Dear reviewers and editor:

On behave of all co-authors, we are really grateful to reviewers who spent much time reviewing the original manuscript. I know we have made some misleading narratives but have modified those in the revised manuscript. Please notice that the revision according to reviewer#1's and reviewer#2' comments are written in red words and in yellow background, respectively. Before the submission of revised manuscript, the authors have asked a professional English editing company to revise the English writing. We hope the revision have avoided grammar mistakes and misleading narratives already. In this response, we have attached three files: the manuscript of the main context, the supplement, and the one-to-one response. We sincerely thank for the editor, reviewers', and ACP staff's effort.

Best regards.

Ming-Tung Chuang

Response to Reviewers

Manuscript *acp-2019-762*

We greatly appreciate the insightful comments and suggestions of the reviewers. Below please find a list of the Reviewers' remarks in contrast to our responses to them:

Review #1

Major Concerns		
(1) comments from Reviewers	(2) author's response	(3) author's changes in manuscript.
1) The manuscript shows the analysis both for	First, the authors really appreciate the reviewer spend much time and	Please notice that the revision according to
January and July. However, the impacts of three	efforts reviewing this manuscript carefully and giving valuable opinions.	reviewer#1's comments are written in red
industrial regions on Taiwan in summer (July)	They are truly grateful for the reviewer's comments which are very	words.
is quite small, almost negligible even in the last	helpful to make this manuscript better. The authors accidentally used non-	The discussion of July is concentrated in the
few days when the impacts were relatively	precise or inappropriate words and so as to make misleading narratives.	section 3.5 and the original Fig. 6 (Fig. 10 in the
large. I don't think it is worthwhile spending	Before submission of the revised manuscript, they have asked a	revised manuscript) was kept in the main content.
much space for the July analysis, rather	professional English editing company to revise the manuscript already.	They also moved original Fig. 7, Fig. 8, Fig. 12,
focusing on winter case would make the paper	Yes, the authors agree with the reviewer's suggestions and have cut	Fig. 13, and Fig. 14 to Fig. S4.8, Fig. S4.9, Fig.

more concise and scientifically focused.	down the contents of July analysis. They concentrated the content of	S4.12, Fig. S4.13, and Fig. S4.14 from the main
	discussion of July in the section 3.5 and kept the original Fig. 6 (Fig. 10	content to the supplement.
	in the revised manuscript) in the main content and moved original Fig. 7,	
	Fig. 8, Fig. 12, Fig. 13, and Fig. 14 in the original main content to Fig.	
	S4.8, Fig. S4.9, Fig. S4.12, Fig. S4.13, and Fig. S4.14 in the revised	
	supplement.	
2) The results of process analysis was described	Yes, the authors have written several misleading narratives in the	One line 272-275
and discussed in 3.2, 3.4, 3.5, and 3.6, which	original manuscript. After careful checking, first, they have revised	From Fig. 5(b-1)-(b-4), among the three
formed a main part of this paper. However, the	misleading narratives in order to avoid the arguments that described	industrial regions it is apparent that #2 was
descriptions in these sections were not firmly	which industrial region was the dominant contribution for the	influenced by both the BRIR and YRDIR, mainly
reasoned. In these sections, the author argued	downstream receptors.	produced through nonuniform HADV, VDIF,
"dominant" contribution of three industrial		ZADV, and CLDS; and removed through AERO
regions at some locations. For example, in 3.2,		and occasional HADV and DDEP processes, and
the author pointed out that PM2.5 was		almost unaffected by PRDIR.
influenced "mainly" by BRIR and YRDIR at		On line 275-277
the place #19. However, these arguments were		For #3, PM _{2.5} was influenced mainly by
not convincing. For the abovementioned		YRDIR (Fig. 5(c-2)) and occasionally by BRIR
example, Fig5 (c-2) and (c-3) which was		(Fig. 5(c-3)), but it was also influenced by
regarded as representing the contributions by		PRDIR from the 8th to 12th (Fig. 5 (c-4)), which
process of BRIR and PRDIR, respectively,		has been verified to be related to the
showed similar variations to those of total		transboundary transport and intrusion of a cold
contributions shown as Fig5 (c-1). However,		surge in the last section (Fig. 4).
the range of values largely differed each other,		On line 280-281

so I cannot understand why the author can		Although #4 is very near PRDIR, it was
conclude that the BRIR and YRDIR were		influenced more by YRDIR (Fig. 5(d-3)-5(d-4))
"main" contributors to the variation of PM2.5 at		and other sources in the north rather than three
#19. Similar arguments to this case can be		industrial regions since the prevailing wind was
found in these sections, and they considerably		mainly northeast wind in January.
deteriorate the persuasiveness of the		On line 379-380
manuscript. I strongly recommend the author to		Take July 18, 2017 as an example, in which the
revise such arguments in these sections and		PM _{2.5} sampling was implemented, it was found
provide how to read and understand the main		that #1 was influenced more by YRDIR than
figures (Fig 5, 8, 11, and 14).		BRIR among three industrial regions (Fig.
		<mark>S4.11</mark> (a-1)-(a-4)).
Specific comments:		
(1) comments from Reviewers	(2) author's response	(3) author's changes in manuscript.
L37: Seasonality of EAH is not "due to" rapid	Yes, the authors thank the reviewer pointing out this error. In order to	On line 44
economic grows in Asian countries.	avoid the misleading writing, the authors have asked a professional	The EAH has started to spread out from Asia
	English editing company to help revise the revised manuscript already.	Continent to East Asia in spring and winter due
		to the movement of anticyclones. (Fu et al., 2014;
		Yang et al., 2016).
L43-45: Why did you specify these data and	The authors tried to make examples by mentioning the NOAA's data	On line 48-50
models for trajectory analysis?	and models MM5 or WRF. They didn't mean to specify these data and	The trajectories could be calculated from, for
	models. In order to avoid misleading, the authors have revised the	example, the archived meteorological data of
	narratives	NOAA ARL
		(www.ready.noaa.gov/archives.php), the model
		outputs of MM5 (Mesoscale Model version 5,
		Dudhia, 1993), or WRF (Weather Research and
		Forecasting, Skamarock and Klemp, 2008).

L50-51: Could you state more clearly why TS	In the original manuscript, the authors intended to express that TS	On line 56-59
method would contain substantial uncertainty?	methods estimated the contribution of some upstream place on a receptor	The plume transport from an upstream region
	is to get the product of weighting of frequency passing that upstream	to the receptor would mix and react with air and
	place and concentration at that receptor. The authors have removed that	pollutants along the path of transport. This
	narrative "Using trajectory to express the moving of a polluted plume	suggests that the plume arriving at the receptor is
	would contain substantial uncertainty." in the original manuscript but	no longer the plume emitted from the initial
	rewritten the narratives.	upstream region. The farther the upstream place
		is from the receptor, the more uncertainty there
		will be in the TS method. Therefore, the TS
		method would contain substantial uncertainty.
L54: The difference between those two runs	The authors agreed with the reviewer's opinion regarding to the BFM	On line 62-66
does not directly mean the contribution	methods and have modified narratives in the revised manuscript.	The difference between the base case and the
of specific source but impact of the reduction of		zero-out case is the reduction of the zero-out
that specific source. To distinguish	The following description is not included in the revised manuscript but	source. The reduction is approximately the
these two concepts is quite important.	provide to the reviewer for communication.	contribution of that zero-out source under the
	If pollutants from BRIR or YRDIR moved to the sea and transported	assumption when the contributions of each
	southward or pollutants from PRDIR moved to the free atmosphere and	sources are additive. However, there is an
	transported eastward, it is expected the pollutants emitted from those	indirect contribution not considered in the BFM
	aforementioned three industrial regions should not have enough time to	method, i.e., the chemical reactions between the
	react with pollutants other than the industrial regions including areas	specific zero-out source and surrounding sources
	other than three industrial regions in mainland China, along the transport	are neglected. The indirect contribution could be
	and arriving at Taiwan. In other words, the contribution from the chemical	large if the zero-out sources and surrounding
	reactions between the pollutants from industrial regions and pollutants	sources are both huge and have sufficient time to
	from surrounding area is insignificant. In that case, we can roughly	react.
	consider the reduction of the BRIR/YRDIR/PRDIR sources as the	
	contribution of these industrial sources. It is expected that the chemical	

	reactions between pollutants from areas other than three industrial regions	
	and pollutants from three industrial regions is not important because those	
	two masses of pollutants did not mix well during the transport.	
	When the pollutants from those three industrial regions arrived at Taiwan,	
	it may react with pollutants from the local when they meet in the first	
	place. Chen et al. (2014) estimated the indirect reactions between	
	pollutants from mainland China and pollutants in Taiwan accounted for	
	about 10% of $PM_{2.5}$ in Taiwan. Even there exists the controversy that	
	whether the 10% indirect reactions should be for LRT or LP, fortunately	
	the proportion of indirect reactions is not significant. In addition, if the	
	movement of LRT plume is rapid, then it has no sufficient time to react	
	with the local pollutants. While if the movement is slow, although there	
	is sufficient time for the chemical reactions, the pollutants mixing ratios	
	in such plumes are low. It is expected the contribution of chemical	
	reactions is not important.	
L56-58: What do you mean "under-represented	The authors have modified that sentence in the revised manuscript.	On line 68-70
chemical reaction" here? Could you explain		Nevertheless, this method is not perfect because
more specific?		it potentially ignores chemical reactions between
		the specific sources within the remaining sources.
L67: CTM? This should be AM method?	Yes, the reviewer#1 is right. The authors have modified that sentence	on line 78-79
	to make it clear.	The CTM, especially the AM method, is able
		to give clearer contributions from a specific
		source compared to the TS method or the BFM
		method.
L87: These abbreviations (LRT, LP) have	Thanks the reviewer's reminder. The authors have removed the	
already been defined	repeated words.	

