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Abstract. Predictions from process-based models of environmental systems are biased, due to uncertainties in their inputs

and parameterisations, reducing their utility. We develop a predictor for the bias in tropospheric ozone (O3, a key pollutant)

calculated by an atmospheric chemistry transport model (GEOS-Chem), based on outputs from the model and observations

of ozone from both the surface (EPA, EMEP and GAW) and the ozone-sonde networks. We train a gradient-boosted decision

tree algorithm (XGBoost) to predict model bias (model/observation), with model and observational data for 2010-2015, and5

then test the approach using the years 2016-2017. We show that the bias-corrected model performs considerably better than

the uncorrected model. The root mean square error is reduced from from 16.2 ppb to 7.5 ppb, the normalised mean bias is

reduced from 0.28 to -0.04, and the Pearson’s R is increased from 0.48 to 0.84. Comparisons with observations from the

NASA ATom flights (which were not included in the training) also show improvements but to a smaller extent reducing the

RMSE from 12.1 ppb to 10.5 ppb, the NMB from 0.08 to 0.06 and increasing the Pearson’s R from 0.76 to 0.79. We attribute10

the smaller improvements to the lack of routine observational constraints for much of the remote troposphere. We show that

the method is robust to variations in the volume of training data, with approximately a year of data needed to produce useful

performance. Data denial experiments (removing observational sites from the algorithm training) show that information from

one location (for example Europe) can reduce the model bias over other locations (for example North America) which might

provide insights into the processes controlling the model bias. We explore the choice of predictor (bias prediction versus direct15

prediction) and conclude both may have utility. We conclude that combining machine learning approaches with process based

models may provide a useful tool for improving these models.

Copyright statement. TEXT

1 Introduction

Process-based models of the environmental system (e.g. Earth system models and their sub-components) use quantitative20

understanding of physical, chemical and biological processes to make predictions about the environmental state. These models

typically solve the differential equations that represent the processes controlling the environment, and are used for a range
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of tasks including developing new scientific understanding and environmental policies. Given uncertainties in their initial

conditions, input variables, parameterisations etc. these models show various biases which limit their usefulness for some tasks.

Here we focus on predictions of the chemical composition of the atmosphere, specifically on the concentration of tropospheric25

ozone (O3). In this region, O3 is a climate gas (Rajendra and Myles, 2014), damages ecosystems (Emberson et al., 2018) and

is thought to lead to a million deaths a year (Malley et al., 2017). The predictions of lower atmosphere O3 from process-based

models are biased (Young et al., 2018), reflecting uncertainties in the emissions of compounds into the atmosphere (Rypdal

and Winiwarter, 2001), the chemistry of these compounds (Newsome and Evans, 2017) and meteorology (Schuh et al., 2019).

Understanding and reducing these biases is a critical scientific activity, however, the ability to improve these predictions without30

having to improve the model at a process level also has value. For example air quality forecasting, and the quantification of the

impacts air pollutants on human and ecosystem health, would both benefit from improved simulations, even without process

level improvements.

Techniques used to reduce bias in air quality model include the use of ensembles (Wilczak et al., 2006) and data assimilation.

Data assimilation techniques are used to incorporate observations into meteorological forecasts (Bauer et al., 2015) and some35

air quality models (Bocquet et al., 2015), techniques such a hybrid forecast (Kang et al., 2008; Silibello et al., 2015) or a

Kalman filter (Delle Monache et al., 2006; Kang et al., 2010) have also been similarly applied.

We develop here a method, based on machine learning approaches, to predict the bias (modelled quantity - measured quan-

tity) in a model parameter (in this case tropospheric O3) based on information available from the model and a set of observations

of the parameter. This bias predictor can then be applied more widely (in space or time) to the model output to remove the bias,40

bringing the model results closer to reality.

Machine learning has shown utility in the field of atmospheric science, examples include: leveraging computationally bur-

densome short-term cloud simulations for use in climate models (Rasp et al., 2018), quantifying ocean surface CO2 distribution

(Rodenbeck et al., 2015) and high resolution mapping of precipitation from lower resolution model output (Anderson and Lu-

cas, 2018). More specifically to atmospheric O3, machine learning has been used for improving parameterization in climate45

models (Nowack et al., 2018), creating ensemble weighting for forecasts (Mallet et al., 2009) and predicting exposure during

forest fire events (Watson et al., 2019). For bias correction applications, machine learning has been used to correct observational

bias in dust prior to use in data assimilation (Jin et al., 2019).

