribution of LRT of PM2.5 to south-western Germany (Garg and Sinha, 2017) and eastern 

Germany (van Pinxteren et al., 2019). Yang et al. (2018) also used this method to evaluate the influence of PM2.5 from the 

Bohai Sea, Yangtze River Delta, and Pearl River Delta regions on Beijing. Although the TS method has been used widely, the 

passing frequency over some specific regions can only approximate statistics of the contributions from those regions. Using 50 

trajectory to express the moving of a polluted plume would contain substantial uncertainty. 

The application of CTM on the study of transport usually comprises two methods: the Brute Force Method (BFM) and the 

Apportionment Method (AM). The principle of BFM is to run two simulations: one control run and another one without certain 

emission source. The difference of these two simulations is the contribution of that specific source. BFM method has been 

widely used for estimating the contribution of a specific source or the effect of a control strategy (Marmur et al., 2005; Burr 55 

and Zhang, 2011; Chen et al., 2014; Li et al., 2017) because this method is easy and straightforward. Nevertheless, this method 

is not perfect for potentially under-represented chemical reaction between the specific source with the remaining sources. 

Therefore, the BFM method is more reliable if the effect of the chemical reaction is minor. The AM method is more complex 

and applied the idea of apportionment technique into CTM model. The simulation consumes much computing resources, but 

it could estimate the contributions of different emission sources in a run. Skyllakou et al. (2014) applied the particulate matter 60 

source apportionment technique (PSAT, Wagstrom et al., 2008) in PMCAMx model (Fountoukis et al., 2011) to assess the 

impact of local pollution (LP), short distance transport (50-500 km), and LRT (>500 km) on Paris in France. Kwok et al. (2013) 

also developed a similar technique called Integrated Source Apportionment Method (ISAM) in CMAQ model (Byun and 

Schere, 2006). The AM method can be used to evaluate the contributions of different emission sources simultaneously; 

however, it does not comprehensively account for the non-linear chemical reactions between sources. BFM and AM methods 65 

both have their edge over the other. The CTM modeling requires large computer resources and contains many uncertainties 

like emissions, meteorology, chemical mechanisms, and numerical methods. However, the CTM is able to give clearer 

contributions from a specific source compared to the TS method. 

The LRT of EAH has tremendous impact on the air quality in Taiwan. The following is a brief of such modelling studies. 

Chang et al. (2000) applied the CTM to simulate the influence of LRT acid pollutants from East Asian to Taiwan. In the six 70 

events of 1993, the average contribution accounted for 9－45% and 6－33% of total sulfur and nitrogen deposition on Taiwan, 

highest when the northeast monsoon prevailed. Lin et al. (2004) examined the meteorological and air quality data from 

November 1999 to May 2000, and from November 2000 to May 2001 in Taiwan. They classified the LRT in winter into dust 

transport, frontal transport with pollutants, and LRT of background air mases which contributed an average PM10 level of 127.6 

μg m-3, 85.0 μg m-3, and 32.8 μg m-3 respectively. Furthermore, the frequencies of LRT events and LP events were 25.2% and 75 

71.7% (missing data accounts 3.1%). Chuang et al. (2008a) classified the pollution weather patterns for Taipei PM2.5 events. 

They coined the weather system during LRT events as the “high-pressure pushing” in which the high-pressure systems 

advected the pollutants from Asian continent to Taiwan. Subsequently, Chuang et al. (2008b) utilized CMAQ to simulate the 

chemical evolution of PM2.5 compositions in the moving plume. They found that the proportion of nitrate and sulfate would 

decrease and increase respectively along the path. Chen et al. (2013, 2014) also applied the CMAQ to assess the PM2.5 80 

distribution in East Asia and subsequently estimated the impact of PM2.5 from Asian continent on Taiwan. They suggested the 

direct and indirect LRT accounted for 27% and 10% of PM2.5 in Taiwan in 2007. For the autumn and winter of 2007, the LRT 
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contributed 39% and 41% of total PM2.5 in Taiwan. Wang et al. (2016) combined backward trajectories and AOD distribution 

to estimate the impact of EAH on Taiwan. Their results suggested the PM2.5 level was 57.1±13.6 μg m-3 for haze event, which 

is four folds of the background events (13.7±7.4 μg m-3) from 2005 to 2013. They also estimated pollution transport time from 85 

the Yangtze River Delta (YRD) to the northern tip of Taiwan was about 28 hours. Chuang et al. (2017) discussed three types 

of PM2.5 episodes into the long-range transport (LRT), the local pollution (LP)and the LRT/LP mix. Both the simulation and 

observation showed the proportion of NO3
- in PM2.5 was very small in the EAH and strong north to northeast wind increased 

the proportion of sea salt. Chuang et al. (2018) developed an efficient method to estimate the LRT-PM2.5 and LP-PM2.5 at any 

place in Taiwan. They classified the daily PM2.5 into LRT-Event, LRT-Ordinary, and LRT/LP&Pure LP events, which were 31-90 

39 μg m-3, 12-16 μg m-3, 4-13 μg m-3 at the northern tip of Taiwan from 2006 to 2015 for northeast monsoon period. On average, 

the ratio of LRT-PM2.5 and LP-PM2.5 for LRT-Event was 70:30 for northern Taiwan, 50:50 for central Taiwan, and 30:70 for 

southern Taiwan; for LRT-Ordinary was 60:40 for northern Taiwan and 40:60 for central and southern Taiwan; for 

LRT/LP&Pure LP was 30:70 for northern Taiwan and 25:75 for central and southern Taiwan. Their results also showed the 

annual LRT-PM2.5 decreased since 2013, which implied the emissions in Asian continent decreased since then. 95 

The above studies all showed the East Asian continent was the dominant source of LRT PM2.5 for Taiwan in winter period. 

