

1 **Molecular characteristics and diurnal variations of organic aerosols**
2 **at a rural site in the North China Plain with implications for the**
3 **influence of regional biomass burning**

4

5

6 Jianjun Li^{1,4}, Gehui Wang^{1,2,3 *}, Qi Zhang^{4*}, Jin Li¹, Can Wu², Wenqing Jiang⁴, Tong
7 Zhu⁵, and Limin Zeng⁵

8

9

10 ¹Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment,
11 Chinese Academy of Sciences, Xi'an 710061, China

12 ²Key Laboratory of Geographic Information Science of the Ministry of Education,
13 School of Geographic Sciences, East China Normal University, Shanghai 200241,
14 China

15 ³Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai 200062, China

16 ⁴Department of Environmental Toxicology, University of California, Davis, CA
17 95616, USA

18 ⁵BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering,
19 Peking University, Beijing, China

20

21

22

23

24 *Corresponding authors:

25 Prof. Gehui Wang, E-mail: ghwang@geo.ecnu.edu.cn;

26 Prof. Qi Zhang, E-mail: dkwzhang@ucdavis.edu

27

28

29 **Abstract**

30 Field burning of crop residue in early summer releases into the atmosphere a
31 large amount of pollutants with significant impacts on the air quality and aerosol
32 properties in the North China Plain (NCP). In order to investigate the influence of this
33 regional anthropogenic activity on molecular characteristics of organic aerosols, PM_{2.5}
34 filter samples were collected with a 3-hr interval at a rural site of NCP from June 10th
35 to 25th, 2013, and analyzed for more than 100 organic tracer compounds, including
36 both primary (*n*-alkanes, fatty acids/alcohols, sugar compounds, polycyclic aromatic
37 hydrocarbons, hopanes, and phthalate esters) and secondary organic aerosol (SOA)
38 tracers (phthalic acids, isoprene-, α -/ β -pinene, β -caryophyllene, and toluene-derived
39 products), as well as organic carbon (OC), elemental carbon (EC), and water-soluble
40 organic carbon (WSOC). Total concentrations of the measured organics ranged from
41 177 to 6248 ng m⁻³ (mean 1806 ± 1308 ng m⁻³) during the study period, most of
42 which were contributed by sugar compounds, followed by fatty acids and fatty
43 alcohols. Levoglucosan (240 ± 288 ng m⁻³) was the most abundant single compound
44 and strongly correlated with OC and WSOC, suggesting that biomass burning (BB) is
45 an important source of summertime organic aerosols in this rural region. Based on the
46 analysis of fire spots and backward trajectories of air masses, two representative
47 periods were classified, which are (1) Period 1 (P1), Jun 13th 21:00-16th 15:00, when
48 air masses were uniformly from the southeast part of NCP, where intensive open-field
49 biomass burning occurred; and (2) Period 2 (P2), Jun 22nd 12:00-24th 06:00, which is
50 representative of local emission. Nearly all the measured PM components showed
51 much higher concentrations in P1 than in P2. Although *n*-alkanes, fatty acids, and

52 fatty alcohols presented similar temporal/diurnal variations as those of levoglucosan
53 throughout the entire period, their molecular distributions were more dominated by
54 high molecular weight (HMW) compounds in P1, demonstrating an enhanced
55 contribution from BB emissions. In contrast, intensive BB emission in P1 seems to
56 have limited influences on the concentrations of polycyclic aromatic hydrocarbons
57 (PAHs), hopanes and phthalate esters. Both 3-hydroxyglutaric acid and β -
58 caryophyllinic acid showed strong linearly correlations with levoglucosan ($R^2=0.72$
59 and 0.80, respectively), indicating that BB is also an important source for terpene-
60 derived SOA formation. A tracer-based method was used to estimate the distributions
61 of biomass-burning OC, fungal-spore OC and secondary organic carbon (SOC)
62 derived from isoprene, α -/ β -pinene, β -caryophyllene, and toluene in the different
63 periods. The results showed that the contribution of biomass-burning OC to total OC
64 in P1 (27.6%) was 1.7 times of that in P2 (17.1%). However, the contribution of SOC
65 from oxidation of the four kinds of volatile organic compounds (VOCs) increased
66 slightly from 16.3% in P1 to 21.1% in P2.

67 **Key words:** Organic aerosols; Molecular composition; North China Plain; Biomass
68 Burning

69

70 **1. Introduction**

71 Organic aerosols (OA, i.e., the organic fraction of particles) constitute a substantial
72 fraction (~10-90%) of atmospheric particles (Jimenez et al., 2009; Zhang et al.,
73 2007a; Hallquist et al., 2009), and have significant effects on global and regional climate
74 (Venkataraman et al., 2005; Kanakidou et al., 2005), air quality (Aggarwal et al.,
75 2013; Wang et al., 2006b), human health (Lelieveld et al., 2015), and ecosystems (Tie
76 et al., 2016). Organic aerosols in the atmosphere can be emitted directly from various
77 sources, such as fossil fuels combustion, biomass burning, plant emission, and so on,
78 which is defined as primary organic aerosols (POA). On the other hand, atmospheric
79 secondary OA (SOA) are produced from photochemical oxidation products of volatile
80 organic compounds (VOCs) via gas-particle conversion processes such as nucleation,
81 condensation and heterogeneous chemical reactions (Hallquist et al., 2009). These
82 organic species could modify physicochemical characteristics of atmospheric aerosols
83 such as hygroscopicity, albedo, and oxidation state (Dinar et al., 2008; Chan et al.,
84 2005; Fu et al., 2010). Thus, a thorough understanding of molecular composition and
85 source of organic aerosols is necessary in order to address aerosol related environmental
86 issues and to improve the accuracy of modelling studies.

87 Tremendous amounts of air pollutants including both particulate matters (PM) and
88 their gaseous precursors (e.g., SO_2 , NO_x , NH_3 , and VOCs) are emitted into the
89 atmosphere from power plants, industries and vehicles due to rapid economy
90 development in China, leading to serious air pollution in the recent decades (Zhang et
91 al., 2009; Guo et al., 2014; Wang et al., 2016; Huang et al., 2014; Li et al., 2017). The

92 North China Plain (NCP) has been recognized as one of the most polluted regions in
93 the world, with very high concentrations of PM_{2.5} on the ground surface (van Donkelaar
94 et al., 2010). The NCP is also one of the most significant aerosol sources in the world,
95 which has a significant impact on the East China Sea and Western North Pacific
96 (Andreae and Rosenfeld, 2008). Thus, extensive efforts have been made in recent years
97 to characterize the sources, properties, and processes of PM in the NCP. Most of these
98 results concluded that the severe air pollution in the region is related to the source
99 strength and frequently happens under stagnant weather conditions. Recent studies
100 showed that the rapid growth of secondary aerosols could lead to an severe haze event
101 in China under certain meteorological conditions (Wang et al., 2016;Sun et al.,
102 2014;Quan et al., 2013).

103 In the rural area of NCP, biomass burning for domestic cooking and heating, and
104 agricultural waste disposal is an important source of atmospheric PM (Wang et al.,
105 2009b;Li et al., 2010;Zhang et al., 2016). Particularly, the open-field burning is still a
106 common way for disposal of crop residues (mainly wheat straw) in early summer (Li
107 et al., 2007). This traditional activity could release huge amounts of pollutants into the
108 atmosphere and significantly affect air quality and aerosol properties in the region.
109 Zhu et al. (2016) examined the amounts of VOCs in the air at a rural site of Yucheng
110 (Shandong Province, East China), and found that their concentrations during the
111 wheat straw burning period are approximately twice of those in normal periods.
112 Model results also revealed a significant influence of open crop residual burning on
113 ozone, CO, black carbon (BC) and organic carbon (OC) concentrations in NCP.

114 Moreover, both off-line (Fu et al., 2012; Wang et al., 2009b; Wang et al., 2011) and
115 on-line (Sun et al., 2016) observations indicated that the intensive emission from
116 wheat straw burning in the region could change the molecular distribution of organic
117 aerosols in the downwind urban or mountain areas.

118 During June 10th to 25th of 2013, we conducted a continuous sampling campaign
119 at a rural site in the northern part of NCP. PM_{2.5} filter samples were collected with a
120 3-hour time resolution and determined for more than 100 organic compounds
121 including aliphatic lipids, sugar compounds, hopanes, polycyclic aromatic
122 hydrocarbons (PAHs), phthalate esters, and secondary oxidation products. The first
123 objective of this study was to get an overall understanding of temporal/diurnal
124 variation and molecular distribution of summertime OA in the rural region. The
125 second objective was to compare the results in two representative periods to
126 investigate the influence of regional field burning of wheat straw on the molecular
127 characteristics of organic aerosols.

128 **2. Experimental section**

129 **2.1 Sample collection**

130 The sampling was performed at the Integrated Ecological-Meteorological
131 Observation and Experiment Station of Chinese Academy of Meteorological Sciences
132 (39°08' N, 115°40' E, 15.2 m a.s.l.), which is located in a rural area of Gucheng,
133 Hebei Province. Detailed information of the station and sampling campaign was
134 described in Li et al. (2018). Briefly, time-resolved (06:00–09:00, 09:00–12:00,
135 12:00–15:00, 15:00–18:00, 18:00–21:00, 21:00–24:00, 00:00–03:00, and 03:00–

136 06:00, Beijing time) PM_{2.5} samples were collected on the rooftop (about 10 m above
137 the ground) of a three-story building on the campus of the Gucheng station. The
138 sampling was conducted by using a high volume (1.13 m³ min⁻¹) sampler (Anderson)
139 with a PM_{2.5} inlet from June 10th to 25th, 2013. This period was chosen, because open-
140 field burning of wheat straw in NCP mainly occur in the mid of June. All samples
141 were collected onto pre-baked (450 °C, 6-8 hr) quartz fiber filters. Field blank samples
142 were also collected by mounting blank filters onto the sampler for about 15 min
143 without pumping any air. After sampling, the sample filter was individually sealed in
144 aluminum foil bags and stored in a freezer (-20 °C) prior to analysis.

145 **2.2 Organic compounds determination**

146 A size of 12.5-25 cm² of the filter sample was cut and extracted with a mixture of
147 dichloromethane and methanol (2:1, v/v) under ultrasonication. The extracts were
148 concentrated using a rotary evaporator under vacuum conditions and then blow down
149 to dryness using pure nitrogen. After reaction with N,O-bis-(trimethylsilyl)
150 trifluoroacetamide (BSTFA) at 70 °C for 3 hrs., the derivatives were determined
151 using gas chromatography/electron ionization mass spectrometry (GC/EI-MS) (Li et
152 al., 2013b).

153 GC/EI-MS analysis of the derivatized fraction was performed using an Agilent
154 7890A GC coupled with an Agilent 5975C MSD. The GC separation was carried out
155 on a DB-5MS fused silica capillary column with the GC oven temperature
156 programmed from 50°C (2 min) to 120°C at 15°C min⁻¹ and then to 300°C at 5°C
157 min⁻¹ with a final isothermal hold at 300°C for 16 min. The sample was injected in a

158 splitless mode at an injector temperature of 280 °C, and scanned from 50 to 650
159 Daltons using electron impact (EI) mode at 70 eV.
160 GC/EI-MS response factors of all the target compounds were determined using
161 authentic standards except several isoprene-derived SOA tracers. Response factors of
162 isoprene-derived SOA tracers were substituted by those of related surrogated
163 standards, which were described in Li et al. (2018). No significant contamination
164 (<5% of those in the samples) was found in the blanks. Recoveries of all the target
165 compounds ranged from 80% to 120%. Data presented were corrected for the field
166 blanks but not corrected for the recoveries.

167 **2.3 OC, EC, and WSOC analysis**

168 OC (organic carbon) and EC (elemental carbon) were analyzed using DRI Model
169 2001 Carbon Analyzer following the Interagency Monitoring of Protected Visual
170 Environments (IMPROVE) thermal/optical reflectance (TOR) protocol. A size of
171 0.526 cm² sample filter was placed in a quartz boat inside the analyzer and stepwise
172 heated to temperatures of 140 °C (OC1), 280 °C (OC2), 480 °C (OC3), and
173 580 °C (OC4) in non-oxidizing helium (He) atmosphere, and 580 °C (EC1), 740 °C
174 (EC2), and 840 °C (EC3) in an oxidizing atmosphere of 2% oxygen in helium.
175 Pyrolyzed carbon (PC) is determined by reflectance and transmittance of 633 nm
176 light. One sample was randomly selected from every 10 samples and re-analyzed.
177 Differences determined from the replicate analyses were <5% for TC, and <10% for
178 OC and EC.

179 Another aliquot of filter sample was extracted with organic-free Milli-Q water

180 under ultrasonication (15 min each, repeated 3 times) and filtered through a PTFE
181 filter to remove any particles and filter debris. Then the water-extract was analyzed
182 for water-soluble organic carbon (WSOC) using a TOC analyzer (TOC-L CPH,
183 Shimadzu, Japan). The difference between OC and WSOC was considered as water-
184 insoluble OC (WIOC). All carbonaceous components data reported here were
185 corrected by the field blanks.

186 **3. Results and discussion**

187 **3.1 Fire spots and air masses**

188 At present, open-field burning is still a common activity for disposal of crop
189 residue in the rural area of the North China Plain, especially during wheat harvest period
190 from the end of May to the middle of June (Fu et al., 2012). These extensive emissions
191 from regional biomass burning in the provinces of Anhui, Jiangsu, Shandong, Henan
192 and Hebei in NCP can cause severe air pollution on a local and regional scale. In our
193 previous study, the fire spots in NCP during the sampling period were provided based
194 on the NASA satellite observation (<https://firms.modaps.eosdis.nasa.gov/firemap/>).