Here we describe a machine learning bias correction method applied to the concentration of (O3) predicted by an atmospheric

chemistry transport model. We describe here the GEOS-Chem model used as our model (Sect. 2), the observations of O3 from50

four observational networks (Sect. 3) and our method (Sect. 4) to produce an algorithm to predict the bias in the model. We

explore its performance (Sect. 5) and how it performs under a number of situations and analyse its resilience to a reduction in

training data (Sect. 6) and training locations (Sect. 7). Finally, We explore the choice of predictor in Sect. 8 and discuss the

applicability and future of such a methodology in Sect. 9.
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2 GEOS-Chem model55

For this analysis we use GEOS-Chem Version V11-01 (Bey et al., 2001) an open-access, community, offline chemistry

transport model (http://www.geos-chem.org). In this proof of concept work, we run the model at a coarse resolution of 4o

x 5o for numerical expediency using MERRA2 meteorology from the NASA Global Modelling and Assimilation Office

(https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/). The model has 47 vertical levels extending from the surface to approx-

imately 80 km in altitude. We use the "tropchem" configuration, which has a differential equation representation of the chem-60

istry of the troposphere, and a linearized version in the stratosphere (Eastham et al., 2014). The emissions inventories used

include: EDGAR (Crippa et al., 2018) and RETRO (Hu et al., 2015) inventories for global anthropogenic emissions, which

are overwritten by regional inventories (NEI (USA) (Travis et al., 2016), CAC (Canada) (van Donkelaar et al., 2008), BRAVO

(Mexico) (Kuhns et al., 2005), EMEP (Europe) (van Donkelaar et al., 2008) and MIX (East Asia) (Li et al., 2017)). GFED4

(Giglio et al., 2013) and MEGAN (Guenther et al., 2012) are used for biomass burning and biogenic emissions. Details of the65

other emissions used can be found online (http://wiki.seas.harvard.edu/geos-chem/index.php/HEMCO_data_directories).

To produce the dataset to train the algorithm, the model is run from January 1st 2010 to December 31st 2015 outputting the

local model state for each hourly observation (see Sect. 3 and 4). For the testing we run the model from January 1st 2016 to

December 31st 2017 outputting the local model state hourly for every grid box within the troposphere.

3 Observational dataset70

The location of all of the observations used in this study are shown in Figure 1. Ground observations of O3 from the European

Monitoring and Evaluation Program (EMEP) (https://www.emep.int), the United States Environmental Protection Agency

(EPA) (https://www.epa.gov/outdoor-air-quality-data) and the Global Atmospheric Watch (GAW) (https://public.wmo.int/) are

compiled between 2010 and 2018 (see Sofen et al. (2016) for data cleaning). Due to the coarse spatial resolution of this study

(4o x 5o), we removed all sites flagged as "urban", as these would not be representative at this model resolution. Similarly,75

all mountain sites (observations made at a pressure <850 hPa ) were removed due the difficulty in representing the complex

topography typical of mountain locations within the large grid boxes.

Ozone-sonde data from the World Ozone and Ultraviolet Radiation Data Centre was also used (https://woudc.org). Ozone-

sonde observations above 100 ppb of O3 were excluded as they are considered to be in the stratosphere (Pan et al., 2004). For

both surface and sonde observations, when multiple observations were found in the same hourly model grid-box (both in the80

horizontal and vertical) they were averaged (mean) together to create a single "meta-site". There are 13,118,334 surface meta-

site observations in the training period between 1/1/2010 to 31/12/2015, and 3,783,303 in the testing period between 1/1/2016

and 31/12/2017. There are 250,533 ozone-sonde meta-site observations in the training period and 78,451 in the testing.

Observations of O3 from the NASA Atmospheric Tomography Mission (ATom) flights (Wofsy et al., 2018) were used as

an independent testing data set. ATom flew over the Pacific and the Atlantic from the northern mid-latitudes to the southern85

and back from the surface to 15 km measuring the concentration of many compounds including O3 (Figure 1). It flew for each

of the four seasons between July 2016 and May 2018, but only the first three (summer, spring and winter) are used due to
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availability at the time of writing. Given the oceanic nature of the flights and their sampling through the lowermost 15 km of

the atmosphere, the observations collected are spatially similar to the sonde observations. As with the surface and sonde data,

any O3 observations greater than 100 ppb was removed, and data were averaged onto the model grid resolution (mean) to give90

hourly model resolution "meta" sites. Once averaged, there are 10,518 meta observations used for the algorithm testing.

