	China
	Chao Yu ^{1,2} , Tianliang Zhao ^{1, *} , Yongqing Bai ^{3,*} , Lei Zhang ^{1,4} , Shaofei Kong ⁵ , Xingna Yu ¹ , Jinhai
	He ¹ , Chunguang Cui ³ , Jie Yang ¹ , Yinchang You ¹ , Guoxu Ma ¹ , Ming Wu ¹ , Jiacheng Chang ¹

Basin aggravated by regional PM_{2.5}-transport of PM_{2.5} over

- 7 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key
- 8 Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing
- 9 University of Information Science and Technology, Nanjing 210044, China
- 10 2 Southwest Electric Power Design Institute Co., Ltd of China Power Engineering Consulting
- 11 Group, Chengdu, 610021, China
- 12 3 Institute of Heavy Rain, China Meteorological Administration, Wuhan, 430205, China
- 13 4 Chengdu Academy of Environmental Sciences, Chengdu, 610031, China
- 14 5 Department of Atmospheric Sciences, School of Environmental Studies, China University of
- 15 Geosciences (Wuhan), 430074, Wuhan, China
- 16 *Correspondence*: Tianliang Zhao (tlzhao@nuist.edu.cn); Yongqing Bai (2007byq@163.com)

17

1

2

3

4

5

6

Abstract: Regional transport of air pollutants controlled by both emission sources and
 meteorological factors results in a complex source-receptor relationship of air pollution change.

20	Wuhan, a metropolismetropolitan area in the Yangtze River Middle Basin (YRMB) of central
21	China experienced heavy air pollution characterized by excessive PM _{2.5} concentrations reaching
22	471.1 μ g m ⁻³ in January 2016. In order to investigate the regional PM _{2.5} -transport of PM _{2.5} over
23	China and the meteorological impact on wintertime air pollution in the YRMB area, observational
24	meteorological and other relevant environmental data from January 2016 were analyzed. Our
25	analysis presented the noteworthy cases of heavy PM2.5 pollution in the YRMB area with the
26	unique "non-stagnant" meteorological conditions of strong northerly winds, no temperature
27	inversion and additional unstable structures in the atmospheric boundary layer. This unique set of
28	conditions differed from the stagnant meteorological conditions characterized by near-surface
29	weak winds, air temperature inversion, and stable structure in the boundary layer observed in
30	heavy air pollution over most regions in China. The regional transport of $PM_{2.5}$ over
31	central-eastern China aggravated PM _{2.5} levels present in the YRMB area, thus demonstrating the
32	source-receptor relationship between the originating air pollution regions in central-eastern China
33	and the receiving YRMB regions. Furthermore, a backward trajectory simulation using
34	FLEXPART-WRF to integrate the air pollutant emission inventory over China was used to explore
35	the patterns of regional $PM_{2.5}$ -transport of $PM_{2.5}$ governed by the strong northerly winds in the
36	cold air activity of the East Asian winter monsoon over central-eastern China, which contributes
37	markedly to the heavy $PM_{2.5}$ pollution in the YRMB area. It was estimated that the regional $PM_{2.5}$ -
38	transport of $PM_{2.5}$ of non-local air pollutant emissions could contribute more than 65% of the
39	$PM_{2.5}$ concentrations to the heavy air pollution in the YRMB region during the study period,
40	revealing the importance of the regional transport of air pollutants over central-eastern China in
41	the formation of heavy air pollution over the YRMB region.

Key words: PM_{2.5} pollution; Yangtze River Middle Basin; meteorological condition; regional
 transport; FLEXPART-WRF

44

45 **1. Introduction**

46 Air pollution events with excessive ambient PM2.5 concentrations have been observed 47 frequently in the central-eastern regions of China in recent years. These events result in serious 48 environmental problems with adverse influence on traffic, human health, climate change and other 49 significant aspects (Fuzzi et al., 2015; An et al., 2019; Nel, 2005). Based on the observations in 50 China, there is a well-established association between haze pollution and high concentrations of 51 PM2.5 (particulate matter with an aerodynamical diameter less than 2.5 µmThere is a well-established association in observation of China between the observation of heavy air 52 53 pollution and high concentrations of PM_{2.5} (particulate matter with an aerodynamical diameter less-54 than 2.5 µm). Air pollution levels are highly dependent on emissions of air pollutants and changes in meteorology (Tie et al., 2017;___Xu et al., 2016b;_An et al., 2019;_Xu et al., 2016a). The 55 accumulationoutbreak, maintenance and dissipation of haze pollution events are generally 56 57 determined by meteorological changes (Kan et al., 2012), among which the boundary layer 58 structures play the most important role (Wu et al., 2017). Meteorological conditions of stagnation 59 characterized by near-surface low winds, high humidity and stable boundary layer could govern 60 the periodic variations of haze pollution, which present as typical wintertime air pollution in 61 central-eastern China (Xu et al., 2016b; Zhang et al., 2014; Huang et al., 2018). Four major 62 regions exhibiting haze pollution with high PM_{2.5} concentrations and overall poor air quality are

63	centered over North China Plain (NCP), Yangtze River Delta (YRD) in East China, Pearl River
64	Delta (PRD) in South China and Sichuan Basin (SCB) in Southwest China (Cheng et al., 2008;
65	Zhang et al., 2012; Deng et al., 2011; Wang et al., 2016; Tie et al., 2017; Qiao et al., 2019).
66	The source-receptor relationship describes the impacts of emissions from an upwind source
67	region to pollutant concentrations or deposition at a downwind receptor location. Regional
68	transport of source-receptor air pollutants is generally complicated by two types of factors:
69	emission and meteorology. The emission factor includes the emission source strength, chemical
70	transformation and production; the meteorological factor determines the transport pathway from
71	the source to receptor regions, exchanges between boundary layer and free troposphere, the
72	removal processes occurring over the source and receptor regions as well as along the transport
73	pathways. Regional transport of air pollutants with the source-receptor relationship is an important
74	issue in our understanding of changes in air quality. Driven by atmospheric circulation, the
75	regional transport of PM _{2.5} from source regions can deteriorate air quality in the downwind
76	receptor regions, leading to the regional haze pollution observed in a large area over
77	central-eastern China (Chang et al., 2018; Wang et al., 2014; He et al., 2017; Chen et al., 2017b;
78	Hu et al., 2018;_Jiang et al., 2015). The Yangtze River Middle Basin (YRMB) in central China is
79	geographically surrounded by four major haze pollution regions in all directions with NCP to the
80	north, the YRD to the east, the PRD to the south and the SCB to the west (see left panel of Fig.1 a).
81	Due to this specialized location of the YRMB as a regional air pollutant transport hub with
82	subbasin topography (see right panel of Fig. 1b), the regional transport of air pollutants driven by
83	the cold air activity of East Asian winter monsoonal winds in central-eastern China could develop
84	a source-receptor relationship between major haze pollution regions (NCP, YRD, etc.) in

- central-eastern China and the downwind YRMB region. However, there are unresolved questions
 regarding the meteorological processes involved in the regional transport of air pollutants <u>and</u>
 the pattern of regional transport with contribution as well as a need for an assessment of the
 contribution of regional transport to the air quality changes observed in the YRMB.
- 89 Wuhan, a metropolismetropolitan area located in the YRMB, has confronted the problems associated with urban air pollution, especially heavy PM2.5 pollution events that occur in the 90 91 winter (Zhong et al., 2014; Gong et al., 2015; Xu et al., 2017; Tan et al., 2015). Local emissions of 92 air pollutants from urban transportation, industrial exhaust and bio-combustion play an important 93 role in YRMB urban air pollution (Acciai et al., 2017; Zhang et al., 2015). Many observational 94 and modeling studies on air pollution in this urban area have been conducted (Zheng et al., 2019; 95 Wu et al., 2018). However, regional PM2.5-transport routes of PM2.5 from central-eastern China 96 and its contribution to air pollution over the YRMB are still poorly understood, especially in 97 relation to heavy air pollution episodes in the YRMB area. This study has selected the Wuhan area 98 as a representative area within the YRMB for investigation of the meteorological conditions of air 99 pollution events in January 2016 and the contribution of regional PM2.5-transport of PM2.5 to heavy 100 air pollution over the YRMB region.
- 101