L90: Meaning of these terms (LRT-Event and	Yes, the authors should explain these terms and have already done.	on line 105-108
so on) should be explained		They classified the daily $PM_{2.5}$ into LRT-
		Events (high concentration events caused nearly
		by pure LRT), LRT-Ordinary (nonevents caused
		nearly by pure LRT), and LRT/LP&Pure LP
		(other days influenced by a mix of LRT and LP
		& pure LP), which were $31-39 \ \mu g \ m^{-3}$, $12-16 \ \mu g$
		m^-3, and 4–13 μg m^-3 at the northern tip of Taiwan
		from 2006 to 2015 for the northeast monsoon
		period.
L98-99: Are power and industrial sectors the	Unlike developed countries, power and industrial sectors are the largest	On line 116-117
largest for entire Asia or any specific	for most countries in Asia. According to the MIX Asian emission	From the emission map of Asia (Li et al., 2017;
region in Asia?	inventory, China and India dominate the emission of Asia for most of the	Kurokawa and Ohara, 2020), the largest emission
	species (Li et al. 2017). In the statistics of emissions from five	sources were the power and industry sectors.
	anthropogenic sectors in Asia, the point source like power/Industry has	
	the largest emission for SO ₂ , NMHC, TSP/PM ₁₀ /PM _{2.5} , OC, and CO ₂ , and	
	is comparable to transportation for NO _X . The transportation is the largest	
	emission for CO and BC. According to Zheng et al. (2018), the emissions	
	from power and industrial sectors are the largest among all anthropogenic	
	emissions in China except NH3 that are mainly from agriculture in recent	
	years. For NMHC, the emission from industry, residential, transportation,	
	and solvent use are comparable to each other. Another famous Asian	
	emission inventory REAS (latest version 3.1, Kurokawa and Ohara,	
	2020) also show similar results. However, there are occasional exception,	
	for example, the domestic sector in South Asia other than India in 2015	
	has the largest emission for SO ₂ , NOx, CO ₂ , and $PM_{10}/PM_{2.5}$ than other	

	sectors. While in Taiwan, SO_2 and CO are mainly from point source like	
	power and industry; however, TSP/PM $_{10}$ /PM $_{2.5}$ /VOCs are mainly from	
	area sources. NO_X are mainly from point and mobile sources (TEPA,	
	2017).	
	Because Zheng et al. (2018) mainly discussed the anthropogenic	
	emission in China, the authors have changed the citation to Li et al. (2017)	
	and Kurokawa and Ohara (2020).	
	Kurokawa, J., and Ohara, T.: Long-term historical trends in air pollutant	
	emissions in Asia: Regional Emission inventory in Asia (REAS)	
	version 3.1, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-	
	2019-1122, in review, 2020.	
	Li, M., Zhang, Q., Kurokawa, JI., Woo, JH., He, K., Lu, Z., Ohara, T.,	
	Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo,	
	H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic	
	Asian anthropogenic emission inventory under the international	
	collaboration framework of the MICS-Asia and HTAP, Atmos. Chem.	
	Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.	
	TEPA: Building of the Taiwan emission data system. Taiwan EPA report,	
	EPA-106-FA18-03-A263, in Chinese, 2017.	
	Zheng, B., Tong, D., Li, M., Liu, Fei, Hong, C., Geng, G., Li, H., Li, X.,	
	Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and	
	Zhang, Q.: Trends in China's anthropogenic emission since 2010 as the	
	consequence of clear air actions. Atmos. Chem. Phys., 18, 14095-	
	14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.	
L103-104: This should be "the impact of	Thanks the reviewer's suggestion. The authors have revised the	On line 123-127

reduction in source emission in each industrial	narrative.	As mentioned above, the difference between
region", because BFM can estimate "impact"		the base and zero-out scenarios is the reduction
not "contribution". Or you can define the		of the specific source. The reduction can only
wording that you will use the word		approximate the contribution of that specific
"contribution" for the deference between		source when the chemical reactions are
control runs and sensitivity run.		unimportant. This study shows that the pollutants
		from those three industrial regions are
		transported to Taiwan along with the northeast
		monsoon. Therefore, we can roughly estimate the
		contributions of BRIR, YRDIR, and PRDIR to
		$PM_{2.5}$ with the difference between the <i>Base</i> case
		and the BRIR, YRDIR, and PRDIR cases.
L123-127: For Figure1, the formal, not	Thanks the reviewer's reminder. The authors have merged the opinions	on line 144-148
abbreviated, names for each monitoring station	of reviewer#1 and reviewer#2 and rewritten the names for each	For meteorology evaluation; we chose eight
should be appeared here.	monitoring stations.	representative stations operated and maintained
		by the Taiwan Central Weather Bureau (CWB):
		Peng Jiayu (PJY in Fig. 1), Taipei (TPE in Fig.
		1), Chupei (CP in Fig. 1), Taichung (TC in Fig.
		1), Chiayi (<mark>CY_m in Fig. 1</mark>), Tainan (<mark>TN_m in Fig.</mark>
		1), Kaohsiung (KH in Fig. 1), and Hengchun
		$(\frac{HC_m \text{ in Fig. 1}}{HC_m \text{ in Fig. 1}})$ stations to evaluate the modeling
		performance of temperature, relative humidity,
		wind speed, and wind direction.
		On line 153-156
		Since most residents live in the relatively flat
		western Taiwan, the observations of air quality

		monitoring stations operated and maintained by
		the Taiwan Environmental Protection Agency
		(TEPA) at the Banqiao (BQ in Fig. 1), Pingzhen
		(PZ in Fig. 1), Miaoli (ML in Fig. 1), Zhongming
		(ZM in Fig. 1), Chiayi (CY _a in Fig. 1), Tainan
		(TN _a in Fig. 1), Zuoying (ZY in Fig. 1), and
		Hengchun ($\frac{\text{HC}_{a}}{\text{IC}_{a}}$ in Fig. 1) stations were chosen
		for $PM_{2.5}$ evaluation.
L130-131: Why you don't show the model	Yes, the authors have redrawn the Figure 1 which shows the model	Figure 1
domains in Figure 1 but just describe horizontal	domains in the revised manuscript.	
resolution?		
L146: "MB" has already been defined in the	Thanks the reviewer for carefully pointing out this extra. The authors	
previous sentences	have already removed the repeat one.	
For the evaluation of WRF and CMAQ shown	The authors have explained the simulated results from the fourth	On line 185-189
in Table 1 and 2, the results from which	domain was evaluated for Table 1 and 2 in the revised manuscript.	This study used statistical indexes such as MB
domain were used? And in addition to the	The authors have added figures of comparisons of observed and	(Mean Bias), MAGE (Mean Average Gross
summary of statistical indices in Table 1,	simulated temperature (Fig. S4.1), wind speed (Fig. S4.2), relative	Error), and IOA (Index of Agreement) to evaluate
figures of comparisons of temperature and wind	humidity (Fig. S4.3), and wind direction (Fig. S4.4) in the supplement of	temperature and wind speed, and used WNMB
between observation and simulation	the revised manuscript.	(Wind Normalized Mean Bias) and WNME
are quite informative. Could you put them	In addition, the authors also added Fig. S4.5 which show the	(Wind Normalized Mean Error) for wind
together at least as supplement?	comparisons of observed and simulated PM _{2.5} in the supplement of the	direction in the fourth domain. For PM _{2.5}
	revised manuscript.	performance in the same domain, we applied the
		MB, MFB (Mean Fractional Bias), and MFE
		(Mean Fractional Error), R (Correlation
		coefficient), and IOA indexes. All of the formulas
		for the above indexes are from Emery (2001) and

		TEPA (2016), illustrated in Supplement S3.
You should explain how you draw Fig3. Are	Yes, the authors have already explained how to get the values in Fig. 3	On line 223-224
the values in Fig3 difference between Base case	both in the main content and the caption of figure 3. In addition, the	As mentioned, the impact was considered as
and sensibility case? If so, it's better to note it	authors have removed few locations but only remained BQ, ZM, and CY	the reduction of a specific source removed or
in the manuscript or in figure caption. Fig3 is a	to representative northern, central, and southern Taiwan.	roughly the contribution of that specific source
bit busy, so it seems better to select fewer		for BFM method, i.e., the difference between the
locations out of seven to avoid redundancy.		base and zero-out scenarios, is applied in this
		study.
		Caption of Figure 3
		Figure 3: The daily average impact of PM _{2.5}
		from BRIR, YRDIR, PRDIR on air quality
		stations in Taiwan in January 2017. a,b, and c
		denote the impact on BQ, ZM, and CY from 1
		(BRIR), 2 (YRDIR), and 3 (PRDIR). The
		impact was calculated with BFM method, i.e.,
		the difference between the base and zero-out
		scenarios.
I 176: Domotio unnocossanti "tho"	Thanks the reviewer for pointing out this type. The outhers have	
L170. Remove unnecessary the .	sheedy removed the extre "the"	
	aneady removed the extra the .	
Could you check the wording "China East	Thanks the reviewer's careful checking for this manuscript. The	
Sea"? "East China Sea" has been also used for	authors have already unified the nouns to "East China Sea" in the revised	
the same area in many literatures.	manuscript.	
For Figure5, you should explain how to deduce	Yes, the authors have followed the reviewer's suggestion to explained	On line 263-265
the values shown in the figure, in particular the	Fig. 5 are deduced by the difference between Base case and zero-out cases	Similar to Fig. 2, we deduced the differences of
values in Fig5(*-2,3,4). Are they the difference	Thanks the reviewer's reminder that the title of y-axis should be "daily	base and zero-out scenarios for the IPR analysis.

between Base case and sensitivity case? If so,	concentration change". The authors have already corrected this error in	This study considered the reduction as the
you should instruct briefly how to interpret	Fig 5 And Fig S4.9 in the revised manuscript.	approximate contribution by each industrial
these Figures. Is		region. Therefore, the following discussion is
the title of y-axis correct? This should be		satisfied when the chemical reaction between
"_concentration" or "daily concentration		each industrial region and the surrounding area
change"?		was ignored.
L204: Fig5(a-1) and (a-2) do not seem quite	Yes, the authors agree that they did not use precise vocabulary and have	On line 265-266
similar to each other. Could you specify more	removed the word "similar" to avoid misleading and rewritten the	The physical or chemical terms in Fig 5 (a-1)
about which features of both figures look	narratives.	and Fig. (a-2) did not always appeal
similar?		synchronously, and their proportions in total were
		not equal.
L204: You concluded that main contributor to	The authors have modified the narratives. Furthermore, they also added	On line 265-267
#17 PM2.5 is BRIR, but I cannot understand	titles to the Fig. 5, Fig. 8, Fig. 9, Fig. S4.9, Fig. S4.11 and Fig. S4.12 in	The physical or chemical terms in Fig 5 (a-1)
why you can conclude like this. The values in	the revised manuscript such that the readers can understand the figures	and Fig. (a-2) did not always appeal
Fig5(a-1) and (a-2) are quite different. You	arranged in four columns are Base, BRIR, YRDIR, and PRDIR cases and	synchronously, and their proportions in total were
should give an instruction how to read and	the figures arranged in seven rows are #1, #2, #3, #4, BQ, ZM, and CY.	not equal. This implies #1 was influenced by both
understand the Fig5	Note that #1-#4 in the revised manuscript are the #17-#20 in the original	BRIR and other nearby sources.
	manuscript.	
L205: Can HADV process "produce" PM2.5?	The authors understand what the reviewer meant and have already	On line 267-268
The term "production" here is not appropriate.	modified all such narratives.	The increase of PM _{2.5} was caused mainly by
		the process of HADV, followed by ZADV and
		VDIF, and the removal process was mainly
		AERO.
		On line 287-288
		The build-up of PM _{2.5} at BQ were mainly