4 Developing the bias predictor

To develop a predictor for the bias in the model O3 we use the hourly observations from the surface and sondes for the training

period (1/1/2010 to 31/12/2015). We run the model for the same period, outputting values of the model’s local "state" at

each observation location in space and time. The model local state consists of the grid box concentration of the 68 chemicals95

transported by the model (including O3) and 15 physical model parameters (see Table 1). These parameters were thought to be

the most important in determining the local conditions controlling the O3 concentration. Future work could better define the

optimal set of parameters.

Once each O3 observation has a corresponding model prediction, we can develop a function to predict the model bias given

the values of the model local state as input. Several potential "machine learning" methodologies exist for making this prediction,100

including neural nets (Gardner and Dorling, 1998) and decision trees (Breiman, 2001). Here we favour decision tree methods

due to their increased level of explicability over neural nets (Yan et al., 2016).

As with other machine learning approaches, decision tree techniques (Blockeel and De Raedt, 1998) make a prediction for

the value of a function based on a number of input variables (features) given previous values of the function and the associated

values of the features. It is essentially non-linear multivariant regression. A single decision tree is a series of decision-nodes105

that ask whether the value of a particular feature is higher than a specific value. If the value is higher, progress is made to

another decision-node, if it is not, progress is made to a different decision-node. Ultimately, this series of decisions reaches a

leaf-node which gives the prediction of the function. The depth of a tree (the number of decision needed to get to a leaf-node)

is an important aspect of tuning decision trees. If the tree is too shallow it will miss key relationships in the data. Conversely,

if a model is too deep it will over-fit to the specific dataset and will not generalise well. The training of the system relies upon110

deciding which features should be used by each decision node and the specific value to be tested. The use of a single decision

tree leads to over-fitting (Geurts et al., 2009), so this progressed to using random forest regression (Breiman, 2001), where a

number of decision trees are constructed with differing sampling of the input data. The mean prediction of all of the decision

trees (the forest) was then used as the prediction of the function. More recently, gradient boosting regression (Friedman, 2002)

relies on building a tree with a relatively shallow depth and then fitting a subsequent tree to the residuals. This is then repeated115

until an adequate level of complexity is reached, where the model generalises the dataset without over-fitting.

The gradient boosted regression technique suited our needs for a variety of reasons: it is able to capture non-linear relation-

ships which underlies atmospheric chemistry (Krol and Poppe, 1998); the decision tree-based machine learning technique is

more interpretable than neural net-based models (Kingsford and Salzberg, 2008), through the output of decision statistics; it

has a relatively quick training time allowing efficient cross validation for tuning of hyper parameters; and it is highly scalable120

4



meaning we are able to test on small subsets of the data before increasing to much longer training runs (Torlay et al., 2017).

For the work described here we use the XGBoost (Chen and Guestrin, 2016; Frery et al., 2017) algorithm.

Hyper-parameters are parameters set before training that represent the required complexity of the system being learnt

(Bergstra and Bengio, 2012). Tuning of these parameters was achieved by five k-fold cross validation whereby the training

data is broken into five subsets, with the training data organised by date. The model was then trained on four of these sub-125

sets and tested on the remaining subset. Training and test is repeated on each of the five subsets to identify the optimum

hyper-parameters attempting to balance complexity without over fitting (Cawley and Talbot, 2010).

The key hyper-parameters tuned were the number of the trees and depth of trees. Similar results could be found with 12 to

18 layers of tree depth, with a reduction in number of trees needed at greater depth. It was found that the algorithm achieved

the majority of its predictive power early on, with the bulk of the trees producing small gains in root mean square error. As130

a compromise between training time and predictive strength, 150 trees with a depth of 12, were chosen. This took 1 hour to

train on a 40 core CPU node, consisting of two Intel Xeon Gold 6138 CPUs. Mean squared error was the loss function used

for training.

Numerous model performance metrics are used in subsequent assessment of the model performance. The Root Mean Squared

Error (RMSE) measures the average error in the prediction, Normalised Mean Bias (NMB) measures the direction of the bias135

and normalises the mean value, the Pearson’s R correlation coefficient measures the linear relationship between the prediction

and the observation.