2. Observational analysis

102 **2.1 Data**

103 Wuhan, the capital of Hubei province, is located across the Yangtze River, where its surrounding
 104 water network attributed with a humid environment. Wuhan, the capital of Hubei province, is a
 105 metropolitan area within the YRMB located across the Yangtze River and its surrounding water

106	network attributed with a humid environment (see right panel of Fig. 1b). In order to analyze the
107	air quality change, the hourly concentrations of air pollutants including $PM_{2.5}$ in January 2016
108	were collected from sites over central-eastern China, including ten observational sites in Wuhan.
109	These ten sites include nine urban sites in residential and industrial zones as well as one suburban
110	site within the China National Air Environmental Monitoring Network. The concentrations of air
111	pollutants were distributed spatially in less difference over the suburban and urban sites with the
112	similar patterns and peaks of hourly changes during the heavy pollution events, demonstrating the
113	regional heavy air pollution in a large area of the YRMB region with the contribution of regional
114	transport from central-eastern China, while the obviously differences in air pollutant
115	concentrations were measured with the relative high and low PM2.5 concentrations respectively at
116	urban sites and suburban site during the clean air period, reflecting the important influence of high
117	air pollutant emission over urban area on local air quality. The PM2.5 concentrations averaged over
118	the ten observational sites were used to characterize the variations of air pollution in January 2016
119	over this urban area within the YRMB.

The meteorological data of surface observation and air sounding in Wuhan and other observatories in central-eastern China were obtained from the China Meteorological Data Sharing Network (http://data.cma.cn/). Meteorological data selected for this study included horizontal visibility, air temperature, relative humidity, air pressure, and wind speed and direction with temporal resolutions of 3 h for surface observation and 12 h for sounding observation in order to analyze the variations of the meteorological conditions in the atmospheric boundary layer in January 2016.

127 The ERA (ECMWF ReAnalysis) -Interim reanalysis data of meteorology froorm the

ECMWF 128 (European Centre for Medium-Range Weather Forecasts-129 (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/) were applied to explore the cold 130 air activity of East Asian winter monsoonal winds in January 2016 and their anomalies during 131 heavy PM2.5 pollution the over central-eastern China the East Asian winter monsoonal winds and 132 their anomalies over central-eastern China in January 2016.

133 2.2 Variations in PM_{2.5} concentrations and meteorology in January, 2016

Based on the National Ambient Air Quality Standards of China released by the Ministry of 134 135 Ecology and Environment of China in 2012 (http://www.mee.gov.cn/), light and heavy air pollution levels of PM_{2.5} are categorized by $\frac{1}{2}$ daily average PM_{2.5} concentration exceeding 75µg -136 μg -m⁻³ and 150- $\mu g \mu g$ m⁻³ in ambient air, respectively. The daily variations of PM_{2.5} concentrations 137 138 over January 2016 in Wuhan are illustrated in FigfFigure- 2a. The average monthly PM2.5 concentration reached $105.8 \mu g - \mu g m^{-3}$. The national secondary standard was exceeded on 27 days 139 with daily PM_{2.5} concentrations exceeding $75\mu g \mu g m^{-3}$ during the entire month of January 2016 in 140 141 Wuhan, indicating that this urban area in the YRMB was suffering under significant PM25 142 pollution during this period. As shown in FigfFigure- 2a, a 21-day prolonged air pollution event 143 resulted from high levels of daily $PM_{2.5}$ concentrations (>75-µgµg m⁻³) over the period of January 144 1 to 21. During this 21-day period of air pollution, three notably heavy air pollution events 145 occurred on January 4, 10-12 and 18 with excessive daily PM_{2.5} concentrations (>150-<u>µgµg</u> m⁻³); 146 these events are marked as P1, P2 and P3 in FigfFigure- 2. Based on the observation in January 147 2016, we found We observed the interesting phenomenon of an apparent 7-day cycle of heavy air 148 pollution in January 2016, reflecting an important modulation of meteorological oscillation in the 149 East Asian winter monsoon affecting air pollution concentrations observed over the YRMB region

150 (Xu et al., 2016a). <u>A period analysis on long-term observation data of air quality could provide</u>
151 more information on air pollution oscillations with meteorological drivers.

152

153	FigFigure. 2b presents the hourly changes of $PM_{2.5}$ concentrations for the three heavy air pollution
154	events P1, P2 and P3. The heavy pollution event P1 on January 4 started at 11:00 a-m(local time
155	is used for all events) and ended at 11:00 $p.mp.m.$ at same day. with an observed PM _{2.5}
156	concentration peak of 471.1-µg m ⁻³ . The event P2 occurred from 10:00 p ₇ m ₇ on January 10 to
157	00:00 a.m. on January 12 with a duration of 26 h and two peaks in $PM_{2.5}$ concentrations of 231.4-
158	μg m^-3 and 210.6- μg m^-3. The event P3 was observed between 7:00 p.m. on January 17 and 2:00
159	$p_{\text{-}\text{IM}\text{-}}$ on January 18 with an explosive growth rate of 42.9-µg m ⁻³ h ⁻¹ in PM_{2.5} concentrations. Those
160	three heavy $PM_{2.5}$ pollution episodes over the YRMB region were characterized by short durations
161	of less than 26 h from rapid accumulation outbreak to fast dissipation.
162	Using the environmental and meteorological data observed in Wuhan in January 2016, the effects
163	of the meteorological conditions on $PM_{2.5}$ concentrations in the YRMB region were statistically
164	analyzed in regards to hourly variations of surface PM2.5 concentrations, near-surface wind speed
1.65	

analyzed in regards to hourly variations of surface PM_{2.5} concentrations, near-surface wind speed (WS) and direction (WD), as well as surface air temperature (T), air pressure (P) and relative humidity (RH) (Fig. 3). Among the observed hourly changes in PM_{2.5} concentrations and meteorological elements shown in Fig.Ffigure 3, the obvious positive correlations to surface air temperature and relative humidity, as well as a pronounced negative correlation to surface air pressure and a weak positive correlation to near-surface wind speed were found with the change of PM_{2.5} concentrations in January 2016 (Table 1). The near-surface wind speed associated with East