	HADV with minor CLDS, and the removal
	processes were mainly ZADV with minor AERO
	(Fig. 5(e-1)).
	On line 303-304
	For CY located in southwestern Taiwan, VDIF
	and HADV mainly contributed to the gains of
	$\ensuremath{\text{PM}_{2.5}}\xspace$, and the removal processes were mainly
	ZADV and AERO; however, occasionally, when
	the positive contribution to $PM_{2.5}$ were ZADV
	and VDIF, the removal processes were HADV
	and AERO (Fig. 5(f-1)).
	On line 305-306
	Comparing Fig. 5(f-2)-(f-4) and Fig. 5(g-2)-(g-
	4), it is obvious the positive and negative
	contribution to $PM_{2.5}$ for CY were very similar to
	those for ZM.
	On line 333-334
	The major processes below layer 9 (~310 m)
	contributing to the increase of $PM_{2.5}$ were HADV,
	VDIF, and ZADV, and the removal processes
	were DDEP and AERO (Fig. 8(b-3)).
	On line 340-341
	Although #2 and BQ were most affected by
	YRDIR, the major contribution processes at BQ
	below 200 m (layer 7) was HADV, followed by
	AERO and above 200 m it were either VDIF,

	ZADV, or CLDS, or mixture of them.
	On line 353-355
	Second, for the haze from BRIR and YRDIR,
	the positive and negative contribution processes
	on BQ were mainly HADV/AERO and
	ZADV/VDIF below 200 m (layer 7, Fig. 8(e-3))
	and less different processes at different layers
	above 200 m on Jan 13th.
	On line 355-357
	While on Jan 9th, the major processes leading
	to the increase of $PM_{2.5}$ at BQ were mainly
	HADV below 380 m (layer 10), AERO between
	120 to 900 m (layer 5 to 15), and ZADV/CLDS
	between 650 to 1500 m (layer 13 to 19), as
	illustrated in Fig. 9(e-2)-(e-3).
	On line 380-381
	The positive and negative contribution
	processes were nonuniform below 80 m (layer 4).
	On 381-382
	However, from 120 m to 460 m (layer 5 to layer
	11), the major processes to build-up of $PM_{2.5}$
	were AERO and ZADV, and the removal process
	was mainly HADV.
	On line 433-434
	When the EAH moved to northern Taiwan,
	HADV and AERO were the major contribution

		processes of PM _{2.5} at BQ.
		On line 438-439
		The stronger the intensity of EAH, the more
		obvious was the impact on central and southern
		Taiwan, and the proportion of HADV contributed
		to the PM _{2.5} budget was more obvious near the
		surface.
L211: What process considered in AERO can	Since the ambient environment was cold in high latitude regions and	
reduce PM2.5?	warm in low latitude regions, the evaporation process of $PM_{2.5}$ occurred	
	in the haze during transporting southward. In the simulation study of	
	Chuang et al. (2008), the evaporation of NH_3NO_3 occurred for the $PM_{2.5}$	
	plume transported from Shanghai to Taipei and formed ammonia and	
	nitric acid. It is expected the evaporation of organic carbon also occurred	
	if ambient temperature increased. Another very minor process which	
	could be ignored compared with abovementioned evaporation process is	
	that PM _{2.5} particles coagulate to coarse particles.	
	Chuang, M. T., Fu, J. S., Jang, C. J., Chan, C. C., Ni, P. C., and Lee, C.	
	T.: Simulation of long-range transport aerosols from the Asian	
	Continent to Taiwan by a Southward Asian high-pressure system. Sci.	
	total. Enviro., 406, 168–179,	
	https://doi.org/10.1016/j.scitotenv.2008.07.003, 2008b.	
L213: If the intrusion of PM2.5 from PRDIR is	Fig. 4 is the cross section of red line in domain 2 and domain3. The	
like that depicted in Fig4, why the contribution	ZADV is not so large in Fig. 5(c-4) is probably # 3 (#19 in the original	
of ZADV is not so large in Fig5(c-4)? Since	manuscript) is not on the red line (the cross section) in Fig. 1. In addition,	
#19 is located between PRDIR and Taiwan	the influence of PM _{2.5} from PRDIR was mainly on the mountains, as	

island and the transport of PM2.5 between them	shown in Fig. 2(e) and Fig. 2(f), i.e. at high altitude about 1-3 km. The	
occurs about 1-2 km high above the surface as	downward motion is not obvious unless the plume was blocked by the	
in Fig4, any kind of vertical (downward)	mountains in Taiwan (Fig. 4) and enhanced by the passing of cold surge.	
motion should transport PM2.5 from that layer		
to the location of #19 which must be at the		
surface		
L227: What does "minor PM2.5" means here?	The authors have replaced the word "minor" with "certain" in that	On line 290-291
	sentence.	In addition, certain PM _{2.5} was formed in
		northern Taiwan, probably due to the high
		relative humidity, which was probably induced
		by the cloud or fog produced by terrain uplifting.
L228: Why can you describe "The PM2.5 at	Thanks the reviewer for pointing the error. The removal process of	On line 282-283
BQ then transport up- and then southwards"?	PM _{2.5} at BG was mainly ZADV. In order to explain clearly, the authors	The removal process of PM _{2.5} at BQ was
Which figure show this transport of PM2.5?	have modified the narrative.	mainly ZADV, which can be explained by BQ
		being located in the Taipei basin and the $PM_{2.5}$ is
		transported up to leave the basin.
L228-229: Fig.(f-1) -> Fig5 (f-1)	Thanks the reviewer for pointing the error. The authors have already	On line 292-295
	corrected the type.	Comparing Fig. 5(f-1) with Fig 5(f-2)-Fig 5(f-
		3), it is obvious that the $PM_{2.5}$ of ZM was
		produced by local pollution, i.e., the downward
		diffusion of VDIF, which probably came from
		northern Taiwan and was removed through
		HADV to further southern Taiwan under the
		prevailing north wind.
L234-235: If this is true, why ZADV in Fig5 (f-	Because of the reviewer's comment, the authors found the ZADV has	On line 247-248
4) is largely negative from Jan 8 to 10?	to be treated in an opposite way since the concentration gradient is	The boundary layer mixing was enhanced by

positive for $PM_{2.5}$ from PRDIR, which is different from the usual cases	the passing of a cold surge and increased $PM_{2.5}$
that $PM_{2.5}$ concentration was usually higher near surface. Therefore, the	on the ground.
vertical gradient of PM2.5 is positive in this case. The authors have	On line 298-303
modified some narratives in the revised manuscript.	On Jan 8th to 10th, the negative ZADV
The following is a brief review that was not in the revised manuscript	indicated the concentration was decreasing in the
but provide to the reviewer for communication. Yen et al. (2013)	lower 20 averaged layers, but the concentration
suggested the downward motion could bring Southeast Asian biomass	gradient was positive ($\frac{\partial PM_{2.5}}{\partial z} > 0$, the
burning pollutants aloft to surface through the subsidence of cold surge	concentration of PM _{2.5} from PRDIR was higher
through the analysis of wind field derived from NCEP Global Forecast	at a high altitude than that at a low altitude over
System analyzed data. Chuang et al. (2016) applied the WRF/CMAQ and	Taiwan), which implies the vertical velocity had
found the Southeast biomass burning aerosols could be blocked by the	to be negative, i.e., a downward motion.
mountains in Taiwan and then the boundary layer mixing assisted the	Therefore, the boundary layer mixing of the aloft
subsidence of aloft aerosols to the surface. Huang et al. (2020) suggested	$PM_{2.5}$ plume was enhanced by the passing of the
the 700-hPa LLJ (Low Level Jet) may have carried the biomass burning	cold surge (Yen et al., 2013; Chuang et al., 2016).
plumes aloft located south of the frontal system (cold surge) and	
accompanied the upward/downward motion south/north of the frontal	
system. The downward motion occurred at the north of the front or	
subsidence of cold air region. While in the simulation of present study,	
the ZADV was negative which also implied the downward advection	
occurred when the cold surge passed. However, it is a pity that there is no	
observation for the pollutants profile during the pass of cold surge.	
Otherwise, it would be more persuasive.	
Chuang, M. T., Fu, J. S., Lee, C. T., Lin, N. H., Gao, Y., Wang, S. H.,	
Sheu, G. R., Hsiao, T. C., Wang, J. L., Yen, M. C., Lin, T. H., and	
Thongboonchoo, N.: The Simulation of Long-Range Transport of	
Biomass Burning Plume and Short-Range Transport of Anthropogenic	

	Pollutants to a Mountain Observatory in East Asia during the 7-	
	SEAS/2010 Dongsha Experiment. Aerosol. Air. Qual. Res., 16, 2933-	
	2949, https://doi.org/10.4209/aaqr.2015.07.0440, 2016.	
	Huang, HY., Wang, SH., Huang, WX., Lin, NH., Chuang, MT., da	
	Silva, A. M., & Peng, CM. (2020). Influence of synoptic-dynamic	
	meteorology on the long-range transport of Indochina biomass burning	
	aerosols. Journal of Geophysical Research: Atmospheres, 125,	
	e2019JD031260. https://doi.org/10.1029/2019JD031260.	
	Yen, M. C., Peng, C. M., Chen, T. C., Chen, C. S., Lin, N. H., Tzeng, R.	
	W., Lee, Y. A., and Lin, C. C.: Climate and weather characteristics in	
	association with the active fires in northern Southeast Asia and spring	
	air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment,	
	Atmos. Envoron., 78, 35-50,	
	http://dx.doi.org/10.1016/j.atmosenv.2012.11.015, 2013.	
L256: Why did you exclude Fig.8(a)?	The authors have cut down the discussion of July 2017. Therefore, the	Fig. S4.9
	discussion of Fig. 8(a) has been removed because it is not important. The	
	Fig. 8 in the original manuscript has been moved to Fig. S4.9.	
L267: Could you put the prevailing wind vector	The authors have added monthly average wind field in Fig. 2 and Fig.	Fig. 2 and Fig. 6
in Figures 2 and 6, otherwise I can not verify	$\frac{6}{6}$ already. It is obviously the prevailing wind in winter was northeast wind	
what you described here and similar	(Fig. 2) but south wind in summer (Fig. 6).	
descriptions in the manuscript explaining		
the impact of wind patterns.		
L280: Layer4? Is this Layer14?	Thanks the reviewer for pointing out this typo. The authors have	
	corrected 4 to 14 in the revised manuscript.	
L281: It is apparent that only vertical motion	Thanks the reviewer's comment. The authors would like express the	On line 325-326
can not transport PM2.5 from BRIR to	transport from BRIR to #1 was not just horizontal but also vertical. The	This implies the transport path from BRIR to