195 Combining with information on air mass back-trajectories
196 (<http://ready.arl.noaa.gov/HYSPLIT.php>), the sampling period was divided into two
197 sections: (1) June 10-18, when air masses were mainly transported via long distances
198 from the southeast part of NCP, where intensive emissions from wheat straw burning
199 occurred; (2) June 19-25, when air masses were mostly influenced by local emissions
200 and regional emission from biomass burning decreased dramatically (Li et al., 2018).
201 In this study, we further selected two representative periods to estimate the contribution

202 of regional biomass burning. Period 1 (P1) designates 13th Jun 21:00 pm to 16th Jun
203 15:00 pm, during which air masses were influenced by intensive biomass burning and
204 transported uniformly from the southeast part of NCP (Figure 1 a and b, and Figure S1).
205 Period 2 (P2) designates 22nd Jun 12:00 pm to 24th Jun 06:00 am, during which fire
206 spots in the regions were relatively scarce and air masses came predominantly from the
207 surrounding areas of the sampling site (Figure 1 c and d). In addition, there were several
208 intermittent rainfalls during June 20th -22nd, which are favorable for wet deposition of
209 atmospheric pollutants. Thus, aerosols collected in P2 are well representative of local
210 fresh emission. It is worthwhile to note that the two samples collected during 21st June
211 18:00-24:00 pm were excluded from P2, because they were highly affected by near-site
212 biomass burning emission (detailed information is provided in Section 3.3).

213 **3.2 Concentrations of PM_{2.5}, OC, EC, WSOC and WIOC**

214 Concentrations of PM_{2.5} and carbonaceous components are presented in Table 1.
215 PM_{2.5} concentrations range from 21 to 395 $\mu\text{g m}^{-3}$ with a mean value at $159 \pm 89 \mu\text{g}$
216 m^{-3} during the whole sampling period. As shown in Figure 2, PM_{2.5} concentrations in
217 P1 (average $\pm 1\sigma = 231 \pm 89 \mu\text{g m}^{-3}$) increase continuously from around $150 \mu\text{g}$
218 m^{-3} to higher than $300 \mu\text{g m}^{-3}$, indicating the occurrence of a severe air pollution
219 episode. In contrast, PM_{2.5} concentration during P2 is as low as $43 \pm 14 \mu\text{g m}^{-3}$.
220 Similarly, the average concentration of OC is $29.4 \pm 7.8 \mu\text{g m}^{-3}$ in P1, which is more
221 than 5 time higher than that in P2 ($5.5 \pm 1.7 \mu\text{g m}^{-3}$). EC concentrations also decrease
222 dramatically from P1 ($12.1 \pm 4.0 \mu\text{g m}^{-3}$) to P2 ($1.5 \pm 1.5 \mu\text{g m}^{-3}$). The average
223 OC/EC ratio is 3.0 ± 0.9 for the whole sampling period, but the ratio in P2 (3.8 ± 1.0)

224 is higher than that in P1 (2.5 ± 0.4), mainly due to the high SOA formation activities
225 in the rural areas of NCP in summer. It's worthwhile to note that the average OC/EC
226 ratio during the BB-influenced P1 is much lower than the results reported for wheat
227 straw burning in combustion chamber (12.9 ± 2.1) (Tian et al., 2017) and residential
228 stove (6.3-11.1) (Li et al., 2009). The first reason is that fossil fuel burning (such as
229 coal burning and vehicle exhaust) with lower OC/EC ratio (Tian et al., 2017) are still
230 important sources in the region, which are also discussed in Section 3.4. On the other
231 hand, this phenomenon may also be related to different combustion conditions of
232 agricultural residuals in the open field. Li et al. (2009) found that the flaming fire
233 from biomass burning would result in more EC emission and lower OC/EC ratio
234 compared to smoldering fire. Actually, Hays et al. (2005) obtained similar low OC/EC
235 ratio of 2.4 for open wheat straw burning smoke from Washington, US. Thus, the
236 lower ratio of OC/EC observed in this work may indicate that wheat straw
237 combustion in NCP during P1 mainly occurred in the flaming phase.

238 As shown in Figure 2 and 3, the concentrations of WSOC show a consistent
239 temporal variation as those of OC ($R^2=0.82$), highlighting the fact that WSOC is an
240 important fraction of OC in this region. In addition, the average ratio of WSOC/OC is
241 higher during P1 (0.62 ± 0.16) than during P2 (0.48 ± 0.12), mainly due to enhanced
242 emissions of water-soluble organic compounds (such as sugars, fatty alcohols/acids)
243 from biomass burning during P1. Due to the removal effect of the intermittent raining,
244 concentrations of water-insoluble OC in P2 ($3.0 \pm 1.3 \mu\text{g m}^{-3}$) are also much lower
245 than those in P1 ($10.3 \pm 4.4 \mu\text{g m}^{-3}$).

246 The diurnal variation profiles of EC/OC and WSOC/OC are shown in Figure 4.

247 EC/OC is generally lower in daytime and the lowest value occur during 12:00-15:00

248 pm, mainly due to enhanced daytime formation of SOC. Previous studies have shown

249 that SOA are mainly composed of water-soluble compounds, e.g.,

250 polyacids/polyalcohols and phenols (Kondo et al., 2007; Wang et al., 2009a).

251 However, these compounds can be emitted from primary emissions as well, especially

252 from biomass burning (Shen et al., 2017; Fu et al., 2012). In this study, the WSOC/OC

253 presents lower value during daytime, especially in the afternoon when photo-chemical

254 oxidation is favorable. In addition, the diurnal variation pattern of WSOC/OC is

255 similar to that of levoglucosan/OC. Given that levoglucosan is a marker of biomass

256 burning emissions (Simoneit et al., 1999; Simoneit et al., 2004a), and many kinds of

257 SOA could be produced in the biomass burning plumes during the long-range

258 transport (detailed discussions are given in Section 3.3). These results indicate that

259 particulate WSOC in the region is mostly derived from biomass burning activities

260 including direct emission and secondary oxidation.

261 **3.3 Organic molecular composition**

262 More than 100 organic species were detected in the aerosol samples, and their

263 concentrations are shown in Table 2 and S1. In this study, these organic compositions

264 are grouped into 10 compound classes based on functional groups and sources. Total

265 concentrations of the measured organics range from 177 to 6248 ng m⁻³ (average =

266 1806 ± 1308 ng m⁻³) during the whole sampling period with the predominance of

267 sugar compounds, followed by fatty acids and fatty alcohols. The temporal variation

268 profiles of the determined organic groups are shown in Figure 5. Nearly all the
269 measured organic species, especially *n*-alkanes, fatty acids, fatty alcohols, sugar
270 compounds, and PAHs, show much higher concentrations in P1 than in P2 (Figure
271 S2), indicating an important influence of regional biomass burning on airborne
272 organic aerosols in NCP.

273 **3.3.1 Biomass-burning tracers**

274 As described in Section 3.1, intensive emissions of open biomass burning were
275 observed in the southern part of NCP during June 13-16 (P1), which is an important
276 reason for the severe regional air pollution during this period. Levoglucosan, which is
277 produced in large quantities during pyrolysis of cellulose, is a key tracer for biomass
278 burning emissions (Simoneit, 2002; Simoneit et al., 1999). As shown in Table 2,
279 levoglucosan is the most abundant single compound in the whole sampling period,
280 ranged from 5.6 to 1447 ng m⁻³ with a mean concentration of 240±288 ng m⁻³.
281 Levoglucosan shows good positive correlations with both OC ($R^2=0.61$) and WSOC
282 ($R^2=0.65$) (Figure 3), confirming that biomass burning is an important source of both
283 aerosol OC and WSOC in the rural region of NCP during the sampling period. As
284 clearly shown in Figure 6, the concentrations of levoglucosan present a continual
285 increasing trend during P1 with a mean value of 404±344 ng m⁻³. However, the tracer
286 presents very low concentrations (11-123 ng m⁻³) for most of the time during Jun 20-
287 22. Interestingly, the concentration of levoglucosan suddenly increased by more than
288 10 times at 21st Jun 18:00 pm to approximately 1200 ng m⁻³ within less than 3 hours
289 and then decreased to its beginning concentration (less than 100 ng m⁻³) within 6

290 hours (2 samples) afterwards. The concentrations of OC, WSOC and EC also showed
291 obvious peaks during this event. However, based on analyses of back-trajectories
292 (Figure 1c) and wind conditions (Figure S1), no significant change of air mass origins
293 was observed. Also, not all organic markers showed similar variations to
294 levoglucosan. For example, the concentrations of PAHs, hopanes, and phthalate esters
295 changed little during this event. Thus, it is plausible to conclude that this variation
296 was caused by emissions from biomass burning activities nearby the sampling site.

297 For this reason, the data of the 2 samples were excluded from P2.

298 The two isomers of levoglucosan, galactosan and mannosan, are also produced
299 by the pyrolysis of cellulose/hemicelluloses (Simoneit, 2002), and thus also
300 considered as important markers of biomass burning. Similar to levoglucosan, the
301 concentrations of these two anhydrosugars in P1 are 5-6 times higher than those in P2.
302 The isomeric ratios of levoglucosan to other anhydrosugars are considered as good
303 indicators of biomass burning. Fabbri et al. (2009) compared the concentrations of the
304 three anhydrosaccharides in the smokes from different fuel types, and proposed that
305 levoglucan/(galactosan+mannosan) (L/G+M) and levoglucan/mannosan (L/M) values
306 range in 0.2-18 and 0.23-33 for various source tests for biomass burning as compared
307 to the average of 54 and 54 for lignites. As shown in Table 2, average ratios of L/G+M
308 and L/M during P1 (10.1 ± 3.41 and 6.77 ± 1.97 , respectively) and P2 (29.7 ± 12.2 and
309 18.0 ± 4.28) suggest that biomass burning is always the dominated contributor for
310 these compounds in the rural area of NCP in summer.

311 **3.3.2 Aliphatic lipid composition**

312 The average concentration of all the *n*-alkanes (C₁₈–C₃₆) measured in this study
313 is 207±149 ng m⁻³ with the most abundant individual compound being nonacosane
314 (C_{max}=C₂₉H₆₀) (Table S1). *n*-Alkanes derived from terrestrial plants are dominated by
315 high molecular weight species (HMW, carbon number >25) with an odd number
316 preference. In contrast, fossil fuel derived *n*-alkanes do not have odd/even number
317 preference (Rogge et al., 1993a;Simoneit et al., 2004b). In general, *n*-alkanes with a
318 carbon preference index (CPI, odd/even) more than 5 are considered as plant wax,
319 while those with a CPI nearly unity are mostly derived from fossil fuel combustion
320 (Rogge et al., 1993a, b). In this study, the mean value of CPI is 2.47±1.12, indicating
321 that both fossil fuel and plant wax contribute to *n*-alkanes in the rural areas of NCP in
322 summer. However, *n*-alkanes show a stronger odd/even carbon number predominance
323 in P1 (CPI=2.85) than in P2 (CPI=1.64). In addition, all the low molecular weight *n*-
324 alkanes (LMW, carbon number <25) present a higher contribution to total *n*-alkanes in
325 P2 than in P1 (Figure 7 a and d). These results demonstrate that plant waxes from
326 biomass burning emissions made a bigger contribution to organic aerosols in the
327 sampling region during P1.

328 A homologous series of 19 saturated fatty acids (C_{12:0}–C_{32:0}) and 3 unsaturated
329 fatty acids (C_{16:1}, C_{18:1}, and C_{18:2}) were detected (Table S1), and their total
330 concentration is 514±384 ng m⁻³ during the whole period. A strong even carbon
331 number predominance is observed with C_{max} at C_{28:0} and C_{16:0} (Table S1). Higher
332 molecular weight (HMW) fatty acids (≥C₂₀) are derived from terrestrial plant waxes,
333 while LMW fatty acids (≤C₁₉) have multiple sources such as vascular plants,

334 microbes and marine phytoplankton as well as kitchen emissions (Rogge et al.,
335 1993b; Kawamura et al., 2003). The total concentrations of fatty acids present similar
336 temporal variation to levoglucosan with a robust linear correlation ($R^2=0.72$) (Figure
337 8a), indicating that fatty acids are mostly affected by biomass burning emission
338 during the whole sampling period. Still, there are some evidences that regional
339 emission from wheat straw burning significantly affected the distribution of fatty
340 acids in the aerosols of Gucheng during P1. Firstly, the total concentrations of fatty
341 acids in P1 ($900 \pm 358 \text{ ng m}^{-3}$) are more than 6 times higher than those in P2 (145 ± 48
342 ng m^{-3}). Secondly, the concentrations and relative contributions of HMW fatty acids
343 ($C_{20:0}$ – $C_{32:0}$) are much higher in P1 than in P2, similar to the results of *n*-alkanes. In
344 addition, the mean value of CPI of HMW fatty acids in P1 (4.21 ± 1.14) is also higher
345 than that in P2 (3.50 ± 1.64).

346 Fatty alcohols in the range of C_{22} – C_{30} were detected for the $\text{PM}_{2.5}$ samples with a
347 mean concentration of $193 \pm 187 \text{ ng m}^{-3}$ (Table 2 and S1) during the whole sampling
348 period. Their distributions are characterized by even carbon number predominance
349 with a maximum at C_{28} (Figure 7c and f). The total concentration of fatty alcohols
350 strongly correlates with levoglucosan ($R^2=0.73$) (Figure 8b), suggesting that they can
351 also be emitted from biomass burning. It is reasonable since HMW fatty alcohols ($\geq C_{20}$)
352 abundantly present in higher plants and loess deposits (Wang and Kawamura,
353 2005). Similar to fatty acids, nearly 10 times higher concentration of fatty alcohols is
354 observed in P1 ($322 \pm 151 \text{ ng m}^{-3}$) compared with those in P2 ($34 \pm 23 \text{ ng m}^{-3}$).