171	Asian monsoons has significantly influence concentrations of air pollutants mainly by the changes
172	in weak advection of cold air, in conjunction with strong subsidence and stable atmospheric
173	stratification, can easily produce a stagnation area in the lower troposphere resulting in regional
174	pollutant accumulations, which are favorable for the development of CEC haze events. In addition,
175	in the presence of high soil moisture, strong surface evaporation results in increases in the
176	near-surface relative humidity, which is also conducive to hygroscopic growth of participles for
177	haze formation; high air temperature and strong solar radiation could enhance chemical reactions
178	and conversions for the formation of secondary aerosols in the atmosphere, precipitation could
179	alter the emissions, and depositions of air pollutants. These observations could reflect the special
180	influences of meteorological factors (winds, air temperature, humidity, precipitation etc) on
181	physical and chemical processes in the ambient atmosphere, in particular that of wind driving air
182	pollutant transport and affecting air quality change in the VRMB region
	pondiant transport and anceting an quanty change in the TRND region.
183	These observations could reflect the special influences of meteorological factors on physical-
183	These observations could reflect the special influences of meteorological factors on physical-
183 184	These observations could reflect the special influences of meteorological factors on physical- and chemical processes in the ambient atmosphere, in particular that of wind driving air pollutant-
183 184 185	These observations could reflect the special influences of meteorological factors on physical- and chemical processes in the ambient atmosphere, in particular that of wind driving air pollutant- transport and affecting air quality change in the YRMB region.
183 184 185 186	These observations could reflect the special influences of meteorological factors on physical- and chemical processes in the ambient atmosphere, in particular that of wind driving air pollutant- transport and affecting air quality change in the YRMB region. When we focused on the changes leading to excessive PM _{2.5} levels during these heavy air
183 184 185 186 187	These observations could reflect the special influences of meteorological factors on physical- and chemical processes in the ambient atmosphere, in particular that of wind driving air pollutant- transport and affecting air quality change in the YRMB region. When we focused on the changes leading to excessive PM _{2.5} levels during these heavy air pollution events, it is noteworthy that all three heavy pollution episodes P1, P2 and P3 were
183 184 185 186 187 188	These observations could reflect the special influences of meteorological factors on physical- and chemical processes in the ambient atmosphere, in particular that of wind driving air pollutant- transport and affecting air quality change in the YRMB region. When we focused on the changes leading to excessive PM _{2.5} levels during these heavy air pollution events, it is noteworthy that all three heavy pollution episodes P1, P2 and P3 were accompanied with strong near-surface wind speeds in the northerly direction, as well as evident
183 184 185 186 187 188 189	These observations could reflect the special influences of meteorological factors on physical and chemical processes in the ambient atmosphere, in particular that of wind driving air pollutant transport and affecting air quality change in the YRMB region. When we focused on the changes leading to excessive PM _{2.5} levels during these heavy air pollution events, it is noteworthy that all three heavy pollution episodes P1, P2 and P3 were accompanied with strong near-surface wind speeds in the northerly direction, as well as evident turning points in prevailing conditions leading to falling surface air temperatures and increasing
183 184 185 186 187 188 189 190	These observations could reflect the special influences of meteorological factors on physical and chemical processes in the ambient atmosphere, in particular that of wind driving air pollutant transport and affecting air quality change in the YRMB region. When we focused on the changes leading to excessive PM _{2.5} levels during these heavy air pollution events, it is noteworthy that all three heavy pollution episodes P1, P2 and P3 were accompanied with strong near-surface wind speeds in the northerly direction, as well as evident turning points in prevailing conditions leading to falling surface air temperatures and increasing surface air pressure (noted as a rectangle with red dashed lines in FigFfig.ure -3). The conditions
183 184 185 186 187 188 189 190 191	These observations could reflect the special influences of meteorological factors on physical- and chemical processes in the ambient atmosphere, in particular that of wind driving air pollutant- transport and affecting air quality change in the YRMB region. When we focused on the changes leading to excessive PM _{2.5} levels during these heavy air pollution events, it is noteworthy that all three heavy pollution episodes P1, P2 and P3 were accompanied with strong near-surface wind speeds in the northerly direction, as well as evident turning points in prevailing conditions leading to falling surface air temperatures and increasing surface air pressure (noted as a rectangle with red dashed lines in FigFfig.ure -3). The conditions observed during these three heavy pollution episodes reflect the typical meteorological

193 of a cold front could drive the regional transport of air pollutants over central-eastern China (Kang 194 et al., 2019). Climatologically, a strong northerly wind, low air temperature and high air pressure 195 are typical features of an incursion of cold air during East Asian winter monsoon season in 196 central-eastern China, which could disperse air pollutants and improve air quality in the NCP 197 region (Miao et al., 2018;Xu et al., 2016b). Compared to the meteorological conditions for 198 stagnation with weak winds observed for heavy air pollution events in the major air pollution 199 regions of central-eastern China (Huang et al., 2018; Ding et al., 2017), meteorological conditions 200 with strong near-surface wind were anomalously accompanied with the intensification of PM_{2.5} 201 during heavy air pollution periods over the study area in the YRMB in January 2016 (Fig. 3). This 202 could imply the importance of regional air pollutant transport in worsening air quality over the 203 YRMB, driven by the strong northerly winds of the East Asian winter monsoon over China.

204 2.3 A unique "non-stagnation" meteorological condition for heavy PM_{2.5} 205 pollution

To further investigate the connection of meteorological elements in the near-surface layer with 206 changes in air quality affected by PM_{2.5} concentrations in the YRMB region, we carried out a more 207 208 detailed correlation analysis of PM_{2.5} concentrations in Wuhan with near-surface wind speed and air temperature and three different levels of PM2.5 concentrations: clean air environment (PM2.5-209 <75µg m⁻³), light air pollution (75µg m⁻³ \leq PM_{2.5} <150µg m⁻³) and heavy air pollution (PM_{2.5} 210 211 \geq 150µg m⁻³) periods (Table 2). As seen in Table 2, the surface PM_{2.5} concentrations were positively correlated with air temperature, as well as negatively correlated with wind speeds 212 213 during the periods of clean air environment and light air pollution. It should be emphasized here 214 that a significantly negative correlation (R=-0.19) of PM_{2.5} concentrations with near-surface wind

215	speeds for the light air pollution period could indicate that weak winds are favorable for local
216	PM _{2.5} accumulation, reflecting an important effect of local air pollutant emissions on light air
217	pollution periods over the YRMB area. In January 2016, the overall wind speed of Wuhan was
218	weak with a monthly mean value of 2.0-m s ⁻¹ , which could prove beneficial to maintaining the
219	high PM _{2.5} levels in the prolonged air pollution event experienced during January 2016. However,
220	a significantly positive correlation ($R=-0.41$) existed between excessive $PM_{2.5}$ concentrations
221	(PM _{2.5} ->-150 μ g m ⁻³) and strong near-surface wind speeds during the heavy air pollution period,
222	which was inconsistent with the stagnation meteorological conditions observed in the near-surface
223	layer with weak winds associated with heavy air pollution in eastern China (Cao et al., 2012;
224	Zhang et al., 2016). The meteorology and environment conditions in the YRMB region indicate
225	the close association of heavy air pollution periods with the intensification of regional transport of
226	air pollutants driven by strong winds (Fig. 3, Table 2) reflecting a key role of regional air pollutant
227	transport in the development of the YRMB's heavy air pollution periods. The conditions in the
228	YRMB region that indicate that the close association of heavy air pollution periods with the
229	intensification of regional transport of air pollutants by strong winds (Fig. 3, Table 2), which might
230	reflect a key role of regional air pollutant transport in the development of the YRMB's heavy air
231	pollution periods.
232	In order to clearly illustrate the impact of wind speed and direction on the PM _{2.5} concentrations
233	associated with the regional transport of upwind air pollutants, Fig.Ffigure 4 presents the relation

235 (in radius of round) and direction (in angles of round) in Wuhan during January 2016. As can be

234

236 seen in_<u>Fig.fFigure</u> 4, strong northerly winds of the East Asian winter monsoon accompanied

of hourly changes in surface PM_{2.5} concentrations (in color contours) to near-surface wind speed

237	extremely high $PM_{2.5}$ concentrations (>150µg µg m ⁻³) during heavy air pollution periods,
238	including the northeast gale that exceeded 5 $m \cdot s^{-1}$ during the extreme heavy pollution period with
239	excessive high PM _{2.5} concentrations (> $300\mu g - \mu g m^{-3}$) over the YRMB region. These results reveal
240	a unique meteorological condition of "non-stagnation" with strong winds during events of heavy
241	air pollution over YRMB <u>area</u> . Conversely, the observed $PM_{2.5}$ concentrations, ranging between 75
242	and 150- $\mu g \mu g$ m ⁻³ , for light air pollution periods generally corresponded with low wind speed
243	$(<2m s^{-1})$ in the YRMB region (Fig. 4); therefore, it is the meteorological condition for stagnation
244	characterized by weak winds involved in the accumulation of local air pollutants that is
245	responsible for the YRMB's light air pollution periods. Meteorological impacts on air quality
246	could include not only the stagnation condition with weak winds and stable boundary layer, but
247	also air temperature, humidity, precipitation, atmospheric radiation etc. in close connection with
248	atmospheric physical and chemical processes. Therefore, meteorological drivers of air quality
249	change are complicated by a series of physical and chemical processes in the atmosphere-
250	Meteorological impacts that drive change in air quality are complicated by a series of physical and
251	chemical processes in the atmosphere, especially the formation of secondary air pollutants in the
252	wet-humid_air environment underlying_overlying_the dense water network in the YRMB region
253	(see right panel of Fig. 1b), thus pointing out the need for further comprehensive study.
254	As shown in FigfFigure- 2a, the heavy pollution periods with the daily average $PM_{2.5}$

255 <u>concentrations exceeding 150µgm⁻³ in ambient air, respectively occurred on January 4, 10-12 and</u> 256 18, and the clean air periods <u>with the daily average PM_{2.5} concentrations below 75µgm⁻³ occurred</u> 257 on January 22 and 24-27, 2016, in the YRMB region. The air sounding data of Wuhan were used 258 to compare the structures of the atmospheric boundary layer of the heavy air pollution and clean

