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Abstract 17 
One of the challenges of understanding atmospheric organic aerosol (OA) particles stems from 18 
its complex composition. Mass spectrometry is commonly used to characterize the compositional 19 
variability of OA. Clustering of a mass spectral data set helps identify components that exhibit 20 
similar behavior or have similar properties, facilitating understanding of sources and processes 21 
that govern compositional variability. Here, we developed an algorithm for clustering mass 22 
spectra, Noise-Sorted Scanning Clustering (NSSC), appropriate for application to thermal 23 
desorption measurements of collected OA particles from the Filter Inlet for Gases and AEROsols 24 
coupled to a chemical ionization mass spectrometer (FIGAERO-CIMS). NSSC, which extends the 25 
common DBSCAN algorithm, provides a robust, reproducible analysis of the FIGAERO 26 
temperature-dependent mass spectral data. The NSSC allows for determination of thermal 27 
profiles for compositionally distinct clusters of mass spectra, increasing the accessibility and 28 
enhancing the interpretation of FIGAERO data. Applications of NSSC to several laboratory 29 
biogenic secondary organic aerosol (BSOA) systems demonstrate the ability of NSSC to 30 
distinguish different types of thermal behaviors for the components comprising the particles 31 
along with the relative mass contributions and chemical properties (e.g. average molecular 32 
formula) of each mass spectral cluster. For each of the systems examined, more than 80% of the 33 
total mass is clustered into 9-13 mass spectral clusters. Comparison of the average thermograms 34 
of the mass spectral clusters between systems indicate some commonalty in terms of the thermal 35 
properties of different BSOA, although with some system-specific behavior. Application of NSSC 36 
to sets of experiments in which one experimental parameter, such as the concentration of NO, is 37 
varied demonstrates the potential for mass spectral clustering to elucidate the chemical factors 38 
that drive changes in the thermal properties of OA particles. Further quantitative interpretation 39 
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of the thermograms of the mass spectral clusters will allow for more comprehensive 40 
understanding of the thermochemical properties of OA particles. 41 

1. Introduction 42 

Atmospheric particles are composed of hundreds to thousands of individual compounds 43 

(e.g., Hamilton et al., 2004; Goldstein and Galbally, 2007), reflecting the many different sources 44 

and the variety of chemical pathways that lead to their formation and growth. Various mass 45 

spectrometry (MS) methods provide for characterization of this compositional variability, among 46 

other techniques. Individual MS methods yield different insights into particle composition, 47 

dependent upon the chemical selectivity of the method. Application of various data reduction 48 

methods, such as clustering or matrix factorization, helps to reduce the inherent compositional 49 

complexity and develop understanding of the sources and chemical transformations that 50 

determine particle composition. Clustering and matrix factorization are complementary methods. 51 

In this work, we develop and apply a new clustering method to measurements of the evolved gas 52 

composition derived from thermal desorption of organic aerosol, specifically to mass spectral 53 

measurements from the Filter Inlet for Gases and AEROsols (Lopez-Hilfiker et al., 2014) coupled 54 

with chemical ionization mass spectrometry (Lee et al., 2014) (FIGAERO-CIMS). The mass spectral 55 

clustering method developed here facilitates interpretation of variability in organic aerosol 56 

composition and volatility, and how these depend on formation conditions.  57 

Clustering methods applied across many research fields have aided in the interpretation 58 

and understanding of large data sets. Clustering methods work by classifying data into several 59 

groups according to the similarity between one or more properties. In the field of atmospheric 60 

chemistry, clustering methods have been applied to a variety of data types. Examples include: 61 

back trajectories of trace gases (Cape et al., 2000) or particles (Abdalmogith and Harrison, 2005; 62 

Pinero-Garcia et al., 2015), helping to elucidate the origin and transport of pollutants; particle 63 

size distributions, providing information on aerosol emission and formation (Beddows et al., 2009; 64 

Wegner et al., 2012); and, the morphology of and organic functional groups comprising individual 65 

particles, allowing for classification of the types of organic carbon (Takahama et al., 2007).  66 

Beyond the above examples, clustering methods have been extensively applied to the 67 

interpretation of single particle mass spectra, serving to characterize variability in their chemical 68 
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composition and identify the sources and extent of chemical processing (e.g., Gaston et al., 2013; 69 

Lee et al., 2015). While clustering is a general method, a variety of specific algorithms have been 70 

developed for application to a given particle mass spectral dataset. The algorithms applied to 71 

analysis of single particle mass spectra include: K-means (Giorio et al., 2012; Liu et al., 2013; Lee 72 

et al., 2015); fuzzy c-means (Kirchner et al., 2003; Roth et al., 2016); density-based special 73 

clustering of applications with noise (DBSCAN) (Zhou et al., 2006); neural network-based 74 

methods, such as an algorithm derived from Adaptive Resonance Theory (ART-2a) (Song et al., 75 

1999; Zhao et al., 2008; Giorio et al., 2012); hierarchical clustering (Murphy et al., 2003; Rebotier 76 

and Prather, 2007); and, some combined algorithms (Zhao et al., 2008; Reitz et al., 2016). Each 77 

clustering algorithm has strengths and weaknesses. In some cases, different algorithms are 78 

equally effective and lead to similar categorization of the same data set, while in other cases 79 

quite different results are obtained (Zhao et al., 2008). For example, K-means and ART-2a gave 80 

broadly similar results on a regional particle data set (Giorio et al., 2012), and K-means performed 81 

as well as a variant of hierarchical clustering method on four particle data sets (Rebotier and 82 

