Heavy air pollution with the unique “non-stagnant” atmospheric boundary layer in the Yangtze River Middle Basin aggravated by regional PM$_{2.5}$-transport of PM$_{2.5}$ over China

Chao Yu1,2, Tianliang Zhao1,*, Yongqing Bai3,*, Lei Zhang1,4, Shaofei Kong5, Xingna Yu1, Jinhai He1, Chunguang Cui3, Jie Yang1, Yinchang You1, Guoxu Ma1, Ming Wu1, Jiacheng Chang1

1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China

2 Southwest Electric Power Design Institute Co., Ltd of China Power Engineering Consulting Group, Chengdu, 610021, China

3 Institute of Heavy Rain, China Meteorological Administration, Wuhan, 430205, China

4 Chengdu Academy of Environmental Sciences, Chengdu, 610031, China

5 Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences (Wuhan), 430074, Wuhan, China

Correspondence: Tianliang Zhao (tlzhao@nuist.edu.cn); Yongqing Bai (2007byq@163.com)

Abstract: Regional transport of air pollutants controlled by both emission sources and meteorological factors results in a complex source-receptor relationship of air pollution change.
Wuhan, a metropolitan area in the Yangtze River Middle Basin (YRMB) of central China experienced heavy air pollution characterized by excessive PM$_{2.5}$ concentrations reaching 471.1 μg m$^{-3}$ in January 2016. In order to investigate the regional PM$_{2.5}$ transport of PM$_{2.5}$ over China and the meteorological impact on wintertime air pollution in the YRMB area, observational meteorological and other relevant environmental data from January 2016 were analyzed. Our analysis presented the noteworthy cases of heavy PM$_{2.5}$ pollution in the YRMB area with the unique “non-stagnant” meteorological conditions of strong northerly winds, no temperature inversion and additional unstable structures in the atmospheric boundary layer. This unique set of conditions differed from the stagnant meteorological conditions characterized by near-surface weak winds, air temperature inversion, and stable structure in the boundary layer observed in heavy air pollution over most regions in China. The regional transport of PM$_{2.5}$ over central-eastern China aggravated PM$_{2.5}$ levels present in the YRMB area, thus demonstrating the source-receptor relationship between the originating air pollution regions in central-eastern China and the receiving YRMB regions. Furthermore, a backward trajectory simulation using FLEXPART-WRF to integrate the air pollutant emission inventory over China was used to explore the patterns of regional PM$_{2.5}$ transport of PM$_{2.5}$ governed by the strong northerly winds in the cold air activity of the East Asian winter monsoon over central-eastern China, which contributes markedly to the heavy PM$_{2.5}$ pollution in the YRMB area. It was estimated that the regional PM$_{2.5}$ transport of PM$_{2.5}$ of non-local air pollutant emissions could contribute more than 65% of the PM$_{2.5}$ concentrations to the heavy air pollution in the YRMB region during the study period, revealing the importance of the regional transport of air pollutants over central-eastern China in the formation of heavy air pollution over the YRMB region.
Key words: PM$_{2.5}$ pollution; Yangtze River Middle Basin; meteorological condition; regional transport; FLEXPART-WRF

1. Introduction

Air pollution events with excessive ambient PM$_{2.5}$ concentrations have been observed frequently in the central-eastern regions of China in recent years. These events result in serious environmental problems with adverse influence on traffic, human health, climate change and other significant aspects (Fuzzi et al., 2015; An et al., 2019; Nel, 2005). Based on the observations in China, there is a well-established association between haze pollution and high concentrations of PM$_{2.5}$ (particulate matter with an aerodynamical diameter less than 2.5 μm). There is a well-established association in observation of China between the observation of heavy air pollution and high concentrations of PM$_{2.5}$ (particulate matter with an aerodynamical diameter less than 2.5 μm). Air pollution levels are highly dependent on emissions of air pollutants and changes in meteorology (Tie et al., 2017; Xu et al., 2016b; An et al., 2019; Xu et al., 2016a). The accumulation, maintenance and dissipation of haze pollution events are generally determined by meteorological changes (Kan et al., 2012), among which the boundary layer structures play the most important role (Wu et al., 2017). Meteorological conditions of stagnation characterized by near-surface low winds, high humidity and stable boundary layer could govern the periodic variations of haze pollution, which present as typical wintertime air pollution in central-eastern China (Xu et al., 2016b; Zhang et al., 2014; Huang et al., 2018). Four major regions exhibiting haze pollution with high PM$_{2.5}$ concentrations and overall poor air quality are
centered over North China Plain (NCP), Yangtze River Delta (YRD) in East China, Pearl River Delta (PRD) in South China and Sichuan Basin (SCB) in Southwest China (Cheng et al., 2008; Zhang et al., 2012; Deng et al., 2011; Wang et al., 2016; Tie et al., 2017; Qiao et al., 2019).

The source-receptor relationship describes the impacts of emissions from an upwind source region to pollutant concentrations or deposition at a downwind receptor location. Regional transport of source-receptor air pollutants is generally complicated by two types of factors: emission and meteorology. The emission factor includes the emission source strength, chemical transformation and production; the meteorological factor determines the transport pathway from the source to receptor regions, exchanges between boundary layer and free troposphere, the removal processes occurring over the source and receptor regions as well as along the transport pathways. Regional transport of air pollutants with the source-receptor relationship is an important issue in our understanding of changes in air quality. Driven by atmospheric circulation, the regional transport of PM$_{2.5}$ from source regions can deteriorate air quality in the downwind receptor regions, leading to the regional haze pollution observed in a large area over central-eastern China (Chang et al., 2018; Wang et al., 2014; He et al., 2017; Chen et al., 2017b; Hu et al., 2018; Jiang et al., 2015). The Yangtze River Middle Basin (YRMB) in central China is geographically surrounded by four major haze pollution regions in all directions with NCP to the north, the YRD to the east, the PRD to the south and the SCB to the west (see left panel of Fig. 1a). Due to this specialized location of the YRMB as a regional air pollutant transport hub with subbasin topography (see right panel of Fig. 1b), the regional transport of air pollutants driven by the cold air activity of East Asian winter monsoonal winds in central-eastern China could develop a source-receptor relationship between major haze pollution regions (NCP, YRD, etc.) in
However, there are unresolved questions regarding the meteorological processes involved in the regional transport of air pollutants and the pattern of regional transport with contribution as well as a need for an assessment of the contribution of regional transport to the air quality changes observed in the YRMB.