259	air periods. Fig.Figure 5 presents the vertical profiles of air temperature, wind velocity and
260	potential temperature averaged for the heavy PM _{2.5} pollution and clean air periods in January 2016.
261	It can be clearly seen that the inversion layer of air temperature did not exist during the heavy
262	pollution periods, but a near-surface inversion layer appeared at the height of about 200 m during
263	the clean air periods (Fig. 5a). The comparison of vertical profiles of horizontal wind velocity
264	experienced during the clean air periods further revealed the stronger wind speed observed in the
265	heavy air pollution period below a height of 850 m located in the atmospheric boundary layer
266	exhibiting the vertical structure similar to a low-level jet stream (Fig. 5b); these conditions could
267	conduce the downward mixing of the regionally transported air pollutants and produce a local
268	near-surface accumulation in the YRMB area with elevated ambient $PM_{2.5}$ concentrations, thus
269	contributing to a heavy air pollutionaffecting a heavy air pollution period. To characterize the
270	atmospheric stability in the boundary layer, the vertical profiles of potential air temperature (θ)
271	were calculated with air temperature and pressure (Fig. 5c). The vertical change rate of θ was used
272	to quantify the static stability of the boundary layer in this study (Oke, 2002;Sheng et al., 2003). A
273	lower vertical change rate of θ generally indicates a decreasing stability or increasing instability of
274	the boundary layer. The averaged static stability values of the near-surface layer below a height of
275	200 m during the heavy pollution and clean air periods were approximately 4.4-K·km ⁻¹ and 13.2K
276	km ⁻¹ , respectively (Table 3). This obvious decrease in stability of the boundary layer from clean air
277	to heavy pollution periods reflects an anomalous tendency for instability in the boundary layer
278	during heavy pollution periods in the YRMB region during January 2016.

The meteorological conditions of stagnation characterized by weak wind, temperature inversion and a stable vertical structure of the atmospheric boundary layer is generally accepted as 281 the typical meteorological drivers for heavy air pollution (An et al., 2019;Ding et al., 2017). Nevertheless, this study of environmental and meteorological observations in the YRMB region 282 283 has revealed a unique meteorological condition of "non-stagnation" in the atmospheric boundary layer during heavy air pollution periods characterized by strong wind, lack of an inversion layer 284 285 and a more unstable structure of the atmospheric boundary layer; these conditions are generally 286 regarded as the typical pattern of atmospheric circulation that facilitates the regional transport of 287 $PM_{2,5}$ —associated with the source-receptor relationship between the air pollution regions in 288 289 central-eastern China and the YRMB was investigated based on the observational analysis 290 described in Sect. 3.1.

3. Regional transport of PM_{2.5} in heavy air pollution periods

292 **3.1** Changes of PM_{2.5} and winds observed in central-eastern China

293 The monthly averages of observed PM_{2.5} concentrations and the anomalies of wind speed 294 averaged in three heavy air pollution periods relatively to the monthly mean wind speed in January 2016 over central-eastern China are shown in FigfFigure. 6._-In January 2016, a large area of 295 central-eastern China experienced air pollution with high levels of PM_{2.5} (>75 µg m⁻³), especially 296 297 serious in the NCP region and the Fenhe-Weihe Plain in central China (Fig. 6a). As seen in FigureFig. 6, the YRMB region (Site 1, Wuhan) was situated in the downwind southern edge of 298 299 an observed air pollution area located over central-eastern China, where the northerly winds of the 300 East Asian winter monsoon prevail climatologically in January (Ding, 1994). It is notable that the 301 anomalously stronger northerly winds were observed over the upstream region in central-eastern 302 China during three periods of wintertime heavy PM_{2.5} pollution in the YRMB region (Fig. 6b). 303 Driven by the strong northerly winter monsoonal winds (Fig. 6b), the regional transport of air 304 pollutants from the source regions in central-eastern China could largely contribute to wintertime 305 heavy air pollution periods in the downwind receptor region of YRMB.

306 In order to explore the connection of regional $PM_{2.5}$ -transport <u>of PM_{2.5}</u> over central-eastern China to three events of heavy air pollution in the YRMB region, six observational sites were 307 308 selected from the northwestern, northern and northeastern upwind areas located over 309 central-eastern China (Fig. 6a) to represent the temporal PM_{2.5} and wind variations along the different routes of regional PM_{2.5}-transport of PM_{2.5} with the southward incursion of stronger 310 311 northerly winds of East Asian monsoon across central-eastern China (Fig. 7). The southeastward movement of heavy PM2.5 pollution driven by stronger northerly winds from Luoyang and 312 313 Xinyang to Wuhan (Sites 3, 2, and 1 in Fig. 6) presents a northwestern route of regional PM_{2.5}-314 transport of PM_{2.5} for the heavy air pollution period P1 in the YRMB (see upper panels of Fig. 7). The southwestward advance of PM_{2.5} peaks governed by winter monsoonal winds the from 315 316 Tongling and Hefei to Wuhan (Sites 5, 6, and 1 in Fig. 6) exerted a significant impact on the heavy air pollution period P2 aggravated by regional transport of PM2.5 across Eastern China to the 317 318 YRMB region (see middle panels of Fig. 7). A northern pathway of regional PM_{2.5}-transport of 319 PM_{2.5} connected Zhengzhou and Xinyang to Wuhan (Sites 4, 2, and 1 in Fig. 6) during the 320 YRMB's heavy air pollution period P3 with anomalously strong northerly winds (see Fig. 6b and 321 lower panels of Fig. 7). It is noteworthy in Fig. 7 that the heavy $PM_{2.5}$ pollution periods at the 322 upstream sites Hefei, Tongling, Luoyang, Xinyang and Zhengzhou (Fig. 6a) were generally dispelled by strong northerly winds, while strong northerly winds could trigger the periods of 323

heavy PM_{2.5} pollution in the YRMB region (Wuhan, Fig. 6), and such inverse effects of strong winds on heavy air pollution in the source and receptor regions reflect an important role of regional air pollutant transport in worsening air pollution in the YRMB's receptor region.

- The regional $PM_{2.5}$ -transport over central-eastern China associated with the source-receptor relationship directing heavy $PM_{2.5}$ pollution to the YRMB region was revealed with observational analysis. Backward trajectory modeling was used to further confirm the patterns of regional $PM_{2.5}$ -transport of $PM_{2.5}$ over central-eastern China and the resulting contribution to heavy air pollution in the YRMB region, as described in the following Sects.
- 332 **3.2 FLEXPART-WRF model**

333 3.2.1 Model description

334 The Flexible Particle dispersion (FLEXPART) model (Stohl, 2003) is a Lagrange particle 335 diffusion model developed by the Norwegian Institute for Air Research (NIAR). In this model, the 336 trajectory of a large number of particles released from a source is simulated — simulated with consideration of the processes of tracer transport, turbulent diffusion, and wet and dry depositions 337 338 in the atmosphere (Brioude et al., 2013). Applying backward trajectory simulation can determine the distribution of potential source regions that may have an impact on a target point or receptor 339 340 region (Seibert and Frank, 2003; Zhai et al., 2016; Chen et al., 2017a; Chen et al., 2017b). 341 Initially, FLEXPART could be driven by the global reanalysis meteorological data obtained 342 from the European Centre for Medium-Range Weather Forecasts (ECMWF) or the National Centers of Environmental Prediction (NCEP). For the refined simulation of air pollutant sources 343 344 and transport, FLEXPART was coupled offline with the Weather Research and Forecasting Model