Prather, 2007).  83 

Here, we describe and apply a clustering method, an extension of DBSCAN appropriate for 84 

analysis of combined thermal desorption-mass spectral measurements of organic particle 85 

composition, specifically applied to data from the FIGAERO-CIMS. FIGAERO-CIMS has been 86 

increasingly used in field (e.g. Gaston et al., 2016; Lee et al., 2016; Lopez-Hilfiker et al., 2016; 87 

Mohr et al., 2017; Huang et al., 2018; Le Breton et al., 2019) and laboratory studies (e.g.Lopez-88 

Hilfiker et al., 2015; D'Ambro et al., 2017; Wang and Ruiz, 2018) to develop understanding of the 89 

molecular composition of organic aerosols. A key feature of FIGAERO-CIMS is the ability to 90 

characterize the thermal behavior of organic compounds in particles on a near molecular level 91 

(Lopez-Hilfiker et al., 2014). The use of chemical ionization, a relatively soft ionization method, 92 

facilitates detection and characterization of both monomeric and oligomeric parent compounds 93 

in organic aerosols. In FIGAERO-CIMS, particles are collected and then thermally desorbed, with 94 

mass spectra of the evolved gases measured as a function of temperature. This can also be 95 

displayed as a thermogram: the concentration of an ion or sum of ions as a function of desorption 96 

temperature. The temperature at which a thermogram reaches maximum signal, or Tmax, provide 97 
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information on the volatility, while particularly broad desorption shapes can indicate thermal 98 

decomposition, suggesting the presence of lower volatility, possibly oligomeric, material (Lopez-99 

Hilfiker et al., 2014). A typical FIGAERO-CIMS mass spectrum of either ambient or 100 

laboratory-generated organic aerosol consists of hundreds of individual ions and thermograms, 101 

(D'Ambro et al., 2018; Lee et al., 2018).  102 

Previous studies using FIGAERO-CIMS provided insights into particle composition, including 103 

the  presence of lower volatility material, based on analysis of the thermograms of several major 104 

ions (Lopez-Hilfiker et al., 2014; D'Ambro et al., 2017; D'Ambro et al., 2018; Lee et al., 2018). We 105 

expand on this previous work through the application of cluster analysis to FIGAERO-CIMS 106 

thermograms. Clustering of FIGAERO-CIMS data provides a means to expand the understanding 107 

developed from single-ion thermograms and establish the contributions of different types of 108 

thermograms to the bulk particles. One previous study clustered FIGAERO-CIMS data using the 109 

K-means algorithm using two parameters: the ion molecular weight and the maximum 110 

desorption temperature (Faxon et al., 2018). What distinguishes our work is that we cluster the 111 

thermogram across the entire desorption period for each ion, with ions grouped according to the 112 

similarity of their overall volatility distribution. We have considered the performance of various 113 

clustering algorithms (including K-means), ultimately concluding that a variant of the DBSCAN 114 

algorithm, which we develop here and name noise-sorted scanning clustering (NSSC), provides 115 

robust performance and has several advantages over other existing algorithms for FIGAERO-CIMS 116 

data. The NSSC algorithm is applied to several laboratory data sets of secondary organic aerosol 117 

(SOA) formed from various precursors and under various conditions, some are previously 118 

described (D'Ambro et al., 2018). In this work we do not aim to provide comprehensive 119 

interpretation of the resulting clustered thermograms in terms of their thermo-chemical 120 

properties (Schobesberger et al., 2018), only to illustrate the potential of clustering to enhance 121 

interpretation of FIGAERO-CIMS and other similar data.  122 

2. Clustering Method Description 123 

 Application of a given clustering algorithm to a particular data type involves a number of 124 

steps. Below, we discuss the specific steps for clustering of FIGAERO-CIMS data, including a 125 
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description of our noise-sorted scanning clustering algorithm. A brief discussion of other 126 

algorithms is also provided.  127 

2.1. Data Preprocessing 128 

2.1.1. Exclusion of anomalous thermograms 129 

The quality of the data set should be examined prior to clustering. A typical thermogram 130 

exhibits a continuous evolution to a peak, peaking during a temperature ramping period, after 131 

which there is a steady decrease in signal-to-background over time during a constant-132 

temperature soaking period; the background-corrected signal at all temperatures remains above 133 

zero or around zero within the uncertainties. See section 3.1 for further details of the FIGAERO-134 

CIMS. An anomalous thermogram, however, contains negative signal with large magnitude.  135 

Anomalous thermograms should be excluded from the clustering to assure the quality of 136 

the results, although most such thermograms do not end up clustered with other ions. 137 

Anomalous thermograms are identified as follows. (i) Estimate a reference noise level (sref) for 138 

each thermogram as the standard deviation of the last 100 points (corresponding to 500 seconds) 139 

of the thermogram at the end of the constant-temperature soaking period, during which the 140 

signals are usually relatively constant. Use of more points incorporates times when the signals 141 

were still decreasing, while use of fewer points provides a less robust estimate of the noise level. 142 

(ii) Find the minimum in the thermogram and calculate the average of this and the 50 points 143 

(corresponding to 250 seconds, or 100 points) before and after the minimum, Amin. This provides 144 

for consistency with the determination of sref (iii) Identify thermograms for which Amin < -3*|sref| 145 

as anomalous and exclude these associated ions from further analysis. In other words, when a 146 

thermogram has a valley with averaged negative values exceeding the magnitude of three times 147 

of the reference noise level, then it is considered anomalous. The specific criteria specified above 148 

were determined based on consideration of thermograms from 10 distinct SOA experiments. 149 

