## Supplementary Materials

# Heterogeneous Formation of Particulate Nitrate under Ammoniumrich Regime during the high PM<sub>2.5</sub> events in Nanjing, China Yu-Chi Lin<sup>1,2,3</sup>, Yan-Lin Zhang<sup>1,2,3\*</sup>, Mei-Yi Fan<sup>1,2,3</sup>, Mengying Bao<sup>1,2,3</sup>

<sup>1.</sup> Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China.

<sup>2.</sup> Key Laboratory Meteorological Disaster; Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, 210044, China.

<sup>3</sup>. Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.

Corresponded to Yan-Lin Zhang (dryanlinzhang@outlook.com;

zhangyanlin@nuist.edu.cn )

#### **Contents of this file**

Table S1, Figure S1 to Figure S5

#### Introduction

Table S1 lists the summarized information for  $PM_{2.5}$  events occurred during the experimental periods. We also presented the rates and pathways of particulate  $NO_3^-$  formation in the thigh  $PM_{2.5}$  events. Figure S1 shows the equivalent concentrations of cations and anions in  $PM_{2.5}$  in Nanjing during the sampling periods. Figure S2 plots average concentrations of water-soluble inorganic ions in  $PM_{2.5}$  during different seasons in Nanjing City. Figure S3 shows the theoretical and observed  $P_{HNO3} \cdot P_{NH3}$ 

values during the sampling periods. Figure S4 illustrates scatter plots of  $NO_3^-$ ,  $SO_4^{2-}$  and  $NH_4^+$  against  $PM_{2.5}$  mass in Nanjing City during the sampling periods. Figure S5 shows the scatter plot of  $NO_3^-$  vs. excess- $NH_4^+$  molar concentrations in Nanjing during the sampling periods.

In Table S1, we defined the  $PM_{2.5}$  haze days with hourly  $PM_{2.5}$  concentrations of exceeding 150 µg m<sup>-3</sup> and the high  $PM_{2.5}$  levels should be lasted more than 3 hours. During the high  $PM_{2.5}$  events, the maximum formation rate of  $NO_3^-$  ( $F_{NO3-}$ ) can be calculated as:

$$F_{NO3-} = \frac{([NO_3^-]_m - [NO_3^-]_i)}{[NO_3^-]_i \Delta h} / ([CO]_m / [CO]_i)$$

where  $[NO_3^-]_i$  is the nitrate concentration at the initial time during the PM<sub>2.5</sub> event .  $[NO_3^-]_m$  is the maximum nitrate concentrations during the PM<sub>2.5</sub> event. Both parameters are in units of  $\mu$ g m<sup>-3</sup>.  $\Delta$ h (hours) denotes the duration between the initial time and the time when NO<sub>3</sub><sup>-</sup> concentration reached the maximum value during the PM<sub>2.5</sub> event. [CO]<sub>m</sub> is the CO concentration when the NO<sub>3</sub><sup>-</sup> concentration reach the maximum value during the PM<sub>2.5</sub> event. [CO]<sub>i</sub> is the CO concentration at the initial time during the PM<sub>2.5</sub> event. Both units of [CO]<sub>m</sub> and [CO]<sub>i</sub> are in units of ppm. Here, [CO]<sub>m</sub>/[CO]<sub>i</sub> can be considered a dilution factor of the atmosphere.

| Events    | Time of occurrence      | Formation rate of $NO_3^-$ (% $h^{-1}$ ) | Behaviors of AWLC and Ox                    | Potential mechanisms            |
|-----------|-------------------------|------------------------------------------|---------------------------------------------|---------------------------------|
| 2016      |                         |                                          |                                             |                                 |
| Case I    | 3/3 18:00 - 3/4 03:00   | 5.5                                      | ALWC and Ox Kept constant levels            | $NO_2 + OH \ / \ N_2O_5 + H_2O$ |
| Case II   | 3/4 08:00 - 3/4 14:00   | 2.4                                      | Decreasing ALWC and increasing Ox           | $NO_2 + OH$                     |
| Case III  | $3/4\ 23:00-3/5\ 03:00$ | 26.7                                     | Increasing ALWC and decreasing Ox           | $N_2O_5 + H_2O$                 |
| Case IV   | 3/5 14:00 - 3/5 21:00   | 15.4                                     | Increasing ALWC and decreasing Ox           | $N_2O_5+H_2O$                   |
| Case V    | 3/6 09:00 - 3/6 20:00   | 2.5                                      | Decreasing ALWC and increasing Ox           | $NO_2 + OH$                     |
| Case VI   | 3/14 22:00 - 3/15 04:00 | 6.0                                      | Increasing ALWC and increasing Ox           | $NO_2 + OH \ / \ N_2O_5 + H_2O$ |
| Case VII  | 3/18 09:00-3/18 18:00   | 13.7                                     | Increasing ALWC and decreasing Ox           | $N_2O_5+H_2O$                   |
| Case VIII | 3/19 07:00 - 3/19 16:00 | 11.0                                     | Decreasing ALWC and decreasing Ox           | $NO_2 + OH \ / \ N_2O_5 + H_2O$ |
| Case IX   | 5/7 02:00 - 5/7 08:00   | 4.0                                      | Increasing ALWC and decreasing Ox           | $N_2O_5 + H_2O$                 |
| 2017      |                         |                                          |                                             |                                 |
| Case X    | 1/23 17:00 -1/23 21:00  | 10.4                                     | Increasing ALWC and Ox kept constant levels | $N_2O_5 + H_2O$                 |
| Case XI   | 2/6 00:00 - 2/6 05:00   | 11.4                                     | Increasing ALWC and Ox kept constant levels | $N_2O_5 + H_2O$                 |
| Case XII  | 2/13 22:00 - 2/14 06:00 | 6.7                                      | Increasing ALWC and Ox kept constant levels | $N_2O_5 + H_2O$                 |

Table S1 Summarized information for occurrence of high PM<sub>2.5</sub> events, formation rate and potential mechanisms for particulate NO<sub>3</sub><sup>-</sup>.



Figure S1 Equivalent concentrations of cations and anions in PM<sub>2.5</sub> in Nanjing during the sampling periods.



Figure S2 Average concentrations of water-soluble inorganic ions in PM<sub>2.5</sub> observed in Nanjing City during the different seasons.



Figure S3 (a)Theoretical (solid lines) and observed (circles and triangles) equilibrium constants ( $P_{HNO3} \cdot P_{NH3}$ ) of partitioned NO<sub>3</sub><sup>-</sup> and NH<sub>4</sub><sup>+</sup> between aerosol and gas phase in different ambient temperature and relative humidity and (b) time series of theoretical (blue line) and observed  $P_{HNO3} \cdot P_{NH3}$  values (pink dots) during the sampling periods.



**Figure S4** Scatter plots of NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and NH<sub>4</sub><sup>+</sup> against PM<sub>2.5</sub> mass in Nanjing City during the sampling periods.



Figure S5 Scatter plot of  $NO_3^-$  vs. excess- $NH_4^+$  molar concentrations in Beijing from October 2017 to September 2018 (Dao et al., 2019).

### References

Dao, X., Lin, Y.-C., Cao, F., Di, S.-Y., Hong, Y., Xing, G., Li, J., Fu, P., & Zhang, Y.-L.
(2019). Introduction to the aerosol chemical composition monitoring network of China: objects, current status and outlook. *Bulletin of the American Meteorological Society*, accepted.