345	(WRF) to effectively devise the combined model FLEXPART-WRF (Fast and Easter, 2006), which
346	has been widely used to investigate the potential sources of air pollutants in consideration of
347	environmental change (Stohl, 2003; De Foy et al., 2011; An et al., 2014; Sauvage et al., 2017).
348	3.2.2 Model configuration
349	The WRF model was configured with two nested domains. The coarse domain covered the
350	entirety of Asia with a 30 km×30 km horizontal resolution, and the nested fine domain included
351	most of China and surrounding regions with a 10 km×10 km horizontal resolution. The physical
352	parameterizations used in WRF were selected with the Morrison microphysics scheme (Morrison,
353	2009), the Rapid Radiative Transfer Model (RRTM) scheme for long and short wave radiation
354	(Mlawer et al., 1997), the Yonsei University (YSU) boundary layer scheme (Hong, 2006), Grell
355	3D cumulus parameterization, and the Noah land surface scheme (Grell et al., 2005). Driven with
356	the reanalysis meteorological data obtained from NCEP for initial and boundary meteorological
357	conditions, the WRF simulation ran 12 h each time with the first 6 h simulations constituting
358	spin-up time.
359	The FLEXPART-WRF simulation was conducted for the 48-hr backward trajectory with a

release of 50,000 PM_{2.5} particles per hour in Wuhan (30.61N, 114.42E) for January 2016. The 48-hr backward trajectory simulation results were output with the residence time of PM_{2.5} particles in a horizontally resolution of $0.1^{\circ} \times 0.1^{\circ}$. The FLEXPART simulations of PM_{2.5} particle residence time over the 48-hr backward trajectory pathways were multiplied with the regional primary PM_{2.5} emission fluxes to quantify the contribution of regional PM_{2.5}-transport_of PM_{2.5} to air quality change in the YRMB region with identifying <u>the patterns of regional-PM_{2.5}</u> transport <u>of PM_{2.5}</u> transport <u>of PM_{2.5}</u> patterns over central-eastern China. The primary PM_{2.5} emission data of 2016 obtained from the
 Multi-resolution Emission Inventory for China (MEIC, http://www.meicmodel.org/) were selected
 for use as the regional PM_{2.5} emission fluxes in this study.

369 3.2.3 Validation of Mmodeling Rresults Modeling Validations

370 The simulated meteorology, which included wind speed, air temperature, relative humidity 371 and surface pressure, were compared with observations at five sites (Wuhan, Changsha, Hefei, 372 Zhengzhou and Nanchang) over central-eastern China. The correlation coefficients and 373 normalized standardized deviations were calculated and are shown in-frigureFig. 8 (Taylor, 2001). Based on the results with correlation coefficients passing the significance level of 0.001 374 375 and low normalized standardized deviations (Fig. 8), it was confirmed that WRF-modeled 376 meteorology that is consistent with observations could be used to drive the FLEXPART backward trajectory simulation in this study. 377

378 **3.3 Contribution of regional PM**_{2.5}**-transport <u>of PM**_{2.5} to heavy pollution</u>

Based on the FLEXPART-WRF backward trajectory simulation, the upstream sources of PM_{2.5} emissions for heavy air pollution in Wuhan could be identified. The contribution rates *rate_{i,j}* of regional PM_{2.5}-transport_of PM_{2.5} —from the upstream sources to air pollution in the downstream receptor region of YRMB were calculated by Eq. (1), and the total contribution R of regional transport from the non-local emission sources are estimated by Eq. (2) (Chen et al., 2017b).

$$rate_{i,j} = \frac{E_{i,j} \times r_{i,j}}{\sum_{i,1}^{N,S} E_{i,j} \times r_{i,j}}$$
(1)
$$R = \sum_{(N_1,S_1)}^{(N_2,S_2)} rate_{i,j}$$
(2)

where the subscripts *i* and *j* represent a grid location;
$$\mathbf{r}_{i,j}$$
 represents the residence time of PM_{2.5}
particles simulated by FLEXPART-WRF; and, $\mathbf{E}_{i,j}$ represents the PM_{2.5} emission flux over the grid.
The first grid location (N₁, S₁) and the last grid location (N₂, S₂) over the non-local emission
sources and the local area of Wuhan were determined respectively by the regional PM_{2.5}-transport
of PM_{2.5} pathways and the YRMB region as simulated by FLEXPART-WRF.

391 The non-local emission sources that affected PM_{2.5} concentrations during three heavy 392 pollution periods through regional transport to the YRMB region were quantified by calculation of 393 the PM_{2.5} contribution rates with Eq (1). Combining the distribution of high PM_{2.5} contribution 394 rates with the prevailing winds experienced during the three heavy PM_{2.5} pollution periods, the 395 spatial distribution of the major pathways of regional PM2.5-transport of PM2.5 over central-eastern 396 China could be recognized as shown in -FigureFig. 9. During the heavy air pollution period P1 397 in the YRMB region, the regional transport of air pollutants was centered along a northwestern 398 route from the Fenhe-Weihe Plain in central China and a northeastern route from the YRD region 399 (Fig. 9a). The YRD emission sources of air pollutants in East China exerted an important impact 400 on the heavy air pollution period P2 through regional <u>PM_{2.5}</u>-transport of PM_{2.5} cross East China 401 to the YRMB region along the north side of Yangtze River (Fig. 9b). Two major regional transport 402 pathways of PM_{2.5} indicated by the spatial distribution of high contribution rates of PM_{2.5} from the 403 NCP and YRD regions respectively to the elevated PM2.5 concentrations during the YRMB's heavy air pollution period P3 (Fig. 9c). Two major pathways of regional_ PM2.5 transport of PM2.5-404

405 connected high contribution rates of air pollutants from the NCP and YRD regions, respectively, to 406 the elevated PM_{2.5}-concentrations that characterized the YRMB's heavy air pollution period P3-407 (Fig. 9c). Governed by the northerly winds of the East Asian winter monsoon, the regional 408 transport of air pollutants from the central-eastern air pollutant emission source regions in China 409 provided a significant contribution to the wintertime heavy PM_{2.5} pollution observed in the YRMB 410 region (Figs. 6-7), which was confirmed by the results of the FLEXPART-WRF backward 411 trajectory simulation utilized in this study.

412 In this study, the PM_{2.5} contributions of regional transport to air pollution in the downwind

413 receptor region could be approximately estimated based on the product of the residence time of

414 PM_{2.5} particles during regional transport simulated by FLEXPART-WRF, and the PM_{2.5} emission

415 flux over the source grid. The PM_{2.5} contributions of regional transport over central-eastern China

416 to PM_{2.5} concentrations during three heavy PM_{2.5} pollution periods P1, P2 and P3 in the YRMB

417 region were estimated using Eq. (2) with resulting high contribution rates of 68.1%, 60.9% and

418 <u>65.3%</u>, respectively (Table 4), revealing the significant contribution of regional transport of PM_{2.5}

419 over central-eastern China to the enhancement of PM2.5 levels in the YRMB area during

420 wintertime heavy air pollution periods.

The relative contributions of regional $PM_{2.5}$ transport <u>of $PM_{2.5}$ </u> over central-eastern China to the three heavy $PM_{2.5}$ pollution periods P1, P2 and P3 in the YRMB region were estimated using Eq. (2) with resulting high contribution rates of 68.1%, <u>___60.9%</u> and <u>_65.3%</u>, respectively (Table 4), revealing the significant contribution of regional $PM_{2.5}$ transport <u>of $PM_{2.5}$ </u> over eentral-eastern China to the enhancement of $PM_{2.5}$ -levels in the YRMB area during the heavy air pollution periods accompanied by the unique "non-stagnation" meteorological conditions in the 427 atmospheric boundary layer.

428	Normally people rely on 3-D numerical models with process analysis capability such as
429	integrated process rates (IPRs) to quantify the contributions of regional transport to the occurrence
430	of air pollution episodes. It should be pointed out that the simulations with a Lagrange particle
431	dispersion model FLEXPART-WRF are utilized to calculate the percentage contribution of
432	regional transport with identifying the transport pathway in this study. The major uncertainty of
433	this method for such calculation as compared to other methods like IPRs is that the physical and
434	chemical processes such as wet-deposition and chemical conversion for the formation of
435	secondary particles are not introduced in the FLEXPART-WRF simulation, which could represent
436	<u>the</u> basic features of contribution and patterns of regional $PM_{2.5}$ transport of $PM_{2.5}$ over
437	central-eastern China when limited to the primary PM _{2.5} particles highlighted in this study.

4. Conclusions

439	This study investigated the ambient PM2.5 variations over Wuhan, a typical urban YRMB
440	region in central-eastern China in January 2016 through analysis of observational data of
441	environment and meteorology, as well as via FLEXPART-WRF simulation to explore 1) the
442	meteorological processes involved in the regional transport of air pollutants and 2) regional
443	transport patterns of PM _{2.5} with the contribution to the air pollution in the YRMB region. Based on
444	observation and simulation studies on the meteorological conditions of air pollution events in
445	January 2016 and regional transport of PM _{2.5} to heavy air pollution over the YRMB region, it is
446	revealed heavy air pollution with the unique "non-stagnant" atmospheric boundary layer in the
447	YRMB region aggravated by regional transport of PM _{2.5} over central and eastern China.