355 **3.3.3 Primary saccharides**

356 In addition to the three anhydrosugars, 4 primary sugars (fructose, glucose, sucrose
357 and trehalose) and 3 sugar alcohols (arabitol, mannitol and inositol) were detected in
358 the samples. Primary saccharides have been used as biomarkers for primary biota
359 emissions (Wang et al., 2011). Their mean concentrations range from 3.6 to 49 ng m⁻³
360 during the whole sampling period. In this study, concentrations of fructose, sucrose and
361 trehalose in P1 are 7-10 times higher than those in P2 (Table S1). They well correlate
362 with levoglucosan ($R^2=0.47-0.62$, Figure S3) during P1, in contrast to P2, during which
363 no relationships are found between them. These results indicate that these primary
364 sugars are also affected by open-field emissions of biomass burning during P1. Sugar
365 alcohols, mainly arabitol and mannitol, are abundant in airborne fungal spores (Graham
366 et al., 2002). Some studies suggested that biomass burning activities can enhance the
367 emission of sugar alcohols at a certain level (Engling et al., 2009;Fu et al., 2012;Yang
368 et al., 2012). However, no significant relationship ($R^2<0.10$) can be found between
369 these sugar alcohols and levoglucosan even in P1, indicating the negligible contribution
370 of biomass burning to the tracers in this study.

371 **3.3.4 PAHs, Hopanes and Phthalates**

372 As shown in Figure 5, the temporal variation of PAHs, hopanes, and phthalate
373 esters were clearly different from those of the molecular tracers for biomass burning,
374 especially in P1. In contrast to the continuous increase of sugars, fatty acids, fatty
375 alcohols, and n-alkanes during P1, the concentrations of PAHs, hopanes, and phthalate
376 esters show obvious day-night variations, indicating that biomass burning activities
377 contribute little on these species. Phthalates are widely used as plasticizers in synthetic

378 polymers or softeners in polyvinylchlorides (PVC) (Simoneit et al., 2004b) and can be
379 directly emitted from the matrix into the air as they are not chemically bonded with the
380 matrix. Six phthalate esters were detected in the sampling aerosols, i.e., dimethyl
381 (DMP), diethyl (DEP), diisobutyl (DiBP), butyl isobutyl (BiBP), di-n-butyl (DnBP),
382 and bis(2-ethylhexyl) (BEHP) phthalates (Table S1). The concentrations of total
383 detected phthalate esters in P1 ($112 \pm 33 \text{ ng m}^{-3}$) are around 2 times only higher than
384 those in P2 ($51 \pm 18 \text{ ng m}^{-3}$). Hopanes are abundant in coal and crude oils, and enriched
385 in lubricant oil fraction (Oros and Simoneit, 2000; Kawamura et al., 1995). They can be
386 emitted to the atmosphere from coal burning and/or internal combustion of fuel in
387 engines. Only two dominant hopanes, $17\alpha(\text{H}),21\beta(\text{H})$ -30-norhopane($\text{C}_{29\alpha\beta}$) and
388 $17\alpha(\text{H}),21\beta(\text{H})$ -hopane($\text{C}_{30\alpha\beta}$), were detected in all of the samples in this study. Their
389 average concentration in P1 ($4.40 \pm 2.48 \text{ ng m}^{-3}$) is ~ 2.5 times of that in P2 ($1.81 \pm$
390 0.31 ng m^{-3}). Considering the much higher concentrations of levoglucosan in P1 (on
391 average ~ 8 times higher than P2), these results again confirm a limited influence of
392 biomass burning on concentrations of phthalate esters and hopanes in the aerosols in
393 the rural region. Thus, there were no significant concentration changes of the two
394 species at 21st Jun 18:00-24:00 pm, when the air masses were highly affected by nearby
395 biomass burning activities.

396 PAHs are the products of incomplete combustion of carbon-containing materials
397 and are of high toxicity and carcinogenicity (Halek et al., 2008; Sultan et al., 2001).
398 Previous studies indicated that PAHs are mainly emitted from coal burning and vehicle
399 exhaust in most areas of China (Wang et al., 2006a). However, it has been reported that

400 combustion of biomass materials can also contribute to the PAHs in the atmosphere
401 (Simoneit, 2002;Ge et al., 2012;Young et al., 2016). In this study, PAH has no
402 significant correlation with levoglucosan during the whole sampling period. Yet the
403 concentrations of total PAHs in P1 ($18.6 \pm 11 \text{ ng m}^{-3}$) are nearly 8 times higher than
404 those in P2 ($2.3 \pm 1.0 \text{ ng m}^{-3}$). These results suggest that although the emission of
405 biomass burning is not the most important source for PAHs during the entire period, the
406 intensive regional burning of wheat straw in P1 can also enhance the PAHs
407 concentration in the atmosphere of Gucheng.

408 As shown in Figure 9, all the primary aerosol markers mentioned above show
409 lower concentrations in daytime with lowest concentrations at afternoon (12:00-18:00
410 pm), in consistent with the favorable dispersion conditions caused by high temperature
411 and planetary boundary layer (PBL) height. However, the day-night variation of PAHs,
412 hopanes, and phthalate esters are more obvious than other species, again confirming the
413 lower contribution of biomass burning to these organic compositions.

414 **3.3.5 Secondary organic aerosols (SOA) tracers**

415 Eight compounds were identified as isoprene oxidation products in the $\text{PM}_{2.5}$
416 samples, including two methyltetrahydrofuran diols, three C_5 -alkene triols, two 2-
417 methyltetrols, and 2-methylglyceric acid (Table S1). Detailed information about
418 formation and contribution of these compositions were discussed in our previous paper
419 (Li et al., 2018). The concentrations of total detected isoprene-derived products are 112
420 $\pm 86 \text{ ng m}^{-3}$, with much higher concentration in P1 ($209 \pm 105 \text{ ng m}^{-3}$) than in P2 (57
421 $\pm 29 \text{ ng m}^{-3}$).

422 *cis*-Pinonic acid (PNA), pinic acid (PA), 3-hydroxyglutaric acid (HGA) and 3-
423 methyl-1,2,3-butanetricarboxylic acid (MBTCA) were detected as tracers for α -/ β -
424 pinene oxidation in this study, and their concentrations are shown in Table S1. The
425 concentration of total detected α -/ β -pinene oxidation tracers is $66 \pm 31 \text{ ng m}^{-3}$, with
426 MBTCA ($31 \pm 14 \text{ ng m}^{-3}$) being the major compound during the whole sampling period.
427 PNA and PA are considered as first-generation products of α -/ β -pinene oxidation. They
428 can be produced by further oxidation of carbonyl-substituted Criegee intermediates
429 formed by α -pinene ozonolysis (Jenkin et al., 2000; Ma et al., 2008), or by OH oxidation
430 of α -pinene under NO_x free conditions (Eddingsaas et al., 2012; Xuan et al., 2015). The
431 formation of 3-HGA is supposed to be based on a ring opening mechanism and may be
432 related to a heterogeneous reaction of these monoterpenes with irradiation in the
433 presence of NO_x (Jaoui et al., 2005; Claeys et al., 2007). As shown in Figure 6b-d, PNA,
434 PA and HGA present similar temporal variations and correlated well each other
435 ($R^2=0.48-0.76$, Figure S4). The formation of MBTCA is explained by further
436 photodegradation of *cis*-pinonic acid and pinic acid with OH radical (Müller et al.,
437 2012; Szmigielski et al., 2007). As a later-generation oxidation products, MBTCA show
438 an obviously different temporal variation profile than those of PNA and PA, and has no
439 significant increase during P1. In addition, the concentrations of PNA, PA and HGA in
440 P1 are 2-8 times higher than those in P2. However, the concentrations of MBTCA in
441 the two periods are comparable. These results are consistent with the longer time scales
442 of formation pathway, lower volatility and longer lifetime of MBTCA in the atmosphere
443 compared to the first-generation products of α -/ β -pinene oxidation. β -Caryophyllinic

444 acid, formed either by ozonolysis or photo-oxidation of β -caryophyllene (a
445 sesquiterpene) (Jaoui et al., 2007), was also determined in this study, and its
446 concentration range from 0.49 to 78 ng m^{-3} (Ave. $17\pm17 \text{ ng m}^{-3}$). The mean
447 concentration of β -caryophyllinic acid in P1 is $35\pm21 \text{ ng m}^{-3}$, being 5 times higher than
448 that in P2 ($4.1\pm1.2 \text{ ng m}^{-3}$).

449 Undoubtedly, the combustion of biomass materials can release a large amount of
450 VOCs, including isoprene and terpenoids (Andreae and Merlet, 2001). As shown in
451 Figure 5 and 6, total biogenic SOA tracers, the sum of detected tracers of isoprene, α -
452 / β -pinene, and β -caryophyllene derived SOA, show a similar temporal variation pattern
453 as levoglucosan with a moderate correlation ($R^2=0.56$, Figure S5a). Specifically,
454 levoglucosan shows strong linearly correlations with 3-hydroxyglutaric acid ($R^2=0.72$)
455 (Figure 8c) and β -caryophyllinic acid ($R^2=0.80$) (Figure 8d), indicating a significant
456 contribution of biomass burning emissions to the formation of SOA derived from mono-
457 and sesqui- terpene oxidation. In our previous paper (Li et al., 2018), we discussed the
458 different diurnal variations of isoprene-derived SOA tracers. In this study, the diurnal
459 variations of other SOA tracers are shown in Figure 10. All the SOA tracers present
460 weaker day-night variations compared to primary organic aerosol markers, because of
461 the competition between the enhanced daytime formation by photoxidation and the
462 nighttime accumulation associated with a low PBL. Yet, there are some differences
463 between these SOA tracers. For example, PNA and PA present lowest concentrations in
464 the afternoon (12:00-18:00 pm) due to their relatively high volatilities, which is
465 unfavorable for gas-to-particle phase partitioning. However, the later-generation

466 product of PNA and PA, i.e., the less volatile MBTCA, continuously increases during
467 the daytime.

468 Two classes of aromatic SOA markers, phthalic acids and 2,3-dihydroxy-4-
469 oxopentanoic acid (DHOPA), were detected in the samples as well. Phthalic acids are
470 believed to be produced by the oxidation of naphthalene and other PAHs (Kawamura
471 et al., 2005; Kawamura and Ikushima, 1993; Kanakidou et al., 2005). The mean
472 concentrations of total phthalic acids in the whole sampling period range from 17 to
473 487 ng m⁻³ with a mean value of 155±94 ng m⁻³. Their different temporal variation
474 patterns than levoglucosan suggest that biomass burning emission contributes little to
475 phthalic acids formation in the region. The DHOPA was considered to be a tracer
476 compound for toluene-derived SOA (Kleindienst et al., 2004). DHOPA presents a
477 similar temporal variation and a moderate correlation with levoglusoan ($R^2=0.51$,
478 Figure S5b), indicating a certain contribution of biomass burning. Similar to MBTCA,
479 the volatility of DHOPA is quite low, and thus mainly exists in the particle phase at field
480 temperature (Ding et al., 2017). Thus, DHOPA shows a similar diurnal variation to
481 MBTCA, with higher concentrations during daytime.

482 **3.4 Assessment of source contributions**

483 In order to investigate the differences in organic aerosol sources between the two
484 representative periods, we classified all the measured organic compounds into seven
485 different sources: (a) “plant emission” represented by higher plant wax n-alkanes,
486 HMW fatty acids and fatty alcohols ($\geq C_{20}$); (b) “fossil fuel combustion” mainly
487 represented by fossil fuel derived n-alkanes, hopanes, and PAHs; (c) “biomass burning”

488 represented by levoglucosan and its isomers; (d) “marine/microbial source” represented
489 by LMW fatty acids (<C₂₀); (e) “soil/fungal spore/pollen” represented by primary
490 saccharides and sugar alcohols; (f) “plastic emission” represented by phthalate esters;
491 and (g) “secondary oxidation” represented by biogenic SOA tracers, DHOPA, and
492 phthalic acids. The concentrations of individual classes and their contributions to OC
493 content during P1 and P2 are summarized in Figure 11. Plant emission-derived
494 compounds accounted for a larger fraction of PM_{2.5} OC during P1 than during P2 (mean
495 fractions of 28.7 ± 9.3‰ in P1 vs. 16.5 ± 7.2‰ in P2). The average fraction of biomass
496 burning-derived organics in P1 (6.0 ± 3.9‰) is also higher than that in P2 (4.6 ± 2.1‰),
497 so do organics derived from soil/fungal spore/pollen. However, organic molecules from
498 the other 4 sources present a higher contribution to OC in P2 than in P1.

499 Since organic compounds in the PM_{2.5} samples cannot be completely determined
500 and some of them are of different sources, thus the above classification based on the
501 measured compounds could result in certain uncertainty in assessing source
502 contributions (Simoneit et al., 2004b). Here, we further used a tracer-based source
503 apportionment method to quantitatively estimate the contributions of primary and
504 secondary sources to the fine particulate OC at the rural site. As described above, two
505 samples collected at 21st Jun 18:00-24:00 pm were considered to be highly affected by
506 the direct emission from biomass burning nearby the sampling site. Thus, the average
507 OC/levoglucosan ratio in the smoke of biomass burning ($\left(\frac{OC}{Levo}\right)_{BB}$) can be estimated
508 by using the following equation:

509

$$\left(\frac{OC}{Levo}\right)_{BB} = \frac{OC_n - \frac{1}{2}(OC_{before} + OC_{after})}{Levo_n - \frac{1}{2}(Levo_{before} + Levo_{Levo})} \quad (E1)$$

510 where OC_n and $Levo_n$ are the average concentrations of OC and levoglucosan in
 511 the two $PM_{2.5}$ samples affected by the nearby sources. OC_{before} and $Levo_{before}$ are the
 512 concentrations of OC and levoglucosan in the samples collected before the event, while
 513 OC_{after} and $Levo_{after}$ are the concentrations of OC and levoglucosan in the samples
 514 collected after the event. The mean values in the “before” and the “after” samples were
 515 subtracted to minimize the influence of local background contribution. The calculated
 516 $\left(\frac{OC}{Levo}\right)_{BB}$ in this study is 18.7, which is somewhat higher than the average value of 12.1
 517 measured in $PM_{2.5}$ aerosols emitted from the burning of three types of cereal straws
 518 (i.e., wheat, maize, and rice) in China (Zhang et al., 2007b). This difference can be
 519 attributed to the differences of burning conditions. For other sources, the measured
 520 concentrations of mannitol were used to calculate the contributions of fungal spores to
 521 OC (Bauer et al., 2008), and SOA tracers were used to estimate the SOC formed from
 522 the oxidation of isoprene, α -/ β -pinene, β -caryophyllene, and toluene (Kleindienst et al.,
 523 2007). Also, these tracer-based approaches tend to have large uncertainties, especially
 524 for SOC estimation (Li et al., 2013a). However, our results are still meaningful to
 525 understand the relative abundances of organic aerosols from these sources in different
 526 periods.