Therefore, if we can realize the sources contribute the most to LRT PM2.5 and the transport pathway, then we can enhance the 

ability to predict the LRT PM2.5, i.e. the EAH. From the emission map of Asia (Zheng et al., 2018), the largest emission source 

was power and industry sector. The three biggest industrial regions in mainland China are the Bohai Rim industrial region 

(BRIR), the Yangtze River Delta industrial region (YRDIR), and the Pearl River Delta industrial region (PRDIR), as illustrated 100 

in Fig. 1. The present study attempts to assess the impact of these three industrial regions on the PM2.5 in Taiwan. It applied 

the CTM with BFM method to simulate four scenarios: the Base (control case with integrated emissions), Brir (all emissions 

except BRIR), Yrdir (all emissions except YRDIR), and Prdir (all emissions except PRDIR) scenarios and thus resulted in the 

contributions of each industrial region. When estimating the contribution of BRIR, YRDIR, and PRDIR to PM2.5 in Taiwan, 

we used the difference between the Base case and the Brir, Yrdir, and Prdir cases. In addition, this study applied the Integrated 105 

Process Rate (IPR) technique (Byun and Schere, 2006; Liu and Zhang, 2013; Zhu et al., 2015) in CMAQ to discuss the process 

analysis during transport from the industrial regions to Taiwan. The bottom 20 layers (below 1.7 km) were selected for IPR 

analysis since they have covered the boundary layer where the physical and chemical processes take place. The climate in East 

Asia basically is divided into the northeast monsoon season in winter and southwest monsoon season in summer. In order to 

understand the LRT in different seasons, the simulation periods for this study were January and July 2017. We also selected 110 

representative events to discuss in detail.  

2. Methods 

It is known that the EAH events mainly occur in winter (Chuang et al., 2008a; Wang et al., 2016). Although the high PM2.5 

events in Taiwan caused by the EAH during spring period sometimes was enhanced by the Southeast Asian biomass burning 

aerosol (Yen et al., 2013; Chuang et al., 2016; Lin et al., 2017), the latter would implicitly complicate the transport of EAH 115 

and their co-occurrence has left to be a study in the near future. Therefore, this study chose January and July 2017 to represent 

the LRT in winter and summer period and the contrast between them. In addition, year 2017 was selected for this study is that 

it can reflect the impact of EAH lately because the anthropogenic emission in China has been decreasing obviously in recent 

years (Zheng et al., 2018; Chuang et al., 2018). 

2.1 Geographical location of meteorological and air quality observation sites 120 

Taiwan is an island located in the West Pacific and separated from mainland China on the west by the Taiwan Strait. The north 

is the China East Sea and the south sits the Philippines across the Bashi Strait. For meteorology evaluation, we chose eight 
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representative stations: the PJY (#1 in Fig. 1), TPE (#2 in Fig. 1), CP (#3 in Fig. 1), TC (#4 in Fig. 1), CY (#5 in Fig. 1), TN 

(#6 in Fig. 1), KH (#7 in Fig. 1), and HC (#8 in Fig. 1) stations to evaluate the modeling performance of temperature, wind 

speed, and wind direction. Since most residents lived at the relatively flat western Taiwan, the observations at the BQ (#9 in 125 

Fig. 1), PZ (#10 in Fig. 1), ML(#11 in Fig. 1), ZM (#12 in Fig. 1), CY (#13in Fig. 1), TN (#14 in Fig. 1), ZY (#15 in Fig. 1), 

and HC (#16 in Fig. 1) stations were chosen for PM2.5 evaluation. 

2.2 Models and modeling configuration 

This study applied the WRF v3.9.1 (Skamarock and Klemp, 2008) and CMAQ v5.2.1 (Byun and Schere, 2006) for scenario 

simulations. The initial meteorological condition was from NCEP diagnostic fields. Horizontal resolutions of four domains 130 

from outer to inner were 81, 27, 9, and 3 km, respectively. The first domain covered the East Asia and Southeast Asia and the 

fourth domain contained only the Taiwan island. The vertical layers were 46, about 20 layers below 1.7 km, in which the 

boundary layer was well resolved. The anthropogenic emissions for East Asia and Taiwan island were obtained from MIX 

(Multi-resolution Emission Inventory for China, Li et al., 2017) and TEDS 10.0 (Taiwan Emission Data System, TEPA, 2017), 

which are based on the years of 2010 and 2016, respectively. The MIX emissions of SO2, NOX, NMHC, NH3, CO, PM10, and 135 

PM2.5 were adjusted with change of -62%, -17%, 11%, 1%, -27%, -38%, and -35%, respectively, according to the change of 

annual emission between 2010 and 2017 (Zheng et al., 2018). This study assumes the emission of 2017 in Taiwan is the same 

as that of 2016. The biogenic emissions were prepared by the Biogenic Emission Inventory System version 3.09 (BEIS3, 

Vukovich and Pierce, 2002) for Taiwan island and Model of Emissions of Gases and Aerosols from Nature v2.1 (MEGAN, 

Guenther et al., 2012) for regions outside Taiwan. While the biomass burning emissions imported the data of FINN v1.5 140 

inventory (Wiedinmyer et al., 2011). All the remaining modeling configuration for this study is the same as that in Chuang et 

al. (2017). 

2.3 Model evaluation 

This study used statistical indexes such as MB (Mean Bias), MAGE (Mean Average Gross Error), and IOA (Index of 

Agreement) to evaluate temperature and wind speed, and used WNMB (Wind Normalized Mean Bias) and WNME (Wind 145 

Normalized Mean Error) for wind direction. For PM2.5 performance, we applied MB (Mean Bias), MFB (Mean Fractional 

Bias), and MFE (Mean Fractional Error), R (Correlation coefficient), and IOA indexes. All the formulas for above indexes are 

from Emery (2001) and TEPA (2016), illustrated in Supplement S1. 