The study of the effects of meteorology and regional transport of PM_{2.5} on heavy air pollution were focused on three heavy PM_{2.5} pollution periods in January 2016. The heavy pollution episodes observed with the peak of PM_{2.5} concentrations exceeding 471µg m⁻³ over the YRMB region were characterized by a short duration of less than 26 hr from rapid outbreak to fast dissipation.

This study investigated the ambient $PM_{2.5}$ variations over Wuhan, a typical urban YRMBregion in central-eastern China in January 2016 through analysis of observational data of environment and meteorology, as well as via FLEXPART-WRF simulation. Study of the effects of meteorology and regional transport of air pollutant on periods of heavy air pollution were focused on three observed heavy pollution events in January 2016 with $PM_{2.5}$ peak concentrations exceeding 471 µg m⁻³. The heavy pollution episodes over the YRMB region were characterized by a short duration of less than 26 hr from rapid outbreak to fast dissipation.

460 The "stagnation" meteorological condition in the boundary layer characterized by weak wind, 461 air temperature inversion and a stable vertical structure of the atmospheric boundary layer is 462 currently accepted as a typical meteorological driver for heavy air pollution. Conversely, this study 463 of environmental and meteorological observations in the YRMB region revealed a unique "non-stagnation" meteorological condition of the boundary layer characterized by strong wind, no 464 465 inversion layer and a more unstable structure in the atmospheric boundary layer associated with 466 heavy air pollution periods with excessive PM2.5 concentrations in the YRMB region, which facilitates understanding of the air pollutant source-receptor relationship of regional air pollutant 467 468 transport.

Although the emissions and local accumulation of air pollutants in the YRMB could lead to the formation of light air pollution, in regards to $PM_{2.5}$, over the YRMB region, the regional $PM_{2.5}$ transport of $PM_{2.5}$ from central-eastern emission source regions in China contributed significantly to 65% of the exceedances of $PM_{2.5}$ concentrations during wintertime heavy air pollution periods in the downwind YRMB region in January 2016, as governed by the strong northerly winds of the East Asian winter monsoon.

Based on the variations of air quality and meteorology in a typical urban YRMB region in January 2016, this study revealed a unique "non-stagnant" meteorological condition for the development of heavy air pollution in the YRMB region with strong contributions of regional $PM_{2.5}$ -transport of $PM_{2.5}$ over central-eastern China. These conditions and contributions can be investigated further with climate analyses of long-term observations and a more comprehensive modeling of air quality and meteorology.

481 Data availability: Data used in this paper can be provided by Chao Yu (ychao012@foxmail.com)
482 upon request.

483 Author contributions: CY, TZ and YB conducted the study design. XY, LZ and SK provided the 484 observational data. LZ assisted with data processing. CY wrote the manuscript with the help of TZ 485 and XY. YB, SK, JH, CC, YY, GM, MW and JC were involved in the scientific interpretation and 486 discussion. All of the authors provided commentary on the paper.

487 **Competing interests:** The authors declare that they have no conflicts of interest.

488 Acknowledgement: This study was jointly funded by the National Natural Science Foundation of

489	China (41830965; 91744209), the National Key R & D Program Pilot Projects of China
490	(2016YFC0203304) and the Postgraduate Research & Practice Innovation Program of Jiangsu
491	Province (KYCX18_1027).

493 **Reference**

- 494 Acciai, C., Zhang, Z., Wang, F., Zhong, Z., and Lonati, G.: Characteristics and source Analysis of
- 495 trace Elements in PM2.5 in the Urban Atmosphere of Wuhan in Spring, Aerosol and Air Quality
- 496 Research, 17, <u>https://doi.org/</u>2224-2234, 10.4209/aaqr.2017.06.0207, 2017.
- 497 An, X., Yao, B., Li, Y., Li, N., and Zhou, L.: Tracking source area of Shangdianzi station using
- 498 Lagrangian particle dispersion model of FLEXPART, Meteorological Applications, 21, 466-473,
 499 https://doi.org/10.1002/met.1358, 2014.
- 500 An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., and Gu, Z.:
- 501 Severe haze in Northern China: A synergy of anthropogenic emissions and atmospheric processes,
- 502 Proceedings of the National Academy of Sciences, 116, 8657-8666,
- 503 <u>https://doi.org/10.1073/pnas.1900125116</u>,2019.
- 504 Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S.,
- 505 Dingwell, A., Fast, J. D., Easter, R. C., Pisso, I., Burkhart, J., and Wotawa, G.: The Lagrangian
- 506 particle dispersion model FLEXPART-WRF version 3.1, Geoscientific Model Development, 6,
- 507 1889-1904, https://doi.org/10.5194/gmd-6-1889-2013, 2013.
- 508 Cao, J. J., Wang, Q. Y., Chow, J. C., Watson, J. G., Tie, X. X., Shen, Z. X., Wang, P., and An, Z. s.:
- 509 Impacts of aerosol compositions on visibility impairment in Xi'an, China, Atmospheric

- 510 Environment, 59, 559-566, <u>https://doi.org/</u>10.1016/j.atmosenv.2012.05.036, 2012.
- 511 Chang, X., Wang, S., Zhao, B., Cai, S., and Hao, J.: Assessment of inter-city transport of
- 512 particulate matter in the Beijing–Tianjin–Hebei region, Atmospheric Chemistry and Physics, 18,
- 513 4843-4858, <u>https://doi.org/</u>10.5194/acp-18-4843-2018, 2018.
- 514 Chen, B., Xu, X.-D., and Zhao, T.: Quantifying oceanic moisture exports to mainland China in
- 515 association with summer precipitation, Climate Dynamics, 1-16,
 516 <u>https://doi.org/10.1007/s00382-017-3925-1_2017a.</u>
- 517 Chen, S., Zhou, G., Zhu, B., Geng, F., and Chang, L.: A method for fast quantification of air
- 518 pollutant sources, Acta Scientiae Circumstantiae, 2474-2481, 2017b.
- 519 Cheng, Y. F., Wiedensohler, A., Eichler, H., Heintzenberg, J., Tesche, M., Ansmann, A., Wendisch,
- 520 M., Su, H., Althausen, D., and Herrmann, H.: Relative humidity dependence of aerosol optical
- 521 properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta
- 522 of China: An observation based numerical study, Atmospheric Environment, 42, 6373-6397,
- 523 <u>https://doi.org/</u>10.1016/j.atmosenv.2008.04.009, 2008.
- 524 De Foy, B., Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Wiedinmyer, C., and Molina,
- 525 L. T.: Aerosol plume transport and transformation in high spectral resolution lidar measurements
- 526 and WRF-Flexpart simulations during the MILAGRO Field Campaign, Atmospheric Chemistry
- 527 and Physics, 11, 3543-3563, <u>https://doi.org/</u>10.5194/acp-11-3543-2011, 2011.
- 528 Deng, J., Wang, T., Jiang, Z., Xie, M., Zhang, R., Huang, X., and Zhu, J.: Characterization of
- visibility and its affecting factors over Nanjing, China, Atmospheric Research, 101, 681-691,
 https://doi.org/10.1016/j.atmosres.2011.04.016, 2011.
- 531 Ding, Y. H.: Monsoons over China, Kluwer Academic Publishers, Dordrecht/Boston/London,

532 1994.