527 As shown in Figure 12, biomass-burning derived OC, ranging from 0.11-27.5 μgC
 528 m^{-3} , is the dominant source, which accounts for 1.16-74.8% (ave. 22.6%) of OC in the
 529 aerosols of the rural region during the whole sampling period. Fungal-spore derived OC
 530 (0.003 - $5.12 \mu\text{gC m}^{-3}$) is a minor source, only accounting for 0.43% (0.003 - 5.12%) of

531 OC. The contribution of total SOC derived from oxidation of isoprene, α -/ β -pinene, β -
532 caryophyllene, and toluene to OC ranged from 5.90-34.1% with an average of 16.7%.
533 Among the four SOC precursors, toluene-derived products account for 7.78% (2.06-
534 21.7%) of OC, being the most important SOC contributor. The relative abundances of
535 these sources show clear temporal variations during the whole sampling period (Figure
536 12). The contribution of biomass burning derived OC to total OC in P1 (27.6%) is 1.7
537 times of that in P2 (17.1%) (Figure 13), further indicating the strong regional impact of
538 open-field wheat straw burning on the molecular compositions of organic aerosols in
539 the rural area of NCP. The contribution of SOC from oxidation of the four VOCs
540 increase slightly from P1 (16.3%) to P2 (21.1%). It should be noted that biomass
541 burning can also release a large amount of VOCs, which may produce more secondary
542 organic aerosols during the long-range transport. Thus, the impact of intensive biomass
543 burning in the southern region of NCP on organic aerosols in the Gucheng area is likely
544 even stronger than the estimation presented above with implications for regional
545 climate.

546 **4. Summary and Conclusion**

547 During the entire sampling period, OC and WSOC showed strong positive
548 correlations with levoglucosan, and the diurnal variation of WSOC/OC was similar to
549 that of levoglucosan/OC, suggesting that summertime organic aerosols in the rural
550 area of NCP are highly affected by direct emission of BB. Higher relative abundances
551 and CPI values of HMW n-alkanes, fatty acids and fatty alcohols in P1 indicated an
552 enhanced effect of open-field biomass burning on molecular composition of organic

553 aerosols. PAHs, hopanes, and phthalate esters presented different temporal and diurnal
554 variations to levoglucosan because of the lower contribution of BB to these organic
555 compositions. The total biogenic SOA tracers showed a similar temporal variation and
556 a moderate correlation with levoglucosan, demonstrating the enhancing effect of BB
557 emission on BSOA formation. Later-generation SOA products, e.g., MBTCA in this
558 study, were unlikely affected directly by BB emission, and thus showed little changes
559 in concentrations between the two periods. The source distribution results derived
560 using a tracer-based method demonstrated that the contribution of BB to organic
561 aerosols increased by more than 50% during the period influenced by regional open-
562 field biomass burning (P1) compared to the period when local emissions were more
563 dominant (P2). However, this contribution may even be underestimated since BB can
564 also release a large amount of VOCs enhancing the formation of SOA in the
565 atmosphere. Our results confirmed that intensive field burning of biomass fuels can
566 significantly influence the concentration and composition of aerosols, and thus affect
567 atmospheric chemistry and climate on a regional scale.

568

569 **Author Contributions**

570 G.H. Wang designed the experiment. G.H. Wang, T. Zhu and L.M. Zeng arranged the
571 sample collection. J.J. Li. and G.H. Wang collected the samples. J.J. Li, G.H. Wang, J.
572 Li, C. Wu and W.Q. Jiang analyzed the samples. J.J. Li, and G.H. Wang performed the
573 data interpretation. J.J. Li, G.H. Wang and Q. Zhang wrote the paper.

574

575

576 **Acknowledgements**

577 This work was financially supported by the program from National Nature Science
578 Foundation of China (No. 41773117, 91543116, 41405122). The authors gratefully
579 acknowledge the use of fire spots data products from the Land, Atmosphere Near real-
580 time Capability for EOS (LANCE) system operated by the NASA/GSFC/Earth

581 Science Data and Information System (ESDIS) with funding provided by NASA/HQ
582 (<https://firms.modaps.eosdis.nasa.gov/firemap/>), and the NOAA Air Resources
583 Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model
584 and/or READY website (<http://www.ready.noaa.gov>) used in this publication.

585

586

587

588 **Reference**

589 Aggarwal, S. G., Kawamura, K., Umarji, G. S., Tachibana, E., Patil, R. S., and Gupta, P. K.: Organic and
590 inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity
591 Mumbai: sources of organic aerosols and atmospheric processing, *Atmos. Chem. Phys.*, 13, 4667-
592 4680, 10.5194/acp-13-4667-2013, 2013.

593 Andreae, M. O., and Merlet, P.: Emission of trace gases and aerosols from biomass burning, *Global*
594 *Biogeochmical Cycles*, 15, 955-966, 10.1029/2000gb001382, 2001.

595 Andreae, M. O., and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature and
596 sources of cloud-active aerosols, *Earth-Science Reviews*, 89, 13-41,
597 10.1016/j.earscirev.2008.03.001, 2008.

598 Chan, M. N., Choi, M. Y., Ng, N. L., and Chan, C. K.: Hygroscopicity of water-soluble organic
599 compounds in atmospheric aerosols: Amino acids and biomass burning derived organic species,
600 *Environ. Sci. Technol.*, 39, 1555-1562, 10.1021/es049584l, 2005.

601 Claeys, M., Szmigelski, R., Kourtchev, I., Van der Veken, P., Vermeylen, R., Maenhaut, W., Jaoui, M.,
602 Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., and Edney, E. O.: Hydroxydicarboxylic
603 Acids: Markers for Secondary Organic Aerosol from the Photooxidation of α -Pinene, *Environ. Sci.*
604 *Technol.*, 41, 1628-1634, 10.1021/es0620181, 2007.

605 Dinar, E., Anttila, T., and Rudich, Y.: CCN activity and hygroscopic growth of organic aerosols following
606 reactive uptake of ammonia, *Environ. Sci. Technol.*, 42, 793-799, 10.1021/es071874p, 2008.

607 Ding, X., Zhang, Y. Q., He, Q. F., Yu, Q. Q., Wang, J. Q., Shen, R. Q., Song, W., Wang, Y. S., and Wang,
608 X. M.: Significant Increase of Aromatics-Derived Secondary Organic Aerosol during Fall to Winter
609 in China, *Environ. Sci. Technol.*, 51, 7432-7441, 10.1021/acs.est.6b06408, 2017.

610 Eddingsaas, N. C., Loza, C. L., Yee, L. D., Chan, M., Schilling, K. A., Chhabra, P. S., Seinfeld, J. H., and
611 Wennberg, P. O.: alpha-pinene photooxidation under controlled chemical conditions - Part 2: SOA
612 yield and composition in low- and high-NOx environments, *Atmos. Chem. Phys.*, 12, 7413-7427,
613 10.5194/acp-12-7413-2012, 2012.

614 Engling, G., Lee, J. J., Tsai, Y. W., Lung, S. C. C., Chou, C. C. K., and Chan, C. Y.: Size-Resolved
615 Anhydrosugar Composition in Smoke Aerosol from Controlled Field Burning of Rice Straw,
616 *Aerosol Science and Technology*, 43, 662-672, 10.1080/02786820902825113, 2009.

617 Fabbri, D., Torri, C., Simoneit, B. R. T., Marynowski, L., Rushdi, A. I., and Fabiańska, M. J.:
618 Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites,
619 *Atmos. Environ.*, 43, 2286-2295, 2009.

620 Fu, P. Q., Kawamura, K., Pavuluri, C. M., Swaminathan, T., and Chen, J.: Molecular characterization of
621 urban organic aerosol in tropical India: contributions of primary emissions and secondary
622 photooxidation, *Atmos. Chem. Phys.*, 10, 2663-2689, 2010.

623 Fu, P. Q., Kawamura, K., Chen, J., Li, J., Sun, Y. L., Liu, Y., Tachibana, E., Aggarwal, S. G., Okuzawa,
624 K., Tanimoto, H., Kanaya, Y., and Wang, Z. F.: Diurnal variations of organic molecular tracers and

625 stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain:
626 an influence of biomass burning, *Atmos. Chem. Phys.*, 12, 8359-8375, 10.5194/acp-12-8359-2012,
627 2012.

628 Ge, X., Setyan, A., Sun, Y., and Zhang, Q.: Primary and secondary organic aerosols in Fresno, California
629 during wintertime: Results from high resolution aerosol mass spectrometry, *Journal of Geophysical
630 Research: Atmospheres*, 117, n/a-n/a, 10.1029/2012jd018026, 2012.

631 Graham, B., Mayol-Bracero, O. L., Guyon, P., Roberts, G. C., Decesari, S., Facchini, M. C., Artaxo, P.,
632 Maenhaut, W., Koll, P., and Andreae, M. O.: Water-soluble organic compounds in biomass burning
633 aerosols over Amazonia - 1. Characterization by NMR and GC-MS, *J. Geophys. Res.-Atmos.*, 107,
634 DOI:804710.801029/802001jd000336, 2002.

635 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L.,
636 Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, *Proceedings of the
637 National Academy of Sciences of the United States of America*, 111, 17373-17378,
638 10.1073/pnas.1419604111, 2014.

639 Halek, F., Nabi, G., and Kavousi, A.: Polycyclic aromatic hydrocarbons study and toxic equivalency
640 factor (TEFs) in Tehran, IRAN, *Environmental Monitoring and Assessment*, 143, 303-311,
641 10.1007/s10661-007-9983-9, 2008.

642 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J.,
643 Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma,
644 Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G.,
645 Mentel, T. F., Monod, A., Prevot, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt,
646 J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues,
647 *Atmos. Chem. Phys.*, 9, 5155-5236, 2009.

648 Hays, M. D., Fine, P. M., Geron, C. D., Kleeman, M. J., and Gullett, B. K.: Open burning of agricultural
649 biomass: Physical and chemical properties of particle-phase emissions, *Atmos. Environ.*, 39, 6747-
650 6764, <https://doi.org/10.1016/j.atmosenv.2005.07.072>, 2005.

651 Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R., Slowik, J.
652 G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli,
653 G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z.
654 S., Szidat, S., Baltensperger, U., El Haddad, I., and Prevot, A. S. H.: High secondary aerosol
655 contribution to particulate pollution during haze events in China, *Nature*, 514, 218-222,
656 10.1038/nature13774, 2014.

657 Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., and Edney, E. O.: Identification and
658 quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxyl groups. 2.
659 Organic tracer compounds from monoterpenes, *Environ. Sci. Technol.*, 39, 5661-5673,
660 10.1021/es048111b, 2005.

661 Jaoui, M., Lewandowski, M., Kleindienst, T. E., Offenberg, J. H., and Edney, E. O.: β -caryophyllinic
662 acid: An atmospheric tracer for β -caryophyllene secondary organic aerosol, *Geophysical Research
663 Letters*, 34, doi:10.1029/2006GL028827, 2007.

664 Jenkin, M. E., Shallcross, D. E., and Harvey, J. N.: Development and application of a possible mechanism
665 for the generation of cis -pinic acid from the ozonolysis of α - and β -pinene, *Atmos. Environ.*, 34,
666 2837-2850, 2000.

667 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., Decarlo,
668 P. F., Allan, J. D., Coe, H., and Ng, N. L.: Evolution of organic aerosols in the atmosphere, *Science*,

669 326, 1525-1529, 2009.

670 Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen,
671 R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth,
672 J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G.,
673 and Wilson, J.: Organic aerosol and global climate modelling: a review, *Atmos. Chem. Phys.*, 5,
674 1053-1123, 2005.

675 Kawamura, K., and Ikushima, K.: Seasonal changes in the distribution of dicarboxylic acids in the urban
676 atmosphere, *Environ. Sci. Technol.*, 27, 2227-2235, 1993.

677 Kawamura, K., Kosaka, M., and Sempere, R.: Distributions and seasonal changes in hydrocarbons in
678 urban aerosols and rain waters, *Chikyu Kagaku (Geochemistry)*, 29, 1-15 (In Japanese), 1995.

679 Kawamura, K., Ishimura, Y., and Yamazaki, K.: Four years' observations of terrestrial lipid class
680 compounds in marine aerosols from the western North Pacific, *Global Biogeochemical Cycles*, 17,
681 10.1029/2001gb001810, 2003.

682 Kawamura, K., Imai, Y., and Barrie, L. A.: Photochemical production and loss of organic acids in high
683 Arctic aerosols during long-range transport and polar sunrise ozone depletion events, *Atmos.*
684 *Environ.*, 39, 599-614, 10.1016/j.atmosenv.2004.10.020, 2005.

685 Kleindienst, T. E., Conner, T. S., McIver, C. D., and Edney, E. O.: Determination of secondary organic
686 aerosol products from the photooxidation of toluene and their implications in ambient PM2.5, *J.*
687 *Atmos. Chem.*, 47, 79-100, 2004.

688 Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Lewis, C. W., Bhave, P. V., and Edney,
689 E. O.: Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary
690 organic aerosol at a southeastern US location, *Atmos. Environ.*, 41, 8288-8300,
691 10.1016/j.atmosenv.2007.06.045, 2007.

692 Kondo, Y., Miyazaki, Y., Takegawa, N., Miyakawa, T., Weber, R. J., Jimenez, J. L., Zhang, Q., and
693 Worsnop, D. R.: Oxygenated and water-soluble organic aerosols in Tokyo, *Journal of Geophysical*
694 *Research*, 112, doi: 10.1029/2006jd007056, 10.1029/2006jd007056, 2007.