RMSE(y, ŷ) = [
1

N

N∑
i=1

(yi − ŷi)
2]

1
2 (1)

NMB(y, ŷ) =

∑N
i=1(yi − ŷi)∑N

i=0 yi
(2)140

R(y, ŷ) =

∑N
i=1[(yi − ȳi)(ŷi − ˆ̄yi)]∑N

i=1[(yi − ȳi)2(ŷi − ˆ̄yi)2]
1
2

(3)

Where y is the observed values, ŷ is the predicted values and N is the number of samples.

5 Application

With the bias predictor now trained we can now apply it to the model output and evaluate performance. We do this for a145

different period (1/1/2016-31/12/2017) to that used in the training (1/1/2010-31/21/2015). We first look at the mean daily

(diurnal) cycles calculated with the model for nine globally distributed sites (Figure 2 with statistics given in Table 2). The

base model (blue) shows notable differences with the observations (black) for most sites. The subtraction of the bias prediction

from the base model (red), leads to an increase in the fidelity of the simulation. For the US sites, the base model over estimates

at all times, consistent with previous work (Travis et al., 2016), with the largest biases occurring during the night. The bias150
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corrected model now shows a diurnal cycle very similar to that observed, with Rs increasing from a mean of 0.92 to 1.00,

RMSEs reducing from a mean of 15.1 ppb to 1.1 ppbv, and NMB reducing from a mean of 0.51 to -0.02. The bias correction

thus successfully corrects biases seen in the mean diurnal cycle, notably the large night-time bias. Although the base model

failure is less evident for the European sites (Hu et al., 2018), there are still in general small improvements with the inclusion

of the bias corrector. The Japanese data shows a differing pattern. Similar to the US sites, the base model over-estimates the O3155

generating a much smaller diurnal cycle compared to the observation. Although the bias corrector improves the mean value, it

does not completely correct the diurnal cycle. We attribute this to the coastal nature of Japan. The model grid-box containing

the Japanese observations is mainly oceanic but the observations show a continental diurnal cycle (a marked increase in O3

during the day similar to those seen in the US). It is likely that the predicted bias is being distorted by biases at other ocean

dominated grid-boxes, when in Japan’s case, the O3 concentration is likely influenced by long range transport from China.160

For the two clean tropical sites (Cape Verde and Cape Point in South Africa) the base model already does a reasonable job

(Sherwen et al., 2016) so the bias corrected version improves little and slightly reduces the NMB performance at Cape Verde

from 0.03 to 0.04. For the Antarctic site the large bias evident in the model (Sherwen et al., 2016) is almost completely removed

by the bias corrector but that results in a small reduction in the R value.

The seasonal comparison (Figure 3 with statistics given in Table 3) shows a similar pattern. Over the polluted sites (USA,165

UK, Germany) biases are effectively removed. The performance for Japan is less good, with the clean tropical sites again

showing only small improvements. Over Antarctica a considerable bias is removed with the application of the bias corrector.

Where the performance of the model is already good, such as the RMSE at Cape Verde, or for the NMB at the UK the inclusion

of the bias correction can slightly degrade performance.

A point by point comparison between all of the surface data (1/1/2016-31/12/2017) and the model with and without the170

bias corrector is shown in Figure 4. The bias corrector removes virtually all of the model biases (NMB) taking it from 0.29 to

-0.04, substantially reduces the error (RMSE) from 16.2 ppb to 7.5 ppb and increases the correlation (Pearson’s R) from 0.48

to 0.84. Although this evaluation is for a different time period than the training dataset, it is still for the same sites. It would be

preferable to use a completely different dataset to evaluate the performance of the system.

We use the ATom dataset (Section 3) to provide this independent evaluation. Figure 5 (with statistical data in Table 4) shows175

the comparison between the model prediction of the ATom observations with and without the bias corrector. Although the

inclusion of the bias correction improves the performance of the model, this improvement is notably smaller than that seen

for the surface data. The RMSE is reduced by only 13% for the ATom data compared to 54% for the surface observations.

Similarly the Pearson’s R only marginally improves with the use of the bias corrector. Much of the improvement of the

model’s performance for the ATom data will be coming from the observations collected by the sonde network. There are fewer180

observations (40:1) collected by that network than by the surface network. Thus for the bias corrector approach to work well it

appears that there must be considerable volumes of observations to constrain the bias under sufficiently diverse conditions. It

would appear that the sonde network may not provide that level of information to the degree that the surface network does.