While these criteria should be robustly applicable to other FIGAERO-CIMS datasets, they can be 150 

adjusted depending on the specific application, data quality, and needs.  151 

Ideally, when anomalous ions are identified the original data would be inspected to identify 152 

the likely origin of the anomalous behavior. Possible origins include problems with background 153 
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subtraction when the blank has substantially higher signal levels than the particle samples, which 154 

can happen when there is residual contamination or incomplete separation of ions having the 155 

same nominal mass. It is also possible that the components detected for the same ion are 156 

different for the particle and blank measurements. In the example systems considered here, we 157 

identified up to five anomalous ions out of what is typically a few hundred total ions. 158 

In some cases, it is desirable to compare thermograms between related experiments, for 159 

example the experiments discussed here that investigated the influence of NO concentration on 160 

SOA formation (Section 4.3) and the impact of isothermal dilution on SOA composition and 161 

volatility (Section 4.4). In such cases, ions identified as anomalous for one experiment are 162 

excluded from analysis for all related experiments to ensure consistency.  163 

2.1.2. Euclidean Distance 164 

Any clustering algorithm requires a metric to determine the similarity between two 165 

members in the data set. Here, we use the commonly used Euclidean Distance (ED) as the metric. 166 

A smaller ED indicates greater similarity. A FIGAERO thermogram has n points, with all 167 

thermograms having an equal number of points in a data set. A data set here is defined as the 168 

collection of thermograms for all individual ions measured for a single desorption event. The ED 169 

between two thermograms a and b is calculated as: 170 

 171 

𝐸𝐷#,% = ∑ ((𝑎+ − 𝑏+)/+         (1) 172 

 173 

An individual ED value is obtained for every pair of ions in the mass spectrum, resulting in an n x 174 

n matrix of ED values with the diagonal elements all zero. The signal levels between individual 175 

ions differ substantially, reflecting their relative abundances. Therefore, the ED calculation uses 176 

normalized thermograms, allowing for comparison between thermogram profiles irrespective of 177 

signal magnitude. Normalization is achieved by dividing each point of the original thermogram 178 

by the thermogram maximum, where the maximum is determined after smoothing using a 179 

35-point boxcar moving average with the end points excluded from the smoothed thermogram. 180 

Use of the smoothed maximum instead of the unsmoothed maximum reduces the influence of 181 
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noise on normalization. In the FIGAERO datasets used in this study, a typical thermogram has a 182 

temperature resolution of DT ~ 0.7 °C during the ramping period, and a 35-point smooth 183 

corresponds to smoothing over ~24.5 °C. Typical FIGAERO thermograms exhibit peaks ca. 40 °C 184 

wide, and thus a 35-point smoothing retains the main peak shape while reducing the influence 185 

of noise. In the constant temperature part of the thermogram (soaking period), signal levels 186 

change slowly with time, on average less than 5 % for a 35 points (~3 minutes) period, so a 187 

35-point smoothing is also appropriate. We note that the unsmoothed profiles are those that are 188 

normalized; smoothing relates only to determining the maximum signal values used for 189 

normalization. 190 

The ED calculation from Eqn. 1 gives equal weight to all points in the thermogram. However, 191 

in a FIGAERO thermogram, equal weighting may not be appropriate. The desorption process has 192 

two stages, ramping and soaking, with the soaking period comprising approximately 70% of the 193 

time points in thermograms. However, most thermograms are featureless in the soaking period. 194 

In contrast, many thermograms exhibit a peak, or some otherwise characteristic behavior, in the 195 

ramping period. Since the behavior in the ramping period provides greater information as to the 196 

overall similarity between individual thermograms, we recommend down-weighting the soaking 197 

period such that the ramping and soaking periods ultimately carry approximately 4:1 weight in 198 

the calculation of the ED. We have tested weighting of 1:1, 2:1 and 10:1. Weighting of 4:1 199 

provides for the most robust clustering results for the example datasets. We do not recommend 200 

completely excluding the soaking period as this period still carries informational content 201 

(Schobesberger et al., 2018). Specifically, in calculating ED we use all data from the ramping 202 

period while down-weighting the data in the soaking period by calculating and using ten-point 203 

averages. 204 

In summary, we calculate the ED based on the following steps: (i) smooth the original 205 

thermogram (with absolute signal) to find the maximum value; (ii) normalize the original 206 

thermogram to the smoothed maximum; (iii) average every 10 points in the soaking period; and 207 

(iv) calculate the ED between every two normalized, down-weighted thermograms. 208 

2.1.3. Dealing with noise 209 
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Noise is an inherent property of any measurement. Noise in the FIGAERO thermograms 210 

results from various sources, including detector noise, background subtraction, and imperfect 211 

fitting of mass spectra. Noise influences the ED calculated between two thermograms, typically 212 

increasing the ED. Here, the level of noise, x, is characterized for each thermogram by calculating 213 

the average difference between the smoothed and unsmoothed normalized thermograms for 214 

the ramping period. The use of only the ramping period in assessing the noise level is consistent 215 

with the generally more characteristic behavior compared to the soaking period. The use of the 216 

normalized thermograms, rather than absolute, allows for comparison of noise between 217 

thermograms. 218 

The noise level generally varies inversely with the fractional mass contribution of the ions, 219 

illustrated for a case study of the a-pinene + OH SOA (Experiment 1 in Table 1 and Figure 1). This 220 

indicates that ions contributing more to the total signal generally have a lower noise level. 221 