695 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air
696 pollution sources to premature mortality on a global scale, *Nature*, 525, 367-371,
697 10.1038/nature15371, 2015.

698 Li, J. J., Wang, G. H., Cao, J. J., Wang, X. M., and Zhang, R. J.: Observation of biogenic secondary
699 organic aerosols in the atmosphere of a mountain site in central China: temperature and relative
700 humidity effects, *Atmos. Chem. Phys.*, 13, 11535-11549, 10.5194/acp-13-11535-2013, 2013a.

701 Li, J. J., Wang, G. H., Wang, X. M., Cao, J. J., Sun, T., Cheng, C. L., Meng, J. J., Hu, T. F., and Liu, S.
702 X.: Abundance, composition and source of atmospheric PM 2.5 at a remote site in the Tibetan
703 Plateau, China, *Tellus B*, 65, doi:10.3402/tellusb.v3465i3400.20281, 2013b.

704 Li, J. J., Wang, G. H., Wu, C., Cao, C., Ren, Y. Q., Wang, J. Y., Li, J., Cao, J. J., Zeng, L. M., and Zhu,
705 T.: Characterization of isoprene-derived secondary organic aerosols at a rural site in North China
706 Plain with implications for anthropogenic pollution effects, *Scientific reports*, 8, DOI:
707 10.1038/s41598-41017-18983-41597, 10.1038/s41598-017-18983-7, 2018.

708 Li, W. J., Shao, L. Y., and Buseck, P. R.: Haze types in Beijing and the influence of agricultural biomass
709 burning, *Atmos. Chem. Phys.*, 10, 8119-8130, 10.5194/acp-10-8119-2010, 2010.

710 Li, X., Wang, S., Duan, L., Hao, J., and Nie, Y.: Carbonaceous Aerosol Emissions from Household
711 Biofuel Combustion in China, *Environ. Sci. Technol.*, 43, 6076-6081, 10.1021/es803330j, 2009.

712 Li, Y. J., Sun, Y., Zhang, Q., Li, X., Li, M., Zhou, Z., and Chan, C. K.: Real-time chemical

713 characterization of atmospheric particulate matter in China: A review, *Atmos. Environ.*, 158, 270-
714 304, 10.1016/j.atmosenv.2017.02.027, 2017.

715 Li, Z. Q., Xia, X. G., Cribb, M., Mi, W., Holben, B., Wang, P. C., Chen, H. B., Tsay, S. C., Eck, T. F.,
716 Zhao, F. S., Dutton, E. G., and Dickerson, R. R.: Aerosol optical properties and their radiative effects
717 in northern China, *J. Geophys. Res.-Atmos.*, 112, 10.1029/2006jd007382, 2007.

718 Müller, L., Reinnig, M. C., Naumann, K. H., Saathoff, H., Mentel, T. F., Donahue, N. M., and Hoffmann,
719 T.: Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid –
720 a mass spectrometric study of SOA aging, *Atmos. Chem. Phys.*, 12, 1483-1496, 10.5194/acp-12-
721 1483-2012, 2012.

722 Ma, Y., Russell, A. T., and Marston, G.: Mechanisms for the formation of secondary organic aerosol
723 components from the gas-phase ozonolysis of alpha-pinene, *Physical Chemistry Chemical Physics*,
724 10, 4294-4312, 10.1039/b803283a, 2008.

725 Oros, D. R., and Simoneit, B. R. T.: Identification and emission rates of molecular tracers in coal smoke
726 particulate matter, *Fuel*, 79, 515-536, [http://dx.doi.org/10.1016/S0016-2361\(99\)00153-2](http://dx.doi.org/10.1016/S0016-2361(99)00153-2), 2000.

727 Quan, J. N., Gao, Y., Zhang, Q., Tie, X. X., Cao, J. J., Han, S. Q., Meng, J. W., Chen, P. F., and Zhao, D.
728 L.: Evolution of planetary boundary layer under different weather conditions, and its impact on
729 aerosol concentrations, *Particuology*, 11, 34-40, 10.1016/j.partic.2012.04.005, 2013.

730 Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T.: Sources of Fine
731 Organic Aerosols. 2. Noncatalyst and Catalyst-equipped Automobile and Heavy-duty Diesel Trucks,
732 *Environ. Sci. Technol.*, 27, 636-651, 1993a.

733 Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T.: Sources of Fine
734 Organic Aerosols .4. Particulate Abrasion Products from Leaf Surfaces of Urban Plants, *Environ.*
735 *Sci. Technol.*, 27, 2700-2711, 1993b.

736 Shen, Z., Zhang, Q., Cao, J., Zhang, L., Lei, Y., Huang, Y., Huang, R. J., Gao, J., Zhao, Z., Zhu, C., Yin,
737 X., Zheng, C., Xu, H., and Liu, S.: Optical properties and possible sources of brown carbon in PM
738 2.5 over Xi'an, China, *Atmos. Environ.*, 150, 322-330, 10.1016/j.atmosenv.2016.11.024, 2017.

739 Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., and
740 Cass, G. R.: Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles,
741 *Atmos. Environ.*, 33, 173-182, 1999.

742 Simoneit, B. R. T.: Biomass burning - A review of organic tracers for smoke from incomplete combustion,
743 *Applied Geochemistry*, 17, 129-162, 2002.

744 Simoneit, B. R. T., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I., Medeiros, P. M., Rogge,
745 W. F., and Didyk, B. M.: Sugars - Dominant water-soluble organic compounds in soils and
746 characterization as tracers in atmospheric particulate matter, *Environ. Sci. Technol.*, 38, 5939-5949,
747 10.1021/es0403099, 2004a.

748 Simoneit, B. R. T., Kobayashi, M., Mochida, M., Kawamura, K., Lee, M., Lim, H. J., Turpin, B. J., and
749 Komazaki, Y.: Composition and major sources of organic compounds of aerosol particulate matter
750 sampled during the ACE-Asia campaign, *J. Geophys. Res.-Atmos.*, 109, D19S10,
751 10.1029/2004jd004598, 2004b.

752 Sultan, C., Balaguer, P., Terouanne, B., Georget, V., Paris, F., Jeandel, C., Lumbroso, S., and Nicolas, J.
753 C.: Environmental xenoestrogens, antiandrogens and disorders of male sexual differentiation,
754 *Molecular and Cellular Endocrinology*, 178, 99-105, 10.1016/s0303-7207(01)00430-0, 2001.

755 Sun, Y. L., Jiang, Q., Wang, Z. F., Fu, P. Q., Li, J., Yang, T., and Yin, Y.: Investigation of the sources and
756 evolution processes of severe haze pollution in Beijing in January 2013, *J. Geophys. Res.-Atmos.*,

757 119, 4380-4398, 10.1002/2014jd021641, 2014.

758 Sun, Y. L., Jiang, Q., Xu, Y. S., Ma, Y., Zhang, Y. J., Liu, X. G., Li, W. J., Wang, F., Li, J., Wang, P. C.,
759 and Li, Z. Q.: Aerosol characterization over the North China Plain: Haze life cycle and biomass
760 burning impacts in summer, *J. Geophys. Res.-Atmos.*, 121, 2508-2521, 10.1002/2015jd024261,
761 2016.

762 Szmigielski, R., Surratt, J. D., Gomez-Gonzalez, Y., Van der Veken, P., Kourtchev, I., Vermeylen, R.,
763 Blockhuys, F., Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Edney, E. O.,
764 Seinfeld, J. H., Maenhaut, W., and Claeys, M.: 3-methyl-1,2,3-butanetricarboxylic acid: An
765 atmospheric tracer for terpene secondary organic aerosol, *Geophysical Research Letters*, 34, L24811,
766 10.1029/2007gl031338, 2007.

767 Tian, J., Ni, H. Y., Cao, J. J., Han, Y. M., Wang, Q. Y., Wang, X. L., Chen, L. W. A., Chow, J. C., Watson,
768 J. G., Wei, C., Sun, J., Zhang, T., and Huang, R. J.: Characteristics of carbonaceous particles from
769 residential coal combustion and agricultural biomass burning in China, *Atmospheric Pollution
770 Research*, 8, 521-527, 10.1016/j.apr.2016.12.006, 2017.

771 Tie, X. X., Huang, R. J., Dai, W. T., Cao, J. J., Long, X., Su, X. L., Zhao, S. Y., Wang, Q. Y., and Li, G.
772 H.: Effect of heavy haze and aerosol pollution on rice and wheat productions in China, *Scientific
773 reports*, 6, 10.1038/srep29612, 2016.

774 van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., and Villeneuve, P. J.:
775 Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol
776 Optical Depth: Development and Application, *Environmental Health Perspectives*, 118, 847-855,
777 10.1289/ehp.0901623, 2010.

778 Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A. H., and Friedlander, S. K.: Residential
779 biofuels in south Asia: Carbonaceous aerosol emissions and climate impacts, *Science*, 307, 1454-
780 1456, 10.1126/science.1104359, 2005.

781 Wang, G. H., and Kawamura, K.: Molecular characteristics of urban organic aerosols from Nanjing: A
782 case study of a mega-city in China, *Environ. Sci. Technol.*, 39, 7430-7438, 10.1021/es051055+,
783 2005.

784 Wang, G. H., Kawamura, K., Lee, S., Ho, K. F., and Cao, J. J.: Molecular, seasonal, and spatial
785 distributions of organic aerosols from fourteen Chinese cities, *Environ. Sci. Technol.*, 40, 4619-
786 4625, 10.1021/es060291x, 2006a.

787 Wang, G. H., Kawamura, K., Watanabe, T., Lee, S. C., Ho, K. F., and Cao, J. J.: High loadings and source
788 strengths of organic aerosols in China, *Geophysical Research Letters*, 33,
789 L2280110.1029/2006gl027624, 2006b.

790 Wang, G. H., Kawamura, K., Umemoto, N., Xie, M. J., Hu, S. Y., and Wang, Z. F.: Water-soluble organic
791 compounds in PM2.5 and size-segregated aerosols over Mount Tai in North China Plain, *J. Geophys.
792 Res.-Atmos.*, 114, doi: 10.1029/2008jd011390, D1920810.1029/2008jd011390, 2009a.

793 Wang, G. H., Kawamura, K., Xie, M. J., Hu, S. Y., Cao, J. J., An, Z. S., Waston, J. G., and Chow, J. C.:
794 Organic Molecular Compositions and Size Distributions of Chinese Summer and Autumn Aerosols
795 from Nanjing: Characteristic Haze Event Caused by Wheat Straw Burning, *Environ. Sci. Technol.*,
796 43, 6493-6499, 10.1021/es803086g, 2009b.

797 Wang, G. H., Chen, C. L., Li, J. J., Zhou, B. H., Xie, M. J., Hu, S. Y., Kawamura, K., and Chen, Y.:
798 Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in
799 airborne particles during a severe urban haze event caused by wheat straw burning, *Atmos. Environ.*,
800 45, 2473-2479, 10.1016/j.atmosenv.2011.02.045, 2011.

801 Wang, G. H., Zhang, R. Y., Gomez, M. E., Yang, L. X., Zamora, M. L., Hu, M., Lin, Y., Peng, J. F., Guo,
802 S., Meng, J. J., Li, J. J., Cheng, C. L., Hu, T. F., Ren, Y. Q., Wang, Y. S., Gao, J., Cao, J. J., An, Z.
803 S., Zhou, W. J., Li, G. H., Wang, J. Y., Tian, P. F., Marrero-Ortiz, W., Secretst, J., Du, Z. F., Zheng,
804 J., Shang, D. J., Zeng, L. M., Shao, M., Wang, W. G., Huang, Y., Wang, Y., Zhu, Y. J., Li, Y. X., Hu,
805 J. X., Pan, B., Cai, L., Cheng, Y. T., Ji, Y. M., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A.,
806 Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to Chinese haze,
807 Proceedings of the National Academy of Sciences of the United States of America, 113, 13630-
808 13635, 10.1073/pnas.1616540113, 2016.

809 Xuan, Z., Renee C. M., Dan D. H., Nathan F. D., Bernard, A., Richard C. F., and John H. S.: Formation
810 and evolution of molecular products in α -pinene secondary organic aerosol, Proceedings of the
811 National Academy of Sciences of the United States of America, 112, 14168-14173, 2015.

812 Yang, Y. H., Chan, C. Y., Tao, J., Lin, M., Engling, G., Zhang, Z. S., Zhang, T., and Su, L.: Observation
813 of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China,
814 Science of the Total Environment, 431, 68-77, 10.1016/j.scitotenv.2012.05.033, 2012.

815 Young, D. E., Kim, H., Parworth, C., Zhou, S., Zhang, X., Cappa, C. D., Seco, R., Kim, S., and Zhang,
816 Q.: Influences of emission sources and meteorology on aerosol chemistry in a polluted urban
817 environment: results from DISCOVER-AQ California, Atmos. Chem. Phys., 16, 5427-5451,
818 10.5194/acp-16-5427-2016, 2016.

819 Zhang, J. K., Cheng, M. T., Ji, D. S., Liu, Z. R., Hu, B., Sun, Y., and Wang, Y. S.: Characterization of
820 submicron particles during biomass burning and coal combustion periods in Beijing, China, The
821 Science of the total environment, 562, 812-821, 10.1016/j.scitotenv.2016.04.015, 2016.

822 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami,
823 A., Middlebrook, A. M., and Sun, Y. L.: Ubiquity and dominance of oxygenated species in organic
824 aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophysical Research
825 Letters, 34, L13801, 2007a.

826 Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S.,
827 Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in
828 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153, 10.5194/acp-9-5131-
829 2009, 2009.

830 Zhang, Y., Shao, M., Zhang, Y., Zeng, L., He, L., Zhu, B., Wei, Y., and Zhu, X.: Source profiles of
831 particulate organic matters emitted from cereal straw burnings, Journal of Environmental Sciences,
832 19, 167-175, [https://doi.org/10.1016/S1001-0742\(07\)60027-8](https://doi.org/10.1016/S1001-0742(07)60027-8), 2007b.