Wuhan, a metropolitan area located in the YRMB, has confronted the problems associated with urban air pollution, especially heavy PM$_{2.5}$ pollution events that occur in the winter (Zhong et al., 2014; Gong et al., 2015; Xu et al., 2017; Tan et al., 2015). Local emissions of air pollutants from urban transportation, industrial exhaust and bio-combustion play an important role in YRMB urban air pollution (Acciai et al., 2017; Zhang et al., 2015). Many observational and modeling studies on air pollution in this urban area have been conducted (Zheng et al., 2019; Wu et al., 2018). However, regional PM$_{2.5}$ transport routes of PM$_{2.5}$ from central-eastern China and its contribution to air pollution over the YRMB are still poorly understood, especially in relation to heavy air pollution episodes in the YRMB area. This study has selected the Wuhan area as a representative area within the YRMB for investigation of the meteorological conditions of air pollution events in January 2016 and the contribution of regional PM$_{2.5}$ transport of PM$_{2.5}$ to heavy air pollution over the YRMB region.

2. Observational analysis

2.1 Data

Wuhan, the capital of Hubei province, is located across the Yangtze River, where its surrounding water network attributed with a humid environment. Wuhan, the capital of Hubei province, is a metropolitan area within the YRMB located across the Yangtze River and its surrounding water-
network attributed with a humid environment (see right panel of Fig. 1b). In order to analyze the
air quality change, the hourly concentrations of air pollutants including PM$_{2.5}$ in January 2016
were collected from sites over central-eastern China, including ten observational sites in Wuhan.
These ten sites include nine urban sites in residential and industrial zones as well as one suburban
site within the China National Air Environmental Monitoring Network. The concentrations of air
pollutants were distributed spatially in less difference over the suburban and urban sites with the
similar patterns and peaks of hourly changes during the heavy pollution events, demonstrating the
regional heavy air pollution in a large area of the YRMB region with the contribution of regional
transport from central-eastern China, while the obviously differences in air pollutant
concentrations were measured with the relative high and low PM$_{2.5}$ concentrations respectively at
urban sites and suburban site during the clean air period, reflecting the important influence of high
air pollutant emission over urban area on local air quality. The PM$_{2.5}$ concentrations averaged over
the ten observational sites were used to characterize the variations of air pollution in January 2016
over this urban area within the YRMB.

The meteorological data of surface observation and air sounding in Wuhan and other
observatories in central-eastern China were obtained from the China Meteorological Data Sharing
Network (http://data.cma.cn/). Meteorological data selected for this study included horizontal
visibility, air temperature, relative humidity, air pressure, and wind speed and direction with
temporal resolutions of 3 h for surface observation and 12 h for sounding observation in order to
analyze the variations of the meteorological conditions in the atmospheric boundary layer in
January 2016.

The ERA (ECMWF ReAnalysis) -Interim reanalysis data of meteorology from the
ECMWF (European Centre for Medium-Range Weather Forecasts) were applied to explore the cold air activity of East Asian winter monsoonal winds in January 2016 and their anomalies during heavy PM$_{2.5}$ pollution over central-eastern China the East Asian winter monsoonal winds and their anomalies over central-eastern China in January 2016.

2.2 Variations in PM$_{2.5}$ concentrations and meteorology in January, 2016

Based on the National Ambient Air Quality Standards of China released by the Ministry of Ecology and Environment of China in 2012 (http://www.mee.gov.cn/), light and heavy air pollution levels of PM$_{2.5}$ are categorized by a daily average PM$_{2.5}$ concentration exceeding $75 \, \mu g\, m^{-3}$ and $150 \, \mu g\, m^{-3}$ in ambient air, respectively. The daily variations of PM$_{2.5}$ concentrations over January 2016 in Wuhan are illustrated in Figure 2a. The average monthly PM$_{2.5}$ concentration reached $105.8 \, \mu g\, m^{-3}$. The national secondary standard was exceeded on 27 days with daily PM$_{2.5}$ concentrations exceeding $75 \, \mu g\, m^{-3}$ during the entire month of January 2016 in Wuhan, indicating that this urban area in the YRMB was suffering under significant PM$_{2.5}$ pollution during this period. As shown in Figure 2a, a 21-day prolonged air pollution event resulted from high levels of daily PM$_{2.5}$ concentrations ($>75 \, \mu g\, m^{-3}$) over the period of January 1 to 21. During this 21-day period of air pollution, three notably heavy air pollution events occurred on January 4, 10-12 and 18 with excessive daily PM$_{2.5}$ concentrations ($>150 \, \mu g\, m^{-3}$); these events are marked as P1, P2 and P3 in Figure 2. Based on the observation in January 2016, we found we observed the interesting phenomenon of an apparent 7-day cycle of heavy air pollution in January 2016, reflecting an important modulation of meteorological oscillation in the East Asian winter monsoon affecting air pollution concentrations observed over the YRMB region.
A period analysis on long-term observation data of air quality could provide more information on air pollution oscillations with meteorological drivers.