Detector noise is nominally independent of ion identity, and thus the low-signal ions have 222 

enhanced x after normalization.  223 

Discussed further in section 2.3, clustering algorithms often perform poorly when overly 224 

noisy data are included in the clustering. This is especially the case for algorithms such as k-means 225 

and partitioning around medoids, which assign all the members to a cluster. Clustering methods 226 

that do not require assignment of all members, such as DBSCAN or our NSSC, are generally less 227 

sensitive to the influence of overly noisy members. However, we have found that the explicit 228 

exclusion of noisy thermograms up front serves to provide for more robust behavior and also 229 

removes the need to consider each noisy thermogram as a possible single-member cluster. The 230 

inclusion of overly noisy peaks might obscure the underlying structure of clustered thermograms. 231 

Noisy thermograms are identified as follows. First, the 5% of ions having the lowest noise are 232 

identified. The x value of the noisiest ion from this subset of low-noise ions is defined as the 233 

reference noise level, xref. Small differences in the choice of this threshold (e.g. using the lowest 234 

7% of ions) do not materially influence the results. Ions for which xn > 3.xref are considered noisy 235 

and excluded from the initial clustering. For the experiments we examined, there are 88-120 out 236 

of ~300 ions left after noise screening, contributing 83.5% - 92.5% to the total particle mass. 237 
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2.2. Noise-sorted Scanning Clustering (NSSC) 238 

2.2.1. Algorithm description 239 

The noise-sorted scanning clustering (NSSC) algorithm developed here is a variant of the 240 

commonly used DBSCAN. In NSSC, identification and clustering of thermograms occurs based on 241 

their similarity to seed thermograms. When the ED between a given thermogram and the seed is 242 

less than a specified ED criterion (e) the two members belong to the same cluster. Importantly, 243 

in NSSC the selection of the seed thermograms occurs based on their respective noise levels. The 244 

least noisy thermogram is selected as the initial seed, the next noisiest is selected as the second 245 

seed (assuming it is not already clustered), and so on. We have found that low-noise 246 

thermograms typically have more well-defined and characteristic shapes and comprise a 247 

substantial fraction of the total mass. The choice to select seeds based on the noise level leads 248 

to overall more robust and reproducible clustering compared to random selection of seeds. 249 

The optimal value of the distance criterion, e, is not known a priori, but must be determined 250 

by the user, discussed in Section 2.2.3. A valid cluster must contain at least Nmin members, 251 

inclusive of the seed. We use Nmin = 2. Consideration and inspection of individual unclustered 252 

thermograms exhibiting unique behavior occurs as a post-clustering process (Section 2.2.2). 253 

The flow of the noise-sorted scanning clustering algorithm is shown in Figure 2 and 254 

summarized here. Clustering proceeds in two rounds. For the initial round, the thermograms are 255 

sorted by the noise (x), and the ED values between all pairs of thermograms are calculated 256 

accordingly. All of the thermograms are identified according to whether they have been already 257 

used as seeds (SEED = 0 or 1, with 1 for thermograms used as seeds) and whether they have been 258 

already included in a cluster (CLUSTER = 0 or 1, with 1 for already clustered thermograms). At the 259 

start, SEED = 0 and CLUSTER = 0 for all thermograms. Clustering begins using the least noisy 260 

thermogram having SEED = 0 and CLUSTER = 0 as the initial seed. The state of that seed is then 261 

changed to SEED = 1. All thermograms having ED < e for that seed and with CLUSTER = 0 are 262 

identified from the ED matrix; these thermograms are considered neighbors of the seed 263 

thermogram. The seed does not evolve as neighbors are added to the cluster during this step. If 264 

the number of neighbors plus the seed is greater than or equals Nmin, the cluster is valid and 265 
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stored, with the states of all the thermograms in the cluster changed to CLUSTER = 1. Otherwise, 266 

the cluster is dismissed, and CLUSTER = 0 for all the members. In this case, the current seed (with 267 

SEED = 1 and CLUSTER = 0) will no longer be used as a seed in the future steps but can still end 268 

up clustered as a neighbor in the other clusters. The above steps are repeated until all the 269 

thermograms have either SEED = 1 or CLUSTER = 1.  270 

Because a cluster must have at least Nmin elements, not all the thermograms may end up 271 

clustered. Some of these unclustered thermograms may nonetheless have very similar shapes to 272 

the clustered thermograms. Here, an iterative, second round of clustering potentially adds these 273 

initially unclustered thermograms to the initial clusters, using the signal-weighted average 274 

thermograms for the clusters from the first round as the initial seeds. A matrix of ED values is 275 

calculated between the individual unclustered thermograms and the new seeds. For each 276 

unclustered thermogram, the minimum ED, corresponding to only one of the seeds, is identified. 277 