#17. What do you mean here?	authors have modified the narratives	#1 could be horizontal between BRIR and #1 and
		then vertical at the location of #1.
L282-283: Why does ascent (descent) motion	The authors have added above narratives	On line 328-330
enhance (decrease) aerosol formation?		It is possible that the ascent motion of the air
What processes are involved ?		parcel near the warm surface moved to a cold
		environment at a higher altitude. This may cause
		condensation and trigger heterogeneous reactions
		of aerosols. In contrast, the descent motion of the
		air parcel may cause the evaporation of aerosols
		due to a warmer environment near the surface
		than aloft.
L291: Fig. (e-2)-(e-4) -> Fig11. (e-2)-(e-4).	Thanks the reviewer for pointing out this typo. The authors have	Fig. 8
	corrected it in the revised manuscript. The Fig. 11 in the original	
	manuscript have been changed to Fig. 8 in the revised manuscript.	
L293: mixed -> mixture	Thanks the reviewer for pointing out the inappropriate word. The	On line 339-341
	authors have corrected the word in the revised manuscript.	Comparing Fig. 8(e-1) and Fig. 8(e-2)-8(e-4),
		it was found the BQ was much influenced by
		YRDIR. Although #2 and BQ were most affected
		by YRDIR, the major contribution processes at
		BQ below 200 m (layer 7) was HADV, followed
		by AERO and above 200 m it were either VDIF,
		ZADV, or CLDS, or mixture of them.
L340: higher -> lower?	Thanks the reviewer for pointing out this typo. The authors have	On line 406-407
	corrected it in the revised manuscript.	The simulated proportions of nitrate and
		ammonium in PM _{2.5} were slightly lower than the
		observations.

L341: underestimated -> overestimated?	Thanks the reviewer for pointing out this typo. The authors have	On line 407
	corrected it in the revised manuscript.	While the simulated proportions of K ⁺ , Ca ²⁺ ,
		Mg ²⁺ , Na ⁺ were slightly overestimated.
L353: There is not Fig.S2.6 in the supplement	The authors have removed Fig. S2.6.	
L380: There is no comparison for July 30th (no	It is really a pity that there is no observation on July 30th due to bad	
Fig. S2.6).	weather (the influence of the thermal low). The authors have removed	
	this figure already.	

Review #2

General Description		
(1) comments from Reviewers	(2) author's response	(3) author's changes in manuscript.
This paper describes the contribution of three	The authors really appreciate the reviewer#2 who spent his/her time	Please notice that the revision according to
major Asian industrial regions on PM2.5	reading and commenting the manuscript very carefully.	reviewer#2's comments are written in <mark>yellow</mark>
concentrations in Taiwan in January and June	The authors have asked a professional English editing company to	background.
2017. WRF and CMAQ models were used to	revise the English writing before submitting the revised manuscript.	
simulate the transport of pollutions from the	Meanwhile, they have tried their best to redraw designated figures and	
Asian industrial regions and also the chemical	revise the manuscript according to the reviewer's valuable comments,	
reactions in these plumes. The performance of		
the model in capturing temperature, wind		
speed, and direction, and PM2.5 was evaluated		
in multiple stations located in Taiwan covering		
north to south of the island. The authors used		
the process analysis technique in CMAQ to		
identify the dominant physical and chemical		
processes for the production and removal of		

PM2.5 in different locations in the domain. In		
general, the topic is suitable for ACP journal		
and the paper makes interesting conclusions		
about the contribution of long-range transport		
under different transport patterns to the air		
quality of Taiwan. However, the authors need		
to address some scientific issues discussed in		
the comments section below. The paper needs		
major English proofreading, major technical		
corrections, better quality for figures. I would		
not recommend this		
paper for publications unless these issues are		
addressed.		
Please note that I reviewed the updated version		
of the paper after the comments from reviewer		
1 were addressed.		
Specific comments		
(1) comments from Reviewers	(2) author's response	(3) author's changes in manuscript.
1) The contribution of local emissions was	The authors have tried to discuss the contribution of local pollution to	On line 209-220
discussed very briefly in the last section of	measured PM2.5 and added related narratives in several places in the	The difference between observed PM _{2.5} in
the paper. I believe adding a discussion about	revised manuscript.	January and that in July is between 1.8 µg m ⁻³ to
the contribution of local emission to the		31.8 μg m ⁻³ , the largest in southern Taiwan (CY,
measured PM2.5 can be beneficial for drawing		TN, and ZY) followed by central (ZM and ML)
fair conclusions.		and northern Taiwan (BQ and PZ), and the
		smallest at HC. Since the LRT in the prevailing
		northeast wind should have more impact on

nern Taiwan than downstrea
an (Chuang et al., 2018), th
LP has more impact on southe
orthern Taiwan. Chuang et
estimate the contribution of LI
prevailing northeast wind fro
. The contribution of LP
al, and southern Taiwan we
70% for ordinary events.
at HC is lower compared to t
because it is located in a sm
e other stations that were in lar
ggests HC is influenced by t
d area emissions and backgrou
ven if we ignore the LP a
kground atmosphere is the or
for HC, from Table 2, it
t the contributions of loc
orthern (BQ and PZ), central (N
southern Taiwan (CY, TN, a
42%, 54–63%, and 75–78%
2–32%, 33–48%, and 36–39%
ly. However, the PM _{2.5} levels
uch higher than those in July d
FEAH.
-295

	Comparing Fig. 5(f-1) with Fig 5(f-2)-Fig
	5(f-3), it is obvious that the PM _{2.5} of ZM was
	produced by local pollution, i.e., the downward
	diffusion of VDIF, which probably came from
	northern Taiwan and was removed through
	HADV to further southern Taiwan under the
	prevailing north wind.
	One line 376-378
	We can consider the Asian continent has
	almost no impact on Taiwan in July. In other
	words, the origin of $PM_{2.5}$ in Taiwan in July is
	local pollution and the background atmosphere.
	On line 385-386
	This suggested the PM _{2.5} was mainly from
	local pollution and background atmosphere in
	July.
	On line 404-405
	In addition, the proportions of nitrate in
	$PM_{2.5}$ at BQ, ZM, and CY were higher than
	those over #1 - #4. That should be caused by the
	local pollution.
	On line 440-442
	In July 2017, the influence from the three
	industrial regions on the PM2.5 was ignorable in
	Taiwan, i.e., PM _{2.5} mainly came from local or
	upwind adjacent sources and the background

		atmosphere unless there was special weather
		system, e.g., a thermal low nearby that may
		carry small amounts of pollutants from PRDIR
		to Taiwan.
2) I recommend adding backtrajectory analysis	The authors have added backward trajectory figures by using	Fig. S4.7
using HYSPLIT when discussing transport	HYSPLIT modeling results on Jan 13th, Jan 9th, July 18th, and July 30th	
patterns on specific days. I added more details	in Fig. S4.7.	
in the specific comments section.	Yes, the authors agree that backward trajectory is useful for LRT	
	analysis. However, the users need to be careful when terrain is near the	
	location of origin and when the wind field is chaotic around the origin.	
3) The paper misses a lot of important	Thanks for the reviewer's suggestions. The authors have added a Table	Model configuration: please refer to
information such as the main configurations of	(Supplement 1) describing the model configuration, emission maps	Supplement 1.
the model, details on the emission inventory	(Supplement 2), revised the way of display the location of measurements	Details on the Emission inventory: please
used, and information about the location of	(Fig. 1), and added narratives of measuring equipment (section 2.1).	refer to Supplement 2.
measurement sites and equipment. I highly		Information about the location of
recommend adding these to the paper for the		measurement sites: Fig. 1.
purpose of reliability and reproducibility of the		Information about the equipment: on line
work.		148-152
		The Propeller Wind Direction Anemometer
		(Komatsu's Geophysical Instruments), Isuzu
		Seisakusho 3-3122 Quartz Precision Thermo-
		Hygrograph (Isuzu Seisakusho Co.,Ltd.), and
		R.M. Young 05103 Pt-Electrical Resistance
		Thermometer (R.M. Young Company) were
		used to monitor the wind speed/direction,
		relative humidity and air temperature,

		respectively. The measurement equipment was
		under routine calibration by the Taiwan CWB
		(https://www.cwb.gov.tw/Data/knowledge/anno
		unce/MIC.pdf).
		On line 157-162
		The automatic meteorological and air quality
		data are provided in hourly recordings to the
		public.
		In this study, we also compared the modeling
		results with the $PM_{2.5}$ composition analyzed by
		Lee et al. (2017) at BQ, ZM, and CY_a for Jan 13
		and July 18, 2017. They used the MetOne SASS
		PM _{2.5} samplers (Met One Instruments, Inc.) for
		collection of the $PM_{2.5}$ composition samples at
		six stations every six days. The quality
		assurance of the PM _{2.5} monitoring and analysis
		is referred to chapter 4 of Lee et al. (2017).
4) Were there any seasonal or diurnal cycle in	Yes, there is seasonal/diurnal cycles for anthropogenic and biogenic	
the emissions? Are January and July	emissions, only diurnal for aircraft emissions.	
emissions different?	While for remaining emissions, there is no seasonal/diurnal variation	
	like shipping emissions.	
	For biomass burning emissions, it directly depends on the FINN	
	database.	
	In summary, yes, the emissions for January and July are slightly	
	different.	