Figure 2b presents the hourly changes of PM$_{2.5}$ concentrations for the three heavy air pollution events P1, P2 and P3. The heavy pollution event P1 on January 4 started at 11:00 a.m. (local time is used for all events) and ended at 11:00 p.m. at same day, with an observed PM$_{2.5}$ concentration peak of 471.1 μg m$^{-3}$. The event P2 occurred from 10:00 p.m. on January 10 to 00:00 a.m. on January 12 with a duration of 26 h and two peaks in PM$_{2.5}$ concentrations of 231.4-μg m$^{-3}$ and 210.6-μg m$^{-3}$. The event P3 was observed between 7:00 p.m. on January 17 and 2:00 p.m. on January 18 with an explosive growth rate of 42.9-μg m$^{-3}$ h$^{-1}$ in PM$_{2.5}$ concentrations. Those three heavy PM$_{2.5}$ pollution episodes over the YRMB region were characterized by short durations of less than 26 h from rapid accumulation to fast dissipation.

Using the environmental and meteorological data observed in Wuhan in January 2016, the effects of the meteorological conditions on PM$_{2.5}$ concentrations in the YRMB region were statistically analyzed in regards to hourly variations of surface PM$_{2.5}$ concentrations, near-surface wind speed (WS) and direction (WD), as well as surface air temperature (T), air pressure (P) and relative humidity (RH) (Fig. 3). Among the observed hourly changes in PM$_{2.5}$ concentrations and meteorological elements shown in Figure 3, the obvious positive correlations to surface air temperature and relative humidity, as well as a pronounced negative correlation to surface air pressure and a weak positive correlation to near-surface wind speed were found with the change of PM$_{2.5}$ concentrations in January 2016 (Table 1). The near-surface wind speed associated with East
Asian monsoon has significantly influence concentrations of air pollutants mainly by the changes in weak advection of cold air, in conjunction with strong subsidence and stable atmospheric stratification. Can easily produce a stagnation area in the lower troposphere resulting in regional pollutant accumulations, which are favorable for the development of CEC haze events. In addition, in the presence of high soil moisture, strong surface evaporation results in increases in the near-surface relative humidity, which is also conducive to hygroscopic growth of particles for haze formation; high air temperature and strong solar radiation could enhance chemical reactions and conversions for the formation of secondary aerosols in the atmosphere, precipitation could alter the emissions, and depositions of air pollutants. These observations could reflect the special influences of meteorological factors (winds, air temperature, humidity, precipitation etc) on physical and chemical processes in the ambient atmosphere, in particular that of wind driving air pollutant transport and affecting air quality change in the YRMB region.

These observations could reflect the special influences of meteorological factors on physical and chemical processes in the ambient atmosphere, in particular that of wind driving air pollutant transport and affecting air quality change in the YRMB region.

When we focused on the changes leading to excessive PM$_{2.5}$ levels during these heavy air pollution events, it is noteworthy that all three heavy pollution episodes P1, P2 and P3 were accompanied with strong near-surface wind speeds in the northerly direction, as well as evident turning points in prevailing conditions leading to falling surface air temperatures and increasing surface air pressure (noted as a rectangle with red dashed lines in Fig. 3). The conditions observed during these three heavy pollution episodes reflect the typical meteorological characteristics of cold front activity over the East Asian monsoon region. The southward advance
of a cold front could drive the regional transport of air pollutants over central-eastern China (Kang et al., 2019). Climatologically, a strong northerly wind, low air temperature and high air pressure are typical features of an incursion of cold air during East Asian winter monsoon season in central-eastern China, which could disperse air pollutants and improve air quality in the NCP region (Miao et al., 2018; Xu et al., 2016b). Compared to the meteorological conditions for stagnation with weak winds observed for heavy air pollution events in the major air pollution regions of central-eastern China (Huang et al., 2018; Ding et al., 2017), meteorological conditions with strong near-surface wind were anomalously accompanied with the intensification of PM$_{2.5}$ during heavy air pollution periods over the study area in the YRMB in January 2016 (Fig. 3). This could imply the importance of regional air pollutant transport in worsening air quality over the YRMB, driven by the strong northerly winds of the East Asian winter monsoon over China.

2.3 A unique “non-stagnation” meteorological condition for heavy PM$_{2.5}$ pollution

To further investigate the connection of meteorological elements in the near-surface layer with changes in air quality affected by PM$_{2.5}$ concentrations in the YRMB region, we carried out a more detailed correlation analysis of PM$_{2.5}$ concentrations in Wuhan with near-surface wind speed and air temperature and three different levels of PM$_{2.5}$ concentrations: clean air environment (PM$_{2.5}$ \(<75\mu g \text{ m}^{-3}\)), light air pollution (75\(\mu g \text{ m}^{-3} \leq \text{PM}_{2.5} < 150\mu g \text{ m}^{-3}\)) and heavy air pollution (PM$_{2.5}$ \(\geq 150\mu g \text{ m}^{-3}\)) periods (Table 2). As seen in Table 2, the surface PM$_{2.5}$ concentrations were positively correlated with air temperature, as well as negatively correlated with wind speeds during the periods of clean air environment and light air pollution. It should be emphasized here that a significantly negative correlation (R\(=-0.19\)) of PM$_{2.5}$ concentrations with near-surface wind
speeds for the light air pollution period could indicate that weak winds are favorable for local PM$_{2.5}$ accumulation, reflecting an important effect of local air pollutant emissions on light air pollution periods over the YRMB area. In January 2016, the overall wind speed of Wuhan was weak with a monthly mean value of 2.0 m s$^{-1}$, which could prove beneficial to maintaining the high PM$_{2.5}$ levels in the prolonged air pollution event experienced during January 2016. However, a significantly positive correlation ($R=0.41)$ existed between excessive PM$_{2.5}$ concentrations (PM$_{2.5}>150$ μg m$^{-3}$) and strong near-surface wind speeds during the heavy air pollution period, which was inconsistent with the stagnation meteorological conditions observed in the near-surface layer with weak winds associated with heavy air pollution in eastern China (Cao et al., 2012; Zhang et al., 2016). The meteorology and environment conditions in the YRMB region indicate the close association of heavy air pollution periods with the intensification of regional transport of air pollutants driven by strong winds (Fig. 3, Table 2) reflecting a key role of regional air pollutant transport in the development of the YRMB’s heavy air pollution periods. The conditions in the YRMB region that indicate the close association of heavy air pollution periods with the intensification of regional transport of air pollutants by strong winds (Fig. 3, Table 2), which might reflect a key role of regional air pollutant transport in the development of the YRMB’s heavy air pollution periods.