833 Zhu, Y., Yang, L., Chen, J., Wang, X., Xue, L., Sui, X., Wen, L., Xu, C., Yao, L., Zhang, J., Shao, M., Lu,
834 S., and Wang, W.: Characteristics of ambient volatile organic compounds and the influence of
835 biomass burning at a rural site in Northern China during summer 2013, Atmos. Environ., 124, 156-
836 165, 10.1016/j.atmosenv.2015.08.097, 2016.

837 Table 1 Concentrations of carbonaceous components in the time-resolved (3-h) PM_{2.5} samples in
 838 the rural site of NCP during the whole sampling period, Period 1 (P1) and Period 2 (P2).

Component	Whole period (N=117)			Period 1 (N=28)			Period 2 (N=13)		
	Range	Mean	SD	Range	Mean	SD	Range	Mean	SD
PM _{2.5} (μg m ⁻³)	21~395	159	89	133~347	231	59	21~62	43	14
OC (μg m ⁻³)	1.7~45.7	17.3	11.1	13.8~44.4	29.4	7.8	3.6~8.8	5.5	1.7
EC (μg m ⁻³)	0.2~22.3	6.5	4.9	5.3~22.3	12.1	4.0	0.9~2.6	1.5	0.5
WSOC (μg m ⁻³)	0.7~33.0	11.5	8.2	5.3~33.0	19.1	8.3	1.2~4.2	2.6	0.8
WIOC (μg m ⁻³)	0.3~28.1	6.4	5.1	4.5~28.1	10.3	4.4	1.2~5.5	3.0	1.3
OC/EC	1.2~7.6	3.0	0.9	1.9~3.2	2.5	0.4	2.5~5.7	3.8	1.0
WSOC/OC	0.07~0.95	0.63	0.18	0.30~0.85	0.62	0.16	0.18~0.67	0.48	0.12
WIOC/OC	0.05~0.93	0.37	0.18	0.15~0.70	0.38	0.16	0.33~0.82	0.52	0.12

839
 840
 841

842 Table 2 Average concentrations of the organic compound classes (ng m⁻³) in the time-resolved (3-h)
 843 PM_{2.5} samples in the rural site of NCP during the whole study period, Period 1 (P1) and Period 2
 844 (P2).

Compounds	Whole period (N=117)			Period 1 (N=28)			Period 2 (N=13)		
	Range	Mean	SD	Range	Mean	SD	Range	Mean	SD
n-Alkanes	9.97~722.2	206.9	149.3	94.7~722.3	343.7	134.1	25.1~103.2	54.3	22.4
CPI (C ₁₈ -C ₃₆) ^a	1.08~8.62	2.47	1.12	1.38~4.67	2.85	0.87	1.08~3.5	1.64	0.59
Fatty acids	64.6~1777	514.4	384.3	206.7~1528	900.3	358.3	81.4~234.4	145.3	47.7
CPI (C _{21:0} -C _{30:0}) ^b	2.26~9.15	4.24	1.14	3.49~6.11	4.21	0.64	2.26~8.57	3.50	1.64
Fatty alcohols	3.18~975.9	192.6	187.4	62.4~638.2	322.0	150.7	16.6~100.2	33.9	22.6
Sugar compounds	15.9~2228	432.8	428.9	151.9~1727	718.0	403.1	39.7~241.3	93.2	52.9
galactosan (G)	1.03~97.78	18.5	20.6	2.16~97.8	29.5	27.9	1.45~13.3	4.61	3.13
mannosan (M)	0.69~54.82	9.78	10.4	1.61~54.8	15.0	13.3	0.96~6.63	2.83	1.43
levoglucosan (L)	5.56~1447	240.1	287.8	29.3~1428	404.0	344.0	11.2~123	47.8	26.2
L/M ratio	4.03~71.8	22.8	8.85	13.9~71.8	29.7	12.2	11.3~23.1	18.0	4.28
L/(G+M) ratio	1.38~19.3	8.05	2.59	5.3~19.3	10.1	3.41	4.58~10.2	6.77	1.97
PAHs	1.11~48.5	12.0	11.0	4.21~37.7	18.6	11.0	1.25~5.01	2.33	0.98
Hopanes	0.66~10.81	3.46	2.38	0.86~9.97	4.40	2.48	1.14~2.28	1.81	0.31
Phthalate esters	17.7~219.9	84.9	41.3	68.8~183.1	111.5	32.7	31.5~100.8	51.1	18.1
Phthalic acids	17.1~487.2	154.5	93.9	91.3~388.6	211.0	87.1	17.1~81	46.3	17.1
Isoprene SOA tracers	11.1~404.1	111.9	85.8	48.3~404.1	208.5	104.9	34.8~127.5	57.0	29.4
Monoterpene SOA tracers	11.1~166.2	66.1	31.2	37.3~166.2	85.3	34.9	26.7~64.5	44.6	12.6
β-Caryophyllinic acid ^c	0.49~77.7	17.4	17.1	4.6~77.8	34.7	20.8	2.44~6.28	4.08	1.21
DHOPA ^d	1.59~35.3	9.36	7.15	4.06~35.3	15.6	9.80	2.7~6.99	4.16	1.42
Total measured organics	176.9~6249	1806	1308	843.3~5499	2973	1219	334.2~913.7	537.9	151.1
Total organics C/OC ^e (%)	3.19~16.0	6.99	1.97	3.43~8.86	6.43	1.36	3.77~8.61	6.41	1.27

845 ^a CPI (C₁₈-C₃₆): carbon preference index for *n*-alkanes, (C₁₉+C₂₁+C₂₃+C₂₅+C₂₇+C₂₉+C₃₁+C₃₃+C₃₅)/

846 (C₁₈+C₂₀+C₂₂+C₂₄+C₂₆+C₂₈+C₃₀+C₃₂+C₃₄).

847 ^b CPI (C_{21:0}-C_{30:0}): carbon preference index for fatty acids, (C_{22:0}+C_{24:0}+C_{26:0}+C_{28:0}+C_{30:0})/(C_{21:0}+C_{23:0}+C_{25:0}+C_{27:0}+C_{29:0}).

848 ^c β-Caryophyllinic acid: a tracer of β-caryophyllene-derived SOA.

849 ^d DHOPA: 2,3-dihydroxy-4-oxopentanoic acid, a tracer of toluene-derived SOA.

850 ^e All the quantified organic compounds were converted to their carbon contents to calculate the OC ratios.

Figure Captions

851

852 Figure 1. Backward trajectories of air masses (a,c) (provided by NOAA HYSPLIT modeling system,
853 <http://ready.arl.noaa.gov/HYSPLIT.php>), and fire spots (b,d) (provided by Fire Information
854 for Resource Management System, FIRMS, <https://firms.modaps.eosdis.nasa.gov/firemap/>),
855 during Period 1 (P1) (Jun 13th 21:00-16th 15:00, 2013) and Period 2 (P2) (Jun 22nd 12:00-24th
856 06:00, 2013). Sampling site represented as purple star.

857 Figure 2. Temporal variations of PM_{2.5}, OC, EC, and WSOC during the whole sampling period.
858 Shadows denote the two representative periods.

859 Figure 3. Linear correlations of OC with WSOC (a), levoglucosan with OC and WSOC(b).

860 Figure 4. Diurnal variation of OC/EC (a), WSOC/OC and levoglucosan/OC (b).

861 Figure 5. Temporal variations of ten organic compound classes detected in the summertime PM_{2.5}
862 samples at the rural site of NCP.

863 Figure 6. Temporal variations of organic tracers for biomass burning (a), and secondary products
864 derived from α -/ β -pinene (b-d), β -caryophyllene (e), and toluene (f).

865 Figure 7. Molecular distributions of *n*-alkanes (a and d), fatty acids (b and e), and fatty alcohols (c and
866 f) in the PM_{2.5} of the rural area.

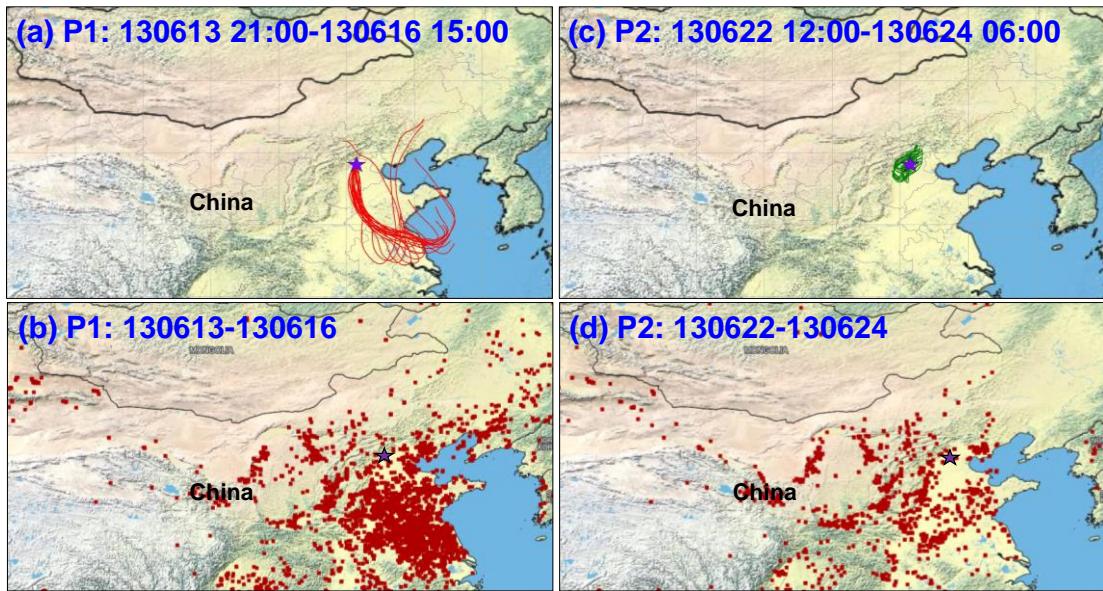
867 Figure 8. Linear correlations of fatty acids (a), fatty alcohols (b), 3-hydroxyglutaric acid (c), and β -
868 caryophyllinic acid (d) with levoglucosan.

869 Figure 9. Diurnal variation of the detected organic compound classes.

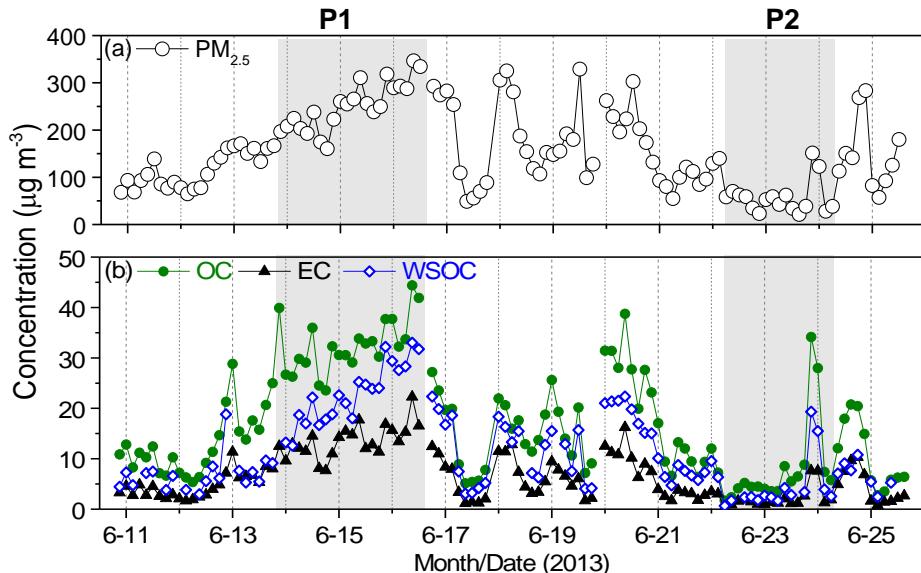
870 Figure 10. Diurnal variation of the SOA tracers derived from oxidation of α -/ β -pinene (a-d), β -
871 caryophyllene (e), and toluene (f).

872 Figure 11. A comparison of the average contributions of different sources-derived organics (converted
873 to carbon content) to OC during P1 and P2.

874 Figure 12. Contributions (above) of primary organic carbon from biomass burning (OC_{bb}) and fungal
875 spores (OC_{fp}), and secondary organic carbon from isoprene (SOC_i), α -/ β -pinene (SOC_p), β -
876 caryophyllene (SOC_p), and toluene (SOC_t) to OC in the time-resolved (3 h) rural aerosols,
877 and their relative abundances (down). All the contributions were estimated by tracer-based
878 method.

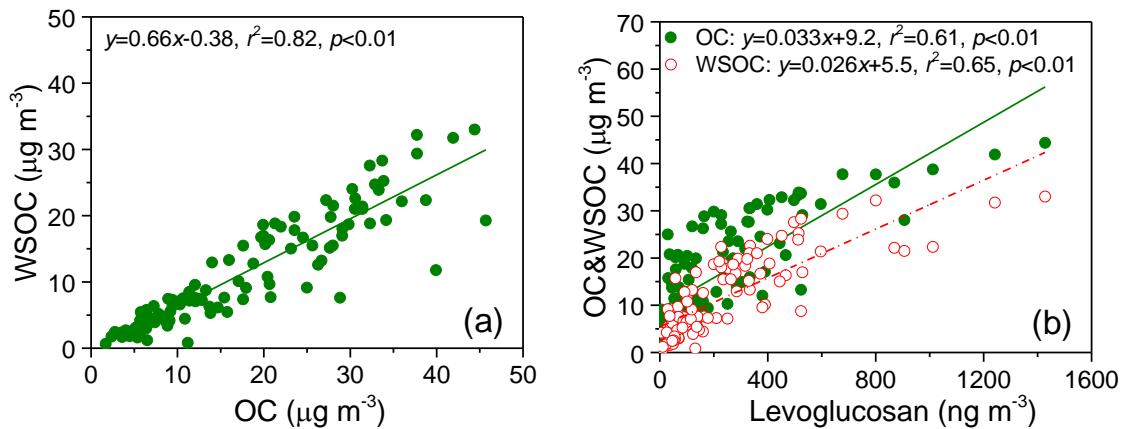

879 Figure 13. Average contributions of direct emissions from biomass burning (BB) and fungal spores
880 (OC_{fp}), secondary oxidation from isoprene (SOC_i), α -/ β -pinene (SOC_p), β -caryophyllene
881 (SOC_p), and toluene (SOC_t) to OC in P1 and P2. All the contributions were estimated by
882 tracer-based method.