- 533 Ding, Y., Wu, P., Liu, Y., and Song, Y.: Environmental and dynamic conditions for the occurrence
- of persistent haze events in north China, Engineering, 3, 266-271, 2017.
- 535 Fast, J. D., and Easter, R. C.: A Lagrangian particle dispersion model compatible with WRF, 7th
- Annual WRF User's Workshop, 2006, 19-22.
- 537 Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C.,
- 538 Fowler, D., Koren, I., Langford, B., and Lohmann, U.: Particulate matter, air quality and climate:
- 539 lessons learned and future needs, Atmospheric chemistry and physics, 15, 8217-8299,
- 540 <u>https://doi.org/10.5194/acp-15-8217-2015</u>,2015.
- 541 Gong, W., Zhang, T., Zhu, Z., Ma, Y., Ma, X., and Wang, W.: Characteristics of PM1.0, PM2.5,
- 542 and PM10, and Their Relation to Black Carbon in Wuhan, Central China, Atmosphere, 6,
- 543 1377-1387, <u>https://doi.org/</u>10.3390/atmos6091377, 2015.
- 544 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., & Eder, B.
- 545 Grell G A, Schmitz P R, Mckeen S A, et al. Fully coupled 'online' chemistry within the WRF
- 547 <u>https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.</u>
- 548 He, J., Mao, H., Gong, S., Yu, Y., Wu, L., Liu, H., Chen, Y., Jing, B., Ren, P., and Zou, C.:
- 549 Investigation of Particulate Matter Regional Transport in Beijing Based on Numerical Simulation,
- Aerosol and Air Quality Research, 17, 1181-1189, <u>https://doi.org/</u>10.4209/aaqr.2016.03.0110,
 2017.
- 552 Hong S Y, Noh Y, Dudhia J. Hong, S. Y.: A new vertical diffusion package with an explicit
- 553 treatment of entrainment processes, Monthly Weather Review, 134, 2318-2341,

554 <u>https://doi.org/10.1175/MWR3199.1</u>,2006.

- Hu, J., Li, Y., Zhao, T., Liu, J., Hu, X.-M., Liu, D., Jiang, Y., Xu, J., and Chang, L.: An important mechanism of regional O₋₃ transport for summer smog over the Yangtze River Delta in eastern
- 557 China, Atmospheric Chemistry and Physics, 18, 16239-16251,
 558 <u>https://doi.org/10.5194/acp-18-16239-2018.</u>2018.
- 559 Huang, Q., Cai, X., Wang, J., Song, Y., and Zhu, T.: Climatological study of the Boundary-layer
- 560 air Stagnation Index for China and its relationship with air pollution, Atmos. Chem. Phys., 18,
- 561 7573–7593, https://doi.org/10.5194/acp-18-7573-2018, 2018.
- Jiang, C., Wang, H., Zhao, T., Li, T., and Che, H.: Modeling study of PM2.5 pollutant transport
 across cities in China's Jing–Jin–Ji region during a severe haze episode in December 2013,
 Atmospheric Chemistry and Physics, 15, 5803-5814, <u>https://doi.org/</u>10.5194/acp-15-5803-2015,
 2015.
- 566 Kan, H., Chen, R., and Tong, S.: Ambient air pollution, climate change, and population health in
- 567 China, Environment international, 42, 10-19, <u>https://doi.org/</u>10.1016/j.envint.2011.03.003, 2012.
- 568 Kang, H., Zhu, B., Gao, J., He, Y., Wang, H., Su, J., Pan, C., Zhu, T., and Yu, B.: Potential impacts
- of cold frontal passage on air quality over the Yangtze River Delta, China, Atmospheric Chemistry

570 and Physics, 19, 3673-3685, <u>https://doi.org/10.5194/acp-19-3673-2019</u>, 2019.

- 571 Miao, Y., Guo, J., Liu, S., Zhao, C., Li, X., Zhang, G., Wei, W., and Ma, Y.: Impacts of synoptic
- condition and planetary boundary layer structure on the trans-boundary aerosol transport from
 Beijing-Tianjin-Hebei region to northeast China, Atmospheric Environment, 181, 1-11,
 https://doi.org/10.1016/j.atmosenv.2018.03.005, 2018.
- 575 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer

- 576 for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, Journal
- 577 of Geophysical Research: Atmospheres, 102, 16663-16682, <u>https://doi.org/</u>10.1029/97jd00237,
 578 1997.
- 579 Morrison, H.: Impact of cloud microphysics on the development of trailing stratiform precipitation
- 580 in a simulated squall line:Comparisonline: Comparison of one-and two-moment schemes,

581 Mon.wea.rev, 137, 991-1007, https://doi.org/10.1175/2008MWR2556.1, 2009.

- 582 Nel, A.: Air pollution-related illness: effects of particles, Science, 308, 804-806,
- 583 <u>https://doi.org/10.1126/science.1108752</u>, 2005.
- 584 Oke, T. R.: Boundary layer climates, Routledge, 2002.
- 585 Qiao, X., Guo, H., Tang, Y., Wang, P., Deng, W., Zhao, X., Hu, J., Ying, Q., and Zhang, H.: Local
- and regional contributions to fine particulate matter in the 18 cities of Sichuan Basin, southwestern
- 587 China, Atmos. Chem. Phys., 19, 5791–5803, https://doi.org/10.5194/acp-19-5791-2019, 2019.
- 588 Sauvage, B., Fontaine, A., Eckhardt, S., Auby, A., Boulanger, D., Petetin, H., Paugam, R., Athier,
- 589 G., Cousin, J.-M., Darras, S., Nédélec, P., Stohl, A., Turquety, S., Cammas, J.-P., and Thouret, V.:
- 590 Source attribution using FLEXPART and carbon monoxide emission inventories: SOFT-IO
- 591 version 1.0, Atmospheric Chemistry and Physics, 17, 15271-15292,
- 592 <u>https://doi.org/10.5194/acp-17-15271-2017, 2017.</u>
- 593 Seibert, P., and Frank, A.: Source-receptor matrix calculation with a Lagrangian particle dispersion
- 594 model in backward mode, Atmospheric Chemistry and Physics, 51-63,
 595 <u>https://doi.org/10.5194/acp-4-51-2004</u>, 2003.
- 596 Sheng, P., Mao, J., and Li, J.: Atmospheric physics, Peking University Press, 2003.
- 597 Stohl, A.: A backward modeling study of intercontinental pollution transport using aircraft

598	measurements, Journal of Geophysical Research, 108, 1-8, https://doi.org/10.1029/2002jd002862,
599	2003.
600	Tan, C. H., Zhao, T. L., Cui, C. G., Luo, B. L., Zhang, L., and Bai, Y. Q.: Characterization of haze

- pollution over Central China during the past 50 years, China Environmental Science, 35,
 2272-2280, 2015.
- Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, Journal of
 Geophysical Research Atmospheres, 106, 7183-7192, <u>https://doi.org/10.1029/2000JD900719</u>,
 2001.
- Tie, X., Huang, R. J., Cao, J., Zhang, Q., Cheng, Y., Su, H., Chang, D., Poschl, U., Hoffmann, T.,
- Dusek, U., Li, G., Worsnop, D. R., and O'Dowd, C. D.: Severe Pollution in China Amplified by
 Atmospheric Moisture, Scientific reports, 7, 1-8, <u>https://doi.org/</u>10.1038/s41598-017-15909-1,
 2017.
- 610 Wang, H. L., Qiao, L. P., Lou, S. R., Zhou, M., Ding, A. J., Huang, H. Y., Chen, J. M., Wang, Q.,
- Tao, S. K., Chen, C. H., Li, L., and Huang, C.: Chemical composition of PM2.5 and
 meteorological impact among three years in urban Shanghai, China, Journal of Cleaner Production,
- 613 112, 1302-1311, <u>https://doi.org/10.1016/j.jclepro.2015.04.099, 2016</u>.
- Wang, S. X., Zhao, B., Cai, S. Y., Klimont, Z., Nielsen, C. P., Morikawa, T., Woo, J. H., Kim, Y.,
- 615 Fu, X., Xu, J. Y., Hao, J. M., and He, K. B.: Emission trends and mitigation options for air
- 616 pollutants in East Asia, Atmospheric Chemistry and Physics, 14, 6571-6603,
 617 <u>https://doi.org/10.5194/acp-14-6571-2014, 2014.</u>
- 618 Wu, J., Kong, S., Wu, F., Cheng, Y., Zheng, S., Yan, Q., Zheng, H., Yang, G., Zheng, M., and Liu,
- 619 D.: Estimating the open biomass burning emissions in central and eastern China from 2003 to