When this minimum ED is less than e, the unclustered thermogram is added into that cluster. A 278 

new signal-weighted average thermogram for the cluster is calculated and this process repeats 279 

until no additional unclustered thermograms can be added to existing clusters. The mass 280 

contribution of the remaining unique unclustered thermograms after this second round can be 281 

substantial or negligible, ranging from <0.05% to 2.6% in the experiments presented here, and 282 

depends largely on the choice of e. Some of these unclustered thermograms are defined as 283 

additional one-member clusters, discussed in the following section.  284 

2.2.2. Post-clustering Processes 285 

After thermograms are clustered, we perform two post-clustering analyses to better 286 

understand the whole data set: 1) identifying additional one-member clusters and 2) sorting of 287 

the clusters. 288 

Some of the remaining unclustered thermograms have significant individual mass 289 

contributions and should be considered as one-member clusters. The criterion of “significant” 290 

mass contribution is user-defined. We recommend determining the significance criterion as 291 

follows: (i) sorting all the ions (before the noise-filtering process) from largest to smallest 292 

individual mass concentration; (ii) calculating the cumulative mass fraction for this sorted list; 293 
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and (iii) defining as “significant” all those ions contributing to a cumulative mass contribution up 294 

to 80%. 295 

The number of significant ions in a data set depends on the specific chemical system, 296 

varying from only a few to tens of ions. Significant unclustered ions are identified as additional 297 

one-member clusters. In some cases, the thermograms for these one-member clusters are 298 

unique compared to the previously identified clusters. In others, their shapes are visually similar 299 

to the previously identified clusters but where the one-member clusters are sufficiently distinct 300 

that they were not clustered. For the purpose of automation, these one-member clusters are all 301 

included in the final clustering results and the number of one-member clusters serves as one of 302 

the parameters to determine the optimal e. User can also choose to exclude them or some of 303 

them manually from the final clustering results based on their judgement. For the example 304 

systems considered in Section 4, there are only a few one-member clusters (ranging from 0 to 4) 305 

for the optimal e used.  306 

Sorting of clustered thermograms facilitates visual presentation and identification of the 307 

similarities and dissimilarities among the clusters. The specific method of sorting can be varied 308 

depending on the application and system under consideration. Here, we use the temperature 309 

where 50% of the mass is desorbed (Tm50) for the weighted-average cluster thermogram as a first 310 

criterion. The Tm50 is typically similar to, but slightly larger than the temperature at which the 311 

signal reaches a maximum. As such, the Tm50 is approximately related to the saturation vapor 312 

pressure of the desorbing compound, at least for compounds that desorb directly (e.g., Lopez-313 

Hilfiker et al., 2014). When two or more clustered average thermograms have identical Tm50, a 314 

rare but occasional occurrence, they are further sorted by Tm75, the temperature where 75% of 315 

the mass is desorbed. The temperature difference between Tm50 and Tm75 indicates the slope of 316 

the thermogram between these two temperatures, with larger values indicating slower decay. 317 

Therefore, these two parameters generally illustrate the shape of a thermogram. The Tm50 and 318 

Tm75 are determined by calculating the cumulative desorbed mass and finding the temperatures 319 

where 50% and 75% are reached.  320 

The sorting process tends to organize the cluster-specific thermograms such that clusters 321 

having lower peak temperatures (lower Tm50) and steeper downslopes after the peak (lower Tm75) 322 
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come first. Thermograms of this type are indicative of major contributions from higher-volatility 323 

monomers (Schobesberger et al., 2018). Thermograms having higher Tm50 generally have broader 324 

peaks, and shallower downslopes, indicative of substantial contributions from low-volatility 325 

compounds or decomposition of oligomers. Further discussion of the interpretation of 326 

thermogram shapes is provided in Section 3.2. 327 

2.2.3. Choosing the optimal e 328 

NSSC is a distance-based clustering method, so the choice of the distance criterion, e, is a 329 

crucial step. For small e, members within a cluster have high similarity, but few thermograms end 330 

up clustered. In contrast, for large e the majority of the thermograms are clustered into only a 331 

few clusters having comparably low intra-cluster similarity. The choice of the optimal e value is 332 

guided here by consideration of several parameters that vary with e. The overall aim is to 333 

simultaneously (i) minimize the unclustered mass fraction (fm,unclustered) while (ii) maximizing the 334 

number of clusters (Nc) having two or more members and (iii) minimizing the number of one-335 

member clusters (Nc,one) yet (iv) maintain inter-cluster separation (RinterClst). 336 

In general, Nc increases with e for small e because more thermograms of different shapes 337 

get clustered and fewer thermograms remain unclustered. As e further increases, some clusters 338 

are combined and a greater number of thermograms are assigned to a single cluster. 339 

Consequently, as e increases the Nc generally increases, reaches a maximum level, and then 340 

decreases. The maximum Nc and the e at which the maximum occurs depends on the exact size 341 

and the properties of dataset being examined. We have found that a typical SOA system usually 342 

has 9-13 distinct thermogram clusters. We recommend selecting an e that provides for Nc at or 343 

near the maximum as this captures the greatest number of thermogram types.  344 

The mass fraction of unclustered thermograms, fm,unclustered, includes only the unclustered 345 

thermograms that were not excluded based on the noise filtering. In general, a smaller fm,unclustered 346 

is preferable as this indicates a greater amount of the OA mass is included in a cluster (including 347 

one-member clusters). The fm,unclustered generally decreases with e , then plateaus above a certain 348 

value of e; ideally this plateau occurs at fm,unclustered = 0. The e where the plateau starts is indicated 349 

as eMF, where MF stands for mass fraction. Given that significant one-member clusters are 350 
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allowed, the unclustered thermograms that remain above eMF have individually small mass 351 

contributions and are either truly unique in their shapes or have a sufficiently high noise level 352 

that they cannot be clustered, even after the noise-screening process. We generally recommend 353 

selecting e ≥ eMF to minimize the unclustered mass.  354 

The number of one-member clusters, Nc,one, generally decreases with e, as these ions are 355 

incorporated into multi-member clusters. Ideally, these one-member clusters would exhibit clear, 356 

visually distinct behavior compared to other one-member clusters and to multi-member clusters. 357 

However, we find this is often not the case, especially at smaller e. Thus, the number of one-358 

member clusters should generally be minimized; we suggest Nc,one be held to five or fewer in 359 

general.  360 

The inter-cluster separation parameter, RinterClst, characterizes the dissimilarity between 361 

clusters, and is the ratio between the average inter-cluster distance (EDseed,avg) and e, where: 362 

 363 

𝑅1+2345672 =
89:;;<,=>?