5) Major changes are required for the figures.	Thanks for the reviewer's comments. The authors have tried their best	
The texts are too small in many of them, the	to redraw nearly all of the figures accordingly to those specific comments.	
color bar can be improved. I added more		
comments about each figure in specific		
comments.		
6) I did not make comments on the grammatical	Before submitting the revised manuscript, the authors have asked a	
mistakes, incomplete sentences, and	professional English language editing company to revise the English	
inconsistencies as there were too many.	writing of the manuscript.	
Specific Comments		
1. The first two paragraphs in the Introduction	The authors have asked a professional English language editing	
section	company to revise the English writing before submitting the revised	
need to be re-written with better English.	manuscript.	
2. L69. The reference at the end of the sentence	The reference "Byuan and Schere, 2006" is for CMAQ model which	
(Byuan and Schere, 2006) does not match the	shows for the first time in the manuscript.	
reference at the beginning of the sentence		
(Kwok et al. (2013)).		
3. L65. Consider starting a new paragraph when	Thanks for the reviewer's suggestion. The authors have started a new	
describing the AM method.	paragraph for the AM method.	
4. L65-75. After reading this section I was	The authors agree with the reviewer's opinion that AM method could	On lien 78-82
under the assumption that the AM method	be better than BFM method for this study. At the moment we executed	The CTM, especially the AM method, is able
performs better and was used in this study. At	the simulation, we haven't resolved using the AM method yet. Therefore,	to give clearer contributions from a specific
the end of this paragraph please mention	the authors applied the BFM in this study.	source compared to the TS method or the BFM
that you did not use the AM method and used	The authors have added the description that they suggest to use AM	method. However, the AM method requires
the BFM method instead.	method for future studies.	large computer resources and complicated
		preparation of individual emission files.
		Therefore, the AM method was not used in this

		study and we selected BFM instead. Despite
		this, the AM method should be widely used
		when computer resources are not a problem.
5. L86nitrate and sulfate: : : Please be	The authors have rewritten that narrative to avoid misleading.	On line 94-95
consistent and either use the chemical formula		They found the proportion of nitrate in $PM_{2,5}$
or the name in the paper or both.		would decrease but that of sulfate would
		increase along the transport path.
6. L99. When is the northeast monsoon period?	Chuang et al. (2018) have analyzed the northeast monsoon PM2.5	On line 41-42
Which season/months?	level from 2006-2015 in Taiwan. It is noted that the northeast monsoon	The observations of meteorology from the
	has to be connected to anticyclones originating from the Siberian-	Taiwan Central Weather Bureau showed that the
	Mongolian. The northeast monsoon usually started from Autumn to about	winter monsoon usually extends from
	one month after Spring, i.e., from September to May of next year.	September to May (Chuang et al., 2018).
	Chuang, M.T., Chung-Te Lee, Hui-Chun Hsu, 2018. Quantifying PM2.5	
	from long-range transport and local pollution in Taiwan during winter	
	monsoon: An efficient estimation method. Journal of Environmental	
	Management 227, 10-22.	
7. L111. Change Brir to BRIR : : : same for	The authors have followed the reviewer's suggestion and have	On line 120-123
other emission regions.	changed Brir to BRIR and other similar nouns.	It applied the CTM with the BFM method to
		simulate four scenarios: Base (control case with
		integrated emissions), BRIR (all emissions
		except BRIR), YRDIR (all emissions except
		YRDIR), and <i>PRDIR</i> (all emissions except
		PRDIR) scenarios and thus resulted in the
		determining the contributions of each industrial
		region.

		On line 126-127
		Therefore, we can roughly estimate the
		contributions of BRIR, YRDIR, and PRDIR to
		$PM_{2.5}$ with the difference between the <i>Base</i> case
		and the <mark>BRIR</mark> , <mark>YRDIR</mark> , and <mark>PRDIR</mark> cases.
8. L115. What do you mean by "meandering	Thanks the reviewer for pointing out the confusion. The authors have	On line 125-126
movement"? You can here refer toprevious	rewritten that sentence.	This study shows that the pollutants from
studies that showed this.		those three industrial regions are transported to
		Taiwan along with the northeast monsoon.
9. L120. I suggest moving the discussion of	Thanks for the reviewer's suggestion. The authors have written a	On line 40-43
monsoon seasons earlier in the introduction	discussion of monsoon seasons in the introduction section.	Chang et al. (2011) described the East Asian
section.		Winter monsoon is characterized by the cold-
		core Siberian-Mongolian High at the surface.
		The observations of meteorology from the
		Taiwan Central Weather Bureau showed that the
		winter monsoon usually extends from
		September to May (Chuang et al., 2018). During
		the winter monsoon period, northeast wind
		prevails over East Asia and transports East Asian
		haze (EAH) to downwind regions, including
		Korea, Japan, and Taiwan (Zhang et al., 2015).
10. L128. In addition, year 2017 : : :. I don't	The authors have rewritten the narrative.	On line 138-141
understand this sentence.		In previous studies (Zheng et al., 2018;
		Chuang et al., 2018), the anthropogenic
		emissions in China have obviously decreased
		since 2013; therefore, to show the difference of

		<mark>transport between winter and summer,</mark> this study
		chose January and July 2017 to represent the
		LRT in the winter and summer period and the
		contrast between them, with more discussion on
		the winter transport due to greater impact of
		EAH.
11. 2.1. Geographical location of	Actually the geographical locations of meteorological and air quality	The caption of Figure1
meteorological : : : Are stations with the same	stations with the same name is not the same but in the same town or city.	Figure 1: Geographic location of three
names (for example #5 and #13) in the same	That's why they have the same name.	major industrial regions (BRIR (blue line
locations? In the text, you use the station names	Thanks for the reviewer's opinion. The authors have removed the	enclosed region), YRDIR (green) and
but in Fig 1, you used the numbers. To find the	numbers for meteorological and air quality stations in section 2.1 and the	PRDIR (orange)) in East Asia and
location of each station in Fig 1 readers must go	caption of Fig. 1.	meteorological and air quality stations in
back and forth between section 2.1, fig 1 and		Taiwan. Meteorological stations: PJY, TPE,
the text. Please be consistent and either use		CP, TC, CY _m , TN _m , KH, and HC _m ; air
numbers or names in figures, tables, and text.		quality stations: <mark>BQ, PZ, ML, ZM, CY_a,</mark>
		TN _a , ZY, and HC _a . The numbers in red
		along the coast of East China <mark>#1, #2, #3, and</mark>
		<mark>#4</mark> , represent the locations of <mark>Bohai sea, East</mark>
		china Sea, Taiwan Strait, and northern
		South China Sea, respectively. The red line
		is the cross-section plot for Figure 4.
		On line 144-148
		For meteorology evaluation; we chose eight
		representative stations operated and maintained
		by the Taiwan Central Weather Bureau (CWB):
		Peng Jiayu (<mark>PJY in Fig. 1</mark>), Taipei (<mark>TPE in Fig.</mark>

		1) Chupei (CP in Fig. 1) Taichung (TC in Fig.
		1) Chiavi (CV in Fig. 1) Tainan (TV in Fig.
		1) Vachaiung (VII in Fig. 1), raman (110m in Fig.
		T), Kaonsiung (Kri III Fig. 1), and Hengenun
		$(HC_m \text{ in Fig. I})$ stations to evaluate the
		modeling performance of temperature, relative
		humidity, wind speed, and wind direction.
		On line 153-156
		Since most residents live in the relatively flat
		western Taiwan, the observations of air quality
		monitoring stations operated and maintained by
		the Taiwan Environmental Protection Agency
		(TEPA) at the Banqiao (BQ in Fig. 1), Pingzhen
		(<mark>PZ in Fig. 1</mark>), Miaoli (<mark>ML in Fig. 1</mark>),
		Zhongming (ZM in Fig. 1), Chiayi (CY _a in Fig.
		1), Tainan (<mark>TN_a in Fig. 1</mark>), Zuoying (<mark>ZY in Fig.</mark>
		1), and Hengchun (HC_a in Fig. 1) stations were
		chosen for $PM_{2.5}$ evaluation.
12. 2.1. Geographical location of	The authors have found out the information of measurement	On line 148-152
meteorological : : : Please provide more	equipment of wind, temperature, relative humidity, and PM2.5. The	The Propeller Wind Direction Anemometer
information about the measuring equipment, the	temporal resolution of data is hourly.	(Komatsu's Geophysical Instruments), Isuzu
temporal resolution of data and reference to the	As for manual sampleing, Lee et al. (2017) used the MetOne SASS	Seisakusho 3-3122 Quartz Precision Thermo-
measurement data used.	PM _{2.5} sampler (Met One Instruments, Inc) to collect PM _{2.5} at six stations	Hygrograph (Isuzu Seisakusho Co.,Ltd.), and
	every six days. In addition to $PM_{2.5}$ mass, they analyzed the inorganic	R.M. Young 05103 Pt-Electrical Resistance
	ions and organic/element carbon for all the PM2.5 samples.	Thermometer (R.M. Young Company) were
		used to monitor the wind speed/direction,
		relative humidity and air temperature,

		respectively. The measurement equipment was
		under routine calibration by the Taiwan CWB
		(https://www.cwb.gov.tw/Data/knowledge/anno
		unce/MIC.pdf).
		On line 156-162
		The METONE_BAM1020 particulate
		monitor (Met One Instruments, Inc.) was used to
		monitor PM _{2.5} . The automatic meteorological
		and air quality data are provided in hourly
		recordings to the public.
		In this study, we also compared the modeling
		results with the PM _{2.5} composition analyzed by
		Lee et al. (2017) at BQ, ZM, and CY_a for Jan 13
		and July 18, 2017. They used the MetOne SASS
		PM _{2.5} samplers (Met One Instruments, Inc.) for
		collection of the PM _{2.5} composition samples at
		six stations every six days. The quality
		assurance of the PM _{2.5} monitoring and analysis
		is referred to chapter 4 of Lee et al. (2017).
13. L142. : : :NCEP diagnostic fields. Please	Thanks for the reviewer's remainder. The authors have supplemented	On line 165-167
use a reference for this data set. There is doi	the reference for that data set.	The initial meteorological condition was
available for this data set.		from ds083.3 NCEP GDAS/FNL 0.25 Degree
		Global Tropospheric Analyses and Forecast
		Grids (DOI: 10.5065/D65Q4T4Z,
		https://rda.ucar.edu/datasets/ds083.3/).
14. L142. Which nesting method did you use?	For WRF modeling, two-way was used; for CMAQ, one-way was	On line 165

One or two-way?	used. The authors have supplemented that narrative in the revised	The WRF and CMAQ modeling used two-
	manuscript.	way and one-way nesting methods, respectively,
		in this study.
15. L144. What is the model's top?	The authors have supplemented the information of model's top in the	On line 170
	revised manuscript.	The model's top is set to 50 hPa.
16. L145. What is the temporal and special	The temporal resolution of emissions is 1 hour. While the spatial	
resolution of the emission inventories	resolution of MIX and TEDS10.0 are 45 km and 1 km, respectively. We	
used? Is there a diurnal or seasonal variability?	regrided the data to fit the design of model resolution.	
	For anthropogenic (like industry, power plants, residential, and	
	transportation) and biogenic emissions, there are diurnal and seasonal	
	variability. The temporal profile outside Taiwan regions is provided by Li	
	et al. (2017). While the temporal profile in Taiwan is partly from TEPA	
	(2017) and partly from government's publications.	
17. L150. Why different biogenic inventories	In Taiwan, we can get plant species distribution data from Forestry	
were used for different domains?	Bureau, Council of Agriculture. The number of plant species or the	
	accordingly emission factors in database for Taiwan is far more than that	
	in MEGAN v2.1. Therefore, we can apply the BEIS in SMOKE emission	
	processing system to produce biogenic emissions for domain. However,	
	for regions outside Taiwan, we don't find such detailed database;	
	therefore, we can only apply the MEGAN model to produce biogenic	
	emission.	
18. 2.2 Models and modeling configuration	Thanks for the reviewer's suggestion. The authors have added the	On line 179-181
Please add a table (can be in SI) with	modeling configuration in Supplement 1.	The model configurations of physics and
all main WRF and CMAQ configurations and	The spin-up was 10 days for the simulations.	chemistry for this study are listed in Supplement
schemes such as PBL scheme, LSM,	For chemical modeling, we used a very clean initial and boundary	1; and the emission maps of e.g., NO for four
	conditions in which the pollutants concentrations are about the same	domains are referred to Supplement 2.