Applying the bias corrector to all of the grid points within the model shows the global magnitude of the predicted bias

(Figure 6). Similar to the analysis of the nine individual sites, the base model is predicted to be biased high over much of185
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the continental USA, with smaller biases over Europe and the tropical ocean regions. Over the southern ocean the model is

predicted to be biased low. However, the bias is also predicted for regions without observations (see Figure 1). For example,

over China, the model is predicted to be biased high by ~15 ppbv. This is higher but not dissimilar to the biases previously

found for the model in China (Hu et al., 2018) which found a positive bias of 4-9 ppbv but using a different model configuration

(higher resolution) and for a different model assessment (MDA8 vs annual mean). Similar questions as to the accuracy of the190

prediction arise from the large biases predicted for central Africa and South America. Future evaluation of the bias corrector

methodology should more closely look at the impact on these regions and where possible extend the training dataset to use

observations from these regions if they are available. While the algorithm is able to provide a prediction for any region, we can

only have confidence in regions that we have test data.

In the free troposphere (900 to 400 hPa) we find the model is biased low in the southern extra-tropical and polar regions, and195

biased high in tropical regions. This Matches the pattern of the bias found at 500 hPa in the ensemble comparison performed

in Young et al. (2018). However, that study found that the northern extra-tropical and polar region were biased low, whereas

our results show a high bias, possibly due to a specific GEOS-Chem bias in these regions.

As we saw in the analysis of the nine individual sites, much of the improvement observed was due to the changes in the

diurnal cycle. Figure 7 shows the global annual average change in diurnal cycle caused by the bias corrector. We see that there200

are only positive changes, increasing the amplitude of the diurnal cycle. This is likely due to the coarse model resolution not

capturing the high concentration gradients required to achieve high rates of production or titration of O3. Conversely, Figure 8

shows that over polluted regions seasonal amplitude decreases. Which from the nine individual sites (Figure 3) appears to be a

result of reductions in the predicted summer O3 concentration.

The gain (the loss reduction gained from splits using that feature) is shown in Figures 9. Derivation of gain metric for205

XGBoost can be found in Chen and Guestrin (2016). This provides a diagnostic of the importance of different input variables

in the decision trees used for making predictions. Surprisingly, the most important feature from this analysis is the concentration

of NO3 (the nitrate radical). This has a high concentration in polluted night-time environments and low concentration in clean

regions or during daytime (Winer et al., 1984). This feature appears to be being used to correct the concentration of O3 in

regions such as the US which are polluted and have a notably high bias at night. The next most important feature is the O3210

concentration itself. This may be a result in biases arising during high or low O3 periods. As well as reflecting biases in regions

with very low O3 concentrations such as around Antarctica. The third most important feature is the CH2O concentration. This

may indicate biases over regions of high photo-chemical activity, as CH2O is a product of the photo-chemical oxidation of

hydrocarbons (Wittrock et al., 2006). Future work should explore these explanatory capabilities to understand why the bias

correction is performing as it is. This may also allow for a scientific understanding of why the model is biased rather than just215

how much the model is biased.

We have shown that the bias corrector method provides an enhancement of the base-model prediction under the situations

explored. We now perform some experiments with the system to explore its robustness to the size of the dataset used for

training both spatially and temporally.
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6 Size of training dataset220

The bias predictor was trained using six years of data (2010-2015). This provides a challenge for incorporating other obser-

vational data sets. For some critical locations such as China or India the observational record is not that long and for high

resolution model data (eg 12.5 km (Hu et al., 2018)) managing and processing 73 parameters for six years could be compu-

tationally burdensome. Being able to reduce the number of years of data whilst maintaining the utility of the approach would

therefore be useful. Figure 10 shows the improvement in the global performance of the model metrics (same as for Table 4)225

for surface O3 varying the number of months of training data used. The end of the training set was the 1st of January 2016 in

all cases and the starting time pushed backwards to provide a sufficiently long training dataset. The dots in Figure 10 represent

the statistical performance of the uncorrected model. Training with only a month of data (in this case Dec 2015) marginally

reduces the RMSE and the Pearson’s R. However, it causes a change in the sign of the NMB, as the model’s winter time bias is

projected over the whole year. Considerable benefit arises once at least eight months of training data has been included. Using230

a bias predictor trained with a year of observational data increases the performance of the base model, halving the RMSE,

removing most of the NMB and increasing the Pearson’s R by 60%. Much of the variability in the power-spectrum of surface

O3 is captured by timescales of a year or less (Bowdalo et al., 2016) thus a timescale of a year appears to be a good balance

between computational burden and utility for an operational system such as air quality forecasting. When altering the size of

the training dataset we found the training time was approximately linear to the number of samples. For future high resolution235

runs we may consider the use of GPUs which have been found to substantially decrease training time (Huan et al., 2017).