@
=

∑ ∑ 89:;;<,A,B
CD,EFE=G
BHI

CD,EFE=G
AHI

JD,EFE=G∙LJD,EFE=GMNO∙@
     (2) 364 

 365 

and EDseed,i,j is the distance between the seeds for the different clusters i and j and Nc,total = Nc + 366 

Nc,one. For a 2D data set, the seed can be visualized as the center of a circle and e the radius of 367 

the circle. Thus, when EDseed,i,j/e < 2, the two circles defining the boundaries of these two clusters 368 

have overlapping areas. Good separation (i.e. cluster dissimilarity) is indicated when EDseed,i,j/e > 369 

2. Although our data set is more than two dimensions, this illustrates the idea of establishing the 370 

level of similarity (or dissimilarity) between clusters, i.e., the extent to which they are unique. We 371 

recommend selecting an e that results in RinterClst ≥ 2, when possible.  372 

All four parameters should be considered when determining the optimal e. Consideration 373 

of the parameters individually may not result in the same optimal e. Ultimately, the user must 374 

consider each parameter and aim to select an optimal e that balances the different information 375 

provided in each parameter. This can be achieved by plotting the above parameters as a function 376 

of e, and then selecting as the optimal value the e that results in (i) a small fm,unclustered with (ii) Nc 377 

near the maximum and (iii) a small Nc,one and (iv) RinterClst near or above two. In addition, visual 378 
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comparison of the clustering results, illustrated as the average thermogram of each cluster, can 379 

be helpful. For the example data considered below, we find that the optimal e tends to fall within 380 

a relatively narrow range of values. 381 

2.2.4. Summary 382 

The NSSC allows for clustering of ion peaks in temperature-dependent mass spectra 383 

measured by the FIGAERO-CIMS, from which mass thermograms of the different clusters are 384 

determined. The NSSC emphasizes contributions of ions having high signal-to-noise by selecting 385 

seeds for the mass spectral clusters according to decreasing signal-to-noise. The NSSC also 386 

accounts for the full temperature-dependent behavior of each ion, weighted towards the 387 

temperature ramping period during which the ions generally exhibit more characteristic 388 

desorption profiles. However, the NSSC requires as user input a distance criterion, e, which 389 

characterizes the minimum similarity required between a selected seed ion thermogram and all 390 

other (non-clustered) ion-specific thermograms for the non-seed ion to be considered part of the 391 

mass spectral cluster. The appropriate e value must be uniquely determined for a given 392 

experiment or set of experiments, but we recommend should be selected to provide both the 393 

greatest amount of clustered mass and number of mass spectral clusters having two or more 394 

members while also maintaining the greatest average separation between the mass spectral 395 

clusters. Altogether, these steps facilitate robust, reproducible determination of mass spectral 396 

clusters from a given data set. 397 

2.3. Alternative Clustering Methods 398 

We have alternatively considered the performance of some of the most commonly used 399 

clustering algorithms (k-means, k-medoids, mean-shift, DBSCAN) and a less-commonly used one 400 

(FPClustering (Gonzalez, 1985)) for interpreting FIGAERO-CIMS observations. The clustering 401 

methods considered are summarized in Table 2, with some of their pros and cons listed, and 402 

described in further detail in Appendix A. We discuss them briefly here in the context of FIGAERO-403 

CIMS data. All the methods considered require input of at least one key user-specified parameter. 404 

These parameters and the associated clustering algorithms can be generally classified into two 405 

categories: number-based and distance-based. Number-based clustering algorithms require 406 
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specifying the desired number of retrieved clusters; this includes k-means and k-medoids. 407 

Number-based algorithms usually assign all members to clusters. The extent of similarity among 408 

members of a cluster can vary greatly since there is no strict distance criterion for each cluster. 409 

When applied to FIGAERO-CIMS thermograms, we have found these number-based algorithms 410 

are particularly sensitive to the presence of noisy members and the initialization method. In 411 

contrast, some clustering algorithms require specification of distance (similarity) criterion. This 412 

includes the mean-shift, DBSCAN, and our NSSC algorithms. These distance-based algorithms 413 

need not cluster all members of the initial population and generally emphasize intra-cluster 414 

similarity or the density of the points. The methods differ in terms of the method used for 415 

selection of the initial seed or center and the extent to which they emphasize point density versus 416 

cluster similarity. Noisy members tend to naturally be excluded from any clusters. NSSC is a 417 

variant of DBSCAN. It does, however, differ from the standard DBSCAN algorithm because NSSC 418 

only searches for neighbors of the seed, while DBSCAN also searches for neighbors of the 419 

neighbors. In doing so, NSSC emphasizes cluster similarity rather than point density. This is 420 

particularly useful when clustering thermograms, as the behavior of the entire thermogram is 421 