cumulus scheme, How long was the spin-up?	magnitude as that based on year 2010, provided by MICS_Asia modeling	
What did you use for chemical initial and	group. In our experience, such low pollutants concentrations has nearly	
boundary conditions?	impact on the modeling results after 10 days spin-up.	
19. 2.2 Models and modeling configuration Did	Yes, this study has applied the FDDA in the simulation. The grid	On line 170-172
you do any nudging or re-initialization	nudging was used for domain 1, 2, and 3. While the observation nudging	In order to get a better meteorological field,
of the model? Please add details to this section.	was used for domain 4 with meteorological data from 26 surface	the WRF modeling applied four-dimensional
	meteorological stations and 2 radio sonde stations.	data assimilation with grid nudging for domains
	No re-initialization was used.	1, 2, and 3, and with observation nudging for
		domain 4.
20. L161. Is there any RH data available? If yes	The authors have added the modeling performance of RH in Table 1.	One line 199-204
then adding discussion on model	Furthermore, they also added the comparison of simulated and observed	Although there is no benchmark for relative
performance in capturing RH can be very	RH in <mark>Fig. S4.3</mark> .	humidity in Taiwan, the performance of
beneficial for the paper.	The discussion of modeling RH performance is supplemented in	simulated relative humidity is good. The relative
	section 2.3.1.	humidity in KH was slightly overestimated
		compared with the other stations but still
		acceptable. The comparisons of the observed
		and simulated temperature, wind speed, relative
		humidity, and wind direction are illustrated in
		Fig. S4.1, S4.2, <mark>S4.3</mark> , and S4.4.
21. L167: : :which is due to the smoother	The star symbol indicates the location of the HC station. From the	
terrains: : : In Fig 1, HC is located very close to	google map, it is obviously that the complex terrain is east of HC.	
the sea. Is there a complex terrain in that	Mountains around 500 meters on the east of HC stations reduced to	
region? It is not very clear in the figure.	around 100 to 200 meters in high resolution topographic height database	
Can smoother terrain in the model impact other	of WPS preprocessing (preprocessor of WRF modeling). It the simulation	
stations as well?	could not totally reflect the effect of complex terrain blocking. Therefore,	
	the wind speed was overestimated at HC.	

	FURTE FURT FURTE FURT FURTE FURT FURT FURT
	Except HC, other stations chosen for performance evaluation is on flat
	plain far from complex terrain. The impact of smoother terrain should be
	less for other stations.
22. L169. Are other stations influenced by	Although the Central Weather Bureau (CMB) claims that their
buildings?	meteorological stations are not influenced by surrounding building at all.
	They also claim if the CMB stations are set up on flat ground, there is no
	building nearby. If not, the stations would be set up on the top of
	buildings. But, according to Lin et al. (2017),
	http://photino.cwb.gov.tw/rdcweb/lib/cd/cd03cons/compilation/2017/10
	6M03-final.pdf), strictly speaking, it is hard to say whether other
	meteorological stations was influenced by nearby buildings nowadays. In
	other words, it is hard to say the micro-scale climate around
	meteorological stations is not influenced by nearby buildings. After all,
	the nearby buildings indeed would influence the wind field around the

	stations even the adjacent building is not right next to stations. Moreover,	
	nowadays the urban heat/cool island effect is getting worse in modern	
	metropolitans which may have exerted impact on the observed	
	temperature at stations. Then it is impossible to say that the stations are	
	100% not influenced by near buildings. While, Lin et al. (2017)	
	concluded, basically, the meteorological observations at the	
	meteorological stations are still representative for the meteorological	
	conditions at high confidence.	
	Lin, 2017. Evaluation and countermeasures of the influence of	
	metropolitan environment on the meteorological observation, Taiwan	
	Central Weather Bureau report, in Chinese, MOTC-CWB-106-M-03,	
	http://photino.cwb.gov.tw/rdcweb/lib/cd/cd03cons/compilation/2017/	
	106M03-final.pdf, 93 pp.	
23. L173. Please use better quality plots for	Thanks for the reviewer's opinion. The authors have redrawn the	Fig. S4.4
figure S2.3. Also, be consistent in the title	figure S2.3 (current Fig. S4.4 in the revised manuscript) and revised the	
of subplots.	caption to be consistent with the y-axis title.	
	The wind vectors in the new figures are much clear now.	
24. Table 1 and table 2. Please add mean model	The authors have added mean model and observed values in the new	Table 1 and Table 2
and observed values to these tables This can	Table 1 and Table 2 in the revised manuscript.	
help better compare January and June values		
and values in different stations.		
25. L173. 2.3.2. Evaluation of CMAQ chemical	The authors have added emission maps for four domains in	supplement 2
modeling: : : Please add an emission map. Are	supplement 2.	
any of the stations close to major emission	The locations of evaluated air quality monitoring stations are	
sources?	embedded in grids. They are mostly influenced directly by mobile and	

	area sources but should be far from point sources.	
26. L173. 2.3.2. Evaluation of CMAQ chemical	The authors have added the narrative that $PM_{2.5}$ values are very low in	On line 215-216
modeling: : : Please mention that PM2.5 values	HC compared to other stations.	The PM _{2.5} at HC is lower compared to the
are very low in HC compared to other stations		other stations because it is located in a small
(Fig S2.4)		town, unlike the other stations that were in large
		cities. This suggests HC is influenced by the
		local mobile and area emissions and background
		atmosphere.
27. L173. 2.3.2. Evaluation of CMAQ chemical	The authors have added a discussion on the difference of PM _{2.5} values	On 209-220
modeling: : : Is there a significant	in January and July.	The difference between observed PM _{2.5} in
difference between PM2.5 values in January		January and that in July is between 1.8 µg m ⁻³ to
compared to June? Results and Discussion		<mark>31.8 μg m⁻³, the largest in southern Taiwan (CY,</mark>
		TN, and ZY) followed by central (ZM and ML)
		and northern Taiwan (BQ and PZ), and the
		smallest at HC. Since the LRT in the prevailing
		northeast wind should have more impact on
		upstream northern Taiwan than downstream
		southern Taiwan (Chuang et al., 2018), this
		reveals that the LP has more impact on southern
		Taiwan than northern Taiwan. Chuang et al.
		(2018) used to estimate the contribution of LRT
		and LP under prevailing northeast wind from
		2006 to 2015. The contribution of LP to
		northern, central, and southern Taiwan were
		40%, 60%, and 70% for ordinary events.
		The $PM_{2.5}$ at HC is lower compared to the

		other stations because it is located in a small
		town, unlike the other stations that were in large
		cities. This suggests HC is influenced by the
		local mobile and area emissions and background
		atmosphere. Even if we ignore the LP and
		assume the background atmosphere is the only
		PM _{2.5} source for HC, from Table 2, it is
		estimated that the contributions of local
		pollution for northern (BQ and PZ), central (ML
		and ZM), and southern Taiwan (CY, TN, and
		ZY) were 41–42%, 54–63%, and 75–78% in
		January, and 22–32%, 33–48%, and 36–39% in
		July, respectively. However, the PM _{2.5} levels in
		January were much higher than those in July due
		to the impact of EAH.
		On line 366
		Fig. 10(a) and Fig. 10(b) reveal that the
		impact of BRIR on PM2.5 in Taiwan was
		negligible in July compared with January.
28. L185. How did you calculate 5%? Is this for	The impact expressed in percentage is the ratio of difference between	On line 226-227
the whole island or 5% is the maximum value?	BASE and zero-out case to BASE case.	The impact was higher in northern Taiwan,
	The maximum impact of about 5 % is for northern Taiwan. Actually the	approximately 5% of total $PM_{2.5}$.
	magnitude is between 4.6% to 5.3% in the metropolitan Taipei area (The	
	largest city in north Taiwan). We think it is ok to say "approximately" 5%	
	for northern Taiwan.	

29. Fig 2. Please consider using a better color	The authors have redrawn Fig. 2 and Fig. 10 according to reviewer's	Fig. 2 and Fig. 10
bar. Why negative values for the color bar? Use	comments. More color scales are used especially for low values. Besides,	
more colors for 0-2ug/m3 (right column) and 0-	negative values in the color bar has been eliminated.	
5% (left column).		
30. L186. Fig 3 only shows three stations, not	The authors drew Fig. 3 for seven stations in the original manuscript.	
seven. Why did you use only these	Because reviewer#1 thought Fig. 3 was a bit busy and suggested to	
stations? How far are they from major local	remain few locations out of seven to avoid redundancy; therefore, the	
emission sources?	authors chose three stations: BQ, ZM, and CY because PM _{2.5} sampling	
	were implemented at these three stations, which is discussed in section	
	3.6.	
	Basically, these three stations are all located in cities. Therefore, they	
	are influenced by mobile and area sources but they are a bit distant from	
	point sources.	
31. L187. This is not true for PRDIB	The authors agree with reviewer#2's opinion and have removed that	
contribution which is higher in central and	sentence.	
southern Taiwan (C-2 and C-3) compared to		
northern Taiwan (C-1).		
32. L189. January 8th or 9th? 14th or 13th? In	The authors picked January 13th for two reasons. First, according to	On line 310-312
Fig 3 column a 9th, 14th, 20th, in	their experience, January 13th is a classical common LRT PM _{2.5} event.	On most days, northeast wind prevailed over
column b 9th, 13th, 20th had the highest PM2.5	The $PM_{2.5}$ in Taiwan is a mix of LRT and LP. The impact of LRT on	East Asia. In this section, we chose January 13,
concentrations and contribution from BRIB and	northern Taiwan is obviously higher than central and southern Taiwan.	2017 to discuss the physical and chemical
YRDIB. Why did you pick 9th and 13th?	YRDIR get much attention because it has a great influence on Taiwan.	processes in detail because it is a classical
Throughout the text, different days were	Second, they got $PM_{2.5}$ sampling on that day. Lee et al. (2017) executed	moderate EAH episode in which $PM_{2.5}$ sampling