7 Data denial

Now we explore the impact of removing locations from the training dataset. We start by removing the data from the nine meta

sites (California, New York, Texas, UK, Germany, Japan, Cape Verde, South Africa (Cape Point), Antarctica (Neumayer)) from

the algorithm training dataset (again for 2010-2015) and evaluate the bias corrected model using this new bias predictor for240

these sites (again for 2016-2017) (Figure 11 and 12). Over the USA, removing the nine observational data sets does degrade

the overall model performance slightly (the green lines in Figures 11 and 12) compared to the full training dataset (red line).

It appears that the neighbouring sites are similar enough to the removed sites to provide sufficient information to almost

completely correct the bias even without including the actual sites. There are different degrees of impact for the other sites.

For the UK, the impact of removing the UK site from the training dataset is minimal. For Germany, the bias corrections are245

now larger, and over compensates the base model during the night and in the summer months. For Japan the removal of its

information provides a simulation halfway between the simulation with and without the standard bias correction. For remote

sites, such as Cape Verde and South Africa, removal makes the bias corrected model worse than the base model. Similar

to Japan, removing the Antarctic site leads to a bias correction which is between the standard bias corrected model and the

standard model. A full set of statistics for the diurnal and seasonal results can be found in Tables 2 and 3 respectively.250

Much of this behaviour relates to the similarity of other sites in the training dataset to those which were removed. For

sites such as the US, and to some extent Europe, removing a few sites has little influence on the bias predictor as there are a
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number of similar neighbouring sites which can provide that information. For other locations such as the clean Cape Verde and

South African sites there are no other similar sites. Thus removing those sites from the training dataset removes considerable

amounts of information. If there are no similar sites for the bias correction to use, an inappropriate correction can be applied255

which makes the simulation worse. For sites such as the Japanese and Antarctic sites there are some similar sites in the training

data to provide some improvement over the base model.

Taking the data denial experiments further, we remove all observations within North and South America from the training

dataset (everything between -180◦ and -10◦ East). Figures (13 and 14) show the impact of this on the standard nine sites. For

New York and Texas the bias corrected model performs almost as well without North and South America as it does with. The260

bias corrector predicts roughly the same correction for California as it does for New York and Texas and this over-corrects

daytime concentrations for California but simulates the night time and the seasonal cycle much better than without the bias

corrector. For the other six sites around the world, the influence of removing North and South America is minimal. It appears

surprising that the corrections applied for North America are so good even though the North American data is not included

within the training. This suggests that at least some of the reasons for the biases in the model are common between, say North265

America and Europe, indicating a common source of some of the bias. This may be due to errors in the model’s chemistry or

meteorology, which could be global rather than local in nature.

Figure 15 shows the changes in prediction that would occur globally if the western hemisphere (-180oE to -10oE) is removed

from the training data. Where there are observations in the eastern hemisphere, changes are in general small. But there are some

notable changes for locations that do have observations such as in Spain. It appears the algorithm is using information from270

the North American observations to infer corrections for Spain. These are relatively similar locations (photolysis environment,

temperatures, emissions etc) so the algorithm is using information from North America in the Spanish predictions. The differ-

ence in these predictions may suggest that there are different causes in the biases between the North American sites and the

Spanish sites. The changes are much more profound in areas that have no observations of their own to constrain the problem.

Removing the Western hemisphere reduces the number of unique environments the algorithm has to learn from resulting in275

substantial changes in the prediction.

It would be possible to consider other data denial experiments based on site type (rural, industrial, residential, etc.) biome,

altitude, etc. which could provide information about the utility of each observation. This would likely improve with running

the base model at a higher resolution than was undertaken here.

8 Nature of the prediction280

The bias correction method described here, attempts to predict the bias in the model. An alternative approach would be to

directly predict the O3 concentration given the values of the features including the O3 mixing ratio. An algorithm to do this

given the same model local state information is trained on the standard six years of training data (2010 - 2015). Table 4 shows a

statistical analysis of the performance for the model, coupled to both the bias predictor and the direct predictor. For the testing
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years (2016 to 2017) the direct prediction of surface O3 performs marginally better than the bias correction (RMSE of 7.1 ppb285

versus 7.5 ppbv, NMB of 0.00 vs -0.04, and R of 0.85 versus 0.84).