2.3.1 Evaluation of WRF meteorological modeling 

The MB performance shows that the temperature is slightly overestimated for PJY which is located in the outer sea of northern 150 

Taiwan (Table 1). The MAGE appeals simulated temperature at all stations is reasonable in both months. While the IOA 

indicates the simulated temperature at PJY and KH was not well enough. The deviation of simulated temperature for PJY and 

KH could be influenced by the sea surface temperature since these stations are nearer the sea than other stations. The 

performance of MB indicates the simulated wind speed was underestimated at TN, which led to the low IOA. In contrast, the 

simulated wind speed was overestimated at HC, which could be due to the smoother terrain in the simulation than the actual 155 

situation. The performance of wind direction at most stations are within the range of acceptance but not so well for TC and 

CY. The deviation could potentially due to the influences of nearby buildings. In summary, the simulated temperature, wind 

speed, and wind direction performed reasonably acceptable since most indices at many stations complied with the benchmark. 

2.3.2 Evaluation of CMAQ chemical modeling 

For the Base case, the simulated PM2.5 was overestimated in all stations except CY and HC in January 2017 (Table 2). The 160 

performance of trend (correlation coefficient, R) is acceptable or good for all stations except HC. It is rather difficult to simulate 
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the wind speed at HC well which is located at the downwind south tip of Taiwan (Chuang et al., 2016). It is therefore reasonable 

that overestimated wind speed in HC led to poor underestimation of PM2.5. Because the performance of PM2.5 in HC is very 

poor, the following discussion will exclude this station and leave it to future improvement. 

3. Results and Discussion 165 

3.1 The impact of PM2.5 from the Chinese three major industrial regions in January 2017 

For the impact of three industrial regions on PM2.5 in Taiwan in January 2017, the monthly mean impact from BRIR was about 

0.7-1.1 µg m-3 as illustrated in Fig. 2(a). The impact was higher in the northern Taiwan, about 5% of total PM2.5. The proportion 

of influence gradually decreased from north to south (Fig. 2(b)). From the view of daily average, Fig. 3(a-1)-(a-7) show that 

the trend is similar for seven air quality stations and the impact on northern Taiwan was higher than central and southern 170 

Taiwan. In January 2017, the proportion of influence was higher on the 8th to 14th and the 20th to 23rd. It is found that the 

influence of EAH was closely related to the intrusion of Asian anticyclones. This study selected Jan 9th and Jan 13th for 

discussion of PM2.5 events in section 3.5. 

Comparing Fig. 2(a)/(b) with Fig. 2(c)/(d), it is apparent that the monthly mean influence from YRDIR was higher than BRIR. 

The reason is that YRDIR was nearer to Taiwan than BRIR. The monthly mean impact from YRDIR was about 1.2-1.9 µg m-175 
3, highest in northern Taiwan with the proportion of about 7.5% of total monthly average PM2.5 concentration. The the spatial 

influence from BRIR was similar to YRDIR since these two industrial regions are both located off the north of Taiwan, i.e., 

the upstream of Taiwan under prevailing northeast wind. For the daily mean influence, the impact of YRDIR was also higher 

than BRIR and the influencing period were almost the same for both regions (Fig. 3(a-1)-3(a-7), Fig. 3(b-1)-3(b-7)). In 

particulary, the contributions from BRIR and YRDIR to northern Taiwan could reach 6〜8 and 9〜12 µg m-3 on Jan 9th 2017. 180 

The spatial distribution of influence from PRDIR was totally different from BRIR and YRDIR as shown in Fig. 2(e) and Fig. 

2(f)). Interestingly, the impact from PRDIR was higher on the mountains than on the ground. For the ground stations, there 

was minor influence on 8th to 12th January 2017 (Fig. 3(c-1)-3(c-7)). It is found that there is a stationary front from the sea 

north of Taiwan extended southwest to Fujian and Guangdong provinces on January 7th (Fig. S2.1(a)). The front passed Taiwan 

on January 8th (Fig. S2.1(b)). Fig. 3(c-1)-3(c-7)) show that the influence on the southern Taiwan was higher than that on the 185 

northern Taiwan. Similar fronts passed Taiwan on January 10th (Fig. S2.1(c)) and 12th (Fig. S2.1(d)). From Fig. 4, it is found 

that the PM2.5 from PRDIR would transport pollutants upward above the top of boundary and then moved eastwards (Fig. 4(a-

1), Fig. 4(b-1)). When pollutants ran into the mountains in Taiwan, most part was blocked and transported to the ground through 

vertical mixing (Fig. 4(a-2)-4(a-3), Fig. 4(b-2)-4(b-3)). This transport mechanism is quite similar to the biomass burning 

aerosols from Indochina to Taiwan (Chuang et al., 2016, Yen et al., 2013). In addition to boundary layer mixing, the subsidence 190 

of cold surge enhanced the downward transport and increased PM2.5 on the ground.  

3.2 The physical and chemical processes of LRT from the Chinese three major industrial regions to Taiwan in January 

2017 

This study applied the process analysis technique in the CMAQ model, in which the terms of Horizontal advection (HADV), 

Vertical advection (ZADV), Horizontal diffusion (HDIF), Vertical diffusion (VDIF), Emissions (EMIS)、Dry deposition 195 

(DDEP)、Cloud process and aqueous chemistry (CLDS), Gas chemistry (CHEM), and Aerosol chemistry (AERO) in the 

diffusion equation can be resolved (Byun and Schere, 2006). Each term contributes to the rate of change of PM2.5 level at the 

locations chosen in this study: the position #17 (Fig. 1) located between Bohai Sea and China Ease Sea, #18 (Fig. 1) located 

between China East Sea and Taiwan, #19 (Fig. 1) located in the middle of Taiwan Strait, #20 located in the northern South 

China Sea, BQ (#9 in Fig. 1) in northern Taiwan, ZM (#12 in Fig. 1) in central Taiwan, and CY (#13 in Fig. 1) in southwestern 200 

Taiwan. Those positions were chosen because they are on the path of northeast wind. Through the value of each term in the 
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process analysis, we can understand whether each term can produce or remove PM2.5 at these positions and therefore realize 

the physical and chemical processes during LRT.  