mentioned which can be confusing for the	$PM_{2.5}$ sampling every six days instead every day. While Jan 9th was	was implemented and will be discussed in
readers. Please be consistent and clearly justify	selected because it is indeed a strong LRT PM2.5 event. On Jan 9th, the	section 3.6.
your choice of Jan 9th and 13th.	impact of EAH on central and southern Taiwan is comparable to northern	On line 348-349
	Taiwan. However, it is pity that there is no PM2.5 sampling on Jan 9th.	The severe EAH episodes always go along
		with the arrival of strong anticyclones (Fig.
	Lee, C. T., Wang, J. L., Chou, C. C. K., Chang, S. Y., Hsiao, T. C., and	6(b)). This study chose January 9th to discuss
	Hsu, W. C.: Fine suspended particles (PM _{2.5}) compositions	because of its largest impact on January 2017.
	observations and analysis project for 2016 and 2017, EPA-105-U102-	
	03-A284,	
	https://epq.epa.gov.tw/EPQ_resultDetail.aspx?proj_id=1051435574	
	&recno=&document_id=19986#tab3, in Chinese, 2017.	
33. L 195. What do you mean by almost the	The authors have rewritten the narrative.	On line 232-234
same? Please be more specific.		For the daily mean influence, the impact of
		YRDIR was also higher than BRIR and the
		influencing period were almost the same for
		both regions because EAH originated from
		YRDIR and BRIR arrived in Taiwan one after
		another under the prevailing northeast wind
		(Fig. 3(a-1)-3(a-3), Fig. 3(b-1)-3(b-3)).
34. L196. : : :could reach : : : In which stations?	Thanks for the reviewer2#'s opinion. The authors have modified the	On line 19-20
6-8 ug/m3 and 9-12ug/m3, why giving a range?	value to 8 and 11 μ g m ⁻³ instead of a range.	When the Asian anticyclone moved from the
		Asian continent to the West Pacific, e.g., on Jan
		9, 2017, the contributions from BRIR and
		YRDIR to northern Taiwan could reach <mark>8</mark> and 11
		$\mu g m^{-3}$.

		On line 235-236
		In particular, the contributions from BRIR
		and YRDIR to northern Taiwan could reach 8
		and 11 μ g m ⁻³ on Jan 9, 2017.
35. L200. Please show where Fujian and	Thanks the reviewer#2's reminder. The authors have added F and G	The caption of Figure1
Guangdong are in Fig 2.	to indicate Fujian and Guangdong province in Fig. 1 and added them in	F and G indicate the location of Fujian and
	the caption of that figure.	Guangdong province, respectively.
36. L202. Fig. 4. There are two red lines in Fig.	Thanks the reviewer#2 pointing out the extra red line. The authors	
1. Did you use both of them? Please	have removed the unneeded one.	
clearly mention this in the text.		
37. L214. Locations #17-20 are missing from	Thanks the reviewer#2 pointing out the error. The authors somehow	Fig. 1
the updated Fig 1.	made a mistake in the updated version of manuscript. Currently the	
	authors have change #17-20 to #1-4 in Fig. 1 in the revised manuscript.	
38. L 214. Please mention that you did not	The authors have added the narratives that those physical and	On line 261-262.
evaluate model performance (transport and	chemical processes are all based on the modeling results and no	It should be noted that each term resolved by
chemistry) in these locations.	evaluation of such processes were made.	the process analysis is based on modeling results
		and no evaluation of such processes was
		available.
39. L224. The positive and negative : : : I don't	Sorry that our writing led to reviewer#2's confusion. The authors have	On line 265-266
understand this sentence	rewritten that sentence in the revised manuscript.	The physical or chemical terms in Fig 5 (a-1)
		and Fig. (a-2) did not always appeal
		synchronously, and their proportions in total
		were not equal.
40. Fig. 5. What does column 1 represent?	The authors have emphasized that the column 1 is for base case in the	Fig. 5
What do you mean by contribution of total	title of each subplots and the caption of Fig. 5.	
emission? Do you mean the base case?		

41. Fig. 5. Please add titles to the subplots. Or	The authors have added titles for subplots of Fig. 5, Fig. 8, Fig. 9.	Fig. 5, Fig. 8, Fig. 9
at least put titles for each row and column. It is		
very difficult to interpret this figure.		
42. L226. Can you be more specific about the	When aerosol plume moves from high latitude regions to low latitude	On line 268-270
evaporation of ammonium nitrate in PM2.5	regions, the ammonia nitrate would evaporate from aerosol phase to gas	The removal process is likely caused by the
when moving from high latitude to low latitude	phase due to increasing ambient temperature. This process has been	evaporation of ammonium nitrate in the $PM_{2.5}$
regions?	simulated by Chuang et al. (2008b) already.	plume moving from high latitude regions to low
		latitude regions through increasing ambient
		temperature (Stelson and Seinfeld, 1982;
		Chuang et al., 2008b).
43. L245. I cannot distinguish between ZADV	The authors have redrawn Fig. 5, Fig. 8, Fig. 9, Fig. S4.9, and Fig.	Fig. 5 <mark>, Fig. 8</mark> , <mark>Fig. 9</mark> , Fig. S4.9, and Fig. S4.11
and CHEM in Fig 5. Use different colors	S4.11 in which the color of ZADV has been change to yellow.	
44. Fig 5e-1. Any comment on why the daily	The production term is mainly HADV and AERO, which indicate the	
concentration change is much higher in BQ	LRT is the contribution instead of local emissions. The reason why the	
(#10) than others? Does this mean a high	daily concentration change is much higher in BQ is possibly that BQ was	
contribution of local emissions? Please discuss	also influenced by other upstream sources in addition to the three	
this.	industrial regions.	
45. L247. The removal process of : : :. This	The authors have rewritten that sentence and made it clear.	On line 291-292
sentence is unclear.		The removal process of PM _{2.5} at BQ was
		mainly ZADV, which can be explained by BQ
		being located in the Taipei basin and the PM _{2.5}
		is transported up to leave the basin.
46. L250. : : : the PM2.5 of ZM: : : I don't	The authors have rewritten that sentence and made it clear.	On line 292-295
understand this sentence.		Comparing Fig. 5(f-1) with Fig 5(f-2)-Fig
		5(f-3), it is obvious that the PM _{2.5} of ZM was

		produced by local pollution, i.e., the downward
		diffusion of VDIF, which probably came from
		northern Taiwan and was removed through
		HADV to further southern Taiwan under the
		prevailing north wind.
47. L259. For CY: : : Please mention that CY	The authors have mentioned that CY and ZM are closer to each other	On line 257-259
(#14) and ZM (#13) are closer to each	than BQ.	Although CY and ZM are closer to each other
other than BQ (#10).		than BQ, CY was selected due to PM _{2.5} being
		sampled at this station and it is representative
		among many stations in southern Taiwan.
48. 3.2. The physical : : : Please justify why you	Although the local pollution is not the focus of this study, the authors	On line 209-220
chose to only use #10, #14, and #13	have added the discussion of local emissions in the revised manuscript.	The difference between observed PM _{2.5} in
in this section. Please provide a more detailed	They chose BQ, ZM, and CY because PM2.5 sampling were	January and that in July is between 1.8 μ g m ⁻³ to
discussion on the contribution of local	implemented at these three stations.	31.8 μg m ⁻³ , the largest in southern Taiwan (CY,
emissions.		TN, and ZY) followed by central (ZM and ML)
		and northern Taiwan (BQ and PZ), and the
		smallest at HC. Since the LRT in the prevailing
		northeast wind should have more impact on
		upstream northern Taiwan than downstream
		southern Taiwan (Chuang et al., 2018), this
		reveals that the LP has more impact on southern
		Taiwan than northern Taiwan. Chuang et al.
		(2018) used to estimate the contribution of LRT
		and LP under prevailing northeast wind from
		2006 to 2015. The contribution of LP to
		northern, central, and southern Taiwan were

40%, 60%, and 70% for ordinary events.
The PM _{2.5} at HC is lower compared to the
other stations because it is located in a small
town, unlike the other stations that were in large
cities. This suggests HC is influenced by the
local mobile and area emissions and background
atmosphere. Even if we ignore the LP and
assume the background atmosphere is the only
PM _{2.5} source for HC, from Table 2, it is
estimated that the contributions of local
pollution for northern (BQ and PZ), central (ML
and ZM), and southern Taiwan (CY, TN, and
ZY) were 41–42%, 54–63%, and 75–78% in
January, and 22–32%, 33–48%, and 36–39% in
July, respectively. However, the PM _{2.5} levels in
January were much higher than those in July due
to the impact of EAH.
On line 292-295
Comparing Fig. 5(f-1) with Fig 5(f-2)-Fig
5(f-3), it is obvious that the PM _{2.5} of ZM was
produced by local pollution, i.e., the downward
diffusion of VDIF, which probably came from
northern Taiwan and was removed through
HADV to further southern Taiwan under the
prevailing north wind.
One line 376-378

		We can consider the Asian continent has
		almost no impact on Taiwan in July. In other
		words, the origin of PM _{2.5} in Taiwan in July is
		local pollution and the background atmosphere.
		On line 385-386
		This suggested the PM _{2.5} was mainly from
		local pollution and background atmosphere in
		July.
		On line 404-405
		In addition, the proportions of nitrate in
		$PM_{2.5}$ at BQ, ZM, and CY were higher than
		those over #1 - #4. That should be caused by the
		local pollution.
		On line 440-442
		In July 2017, the influence from the three
		industrial regions on the PM2.5 was ignorable in
		Taiwan, i.e., PM _{2.5} mainly came from local or
		upwind adjacent sources and the background
		atmosphere unless there was special weather
		system, e.g., a thermal low nearby that may
		carry small amounts of pollutants from PRDIR
		to Taiwan.
49. L266. The section number is not correct.	Thanks the reviewer#2 for pointing out the error. Jan 13th is a	
Why Jan 13th was discussed before Jan9th?	moderate but Jan 9th is a severe episode. In our experience, a moderate	
How did you classify Jan 13th as a severe	episode usually has more impact on northern Taiwan and less on central	
episode and Jan 9th as a moderate episode?	and southern Taiwan. The occurrence of such moderate cases are much	