In order to clearly illustrate the impact of wind speed and direction on the PM$_{2.5}$ concentrations associated with the regional transport of upwind air pollutants, Fig. 4 presents the relation of hourly changes in surface PM$_{2.5}$ concentrations (in color contours) to near-surface wind speed (in radius of round) and direction (in angles of round) in Wuhan during January 2016. As can be seen in Fig. 4, strong northerly winds of the East Asian winter monsoon accompanied...
extremely high PM$_{2.5}$ concentrations (>150 μg m$^{-3}$) during heavy air pollution periods, including the northeast gale that exceeded 5 m s$^{-1}$ during the extreme heavy pollution period with excessive high PM$_{2.5}$ concentrations (>300 μg m$^{-3}$) over the YRMB region. These results reveal a unique meteorological condition of “non-stagnation” with strong winds during events of heavy air pollution over YRMB area. Conversely, the observed PM$_{2.5}$ concentrations, ranging between 75 and 150 μg m$^{-3}$, for light air pollution periods generally corresponded with low wind speed (<2 m s$^{-1}$) in the YRMB region (Fig. 4); therefore, it is the meteorological condition for stagnation characterized by weak winds involved in the accumulation of local air pollutants that is responsible for the YRMB’s light air pollution periods. Meteorological impacts on air quality could include not only the stagnation condition with weak winds and stable boundary layer, but also air temperature, humidity, precipitation, atmospheric radiation etc. in close connection with atmospheric physical and chemical processes. Therefore, meteorological drivers of air quality change are complicated by a series of physical and chemical processes in the atmosphere.

Meteorological impacts that drive change in air quality are complicated by a series of physical and chemical processes in the atmosphere, especially the formation of secondary air pollutants in the wet humid air environment underlying overlying the dense water network in the YRMB region (see right panel of Fig. 1b), thus pointing out the need for further comprehensive study.

As shown in Figure 2a, the heavy pollution periods with the daily average PM$_{2.5}$ concentrations exceeding 150 μg m$^{-3}$ in ambient air, respectively occurred on January 4, 10-12 and 18, and the clean air periods with the daily average PM$_{2.5}$ concentrations below 75 μg m$^{-3}$ occurred on January 22 and 24-27, 2016, in the YRMB region. The air sounding data of Wuhan were used to compare the structures of the atmospheric boundary layer of the heavy air pollution and clean
air periods. Figure 5 presents the vertical profiles of air temperature, wind velocity and potential temperature averaged for the heavy PM$_{2.5}$ pollution and clean air periods in January 2016. It can be clearly seen that the inversion layer of air temperature did not exist during the heavy pollution periods, but a near-surface inversion layer appeared at the height of about 200 m during the clean air periods (Fig. 5a). The comparison of vertical profiles of horizontal wind velocity experienced during the clean air periods further revealed the stronger wind speed observed in the heavy air pollution period below a height of 850 m located in the atmospheric boundary layer exhibiting the vertical structure similar to a low-level jet stream (Fig. 5b); these conditions could conduce the downward mixing of the regionally transported air pollutants and produce a local near-surface accumulation in the YRMB area with elevated ambient PM$_{2.5}$ concentrations, thus contributing to a heavy air pollution affecting a heavy air pollution period. To characterize the atmospheric stability in the boundary layer, the vertical profiles of potential air temperature (θ) were calculated with air temperature and pressure (Fig. 5c). The vertical change rate of θ was used to quantify the static stability of the boundary layer in this study (Oke, 2002; Sheng et al., 2003). A lower vertical change rate of θ generally indicates a decreasing stability or increasing instability of the boundary layer. The averaged static stability values of the near-surface layer below a height of 200 m during the heavy pollution and clean air periods were approximately 4.4·K·km$^{-1}$ and 13.2K km$^{-1}$, respectively (Table 3). This obvious decrease in stability of the boundary layer from clean air to heavy pollution periods reflects an anomalous tendency for instability in the boundary layer during heavy pollution periods in the YRMB region during January 2016.

The meteorological conditions of stagnation characterized by weak wind, temperature inversion and a stable vertical structure of the atmospheric boundary layer is generally accepted as
the typical meteorological drivers for heavy air pollution (An et al., 2019; Ding et al., 2017).

Nevertheless, this study of environmental and meteorological observations in the YRMB region has revealed a unique meteorological condition of “non-stagnation” in the atmospheric boundary layer during heavy air pollution periods characterized by strong wind, lack of an inversion layer and a more unstable structure of the atmospheric boundary layer; these conditions are generally regarded as the typical pattern of atmospheric circulation that facilitates the regional transport of air pollutants from upstream source to downwind receptor regions. Regional PM$_{2.5}$-transport of PM$_{2.5}$—associated with the source-receptor relationship between the air pollution regions in central-eastern China and the YRMB was investigated based on the observational analysis described in Sect. 3.1.