The Fig. 5(a-1) is quite similar to Fig. 5(a-2), which implies the contribution of PM2.5 to #17 was mainly from BRIR. The main 

production process was HADV, followed by ZADV and VDIF and the removal process was mainly AERO. The removal 205 

process is likely caused by the evaporation of ammonium nitrate in PM2.5 plume moving from high latitude regions to low 

latitude regions (Stelson and Seinfeld, 1982; Chuang et al., 2008b). In contrast, there was less PM2.5 occasionally from YRDIR 

(Fig. 5(a-3)) and nearly none from PRDIR (Fig. 5(a-4)). It is expected because northeast wind prevails in winter, the BRIR 

and YRDIR/PRDIR are located at the upstream and downstream of #17, respectively. From Fig. 5(b-1)-(b-4), it is apparent 

that #18 was influenced by both the BRIR and YRDIR, mainly produced through non-uniform HADV, VDIF, ZADV, and 210 

CLDS; and removed through AERO and occasional HADV and DDEP processes, and almost unaffected by PRDIR. For #19, 

PM2.5 was influenced mainly by BRIR and YRDIR but it was also influenced by PRDIR from 8th to 12nd (Fig. 5(c-1)-(c-4)), 

which has been verified to be related to the intrusion of cold surge and transboundary transport in last section (Fig. 4). The 

production from BRIR and YRDIR were mainly attributed to CLDS; and removal process was mainly AERO and secondly 

DDEP. The production and removal processes of PM2.5 for #20 were very similar to #19 but slightly lower (Fig. 5(d-1)-5(d-4)) 215 

because it is farther from BRIR and YRDIR than #19. Although #20 is very near PRDIR, it was influenced more by YRDIR 

(Fig. 5(d-3)-5(d-4)) since the prevailing wind was mainly northeast wind in January. From above, it is found that the PM2.5 

plume transported southwards from BRIR or YRDIR in a three-dimensional path, i.e., horizontal and vertical advection, and 

vertical diffusion over Bohai Sea and China East Sea. During the southward transport, AERO was always the major removal 

process, i.e., evaporation of volatile species. When the plume transported to subtropical regions, cloud process became the 220 

major production process of PM2.5. The reason was possibly the condensation in the mix of cold PM2.5 plume from high latitude 

regions to warm air/sea at low latitude regions. 

The production processes of PM2.5 at BQ were mainly HADV with minor CLDS, and the removal processes were mainly 

ZADV with minor AERO (Fig. 5(e-1)). It suggests that the PM2.5 plume transported in a mainly horizontal when it was close 

to and reached northern Taiwan. Moreover, each industrial region contributed PM2.5 to BQ in very similar processes (Fig. 5(e-225 

2)-(e-4)). The LRT from three industrial regions or nearby local sources transport to BQ through mainly HADV followed by 

CLDS. Minor PM2.5 was formed in northern Taiwan probably due to the high relative humidity, which was probably induced 

by the cloud or fog produced by terrain uplifting. The PM2.5 at BQ then transport up- and then southwards. Comparing Fig. (f-

1) with Fig (f-2)-Fig (f-3), it is obvious that the PM2.5 of ZM was produced more by local from vertical transport than BRIR 

or YRDIR, which only exerted less PM2.5 along with the cold surge, and removed by horizontal transport. In other words, the 230 

PM2.5 in upstream northern Taiwan was vertically advected and diffused southwards to central Taiwan and then horizontally 

advected to downwind areas. On the other hand, the influence from PRDIR was much less when the prevailing wind was 

northeast monsoon (Fig. 5(f-4)). However, when the cold surge passed Taiwan (Jan 8th and 10th), the influence from PRDIR 

could not be ignored, which has been illustrated in Fig 2(f), Fig. 4 and Fig. 5(f-4). The reason is that the downward motion of 

the transboundary transported PM2.5 plume was enhanced by the subsidence of the cold surge anticyclone (Yen et al., 2013; 235 

Chuang et al., 2016). For CY located in southwestern Taiwan, the production processes of PM2.5 were mainly VDIF and HADV, 

and the removal processes were mainly ZADV and AERO; however, occasionally when the production processes were ZADV 

and VDIF, the removal processes were HADV and AERO (Fig. 5(f-1). Compared Fig. 5(f-2)-(f-4) and Fig. 5(g-2)-(g-4), it is 

obvious the production and removal processes for CY were very similar to for ZM. The impact from BRIR and YRDIR was 

less and mainly from local. When the cold surge passed Taiwan, PRDIR influenced PM2.5 at CY as well. 240 

3.3 The impact of PM2.5 from the Chinese three major industrial regions in July 2017  

The Fig. 6(a) and Fig. 6(b) reveals that the impact of BRIR on PM2.5 in Taiwan was negligible. The monthly contribution was 

less than 0.01 µg m-3 or less than 0.04% of total PM2.5 on the western Taiwan. The influence from YRDIR and PRDIR on 
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Taiwan was equally small with BRIR (Fig. 6(c)-Fig. 6(f)). The daily contribution from BRIR was also small, highest on 25th 

to 28th July with less than 0.1 µg m-3 (Fig. 7(a-1)-(a-7)). The daily contribution of YRDIR on western Taiwan was only visible 245 

on 27th to 29th July (Fig. 7(b-1)-(b-7)), about 0.1-0.3µg m-3. The influence of BRIR and YRDIR was less because they are 

located at the downstream of Taiwan when the southwest wind prevailed during most of July. As for PRDIR, its daily impact 

was detectable on 28th July but rose to 0.2-0.5 µg m-3 on 30th to 31st July (Fig. 7(c-1)-(c-7)). 

3.4 The physical and chemical processes of LRT from the Chinese three major industrial regions to Taiwan in July 

2017 250 

From Fig. 8(a-1) to Fig. 8(a-4), it is obvious that #17 was more influenced by YRDIR than BRIR and PRDIR in July 2017. On 

most days, the production process was AERO, followed by ZADV. In contrast, the removal process was mainly HADV. #17 

was less influenced by the downstream BRIR except six days at the end of July 2017. The weather map appeared the circulation 

around #17 in the last few days was not like prevailing southwest wind but changeable (unshown). In addition to #17, all other 

remaining specific locations were less influenced by three industrial regions under prevailing southwest wind, as illustrated in 255 

Fig. 8(b)-Fig. 8(f). However, the #19 and #20 were obviously influenced by YRDIR and PRDIR on the last two days of July. 