		-
	more than the severe cases. However, a strong episode could transport	
	LRT haze all the way to southern Taiwan. Moreover, a severe could bring	
	much more haze than a moderate one. The occurrence of severe cases are	
	usually along with the passing of cold surge.	
50. L274 Fig. 8. Please add the altitude of each	The authors have redrawn Fig. 8, Fig. 9, and Fig. S4.11 and added	Fig. 8, Fig. 9, and <mark>Fig. S4.11</mark>
layer to the figure.	altitude for each layer in the first column of subplots.	
51. L275. The arrival of LRT haze on Jan 14-15	The authors did not chose Jan 14th or 15th but Jan 13th and 9th	
can also be seen in Fig 3.	because they think the contrast between Jan 13th and Jan 9th is obvious.	
	Furthermore, there was PM _{2.5} sampling implemented on Jan 13th.	
52. Fig 8. Again I don't understand why Jan	The authors picked January 13th for two reasons. First, according to	On line 310-312
13th was chosen for this discussion. The	their experience, January 13th is a classical common LRT PM _{2.5} event.	On most days, northeast wind prevailed over
contribution of LRT was small on this day	The $PM_{2.5}$ in Taiwan is a mix of LRT and LP. The impact of LRT on	East Asia. In this section, we chose January 13,
compared to Jan 14th or 15th. Maybe using	northern Taiwan is obviously higher than central and southern Taiwan.	2017 to discuss the physical and chemical
these days for Fig 8 would be more helpful?	While Jan 9th was selected because it is indeed a strong LRT PM2.5	processes in detail because it is a classical
	event. On Jan 9th, the impact of EAH on central and southern Taiwan is	moderate EAH episode in which PM _{2.5} sampling
	comparable to northern Taiwan. However, it is pity that there is no PM2.5	was implemented and will be discussed in
	sampling on Jan 9th. The contrast between Jan 13th and Jan 9th is quite	section 3.6.
	distinct. Second, they got $PM_{2.5}$ sampling on that day. Lee et al. (2017)	
	executed PM _{2.5} sampling every six days instead every day.	
53. L296. Downstream not upstream.	Under northeast wind, BQ is located at upstream of PRDIR.	
54. L266 Analysis of : : : Adding Hysplit back-	The authors have added backward trajectory figures by using	On line 313-314
trajectories released from locations discussed in	HYSPLIT modeling results on Jan 13th, Jan 9th, July 18th, and July 30th	The 72-hour backward trajectory ensemble
this section can be very helpful. It can reveal	in Fig. S4.7 and discussed in the revised manuscript.	starting from BQ/ZM/CY obviously traced back
the trajectory and the origin of the plumes	We chose the ensemble method and reanalysis archived data for the	to the East Asia continent where BRIR and
arrived at each of the locations and add	calculating the backward trajectories.	YRDIR are located (Fig. S4.7(a-1)-(a-3)).
confidence to this discussion.		On line 349-350

		The 72-hour backward trajectory ensemble
		starting from BQ/ZM/CY on January 9th is
		similar to that on January 13th (Fig. S4.7(b-1)-
		(b-3)).
		On line 383-385
		Furthermore, the 72-hour backward
		trajectory ensemble starting from BQ/ZM/CY
		on this day traced back to the clean Southwest
		Pacific, which implied the airflow was
		controlled by the Pacific High (Fig. S4.7(c-1)-
		<mark>(c-3)).</mark>
		On line 387-388
		The 72-hour backward trajectory ensemble
		starting from the end at BQ/ZM/CY went
		through a cyclone near Taiwan and then to the
		South China Sea and Philippines (Fig. S4.7(d-
		<mark>1)-(d-3).</mark>
55. L309. What is vv?	Thanks the reviewer#2 for pointing out this error in the updated	
	version of manuscript. After checking the original manuscript, the authors	
	have removed it.	
56. 3.5 Analysis of the moderate : : : I think it is	The authors have corrected the type that Jan 9th was a severe event	On line 359-362
worth discussing this event further	instead of a moderate one, which should be Jan 13th. The authors have	The higher production of HADV without
(similar to Jan 13th) especially with the high	added discussion regarding to the high values in BQ at lower levels.	AERO near the surface on Jan 9th explains the
values in BQ at lower levels.		massive accumulation of EAH over the Asian
		continent and the rapid movement of
		anticyclone. The strong and fast plume passing

		BQ led to insufficient time for the formation of
		PM _{2.5} at BQ but it could transport EAH further
		to southern ZM and CY.
57. L316 : : : for all cities. Cities or stations	The authors have rewritten that sentence.	On line 368-369
		As illustrated in Fig. S4.8, the daily
		contribution from the three industrial regions to
		western Taiwan was similar for all cities.
58. L325. Why July 18th? I don't see high	On most days of July, the impact of three industrial regions on Taiwan	On line 379-380
PM2.5 concentrations for July 18th in any of	was extremely small because the prevailing wind is southwest or	Take July 18, 2017 as an example, in which
the subplots in row a (Fig. S2.8).	southeast wind. The authors picked July 18th, because they got PM2.5	the $PM_{2.5}$ sampling was implemented, it was
	sampling on that day (Lee et al., 2017).	found that #1 was influenced more by YRDIR
		than BRIR among three industrial regions (Fig.
		<mark>S4.11</mark> (a-1)-(a-4)).
		On line 394-395
		Lee et al. (2017) conducted PM _{2.5} sampling
		at BQ, ZM, and CY every six days in 2017. Only
		the sampling days are suitable for analysis in this
		study.
59. L325. The positive and negative	Thanks the reviewer#2 for pointing out this error in the updated	
contribution : : : Does this refer to July 18th?	version of manuscript. After checking again, the authors have recovered	
This is not shown in any figure.	the figure for July 18th in the supplement, which is the Fig. S4.11 in the	
	revised manuscript.	
60. Fig 2.9 and L330. Please use a better color	The authors have redrawn Fig. 7 and Fig S2.9 of the updated version	Fig. 7 and Fig. S4.10 in the revised
bar. More colors between 0-20 ug/m3.	of manuscript. The latter is current Fig. S4.10 in the revised manuscript.	manuscript.
	In addition, more color scales are added between 0-20 ug m ⁻³ .	

61. How much is the local emission	In this study, the authors did not simulate other cases which can be	On line 209-220
contribution in July and how does this compare	used to estimate the local contribution. But they tried to discuss the	The difference between observed $PM_{2.5}$ in
with January?	impact of local pollutions in the revised manuscript.	January and that in July is between 1.8 μ g m ⁻³ to
		31.8 μg m ⁻³ , the largest in southern Taiwan (CY,
		TN, and ZY) followed by central (ZM and ML)
		and northern Taiwan (BQ and PZ), and the
		smallest at HC. Since the LRT in the prevailing
		northeast wind should have more impact on
		<mark>upstream northern Taiwan than downstream</mark>
		southern Taiwan (Chuang et al., 2018), this
		reveals that the LP has more impact on southern
		Taiwan than northern Taiwan. Chuang et al.
		(2018) used to estimate the contribution of LRT
		and LP under prevailing northeast wind from
		2006 to 2015. The contribution of LP to
		northern, central, and southern Taiwan were
		40%, 60%, and 70% for ordinary events.
		The PM _{2.5} at HC is lower compared to the
		other stations because it is located in a small
		town, unlike the other stations that were in large
		cities. This suggests HC is influenced by the
		local mobile and area emissions and background
		atmosphere. Even if we ignore the LP and
		assume the background atmosphere is the only
		PM _{2.5} source for HC, from Table 2, it is
		estimated that the contributions of local

pollution for northern (BQ and PZ), central (ML
and ZM), and southern Taiwan (CY, TN, and
ZY) were 41–42%, 54–63%, and 75–78% in
January, and 22–32%, 33–48%, and 36–39% in
July, respectively. However, the PM _{2.5} levels in
January were much higher than those in July due
to the impact of EAH.
On line 292-295
Comparing Fig. 5(f-1) with Fig 5(f-2)-Fig
5(f-3), it is obvious that the $PM_{2.5}$ of ZM was
produced by local pollution, i.e., the downward
diffusion of VDIF, which probably came from
northern Taiwan and was removed through
HADV to further southern Taiwan under the
prevailing north wind.
One line 376-378
We can consider the Asian continent has
almost no impact on Taiwan in July. In other
words, the origin of $PM_{2.5}$ in Taiwan in July is
local pollution and the background atmosphere.
On line 385-386
This suggested the PM2.5 was mainly from
local pollution and background atmosphere in
July.
On line 404-405
In addition, the proportions of nitrate in

		PM _{2.5} at BQ, ZM, and CY were higher than
		those over #1 - #4. That should be caused by the
		local pollution.
		On line 440-442
		In July 2017, the influence from the three
		industrial regions on the $PM_{2.5}$ was ignorable in
		Taiwan, i.e., PM _{2.5} mainly came from local or
		upwind adjacent sources and the background
		atmosphere unless there was special weather
		system, e.g., a thermal low nearby that may
		carry small amounts of pollutants from PRDIR
		to Taiwan.
62. L225. Where is Fig 15?	Thanks the reviewer#2 for point out this error. It should be Fig. 11.	On line 395-396
		The sampling from Jan 13th was compared
		with simulated PM _{2.5} compositions, as indicated
		in Fig. <mark>11</mark> .
63. L338. According to the main content: : :.	Jan 13th is a moderate EAH event. The impact of BRIR and YRDIR	On line 398-401
Are you referring to Fig 8? If yes then your	on #19 (#3 in the revised manuscript) and # 20 (#4 in the revised	A <mark>s illustrated in</mark> Fig. 11, on both Jan 12th and
statement is incorrect, BRIR and YRDIR did	manuscript) is not obvious. However, the impact of YRDIR has certain	Jan 13th, the major compositions were sulfate
not have a contribution to #19 (c-2 and c-3) and	impact on the northern Taiwan, BQ site. If the LRT is severe, the impact	and OC for #1 - #4. However, the proportion of
#20 (d-2 and d-3). Looks like Jan 13th is not the	on ZM and CY can be comparable to that on BQ. It suggests that the	nitrate in PM _{2.5} at #1 on Jan 12th was slightly
best day to pick for this discussion. Is this	distance of southward transport is related to the intensity of EAH and	higher than that at #2 but much higher than that
measurement available on Jan 9th or 20th?	moving air masses.	at #3 and #4. This can be explained by the nitrate
	As explained, the authors chose Jan 13th because it is a moderate	evaporating from the aerosol phase to the gas
	event which is often seen in winter period and there is $PM_{2.5}$ sampling on	phase for the $PM_{2.5}$ plume transported from high
	this day. Moreover, the contrast between Jan 13th and Jan 9th was quite	to low latitude regions (Chuang et al., 2008b).

	distinct. Lee et al. (2017) held PM _{2.5} sampling every six days. Therefore,	
	it is a pity there is no measurement available on Jan 9th or 20th.	
	The authors admit that they did not explain correctly. Therefore, they	
	have rewritten the narratives in the revised manuscript.	
64. Fig 11. OC and NH4+ colors are very	The authors have redrawn Fig. 11, Fig. S4.12, and Fig. S4.13 and	Fig. 11, Fig. S4.12, and Fig. S4.13.
similar.	make the colors of OC and NH_4^+ distinguishable.	