- 620 2015 based on satellite observation, Atmospheric Chemistry & Physics, 18,
 621 <u>https://doi.org/10.5194/acp-18-11623-2018</u>, 2018.
- 622 Wu, P., Ding, Y., and Liu, Y.: Atmospheric Circulation and Dynamic Mechanism for Persistent
- Haze Events in the Beijing-Tianjin-Hebei Region, Advances in Atmospheric Sciences, 34,
- *429-440*, 2017.
- Ku, G., Jiao, L., Zhang, B., Zhao, S., Yuan, M., Gu, Y., Liu, J., and Tang, X.: Spatial and Temporal
- 626 Variability of the PM2.5/PM10 Ratio in Wuhan, Central China, Aerosol and Air Quality Research,
- 627 17, 741-751, <u>https://doi.org/</u>10.4209/aaqr.2016.09.0406, 2017.
- Ku, J., Chang, L., Qu, Y., Yan, F., Wang, F., and Fu, Q.: The meteorological modulation on PM2. 5
- 629 interannual oscillation during 2013 to 2015 in Shanghai, China, Science of The Total Environment,
- 630 572, 1138-1149, https://doi.org/10.1016/j.scitotenv.2016.08.024, 2016a.
- 631 Xu, X., Zhao, T., Liu, F., Gong, S. L., Kristovich, D., Lu, C., Guo, Y., Cheng, X., Wang, Y., and
- 632 Ding, G.: Climate modulation of the Tibetan Plateau on haze in China, Atmospheric Chemistry
- and Physics, 16, 1365-1375, <u>https://doi.org/</u>10.5194/acp-16-1365-2016, 2016b.
- 634 Zhai, S., An, X., Liu, Z., Sun, Z., and Hou, Q.: Model assessment of atmospheric pollution control
- 635 schemes for critical emission regions, Atmospheric Environment, 124, 367-377,
- 636 <u>https://doi.org/</u>10.1016/j.atmosenv.2015.08.093, 2016.
- 637 Zhang, F., Wang, Z.-w., Cheng, H.-r., Lv, X.-p., Gong, W., Wang, X.-m., and Zhang, G.: Seasonal
- 638 variations and chemical characteristics of PM2. 5 in Wuhan, central China, Science of the Total
- 639 Environment, 518, 97-105, https://doi.org/10.1016/j.scitotenv.2015.02.054, 2015.
- 640 Zhang, H., Lv, M., and Zhang, B.: Analysis of the stagnant meteorological situation and the
- transmission condition of continuous heavy pollution course from February 20 to 26, 2014 in

- 642 Beijing-Tianjin-Hebei, Acta Scientiae Circumstantiae 36, 4340-4351, 2016.
- Zhang, R., Li, Q., and Zhang, R.: Meteorological conditions for the persistent severe fog and haze
 event over eastern China in January 2013, Science China Earth Sciences, 57, 26-35,
 <u>https://doi.org/10.1007/s11430-013-4774-3, 2014.</u>
- Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.:
 Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature,
 regional haze distribution and comparisons with global aerosols, Atmospheric Chemistry and
- 649 Physics, 12, 779-799, <u>https://doi.org/</u>10.5194/acp-12-779-2012, 2012.
- 50 Zheng, H., Kong, S., Wu, F., Cheng, Y., Niu, Z., Zheng, S., Yang, G., Yao, L., Yan, Q., and Wu, J.:

Intra-regional transport of black carbon between the south edge of the North China Plain and

- central China during winter haze episodes, Atmospheric Chemistry and Physics, 19, 4499-4516,
 https://doi.org/10.5194/acp-19-4499-2019, 2019.
- Zhong, Zhangxiong, Huang, Zhen, Ting, Shen, and Longjiao: Characteristic Analysis of OC and
 EC in PM2.5 of Typical Haze Weather in Wuhan City, Meteorological and Environmental
 Research, 19-22, 2014.
- 657

651

658

659

660

661

662 Table 1. Correlation coefficients between hourly PM_{2.5} concentrations and meteorological

elements over Wuhan in January 2016.

Correlation coefficient	WS	Т	Р	RH
PM _{2.5}	0.10	0.31	-0.47	0.20

Table 2. Correlation coefficients of PM_{2.5} concentrations with wind speed and air temperature in

666 different air quality levels during the study period.

Air quality	PM _{2.5} levels	Number of	WS	Т
		samples		
Clean	$PM_{2.5} < 75 \mu g \cdot m^{-3}$	73	-0.20	0.56
Light pollution	$75\mu g \cdot m^{-3} \le PM_{2.5} \le 150\mu g \cdot m^{-3}$	135	-0.19	0.15
Heavy pollution	$PM_{2.5} \ge 150 \mu g \cdot m^{-3}$	37	0.41	-0.08

- 671 **Table 3.** Atmospheric static stability below heights of 200 m in the boundary layer during heavy
- 672 pollution and clean air periods with the anomalies relative to the average over January, 2016 in

Wuhan.

Deried	heavy pollution period	clean air period	monthly average	
renod	(K·km-1)	(K·km-1)	(K·km-1)	
Static stability	4.4	13.2	8.6	
Anomalies of stability	-4.2	4.6	-	

674

675 Table 4. The relative contributions of regional-PM_{2.5} transport over central-eastern China to three
676 PM_{2.5} heavy pollution periods P1, P2 and P3 in the YRMB with the local contributions.

Contribution rates	P1	Р2	Р3	Averages
Regional transport	68.1%	60.9%	65.3%	65.1%
Local <u>contribution</u> emissions	31.9%	39.1%	34.7%	34.9%

Fig. 1. (left panela) Distribution of the Yangtze River Middle Basin (YRMB, orange rectangle) with the location of Wuhan (red area) and the major haze pollution regions of NCP, YPD and SCB in central-eastern China as well as (right panleb) the YRMB region with terrain height (color contours, m in a.s.l.), the rivers; and lake network (blue areas),downloaded from https://worldview.earthdata.nasa.gov.

Fig. 2. (a) The daily changes of surface $PM_{2.5}$ concentrations in Wuhan in January 2016 with PM_{2.5} concentrations exceeding 75 µg·m⁻³ (dash line) and 150 µg·m⁻³ (solid lines), respectively, for light and heavy haze pollution, and (b) the hourly variation of surface PM_{2.5} concentrations in three heavy air pollution events P1, P2 and P3 with excessive PM_{2.5} levels (>150 µg m⁻³) marked by the shaded areas.

Fig. 3. Hourly variations of meteorological elements and $PM_{2.5}$ concentrations in Wuhan in January 2016 with heavy air pollution periods marked with the columns in red dash lines and $PM_{2.5}$ concentrations exceeding 150 µg·m⁻³ (solid line).

Fig. 4. A polar plot of hourly variations in wind speed (round radius, units is $m \cdot s^{-1}$) and direction (angles) to surface PM_{2.5} concentrations (color contours, units is $\mu g \cdot m^{-3}$) in Wuhan in January, 2016.

701

Fig. 5. Vertical profiles of (a) air temperature, (b) wind velocity and (c) potential temperature

averaged in heavy PM_{2.5} pollution and clean air periods over Wuhan during January 2016.

Fig. 6 Distribution of (a) monthly averages of surface $PM_{2.5}$ concentrations observed in January 2016 over central-eastern regions in mainland China with the locations of six sites 1. Wuhan, 2. Xinyang, 3. Luoyang, 4. Zhengzhou, 5. Hefei and 6.Tongling as well as (b) the anomalies (color contours) of 200m wind speeds averaged during three heavy air pollution periods relatively to the monthly wind averages (streamlines) in January 2016 over central-eastern China with the location of Wuhan (a light blue star).

Fig. 7. Temporal changes of PM_{2.5} concentrations (dot lines) and near-surface winds (vectors) observed at five upstream sites (Fig. 6) and Wuhan with shifts of PM_{2.5} peaks (marked with shaded areas) to the YRMB's heavy PM_{2.5} pollution periods P1 P2 and P3 (respectively in upper, middle and lower panels) in January 2016.

Fig. 8. Taylor plots with the normalized standard deviations and correlation coefficients between simulated and observed meteorological fields. The radian of the sector represents the correlation coefficient, the solid line indicates the ratio of standard deviation between simulations and observations, the distance from the marker to "REF" reflect the normalized root-mean-square error (NRMSE).

Fig. 9. Spatial distribution of contribution rates (color contours) to PM_{2.5} concentrations in Wuhan

with the major pathways of regional PM_{2.5}-transport over central-eastern China (dash arrows) for
(a) heavy pollution periods P1, (b) P2 and (c) P3 in January, 2016 simulated by the model
FLEXPART-WRF.