The production process from YRDIR and PRDIR on #19 was mainly CLDS and HADV, followed by VDIF. While the removal 

process was mainly AERO (Fig. 8(c)). The production and removal processes on #20 was opposite for those days, which 

implies the wind field has changed (Fig. 8(d)). The weather map revealed that there was a thermal low near Taiwan at the end 

of July (Fig. S2.2). Obviously, this thermal low could transport less pollutants from three industrial regions and have a smaller 260 

influence on PM2.5 at BQ (Fig. 8(e-2)-(e-4)), ZM (Fig. 8(f-2)-(f-4)), and CY (Fig. 8(g-2)-(g-4)) depending on the distance . 

From Fig. 8(e-1)-(g-1), it is found that the production process of PM2.5 at BQ and CY was mainly HADV and the removal 

processes was mainly ZADV. While for city ZM in central Taiwan, the major production and removal processes were ZADV 

and HADV before July 13. For the second half of July, the major production process was HADV and the removal processes 

were ZADV and AERO. It seems that there was transport between each other and caused different production and removal 265 

processes in cities. To assess the transport between cities was a very difficult issue and was beyond the present study. In short, 

during the period of prevailing southwest wind, the influence of BRIR, YRDIR, or PRDIR could be ignored unless there was 

special weather system like the aforementioned thermal low which could transport less PM2.5 from distant sources. 

3.5 Analysis of the episodes occurring on 13th and 9th January 2017  

On January 13th 2017, the Asian anticyclone transported pollutants from Asian continent to Taiwan and caused high PM2.5 270 

episodes. Such LRT events occurred at a weather pattern as illustrated in Fig. 9. Although the impact of LRT on Jan 13th was 

less than Jan 8th, 9th, 20th or 22nd (Fig. 3), the physical and chemical processes during transport were similar for these days 

since the weather patterns were quite analogous to each other. The Asian anticyclone was moving from East Asian to the West 

Pacific. The peripheral circulation of the Asian anticyclone was the strong northeast wind on coastal areas and the sea. It was 

found the northeast wind formed lee wakes in southern Taiwan where PM2.5 accumulated (Fig. 10(a)-(b)). When the leading 275 

edge of Asian anticyclone arrived, the wind speed increased and therefore enhanced the dispersion of PM2.5 in southern Taiwan 

(Fig. 10(c)-(e)). Subsequently, the LRT haze arrived (Fig. 10(f)) and split to the east and west side of Taiwan due to the blocking 

of mountains, more on the west side. (Fig. 10(g)-(i)).  

Fig. 11(a-1)-(a-4) shows that the influence of BRIR on #17 was more than YRDIR and PRDIR on Jan 13th, since BRIR is 

located at the upstream of #17 under northeast wind. The major production process was VDIF below 760 m (layer4) and AERO 280 

above 760 m. It implies the transport path from BRIR to #17 is vertical. The removal process was AERO below 760 m and 

VDIF above. It suggests the ascent and subsidence of air parcels might enhance the formation and removal of aerosol in upper 

and lower level, respectively. Although #17 was slightly influenced by YRDIR, the contribution of different processes YRDIR 

on #17 was less and non-uniform (Fig. 11(a-3)). The contribution of different processes from PRDIR to #17 was also non-
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uniform and even less (Fig. 11(a-4)). From Fig. 11(b-1)-(b-4), it was found that #18 was mainly influenced by YRDIR on Jan 285 

13th. The major production processes below layer 9 (~310 m) were HADV, VDIF, and ZADV and removal processes were 

DDEP and AERO (Fig. 11(b-3)). #18 was slightly influenced by BRIR with major production process were VDIF and ZADV 

and removal process was AERO (Fig. 11(b-2)). On Jan 13th, #19 and #20 were less influenced by all industrial regions (Fig. 

11(c-2)-(c-4), Fig. 11(d-2)-(d-4)). It implied that #19 was possibly influenced by nearby Fujian province on the north and west 

side of Taiwan Strait. On Jan 13th, #20 was also less influenced by three industrial regions probably due to BRIR and YRDIR 290 

was distant and PRDIR was located at the downstream of #20. Comparing Fig. 11(e-1) and Fig. (e-2)-(e-4), it was found the 

BQ was much influenced by YRDIR. The major production process below 200 m (layer 7) was HADV, followed by AERO 

and above 200 m was either of VDIF, ZADV, CLDS and mixed of them. The major removal process was ZADV followed by 

VDIF below 200 m but HADV and AERO above. BQ was less influenced by BRIR due to long distance, deviation of wind 

direction and by PRDIR due to BQ is located at upstream of PRDIR. In this event, ZM and CY were less influenced not only 295 

by BRIR and PRDIR but also YRDIR (Fig. 11(f-1) - Fig. (g-4)). It explains the haze plume passed BQ and then transported to 

the west coast of Taiwan instead the inland ZM and CY. 

The PM2.5 event occurring in western Taiwan on Jan 9th was similar to that on Jan 13th, which were both LRT of EAH. 

However, there were still slightly differences between these two events. First, the impact of three industrial regions on PM2.5 

in western Taiwan was much higher on Jan 9th than Jan 13th. Second, for the haze from BRIR and YRDIR, the production 300 

and removal processes on BQ were mainly HADV/AERO and ZADV/VDIF below 200 m (layer 7, Fig. 11(e-3)) on Jan 13th 

and less different processes at different layers above 200 m. While on Jan 9th, the major production processes at BQ was 

mainly HADV below 380 m (layer 10), AERO between 120 to 900 m (layer 5 to 15), and ZADV/CLDS between 650 to 1500 

m (layer 13 to 19), as illustrated in Fig. S2.3(e-2)-(e-3). The removal process was mainly ZADV below 460 m (layer 11), 

HADV between 550 to 900 m (layer 12 to layer 15), and HADV/AERO between 1000 to 1300 m (layer 16 to 18). Third, the 305 

stronger event occurring on Jan 9th has more obvious impact on ZM and CY than that on Jan 13th. The higher production of 

HADV near surface on Jan 9th explains the rapid moving EAH. In contrast, the higher production of AERO near surface 

occurring on Jan 13th explains slow moving EAH had time to react with the local pollutants, e.g. HNO3 in Asian plume reacted 

with local NH3 to form NH4NO3, which has been discussed in Chen et al. (2014). 