3. Regional transport of PM$_{2.5}$ in heavy air pollution periods

3.1 Changes of PM$_{2.5}$ and winds observed in central-eastern China

The monthly averages of observed PM$_{2.5}$ concentrations and the anomalies of wind speed averaged in three heavy air pollution periods relatively to the monthly mean wind speed in January 2016 over central-eastern China are shown in Figure 6. In January 2016, a large area of central-eastern China experienced air pollution with high levels of PM$_{2.5}$ (>75 μg m$^{-3}$), especially serious in the NCP region and the Fenhe-Weihe Plain in central China (Fig. 6a). As seen in Figure 6, the YRMB region (Site 1, Wuhan) was situated in the downwind southern edge of an observed air pollution area located over central-eastern China, where the northerly winds of the East Asian winter monsoon prevail climatologically in January (Ding, 1994). It is notable that the anomalously stronger northerly winds were observed over the upstream region in central-eastern
China during three periods of wintertime heavy PM$_{2.5}$ pollution in the YRMB region (Fig. 6b).

Driven by the strong northerly winter monsoonal winds (Fig. 6b), the regional transport of air pollutants from the source regions in central-eastern China could largely contribute to wintertime heavy air pollution periods in the downwind receptor region of YRMB.

In order to explore the connection of regional PM$_{2.5}$-transport of PM$_{2.5}$ over central-eastern China to three events of heavy air pollution in the YRMB region, six observational sites were selected from the northwestern, northern and northeastern upwind areas located over central-eastern China (Fig. 6a) to represent the temporal PM$_{2.5}$ and wind variations along the different routes of regional PM$_{2.5}$-transport of PM$_{2.5}$ with the southward incursion of stronger northerly winds of East Asian monsoon across central-eastern China (Fig. 7). The southeastward movement of heavy PM$_{2.5}$ pollution driven by stronger northerly winds from Luoyang and Xinyang to Wuhan (Sites 3, 2, and 1 in Fig. 6) presents a northwestern route of regional PM$_{2.5}$-transport of PM$_{2.5}$ for the heavy air pollution period P1 in the YRMB (see upper panels of Fig. 7). The southwestward advance of PM$_{2.5}$ peaks governed by winter monsoonal winds the from Tongling and Hefei to Wuhan (Sites 5, 6, and 1 in Fig. 6) exerted a significant impact on the heavy air pollution period P2 aggravated by regional transport of PM$_{2.5}$ across Eastern China to the YRMB region (see middle panels of Fig. 7). A northern pathway of regional PM$_{2.5}$-transport of PM$_{2.5}$ connected Zhengzhou and Xinyang to Wuhan (Sites 4, 2, and 1 in Fig. 6) during the YRMB’s heavy air pollution period P3 with anomalously strong northerly winds (see Fig. 6b and lower panels of Fig. 7). It is noteworthy in Fig. 7 that the heavy PM$_{2.5}$ pollution periods at the upstream sites Hefei, Tongling, Luoyang, Xinyang and Zhengzhou (Fig. 6a) were generally dispelled by strong northerly winds, while strong northerly winds could trigger the periods of
heavy PM$_{2.5}$ pollution in the YRMB region (Wuhan, Fig. 6), and such inverse effects of strong winds on heavy air pollution in the source and receptor regions reflect an important role of regional air pollutant transport in worsening air pollution in the YRMB’s receptor region.

The regional PM$_{2.5}$-transport over central-eastern China associated with the source-receptor relationship directing heavy PM$_{2.5}$ pollution to the YRMB region was revealed with observational analysis. Backward trajectory modeling was used to further confirm the patterns of regional PM$_{2.5}$-transport of PM$_{2.5}$ over central-eastern China and the resulting contribution to heavy air pollution in the YRMB region, as described in the following Sects.

3.2 FLEXPART-WRF model

3.2.1 Model description

The Flexible Particle dispersion (FLEXPART) model (Stohl, 2003) is a Lagrange particle diffusion model developed by the Norwegian Institute for Air Research (NIAR). In this model, the trajectory of a large number of particles released from a source is simulated with consideration of the processes of tracer transport, turbulent diffusion, and wet and dry depositions in the atmosphere (Brioude et al., 2013). Applying backward trajectory simulation can determine the distribution of potential source regions that may have an impact on a target point or receptor region (Seibert and Frank, 2003; Zhai et al., 2016; Chen et al., 2017a; Chen et al., 2017b).

Initially, FLEXPART could be driven by the global reanalysis meteorological data obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) or the National Centers of Environmental Prediction (NCEP). For the refined simulation of air pollutant sources and transport, FLEXPART was coupled offline with the Weather Research and Forecasting Model
(WRF) to effectively devise the combined model FLEXPART-WRF (Fast and Easter, 2006), which has been widely used to investigate the potential sources of air pollutants in consideration of environmental change (Stohl, 2003; De Foy et al., 2011; An et al., 2014; Sauvage et al., 2017).

3.2.2 Model configuration

The WRF model was configured with two nested domains. The coarse domain covered the entirety of Asia with a 30 km×30 km horizontal resolution, and the nested fine domain included most of China and surrounding regions with a 10 km×10 km horizontal resolution. The physical parameterizations used in WRF were selected with the Morrison microphysics scheme (Morrison, 2009), the Rapid Radiative Transfer Model (RRTM) scheme for long and short wave radiation (Mlawer et al., 1997), the Yonsei University (YSU) boundary layer scheme (Hong, 2006), Grell 3D cumulus parameterization, and the Noah land surface scheme (Grell et al., 2005). Driven with the reanalysis meteorological data obtained from NCEP for initial and boundary meteorological conditions, the WRF simulation ran 12 h each time with the first 6 h simulations constituting spin-up time.