883


884

885

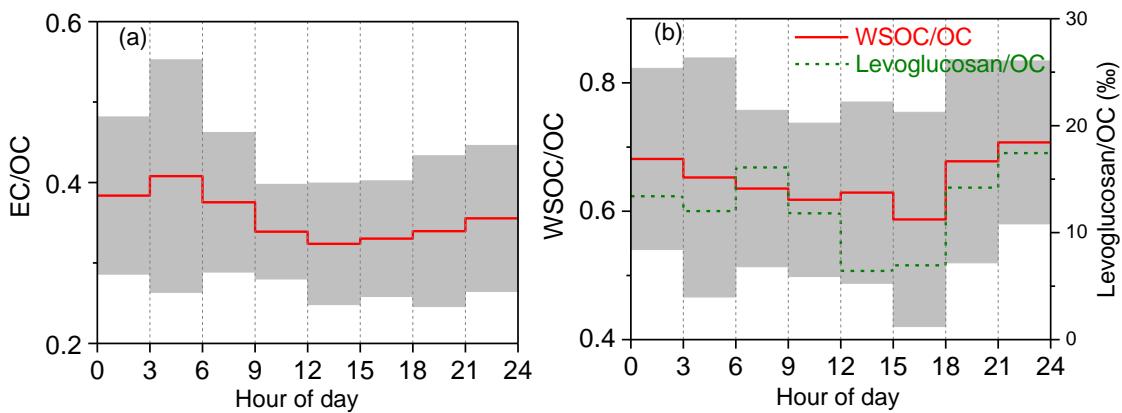
886



889 Figure 1. Backward trajectories of air masses (a,c) (provided by NOAA HYSPLIT modeling system,
 890 <http://ready.arl.noaa.gov/HYSPLIT.php>), and fire spots (b,d) (provided by Fire Information for
 891 Resource Management System, FIRMS, <https://firms.modaps.eosdis.nasa.gov/firemap/>), during Period
 892 1 (P1) (Jun 13th 21:00-16th 15:00, 2013) and Period 2 (P2) (Jun 22nd 12:00-24th 06:00, 2013). Sampling
 893 site represented as purple star.

900 Figure 2. Temporal variations of PM_{2.5}, OC, EC, and WSOC during the whole sampling period.
 901 Shadows denote the two representative periods.

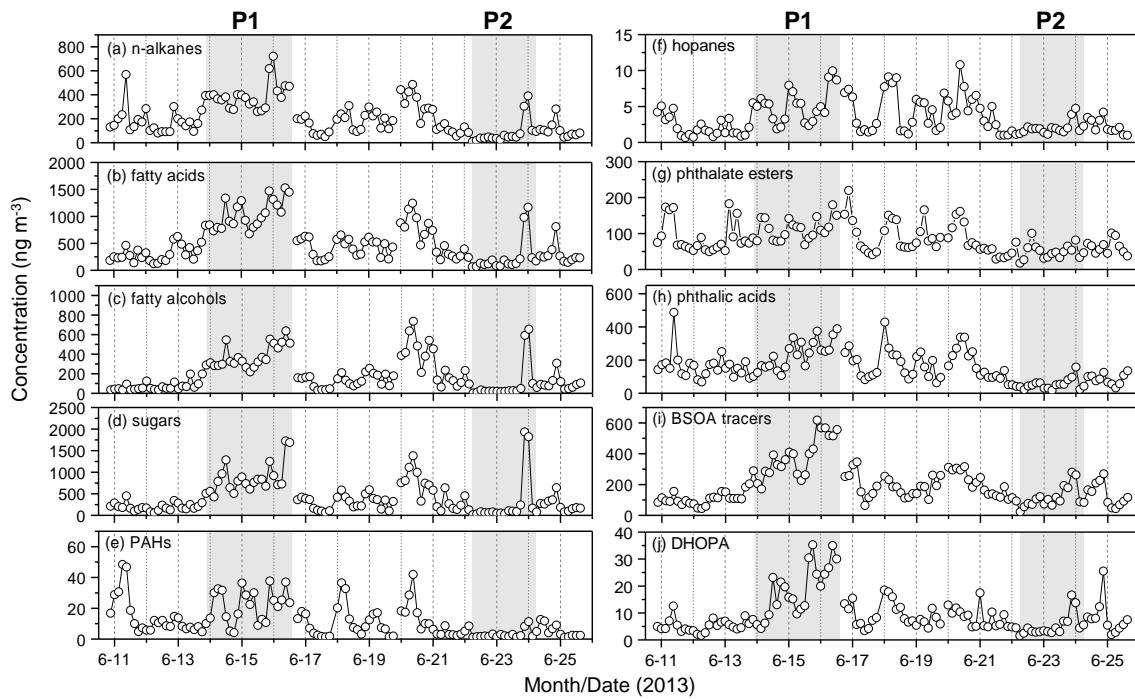
903


904

905 Figure 3. Linear correlations of OC with WSOC (a), levoglucosan with OC and WSOC(b).

906

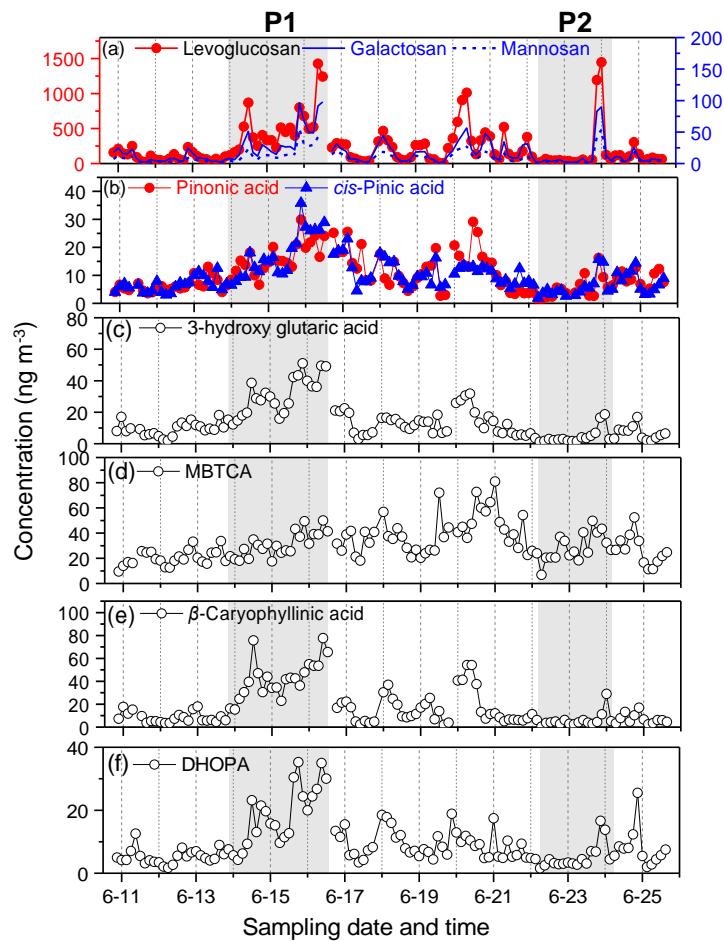
907


908

909

910 Figure 4. Diurnal variation of OC/EC (a), WSOC/OC and levoglucosan/OC (b).

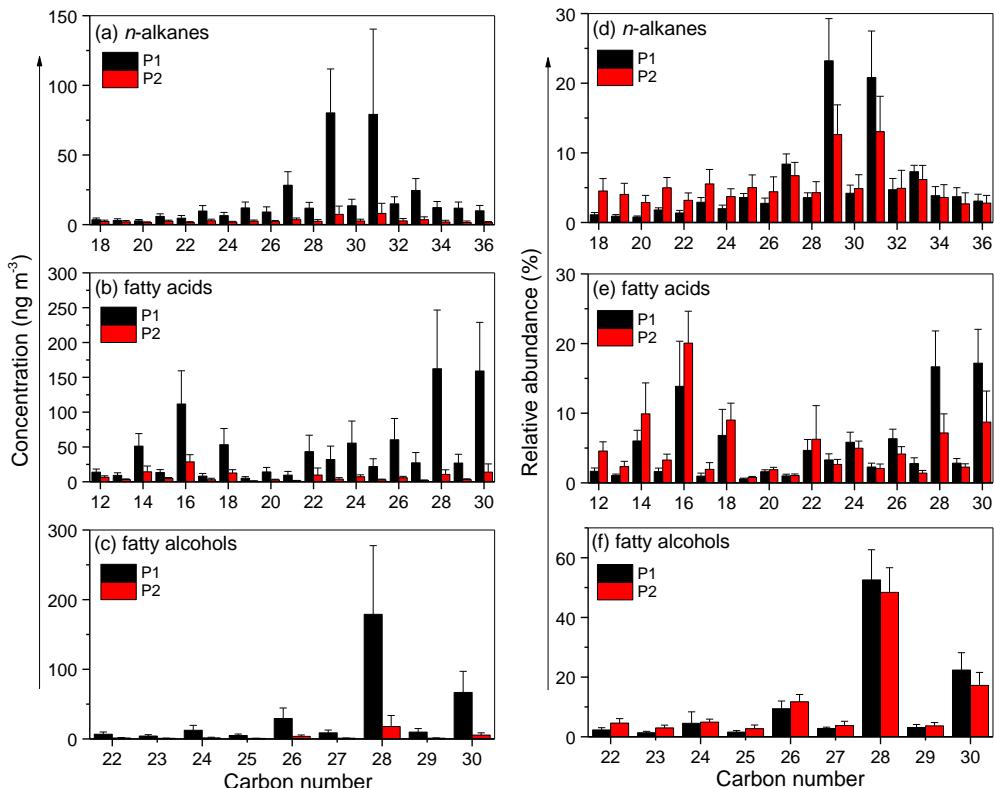
911



912

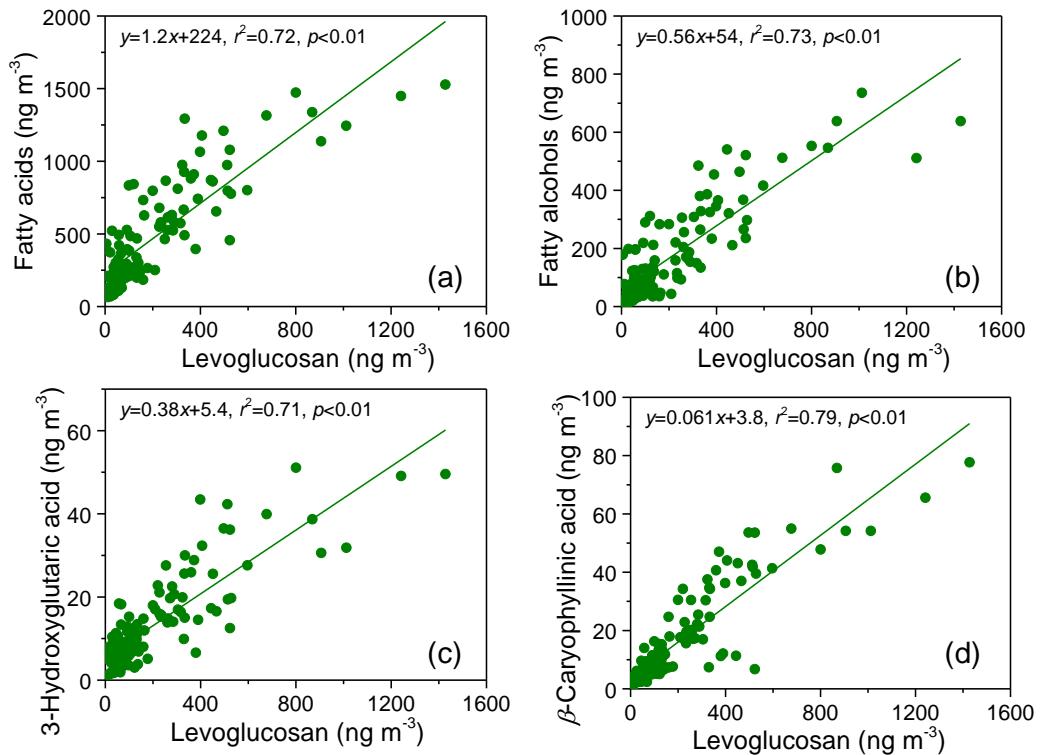
913 Figure 5. Temporal variations of ten organic compound classes detected in the summertime PM_{2.5}
 914 samples at the rural site of NCP.