3.6 Analysis of the episodes occurring on 18th and 30th July 2017  310 

Around the East Asia and West Pacific regions, it usually prevails southwest wind in summer (from June to August). The 

dominating weather system is often the southwest monsoon, Pacific high and occasional thermal lows/typhoons. For example, 

on 18th July 2017, the surface weather map Fig. 12 illustrates that Taiwan was located on the west edge of the Pacific high. 

Meanwhile, the prevailing wind was the south wind around Taiwan. Although it prevailed south wind at this period, the local 

thermal circulation also influenced the local transport. The PM2.5 distributed over the western Taiwan and Taiwan Strait (Fig. 315 

13). The major sources were from the urban and industrial sources in western Taiwan and the coastal area of Fujian province 

of Mainland China (Fig. 13). 

From Fig. 14(a-1) to Fig. 14(a-4), it was found that #17 was mainly influenced by YRDIR other than BRIR or PRDIR on July 

18th 2017. The production and removal processes were non-uniform below 80 m (layer 4). But from 120 m to 460 m (layer 5 

to layer 11), the major production processes were AERO and ZADV and the removal process was mainly HADV. The Fig. 14 320 

shows that the influence of three industrial regions on #18, #19, #20, BQ, ZM, or CY was almost ignorable. It suggested the 

PM2.5 was mainly from local pollution on July 18th. On the other hand, the #19, #20, BQ, ZM, and CY was influenced by 

PRDIR at the end of July 30th (Fig. 8). As mentioned earlier, the thermal low over Taiwan Strait (Fig. S2.2) caused unstable 

wind field and transported pollutants from coastal areas of Asian continent to northern South China Sea and Taiwan strait 

(Fig.S2.4). In this case, there is hardly amount of PM2.5 transported from three industrial regions to those specific locations on 325 

July 30th except from PRDIR to BQ, as illustrated in Fig. S2.5. 

https://doi.org/10.5194/acp-2019-762
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.



9 
 

3.7 Discussion of the chemical compositions and emissions 

Lee et al. (2017) conducted PM2.5 sampling at BQ, ZM, and CY every six days in 2017. The sampling of Jan 13th was used to 

compare with simulated PM2.5 compositions, as indicated in Fig. 15 The previous studies (Chuang et al., 2008b；Wang et al., 

2016) suggested it took about 28 hours for the PM2.5 haze transported from Yangtze River estuary to the northern tip of Taiwan 330 

island. Therefore, the simulated PM2.5 compositions at #17 and #18 on Jan 12th were also illustrated. According to the main 

content, BRIR and YRDIR were the major sources of #17 - #20. As illustrated in Fig. 15, no matter on Jan 12nd or Jan 13th, 

the major compositions were sulfate and OC for #17 - #20. However, the proportion of nitrate in PM2.5 at #17 on Jan 12th was 

higher than those at #18, #19, and #20 on Jan 13th. It explains the nitrate would evaporate from aerosol phase to gas phase for 

PM2.5 plume transported from high to low latitude regions (Chuang et al., 2008b). The proportions of Na+ and Cl- in PM2.5 at 335 

# 19 and #20 were higher than those at #17 and #18. The higher sea salt due to stronger wind speed is expected because the 

Taiwan Strait was a wind tunnel between Central Mountain Range in Taiwan and Wuyi Mountain Range in Fujian province 

(Lin et al., 2012). In addition, the proportions of nitrate in PM2.5 at BQ, ZM, and CY were higher than those over #17 - #20. 

That should be caused by the local pollution. The comparison between simulation and observation indicated that the 

performance of simulation was not bad. The simulated proportion of nitrate and ammonium in PM2.5 was slightly higher than 340 

the observations. While the simulated proportion of K+, Ca2+, Mg2+, Na+ was slightly underestimated. This suggested the 

emission of biomass burning and wind-blown dust over Taiwan island and the influence of sea salt still have room for 

improvement. 

We also compared the simulated PM2.5 compositions with observations on July 18th 2017 (Fig. 16). As mentioned in main 

content, #17 was influenced by upstream YRDIR, the proportion of nitrate in PM2.5 #17 was higher than further upstream #18, 345 

#19, and #20. The proportion of nitrate in PM2.5 at #19 and #20 was higher than #18, it implies #19 and #20 were influenced 

more by PRDIR than #18. For BQ, ZM, and CY, the proportion of simulated OC in PM2.5 was slightly overestimated as 

compared with observation but nitrate, sulfate and others were underestimated. Since BQ, ZM, CY were less influenced by 

PRDIR on July 18th, the overestimation of OC and underestimation of nitrate should be related to the bias of local emission 

inventory. In addition to local emission inventory, the underestimation of sulfate could possibly be related to underestimation 350 

of emission from ships around Taiwan since the local emission of SO2 is quite low. Moreover, the uncertainty of emission in 

the Southeast Asia is also another issue that needs to be improved. 

On July 30th 2017, there was a thermal low which influence the circulation near Taiwan. The Fig. S2.6 illustrates that BQ, 

ZM, and CY were influenced by local pollution and therefore the proportions of EC and NH4
+ in PM2.5 at these three cities 

were higher than #17 - #20. It was not easy to form nitrate at BQ, ZM, and CY since the circulation was strong and cloud cover 355 

was intense (no PM2.5 sampling on July 30th due to bad weather condition). 