The FLEXPART-WRF simulation was conducted for the 48-hr backward trajectory with a release of 50,000 PM$_{2.5}$ particles per hour in Wuhan (30.61N, 114.42E) for January 2016. The 48-hr backward trajectory simulation results were output with the residence time of PM$_{2.5}$ particles in a horizontally resolution of 0.1°×0.1°. The FLEXPART simulations of PM$_{2.5}$ particle residence time over the 48-hr backward trajectory pathways were multiplied with the regional primary PM$_{2.5}$ emission fluxes to quantify the contribution of regional PM$_{2.5}$ transport of PM$_{2.5}$ to air quality change in the YRMB region with identifying the patterns of regional PM$_{2.5}$ transport of PM$_{2.5}$.
patterns over central-eastern China. The primary PM$_{2.5}$ emission data of 2016 obtained from the Multi-resolution Emission Inventory for China (MEIC, http://www.meicmodel.org/) were selected for use as the regional PM$_{2.5}$ emission fluxes in this study.

3.2.3 Validation of Modeling Results

The simulated meteorology, which included wind speed, air temperature, relative humidity and surface pressure, were compared with observations at five sites (Wuhan, Changsha, Hefei, Zhengzhou and Nanchang) over central-eastern China. The correlation coefficients and normalized standardized deviations were calculated and are shown in Figure 8 (Taylor, 2001). Based on the results with correlation coefficients passing the significance level of 0.001 and low normalized standardized deviations (Fig. 8), it was confirmed that WRF-modeled meteorology that is consistent with observations could be used to drive the FLEXPART backward trajectory simulation in this study.

3.3 Contribution of regional PM$_{2.5}$ transport of PM$_{2.5}$ to heavy pollution

Based on the FLEXPART-WRF backward trajectory simulation, the upstream sources of PM$_{2.5}$ emissions for heavy air pollution in Wuhan could be identified. The contribution rates r_{ij} of regional PM$_{2.5}$ transport of PM$_{2.5}$ from the upstream sources to air pollution in the downstream receptor region of YRMB were calculated by Eq. (1), and the total contribution R of regional transport from the non-local emission sources are estimated by Eq. (2) (Chen et al., 2017b).
\[
rate_{i,j} = \frac{E_{i,j} \times r_{i,j}}{\sum_{i=1}^{N_S} E_{i,j} \times r_{i,j}} \tag{1}
\]
\[
R = \sum_{(N_i,S_j)} rate_{i,j} \tag{2}
\]

where the subscripts \(i\) and \(j\) represent a grid location; \(r_{i,j}\) represents the residence time of PM\(_{2.5}\) particles simulated by FLEXPART-WRF; and, \(E_{i,j}\) represents the PM\(_{2.5}\) emission flux over the grid.

The first grid location \((N_1, S_1)\) and the last grid location \((N_2, S_2)\) over the non-local emission sources and the local area of Wuhan were determined respectively by the regional PM\(_{2.5}\)-transport of PM\(_{2.5}\) pathways and the YRMB region as simulated by FLEXPART-WRF.

The non-local emission sources that affected PM\(_{2.5}\) concentrations during three heavy pollution periods through regional transport to the YRMB region were quantified by calculation of the PM\(_{2.5}\) contribution rates with Eq (1). Combining the distribution of high PM\(_{2.5}\) contribution rates with the prevailing winds experienced during the three heavy PM\(_{2.5}\) pollution periods, the spatial distribution of the major pathways of regional PM\(_{2.5}\)-transport of PM\(_{2.5}\) over central-eastern China could be recognized as shown in Figure 9. During the heavy air pollution period P1 in the YRMB region, the regional transport of air pollutants was centered along a northwestern route from the Fenhe-Weihe Plain in central China and a northeastern route from the YRD region (Fig. 9a). The YRD emission sources of air pollutants in East China exerted an important impact on the heavy air pollution period P2 through regional PM\(_{2.5}\)-transport of PM\(_{2.5}\) cross East China to the YRMB region along the north side of Yangtze River (Fig. 9b). Two major regional transport pathways of PM\(_{2.5}\) indicated by the spatial distribution of high contribution rates of PM\(_{2.5}\) from the NCP and YRD regions respectively to the elevated PM\(_{2.5}\) concentrations during the YRMB’s heavy air pollution period P3 (Fig. 9c). Two major pathways of regional PM\(_{2.5}\)-transport of PM\(_{2.5}\)
connected high contribution rates of air pollutants from the NCP and YRD regions, respectively, to
the elevated PM$_{2.5}$ concentrations that characterized the YRMB’s heavy air pollution period P3.
(Fig. 9c). Governed by the northerly winds of the East Asian winter monsoon, the regional
transport of air pollutants from the central-eastern air pollutant emission source regions in China
provided a significant contribution to the wintertime heavy PM$_{2.5}$ pollution observed in the YRMB
region (Figs. 6-7), which was confirmed by the results of the FLEXPART-WRF backward
trajectory simulation utilized in this study.

In this study, the PM$_{2.5}$ contributions of regional transport to air pollution in the downwind
receptor region could be approximately estimated based on the product of the residence time of
PM$_{2.5}$ particles during regional transport simulated by FLEXPART-WRF, and the PM$_{2.5}$ emission
flux over the source grid. The PM$_{2.5}$ contributions of regional transport over central-eastern China
to PM$_{2.5}$ concentrations during three heavy PM$_{2.5}$ pollution periods P1, P2 and P3 in the YRMB
region were estimated using Eq. (2) with resulting high contribution rates of 68.1%, 60.9% and
65.3%, respectively (Table 4), revealing the significant contribution of regional transport of PM$_{2.5}$
over central-eastern China to the enhancement of PM$_{2.5}$ levels in the YRMB area during
wintertime heavy air pollution periods.