However, for the ATom dataset, the bias predictor performs better (Table 4). We interpret this to mean that for locations

where observations are included in the training (surface sites and sondes), directly predicting at locations has benefits. As

XGBoost is unable to extrapolate outside the range of the observation data, direct prediction constrains to the observed O3

concentration range. While this appears beneficial in areas we have observations, at sites where no observation training data is290

available, it is better to use the bias corrector approach as this only constrains the scale factor on the bias, not the concentration

itself. Further work is necessary to advance our understanding of the form of the prediction that is necessary to best provide a

useful enhancement of the system.

9 Discussion

We have shown that the bias in the O3 concentration calculated by a chemistry transport model can be reduced through the use295

of a machine learning algorithm with the results appearing robust to data denial and training length experiments. For activities

such as air quality forecasting for sites with a long observational record this appears to offer a potential route to improve

fidelity of the forecasts without having to improve process level understanding. This work offers some practical advantages

over data assimilation. The observations don’t necessarily need to be available in real time as the training of the bias predictor

can be made using past observations and applied to a forecast without the latest observations being available. The approach300

may also be applied to regions where observational data is not available. Although this necessitates care, the temporary lack

of availability of data is much less of a problem for this approach than for data assimilation. As forecast models are run at

resolutions on the order of 1s - 10s kms, further work will need to be done to examine the technique’s performance with

the added variability associated with an increase in resolution. It is possible that some mitigation may be achieved with the

inclusion of additional high resolution data, such as road usage or topological maps. Or with the use of variables that reflects305

the state beyond the grid-box (such as the concentration in adjacent boxes or the average of all boxes within a varying range),

to provide information on upwind conditions.

More future work is needed to understand the approach than has been shown in this proof of concept work. Exploring the

number and nature of the variables used would thus be advantageous. The complete set of model tracers and some physical

variables were used here but their choice was somewhat arbitrary. A more systematic exploration of which variables are needed310

to be included is necessary. Are all the variables needed? Are important physical variables missing? Similarly, only one machine

learning algorithm has been used with one set of hyper-parameters chosen. Algorithm development is occurring very quickly,

and we have not explored other approaches such as neural nets that may offer improved performance. The ability to predict the

bias for regions without observations is also a potentially useful tool for better constraining the global system. Observations of

surface O3 exist for China (Li et al., 2019) but have not been included here for expediency. It would be scientifically interesting315

to see how they compare to those predicted by the bias corrector and how the bias corrector changes if they are included in the

training. It seems possible that the approach developed here could be used to explore methods to extract information about why
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the model is biased rather than just quantifying that bias. While much of the information provided by the predictor is indicative

rather than causative, coupling feature importance and data denial with domain knowledge may provide a powerful diagnostic

technique for identifying the source of bias. Finally, the method could readily be extended to other model products such as320

PM2.5.

More generally machine learning algorithms appear to offer opportunities to understand the large, multivariate and non-

linear data sets typical of atmospheric science and the wider environmental sciences. They offer new tools to understand

these scientifically interesting, computationally demanding and socially relevant problems. However, they must also be well

characterised and evaluated before they are routinely used to make the forecasts and predictions.325
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Figure 1. Locations of meta observations (averaged over model 4◦x5◦ grid boxs) from the surface (EPA,EMEP and GAW indicated in red),

the ozone-sonde network (blue) an the ATom flights (Green).
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Figure 2. Diurnal cycle for O3 at nine meta sites in 2016-2017. Shown are the observations, the base model and the model corrected with the

bias predictor. The median values are shown as the continuous line and the 25th to 75th percentiles as shaded areas.
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Figure 3. Seasonal cycle for O3 at nine meta sites in 2016-2017. Shown are the observations, the base model and the model corrected with

the bias predictor. The median values are shown as the continuous line and the 25th to 75th percentiles as shaded areas.
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Figure 4. Kernel density estimation plot of model vs observation for all ground site observations compared to the model (upper panel) and the

corrected model (lower panel) for 2016-2017. Dashed line indicates the 1:1 line, coloured line indicates the line of best fit using orthogonal