4. Conclusions  

This study evaluated the impact of the three biggest industrial regions in Asian continent on PM2.5 in Taiwan and discussed the 

process analysis during transport. It applied the CMAQ model with BFM method and process analysis technique. The 

simulation period was January and July 2017. 360 

In January 2017, the LRT from Asian continent to Taiwan was substantial over northern Taiwan and gradually minor in central 

and southern Taiwan. The impact of monthly PM2.5 from BRIR and YRDIR on Taiwan was 0.7-1.1 µg m-3 and 1.2-1.9 µg m-

3, about 5% and 7.5% of total concentration, respectively. The daily impact was the most on January 9. The production of 

BRIR and YRDIR was 6-8 and 9-12 µg m-3, respectively. In contrast, the influence of PRDIR to Taiwan was ignorable. 

However, when the cold surge passed Taiwan, the PM2.5 from PRDIR can influence Taiwan with monthly average impact of 365 

about 0.5 µg m-3 via transboundary transport and boundary layer mixing (VDIF). When the cold surge induced-events occurred, 

the impact from BRIR and YRDIR was substantial on BQ. The transport mechanism of EAH from BRIR and YRDIR was 
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horizontal (HADV) and vertical (ZADV and VDIF) at Bohai Sea and China East Sea. When the EAH moved to Taiwan Strait 

and northern South China Sea, CLDS became the major production of PM2.5 under high relative humidity environment. Along 

the transport, AERO and DDEP were always the removal process for the EAH transporting from high latitude regions to low 370 

latitude regions. When the EAH moved to northern Taiwan, HADV and AERO were the major production processes of PM2.5 

at BQ. The transport mechanism from northern Taiwan to central Taiwan and southern Taiwan was changeable due to complex 

terrain and complex land canopy. In addition, the intensity of EAH would have different production and removal processes in 

different height. The stronger the intensity of EAH, the impact on central and southern Taiwan was more obvious, the 

proportion of HADV in PM2.5 production was more obvious near surface.  375 

In July 2017, the influence from three industrial regions on the PM2.5 was ignorable in Taiwan, i.e. PM2.5 was mainly come 

from upwind adjacent local sources unless if there was special weather system, e.g. a thermal low nearby which may carry 

pollutants from PRDIR to Taiwan but it is a minor.  

In regards of performance of MIX emission inventory, this study compared the simulated and observed PM2.5 compositions on 

Jan 13th, July 18th, and July 30th. The simulated proportion of nitrate and ammonium in PM2.5 during the winter time was 380 

slightly overestimated but the simulated K+, Ca2+, Mg2+, Na+ was underestimated at BQ, ZM, and CY. It suggested the bias in 

the local emission inventory has lacked the correct information of local biomass burning. During the summertime, the 

simulated proportion of OC in PM2.5 was overestimated but underestimated for nitrate, sulfate, and others. In addition to the 

bias of local emission inventory, the LRT emission of sulfate is another reason that caused the difference. 
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Table 1 The performance of meteorological modeling results for the present study 540 

  Temperature   Wind 

speed 

  Wind 

direction 

 

  MB (°C) MAGE 

(°C) 

IOA MB  

(m s-1) 

MAGE 

(m s-1) 

IOA WNMB WNME 

Standard  ±1.5 <3 >0.7 ±1.5 <3 >0.6 ±10% <30% 

 Jan 1.54 1.63 0.90 -0.01 1.16 0.91 -2.09 5.91 

PJY July 0.43 1.18 0.69 0.05 1.29 0.93 0.00 4.27 

 Jan 0.00 0.60 0.99 -0.75 1.10 0.74 8.91 13.16 

TPE July -0.31 0.98 0.91 -0.06 0.92 0.81 5.71 22.04 

 Jan 0.12 0.61 0.98 0.52 0.86 0.84 2.70 13.85 

CP July -0.02 0.73 0.95 0.16 0.68 0.80 4.50 19.01 

 Jan 0.17 1.02 0.96 0.06 0.47 0.87 3.16 41.33 

TC July 0.61 1.19 0.92 0.05 0.56 0.80 6.84 25.30 

 Jan 0.05 0.83 0.98 -0.21 0.61 0.83 12.34 32.40 

CY July 0.02 1.06 0.93 -0.35 0.83 0.78 5.61 21.18 

 Jan 0.18 0.83 0.97 -1.82 1.84 0.52 9.42 20.26 

TN July -0.14 0.85 0.93 -0.97 1.12 0.69 -1.33 20.76 

 Jan -0.07 0.94 0.93 1.15 1.26 0.60 4.22 23.40 

KH July -1.27 1.47 0.66 1.19 1.56 0.73 4.84 12.81 

 Jan -1.29 1.39 0.88 2.17 2.31 0.80 -0.60 7.39 

HC July -0.79 1.13 0.90 1.88 1.96 0.66 1.01 8.58 

 
 
  

Note: The standard of statistical evaluation is based on Emery (2001) and TEPA (2016). 

https://doi.org/10.5194/acp-2019-762
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.



16 
 

Table 2 Simulated PM2.5 at eight air quality stations in western Taiwan 545 

    MB MFB (%) MFE (%) R IOA 

     <±65 <85 >0.5 >0.6 

BQ Jan 5.0 10% 38% 0.85 0.82 

 July 5.3 40% 49% 0.46 0.55 

PZ Jan 5.1 9% 38% 0.71 0.68 

 July 3.2 17% 29% 0.63 0.67 

ML Jan 0.2 -17% 42% 0.73 0.77 

 July 4.8 22% 40% 0.76 0.65 

ZM Jan 5.5 12% 29% 0.82 0.83 

 July 3.3 16% 33% 0.68 0.76 

CY Jan -2.6 -10% 23% 0.69 0.80 

 July 0.3 5% 30% 0.52 0.70 

TN Jan 0.5 -2% 22% 0.64 0.77 

 July 7.4 46% 46% 0.69 0.68 

ZY Jan 1.1 1% 17% 0.67 0.79 

 July 1.7 12% 35% 0.52 0.72 

HC Jan -4.1 -62% 77% 0.14 0.43 

 July 0.4 -18% 53% 0.19 0.26 

 