The relative contributions of regional PM$_{2.5}$ transport of PM$_{2.5}$ over central-eastern China to
the three heavy PM$_{2.5}$ pollution periods P1, P2 and P3 in the YRMB region were estimated using
Eq. (2) with resulting high contribution rates of 68.1%, 60.9% and 65.3%, respectively
(Table 4), revealing the significant contribution of regional PM$_{2.5}$ transport of PM$_{2.5}$ over
central-eastern China to the enhancement of PM$_{2.5}$ levels in the YRMB area during the heavy air-
pollution periods accompanied by the unique “non-stagnation” meteorological conditions in the
atmospheric boundary layer.

Normally people rely on 3-D numerical models with process analysis capability such as integrated process rates (IPRs) to quantify the contributions of regional transport to the occurrence of air pollution episodes. It should be pointed out that the simulations with a Lagrange particle dispersion model FLEXPART-WRF are utilized to calculate the percentage contribution of regional transport with identifying the transport pathway in this study. The major uncertainty of this method for such calculation as compared to other methods like IPRs is that the physical and chemical processes such as wet-deposition and chemical conversion for the formation of secondary particles are not introduced in the FLEXPART-WRF simulation, which could represent the basic features of contribution and patterns of regional PM$_{2.5}$ transport of PM$_{2.5}$ over central-eastern China when limited to the primary PM$_{2.5}$ particles highlighted in this study.

4. Conclusions

This study investigated the ambient PM$_{2.5}$ variations over Wuhan, a typical urban YRMB region in central-eastern China in January 2016 through analysis of observational data of environment and meteorology, as well as via FLEXPART-WRF simulation to explore 1) the meteorological processes involved in the regional transport of air pollutants and 2) regional transport patterns of PM$_{2.5}$ with the contribution to the air pollution in the YRMB region. Based on observation and simulation studies on the meteorological conditions of air pollution events in January 2016 and regional transport of PM$_{2.5}$ to heavy air pollution over the YRMB region, it is revealed heavy air pollution with the unique “non-stagnant” atmospheric boundary layer in the YRMB region aggravated by regional transport of PM$_{2.5}$ over central and eastern China.
The study of the effects of meteorology and regional transport of PM$_{2.5}$ on heavy air pollution were focused on three heavy PM$_{2.5}$ pollution periods in January 2016. The heavy pollution episodes observed with the peak of PM$_{2.5}$ concentrations exceeding $471 \mu g m^{-3}$ over the YRMB region were characterized by a short duration of less than 26 hr from rapid outbreak to fast dissipation.

This study investigated the ambient PM$_{2.5}$ variations over Wuhan, a typical urban YRMB region in central-eastern China in January 2016 through analysis of observational data of environment and meteorology, as well as via FLEXPART-WRF simulation. Study of the effects of meteorology and regional transport of air pollutant on periods of heavy air pollution were focused on three observed heavy pollution events in January 2016 with PM$_{2.5}$ peak concentrations exceeding $471 \mu g m^{-3}$. The heavy pollution episodes over the YRMB region were characterized by a short duration of less than 26 hr from rapid outbreak to fast dissipation.

The “stagnation” meteorological condition in the boundary layer characterized by weak wind, air temperature inversion and a stable vertical structure of the atmospheric boundary layer is currently accepted as a typical meteorological driver for heavy air pollution. Conversely, this study of environmental and meteorological observations in the YRMB region revealed a unique “non-stagnation” meteorological condition of the boundary layer characterized by strong wind, no inversion layer and a more unstable structure in the atmospheric boundary layer associated with heavy air pollution periods with excessive PM$_{2.5}$ concentrations in the YRMB region, which facilitates understanding of the air pollutant source-receptor relationship of regional air pollutant transport.
Although the emissions and local accumulation of air pollutants in the YRMB could lead to the formation of light air pollution, in regards to PM$_{2.5}$, over the YRMB region, the regional PM$_{2.5}$ transport of PM$_{2.5}$ from central-eastern emission source regions in China contributed significantly to 65% of the exceedances of PM$_{2.5}$ concentrations during wintertime heavy air pollution periods in the downwind YRMB region in January 2016, as governed by the strong northerly winds of the East Asian winter monsoon.

Based on the variations of air quality and meteorology in a typical urban YRMB region in January 2016, this study revealed a unique “non-stagnant” meteorological condition for the development of heavy air pollution in the YRMB region with strong contributions of regional PM$_{2.5}$-transport of PM$_{2.5}$ over central-eastern China. These conditions and contributions can be investigated further with climate analyses of long-term observations and a more comprehensive modeling of air quality and meteorology.

Data availability: Data used in this paper can be provided by Chao Yu (ychao012@foxmail.com) upon request.

Author contributions: CY, TZ and YB conducted the study design. XY, LZ and SK provided the observational data. LZ assisted with data processing. CY wrote the manuscript with the help of TZ and XY. YB, SK, JH, CC, YY, GM, MW and JC were involved in the scientific interpretation and discussion. All of the authors provided commentary on the paper.

Competing interests: The authors declare that they have no conflicts of interest.

Acknowledgement: This study was jointly funded by the National Natural Science Foundation of...
China (41830965; 91744209), the National Key R & D Program Pilot Projects of China (2016YFC0203304) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_1027).

Reference

Ding, Y. H.: Monsoons over China, Kluwer Academic Publishers, Dordrecht/Boston/London,
1994.

Stohl, A.: A backward modeling study of intercontinental pollution transport using aircraft

Zhang, H., Lv, M., and Zhang, B.: Analysis of the stagnant meteorological situation and the transmission condition of continuous heavy pollution course from February 20 to 26, 2014 in

Table 1. Correlation coefficients between hourly PM$_{2.5}$ concentrations and meteorological
elements over Wuhan in January 2016.