regression. The plot is made up of 3,783,303 data points.
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Figure 5. Kernel density estimation plot of model vs observations for all ATom summer, winter and fall campaign observations compared to

the model (upper panel) and the corrected model (lower panel) for 2016-2017. Dashed line indicates the 1:1 line, coloured line indicates the

line of best fit using orthogonal regression. The plot is made up of 10,518 data points.
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Figure 6. Annual mean predicted bias (model - measurement) that would be applied to all grid boxes for a one year (2016) model simulation

in three pressure ranges of the atmosphere. The >100 ppb of O3 definition of the stratosphere is used.
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Figure 7. Annual (2016) mean change (corrected model - base model) in diurnal cycle (max-min) in three pressure ranges of the atmosphere.

The >100 ppb of O3 definition of the stratosphere is used.
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Figure 8. Change (corrected model - base model) in seasonal cycle (max-min) for 2016 in three pressure ranges of the atmosphere. The >100

ppb of O3 definition of the stratosphere is used.
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Figure 9. Feature importance based on gain (the average gain across all splits the feature is used in). *Methyl-hydro-peroxide, **Perox-

ymethacryloyl nitrate
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Figure 10. Testing statistics with increasing length of training data. The dot represents the uncorrected model performance.

27



Figure 11. Diurnal cycle for O3 at nine meta sites in 2016-2017. Shown are the observations, the base model, a corrected model trained using

all of the observations, and a corrected model trained with with the nine sites removed. The median values are shown as the continuous line

and the 25th to 75th percentiles as shaded areas.
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Figure 12. Seasonal cycle for O3 at nine meta sites in 2016-2017. Shown are the observations, the base model, a corrected model trained

using all of the observations, and a corrected model trained with with the nine sites removed. The median values are shown as the continuous

line and the 25th to 75th percentiles as shaded areas.
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Figure 13. Diurnal cycle for O3 at nine meta sites in 2016-2017. Shown are the observations, the base model, a corrected model trained

using all of the observations and a corrected model trained with all western hemisphere (west of -20oE) data removed. The median values

are shown as the continuous line and the 25th to 75th percentiles as shaded areas.
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Figure 14. Seasonal cycle for O3 at nine meta sites in 2016-2017. Shown are the observations, the base model, a corrected model trained

using all of the observations and a corrected model trained with all western hemisphere (west of -20oE) data removed. The median values

are shown as the continuous line and the 25th to 75th percentiles as shaded areas.
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Figure 15. Difference in the global mean annual surface O3 prediction between a predictor trained with western hemisphere observation data

(west of -20oE) and a predictor trained without this data. Red dots show locations of ground sites in the surface to 900 hPa plot, and sonde

locations in the other two plots.
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Table 1. Chemical tracers and physical parameters used for training.

Chemical tracers Physical parameters

NO Hydrophilic black carbon Pressure

O3 Hydrophobic organic carbon Temperature

Peroxyacetylnitrate Hydrophilic organic carbon Absolute humidity

CO 0.7 micron dust Surface pressure

≥C4 alkanes 1.4 micron dust Aerosol surface area

Isoprene 2.4 micron dust Horizontal wind speed

HNO3 4.5 micron dust Vertical wind speed

H2O2 Isoprene epoxide Surface albedo

Acetone Accumulation mode sea salt aerosol Cloud fraction

Methyl ethyl ketone Coarse mode sea salt aerosol Optical depth

Acetaldehyde Br2 Solar zenith angle

≥C4 aldehydes Br Cos(dayof year/360)2π

Methylvinylketone BrO Sin(dayof year/360)2π

Methacrolein HOBr

Peroxymethacryloyl nitrate HBr

Peroxypropionylnitrate BrNO2

≥C4 alkylnitrates BrNO3

Propene CHBr3

Propane CH2Br2

Formaldehyde CH3Br

Ethane Methyl peroxy nitrate

N2O5 Beta isoprene nitrate

HNO4 Delta isoprene nitrate

Methylhydroperoxide 5C acid from isoprene

Dimethylsulfide Propanone nitrate

SO2 Hydroxyacetone

SO4
2- Glycoaldehyde

SO4
2- on sea salt HNO2

Methanesulfonic acid Nitrate from methyl ethyl ketone

NH3 Nitrate from methacrolein

NH4
+ Peroxide from isoprene

Inorganic nitrates Peroxyacetic acid

Inorganic nitrates on sea salt NO2

Hydrophobic black carbon NO3
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