  

Note: the standard of statistical evaluation is based on Emery (2001) and TEPA (2016). 
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   550 
Figure 1: Geographic location of three major industrial regions (BRIR (blue line enclosed region), YRDIR (green) and PRDIR 

(orange)) in East Asia and meteorological and air quality stations in Taiwan. Meteorological stations: #1: PJY, #2: TPE, #3: CP, #4: 

TC, #5: CY, #6: TN, #7: KH, and #8: HC; air quality stations: #9: BQ, #10: PZ, #11: ML, #12: ZM, #13: CY, #14: TN, #15: ZY, and 

#16: HC. The circular, triangle, diamond, and rectangular symbols are #17, #18, #19, and #20, respectively. The red line is the cross-

section plot for Figure 4 555 

 
  

3 
250 500 750 1000 
1250 
1500 
1750 2000 2250 
2500 2750 3000 3250 
3500 3750 

0 

China 

mainland 

Taiwan 

Korea, Rep of 

Japan 

Philippines 

Pacific  

Ocean 

South 

China 

Sea 

2 

3 

4 

5 

7 

8 

9 

10 

11 

13 

1 

16 

15 

14 

12 

6 

17 

18 

19 

20 

BRIR 

YRDIR 

PRDIR 

https://doi.org/10.5194/acp-2019-762
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.



18 
 

 

 

 560 

Figure 2: The monthly average impact of PM2.5 from BRIR: concentration (a) and percentage (b)；YRDIR: concentration (c) and 

percentage (d)；PRDIR: concentration (e) and percentage (f) on Taiwan in January 2017 
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 570 

 
Figure 3: The daily average impact of PM2.5 from BRIR, YRDIR, PRDIR on air quality stations in Taiwan in January 2017 

(a-1) (b-1) (c-1) 

(a-2) (b-2) (c-2) 

(a-3) (b-3) (c-3) 

(a-4) (b-4) (c-4) 

(a-5) (b-5) (c-5) 

(a-6) (b-6) (c-6) 

(a-7) (b-7) (c-7) 

https://doi.org/10.5194/acp-2019-762
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.



20 
 

 

 575 
Figure 4: Cross-section plot of PM2.5 along the red line of Fig. 1 at 08:00 LT (Local Time) on Jan 9th (a-1), 08:00 LT on Jan 10th (a-

2), 08:00 LT on Jan 11th (a-3) of domain 2 for Base case minus Prdir case. Synchronized plots for domain 3 are (b-1) to (b-3) 
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 585 

 
Figure 5: The daily contributions of individual processes to the concentrations of PM2.5 in January 2017, a,b,c,d,e,f, and g represent 

#17, #18, #19, #20, BQ, ZM, and CY, respectively；1, 2, 3, and 4 represent influence of total emissions, BRIR, YRDIR, and PRDIR, 

respectively 

  590 

(a-1) (a-2) (a-3) (a-4) 

(b-1) (b-2) (b-3) (b-4) 

(c-1) (c-2) (c-3) (c-4) 

(d-1) (d-2) (d-3) (d-4) 

(e-1) (e-2) (e-3) (e-4) 

(f-1) (f-2) (f-3) (f-4) 

(g-1) (g-2) (g-3) (g-4) 

https://doi.org/10.5194/acp-2019-762
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.



22 
 

 

 

 

Figure 6: The monthly average impact of PM2.5 from BRIR: concentration (a) and percentage (b)；YRDIR: concentration (c) and 

percentage (d)；PRDIR: concentration (e) and percentage (f) on Taiwan in July 2017 595 
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 605 
Figure 7: The daily average impact of PM2.5 from BRIR, YRDIR, PRDIR on air quality stations in Taiwan in July 2017 
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Figure 8: The daily contributions of individual processes to the concentrations of PM2.5 in July 2017, a,b,c,d,e,f, and g represent #17, 615 
#18, #19, #20, BQ, ZM, and CY, respectively；1, 2, 3, and 4 represent influence of total emissions, BRIR, YRDIR, and PRDIR, 

respectively 
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 620 

Figure 9: The surface weather map on 08:00 LT Jan 13th 2017 
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 625 

 

Figure 10: The every 3 hour simulated wind vector and PM2.5 distribution on the event at 00:00 LT (a) 03:00 LT (b) 06:00 LT (c) 

09:00 LT (d) 12:00 LT (e) 15:00 LT (f) 18:00 LT (g) 21:00 (h) Jan 13th and 00:00 LT (i) Jan 14th 2017 
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635 

 
Figure 11: The hourly average contribution of physical process at each layer on Jan 13th 2017, a,b,c,d,e,f, and g represent #17, #18, 

#19, #20, BQ, ZM, and CY, respectively；1, 2, 3, and 4 represent influence of total emissions, BRIR, YRDIR, and PRDIR, 640 
respectively 
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Figure 12: The surface weather map on July 18th 2017 
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 650 

 

 

Figure 13: The every 3 hour simulated wind vector and PM2.5 distribution at 00:00 LT (a) 03:00 LT (b) 06:00 LT (c) 09:00 LT (d) 

12:00 LT (e) 15:00 LT (f) 18:00 LT (g) 21:00 (h) July 18th and 00:00 LT (i) July 19th 2017 

 655 
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Figure 14: The hourly average contribution of physical process at each layer on July 18th 2017, a,b,c,d,e,f, and g represent #17, #18, 

#19, #20, BQ, ZM, and CY, respectively；1, 2, 3, and 4 represent influence of total emissions, BRIR, YRDIR, and PRDIR, 665 
respectively 
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Figure 15: The comparison of simulation (SIM) and observation (OBS) of PM2.5 compositions at #17-#20 and BQ, ZM, and CY on 

Jan 12th and 13th 2017 670 
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Figure 16: The comparison of simulation (SIM) and observation (OBS) of PM2.5 compositions at #17-#20 and BQ, ZM, and CY on 

July 18th and 19th 2017 675 
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