<table>
<thead>
<tr>
<th>Correlation coefficient</th>
<th>WS</th>
<th>T</th>
<th>P</th>
<th>RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td>0.10</td>
<td>0.31</td>
<td>-0.47</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table 2. Correlation coefficients of PM$_{2.5}$ concentrations with wind speed and air temperature in different air quality levels during the study period.

<table>
<thead>
<tr>
<th>Air quality</th>
<th>PM$_{2.5}$ levels</th>
<th>Number of samples</th>
<th>WS</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td>PM$_{2.5} < 75 \mu g \cdot m^{-3}$</td>
<td>73</td>
<td>-0.20</td>
<td>0.56</td>
</tr>
<tr>
<td>Light pollution</td>
<td>$75 \mu g \cdot m^{-3} \leq PM_{2.5} < 150 \mu g \cdot m^{-3}$</td>
<td>135</td>
<td>-0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>Heavy pollution</td>
<td>PM$_{2.5} \geq 150 \mu g \cdot m^{-3}$</td>
<td>37</td>
<td>0.41</td>
<td>-0.08</td>
</tr>
</tbody>
</table>
Table 3. Atmospheric static stability below heights of 200 m in the boundary layer during heavy pollution and clean air periods with the anomalies relative to the average over January, 2016 in Wuhan.

<table>
<thead>
<tr>
<th>Period</th>
<th>heavy pollution period</th>
<th>clean air period</th>
<th>monthly average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K·km⁻¹)</td>
<td>(K·km⁻¹)</td>
<td>(K·km⁻¹)</td>
</tr>
<tr>
<td>Static stability</td>
<td>4.4</td>
<td>13.2</td>
<td>8.6</td>
</tr>
<tr>
<td>Anomalies of stability</td>
<td>-4.2</td>
<td>4.6</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4. The relative contributions of regional PM$_{2.5}$ transport over central-eastern China to three PM$_{2.5}$ heavy pollution periods P1, P2 and P3 in the YRMB with the local contributions.

<table>
<thead>
<tr>
<th>Contribution rates</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>Averages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional transport</td>
<td>68.1%</td>
<td>60.9%</td>
<td>65.3%</td>
<td>65.1%</td>
</tr>
<tr>
<td>Local contributions</td>
<td>31.9%</td>
<td>39.1%</td>
<td>34.7%</td>
<td>34.9%</td>
</tr>
</tbody>
</table>
Fig. 1. (left panel) Distribution of the Yangtze River Middle Basin (YRMB, orange rectangle) with the location of Wuhan (red area) and the major haze pollution regions of NCP, YPD and SCB in central-eastern China as well as (right panel) the YRMB region with terrain height (color contours, m in a.s.l.), the rivers, and lake network (blue areas), downloaded from https://worldview.earthdata.nasa.gov.
Fig. 2. (a) The daily changes of surface PM$_{2.5}$ concentrations in Wuhan in January 2016 with PM$_{2.5}$ concentrations exceeding 75 μg·m$^{-3}$ (dash line) and 150 μg·m$^{-3}$ (solid lines), respectively, for light and heavy haze pollution, and (b) the hourly variation of surface PM$_{2.5}$ concentrations in three heavy air pollution events P1, P2 and P3 with excessive PM$_{2.5}$ levels (>150 μg·m$^{-3}$) marked by the shaded areas.
Fig. 3. Hourly variations of meteorological elements and PM$_{2.5}$ concentrations in Wuhan in January 2016 with heavy air pollution periods marked with the columns in red dash lines and PM$_{2.5}$ concentrations exceeding 150 μg·m$^{-3}$ (solid line).
Fig. 4. A polar plot of hourly variations in wind speed (round radius, units is m·s⁻¹) and direction (angles) to surface PM$_{2.5}$ concentrations (color contours, units is µg·m⁻³) in Wuhan in January, 2016.

Fig. 5. Vertical profiles of (a) air temperature, (b) wind velocity and (c) potential temperature
averaged in heavy PM$_{2.5}$ pollution and clean air periods over Wuhan during January 2016.

Fig. 6 Distribution of (a) monthly averages of surface PM$_{2.5}$ concentrations observed in January 2016 over central-eastern regions in mainland China with the locations of six sites 1. Wuhan, 2. Xinyang, 3. Luoyang, 4. Zhengzhou, 5. Hefei and 6. Tongling as well as (b) the anomalies (color contours) of 200m wind speeds averaged during three heavy air pollution periods relatively to the monthly wind averages (streamlines) in January 2016 over central-eastern China with the location of Wuhan (a light blue star).
Fig. 7. Temporal changes of PM$_{2.5}$ concentrations (dot lines) and near-surface winds (vectors) observed at five upstream sites (Fig. 6) and Wuhan with shifts of PM$_{2.5}$ peaks (marked with shaded areas) to the YRMB’s heavy PM$_{2.5}$ pollution periods P1, P2 and P3 (respectively in upper, middle and lower panels) in January 2016.
Fig. 8. Taylor plots with the normalized standard deviations and correlation coefficients between simulated and observed meteorological fields. The radian of the sector represents the correlation coefficient, the solid line indicates the ratio of standard deviation between simulations and observations, the distance from the marker to “REF” reflect the normalized root-mean-square error (NRMSE).
Fig. 9. Spatial distribution of contribution rates (color contours) to PM$_{2.5}$ concentrations in Wuhan
with the major pathways of regional PM2.5-transport over central-eastern China (dash arrows) for
(a) heavy pollution periods P1, (b) P2 and (c) P3 in January, 2016 simulated by the model
FLEXPART-WRF.