considered; inclusion of neighbors of neighbors may cluster together thermograms that exhibit 422 

especially similar behavior in one region (e.g., the soaking period) but not another, an undesirable 423 

result.  Accordingly, the sorting of seeds by noise levels is a key aspect of the NSSC algorithm, 424 

which we have found provides for more robust clustering results. 425 

Most of these clustering algorithms, including k-means, k-medoids, and mean-shift, are 426 

initialized with a random choice of the initial cluster centers (or seeds). For large data sets, this 427 

randomness usually leads to different results of clustering with different runs. The extent to 428 

which this impacts analysis and clustering of FIGAERO-CIMS data is considered using SOA from 429 

the a-pinene + OH SOA system as the case study (Section 4.1). For the FIGAERO-CIMS data we 430 

find that the various clustering results exhibit a moderate sensitivity to how the initial seeds are 431 

selected for all of these algorithms, although the final clusters are generally similar between 432 

different runs for the same input parameter. This may reflect either the relatively small size of 433 

the data set (~300 members originally and ~100 members after noise screening) or that there are 434 

generally characteristic peak shapes with overall good separation. However, some differences 435 
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between independent clustering runs result, which is undesirable. For FIGAERO-CIMS data we 436 

know that not all thermograms are of equal quality, i.e. they have different noise levels reflecting 437 

in part their different overall contributions to the total mass. The standard clustering methods 438 

do not account for this information. The NSSC algorithm developed here takes into account this 439 

measure of data quality and uses it to identify the seeds for clustering. This provides for an 440 

entirely reproducible clustering and generally emphasizes the behavior of the ions that 441 

contribute most to the FIGAERO-CIMS signal while still allowing for consideration of contributions 442 

of low-signal ions.  443 

We find that different clustering algorithms can result in similar numbers of clusters with 444 

the cluster-averaged thermograms having visually similar shapes when each is run with 445 

appropriate user-selected parameters, although the details and robustness of each cluster vary 446 

method by method. The “appropriate” parameters however are different from the “optimal” 447 

parameters. There is usually different guidance for different algorithms on how to find the 448 

optimal parameters that result in the greatest similarity within clusters and dissimilarity among 449 

clusters. In the case of k-medoids, for example, the average silhouette indicates an optimal 450 

number of clusters of two for the case study system. Yet, this is certainly too few clusters based 451 

on the other methods.  452 

In summary, we propose NSSC as the preferred algorithm in dealing with the FIGAERO data 453 

set based on: (i) the ability to generate similar results as the other commonly used clustering 454 

algorithms; (ii) good reproducibility and stability of results due to accounting for the noise of 455 

individual thermograms; (iii) good control over the similarity within the clusters by using a 456 

user-definable distance criterion; and (iv) a capability to identify unique thermograms as 457 

one-member clusters. 458 

3. FIGAERO Measurements and Experiments 459 

3.1. Instrument and experiment description 460 

The FIGAERO-CIMS instrument has been described previously in detail (Lee et al., 2014; 461 

Lopez-Hilfiker et al., 2014). A brief description is provided here, with some additional details in 462 

the Supplemental Material. The FIGAERO-CIMS measures the evolved gases from filter-collected 463 
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particles during temperature programmed thermal desorption. Thermal desorption of particles 464 

occurs in two-stages: a “ramping” and “soaking” period. During ramping, the temperature 465 

increases from room temperature to 200 °C, typically at 10 °C min-1. Most OA mass desorbs 466 

during the ramping stage. The temperature is held at 200 °C for ca. 30–40 mins during the soaking 467 

period to facilitate evaporation of the remaining, low-volatility organic mass from the filter. The 468 

evolved gas-phase compounds are measured using CIMS with the iodide (I-) reagent ion, 469 

appropriate for characterization of generally highly oxygenated components comprising most 470 

secondary organic aerosol (Lopez-Hilfiker et al., 2016; Isaacman-VanWertz et al., 2017; Lee et al., 471 

2018). The resulting signal or mass concentration versus temperature (or equivalently time) 472 

curves for each ion constitute a thermogram. All individual thermograms are background 473 

corrected by subtracting the observed thermograms from appropriate blank experiments. The 474 

overall bulk thermogram is obtained by summing together the individual thermograms. 475 

Several example applications of the clustering on FIGAERO-CIMS data are discussed in 476 

Section 4. These cover laboratory experiments on SOA derived from: (1) OH + a-pinene and (2) 477 

OH + D-3-carene, both at low-NOx conditions; (3) OH + a-pinene as a function of [NO]; and (4) 478 

O3 + a-pinene, but where the SOA is allowed to isothermally evaporate at 80% RH for varying 479 

amounts of time prior to thermal desorption. These experiments are summarized in Table 1, with 480 

further details in the Supplemental Material and associated publications (D'Ambro et al., 2018; 481 

D'Ambro et al., 2019); all data are publicly available (Cappa et al., 2019). All the experiments were 482 

done in a 10.6 m3 Teflon environmental chamber at Pacific Northwest National Laboratory (PNNL) 483 

(Liu et al., 2012; Liu et al., 2016).  484 

3.2. General interpretation of FIGAERO-CIMS thermograms 485 

This work focuses on development of the clustering method, rather than on interpretation 486 

of the FIGAERO-CIMS thermograms; an illustrative thermogram is shown in Figure 3b. However, 487 

discussion of the clustering results is aided by a general understanding of how FIGAERO-CIMS 488 

thermograms have been previously interpreted. Ions contributed by semi- and low-volatility 489 

compounds that desorb directly tend to exhibit strongly peaked, Gaussian-like thermograms with 490 

single-mode peaks between around 50 °C to 120 °C; the lower the peak desorption temperature 491 