915

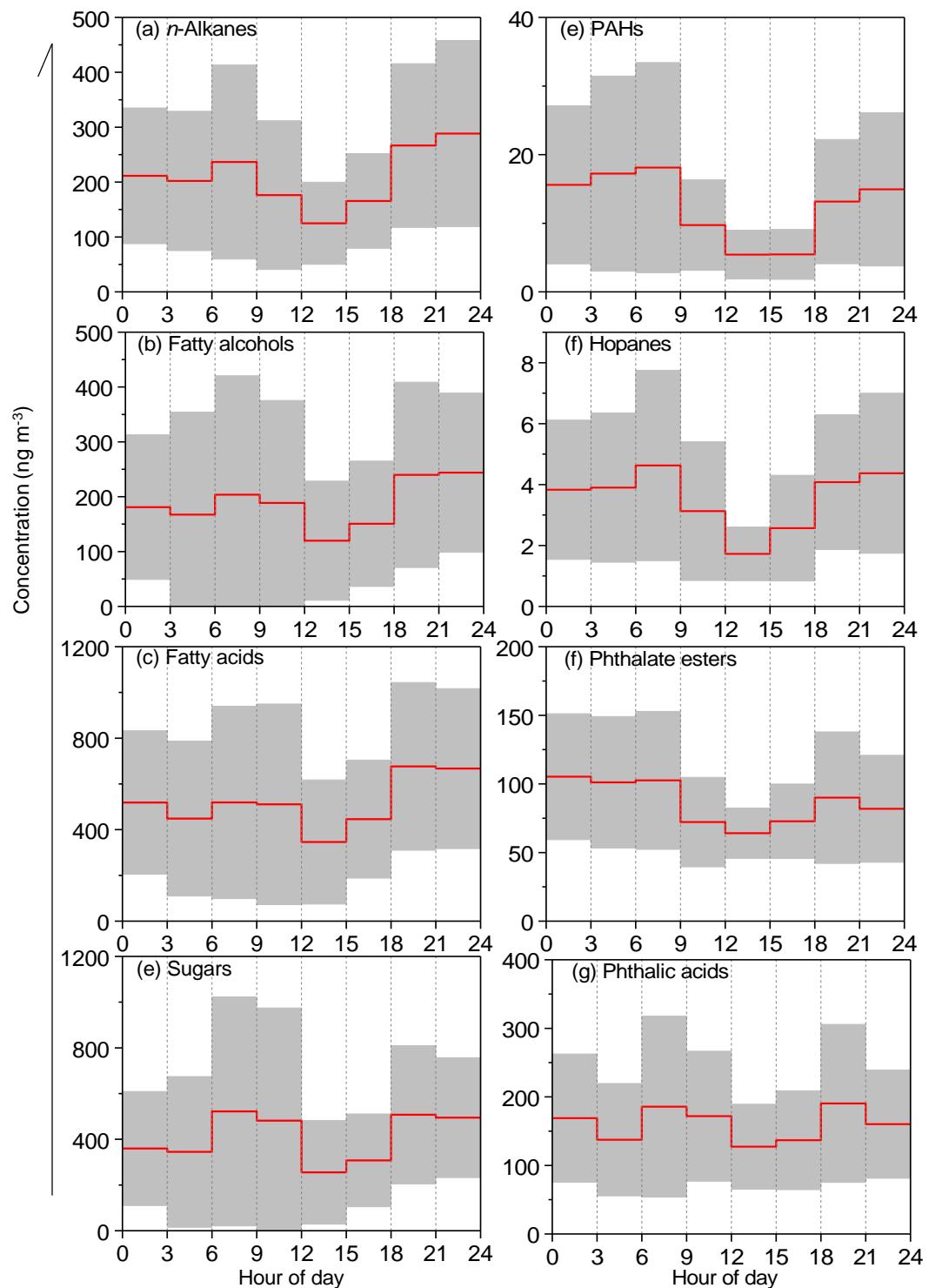

916

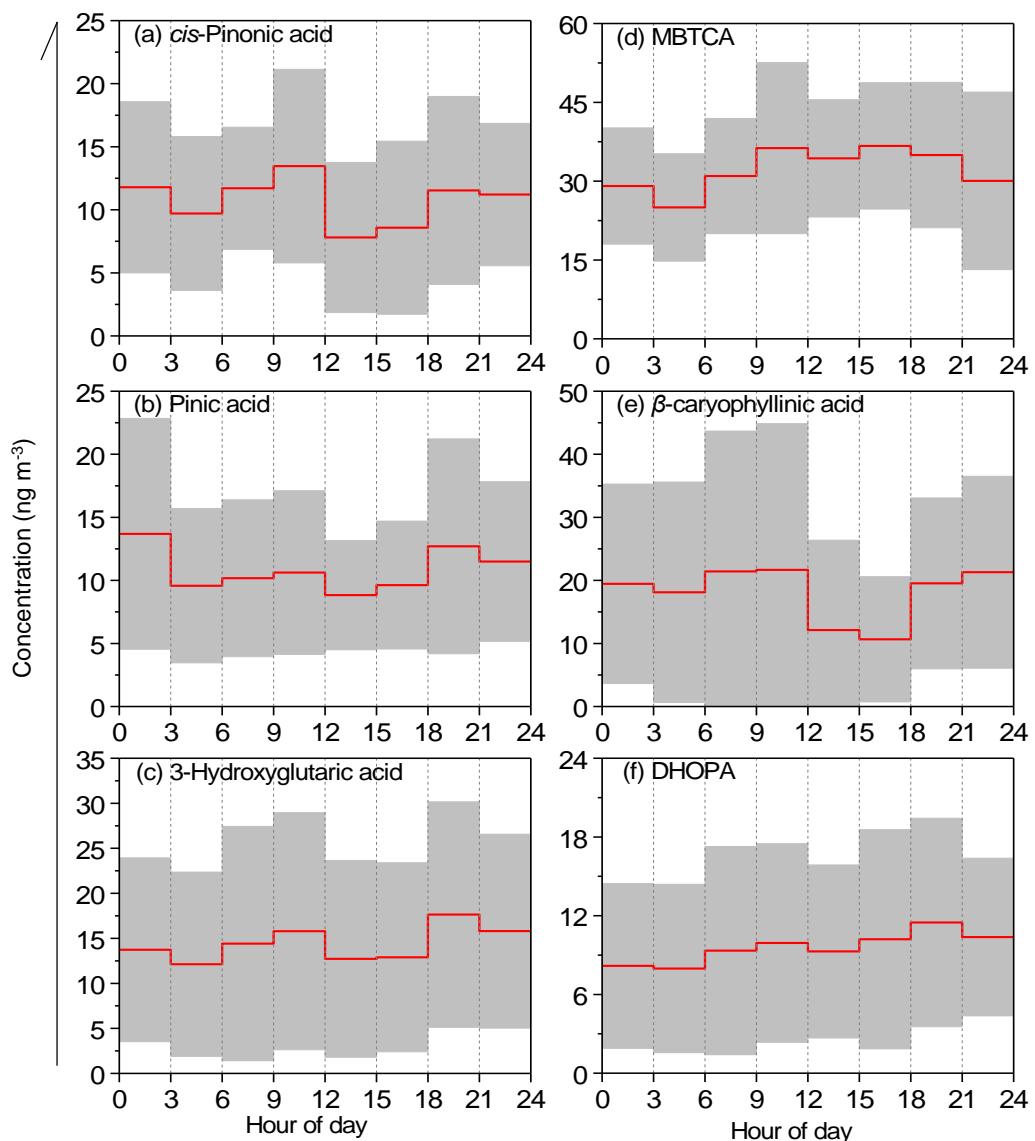
917

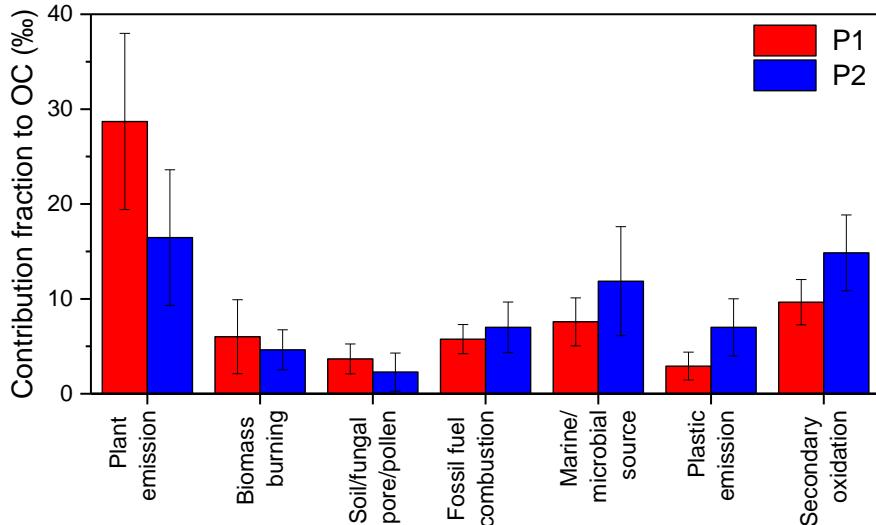
918 Figure 6. Temporal variations of organic tracers for biomass burning (a), and secondary products
 919 derived from α - β -pinene (b-d), β -caryophyllene (e), and toluene (f).


920

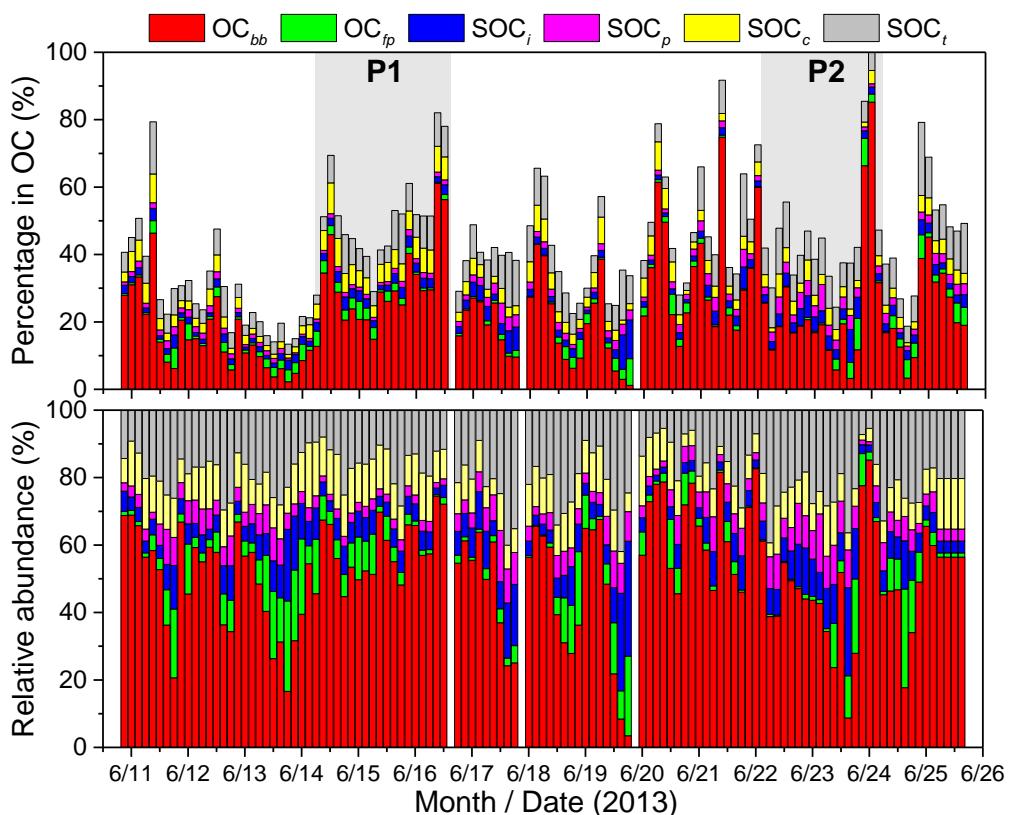
921


922 Figure 7. Molecular distributions of *n*-alkanes (a and d), fatty acids (b and e), and fatty alcohols (c and
 923 f) in the PM_{2.5} of the rural area.

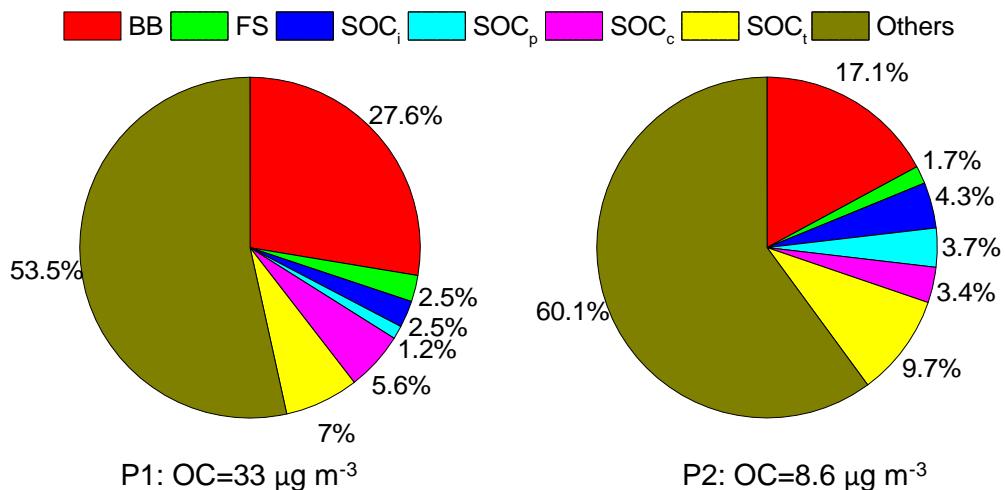

924


925

926 Figure 8. Linear correlations of fatty acids (a), fatty alcohols (b), 3-hydroxyglutaric acid (c), and β-
 927 caryophyllinic acid (d) with levoglucosan.



937 Figure 10. Diurnal variation of the SOA tracers derived from oxidation of α -/ β -pinene (a-d), β -
 938 caryophyllene (e), and toluene (f).



941
942 Figure 11 A comparison of the average contributions of different sources-derived organics (converted
943 to carbon content) to OC during P1 and P2.

948
949 Figure 12. Contributions (above) of primary organic carbon from biomass burning (OC_{bb}) and fungal
950 spores (OC_{fp}), and secondary organic carbon from isoprene (SOC_i), α -/ β -pinene (SOC_p), β -
951 caryophyllene (SOC_c), and toluene (SOC_t) to OC in the time-resolved (3 h) rural aerosols, and their
952 relative abundances (down). All the contributions were estimated by tracer-based method.
953

954

955

956 Figure 13. Average contributions of direct emissions from biomass burning (BB) and fungal spores
 957 (OC_{fp}), secondary oxidation from isoprene (SOC_i), α -/ β -pinene (SOC_p), β -caryophyllene (SOC_c), and
 958 toluene (SOC_t) to OC in P1 and P2. All the contributions were estimated by tracer-based method.

959

960