(Tpeak) the higher the volatility of the desorbing compound (Lopez-Hilfiker et al., 2014; 2015). We 492 



 

18 
 

therefore refer to thermograms, or portions of thermograms, having this general shape as the 493 

“monomeric” content of the ion hereafter; direct evaporation of thermally stable dimers or other 494 

oligomers is possible, although will typically occur at higher temperatures due to the comparably 495 

lower volatility of these compounds. When multiple monomeric compounds having different 496 

vapor pressures contribute to the same ion, the resulting thermogram exhibits a broader peak 497 

and shallower slopes or, in particular cases, multiple, distinct peaks (Lopez-Hilfiker et al., 2015). 498 

However, very broad thermograms, especially those that peak at higher temperatures (> 120 °C 499 

or so), can also indicate contributions from thermal decomposition of very low-volatility 500 

monomers, dimers, and oligomers (Lopez-Hilfiker et al., 2015; Gaston et al., 2016; Schobesberger 501 

et al., 2018). Dimers and oligomers can evaporate directly, without thermal decomposition, as 502 

observed for isoprene-derived SOA (D'Ambro et al., 2017) and ambient monoterpene oxidation 503 

products (Mohr et al., 2017). However, fragments of dimers or oligomers are generally more 504 

abundant, indicating the importance of thermal decomposition for desorption of these low-505 

volatility compounds. Both direct evaporation of extremely low-volatility compounds and 506 

decomposition of large molecules or oligomers can lead to high signal levels above ~120 °C. We 507 

refer to both peaks and the slowly varying signal above ~120 °C as the “oligomeric” content of 508 

the ion hereafter. We use the terms monomer and oligomer in a qualitative manner. A more 509 

quantitative analysis of the thermograms can help distinguish between direct evaporation, 510 

thermal decomposition, and the contributions of monomers versus oligomers (Schobesberger et 511 

al., 2018), yet is beyond the scope of the current work.  512 

4. Example Applications 513 

To illustrate the broad utility of NSSC for interpretation and analysis of FIGAERO-CIMS data, 514 

we apply NSSC to the laboratory-generated SOA systems described above. The systems include: 515 

SOA formed from a single precursor under NOx-free conditions; SOA formed from a single 516 

precursor as a function of input [NO]; and, SOA formed from a single precursor with thermal 517 

desorption following isothermal evaporation. 518 
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4.1. a-pinene + OH SOA 519 

A total of 298 ions were characterized by FIGAERO-CIMS for SOA generated from the 520 

a-pinene + OH reaction (Table 1). Four ions were characterized as anomalous and excluded from 521 

further analysis (see Section 2.1.1). The mass concentration of each ion was calculated by 522 

integrating the signal across the entire desorption period and assuming an equal sensitivity of 523 

CIMS for all the compounds. The total mass concentration is the sum of all the non-anomalous 524 

ions. The mass spectrum and bulk thermogram of the remaining 294 ions are shown in Figure 3, 525 

with the bulk thermogram shown versus both temperature (Figure 3b) and time (Figure 3c) to 526 

illustrate the difference between the ramping and soaking periods. The individual thermograms 527 

exhibited a variety of shapes. The noise threshold for this data set was xref = 0.020893. A total of 528 

188 ions were screened out via noise filtering. The remaining 106 ions contribute 92.5% to the 529 

total mass detected by FIGAERO-CIMS. The optimal e was established through consideration of 530 

the co-dependencies of Nc, Nc,total, fm,unclustered and RinterClst on e (Figure 4; Table 3). For this data 531 

set, we determine the optimal e = 2.6. Choice of a much smaller e, around 1.5, gives a maximum 532 

in Nc, but leaves a large fraction of the mass unclustered. Choice of e = 2.1 or 2.2 yields larger Nc 533 

and RinterClst than e = 2.6, with a reasonably small fm,unclustered. However, there is one type of 534 

thermogram (Clst#11 in Figure 5) that is only captured with e ³ 2.6 and this yields fm,unclustered = 0. 535 

Using e ³ 2.7 also yields fm,unclustered = 0 and Nc,one = 0, but Nc and RinterClst decrease from e = 2.6, 536 

indicating increasing similarity between clusters with fewer types of shapes captured. The choice 537 

of e = 2.6 provides a compromise between maximizing Nc, minimizing fm,unclustered, and keeping 538 

RinterClst above two. The parameters and thresholds used for this data set are summarized in Table 539 

3. 540 

A total of 11 clusters are identified with no one-member clusters. The unweighted and 541 

mass-weighted average thermograms for each cluster are shown along with the thermograms of 542 

individual members in Figure 5a. The differences between weighted and unweighted average 543 

clusters are negligible, in general. Clusters are organized and numbered (as Clst#N) from low to 544 

high Tm50, with deeper to shallower downslope. Clst#1 through Clst#6 all have a clear peak below 545 

120 °C, but with different peak widths and downslopes. Clst#7 and Clst#8 are a bit noisier with 546 
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only a few members each, exhibiting a sharp upslope and shallow downslope. Clst#9 has a very 547 

broad peak. Clst#10 peaks at around 150 °C after an initial rise and temporary plateau. Clst#11 548 

exhibits behavior somewhat like Clst#10, but with a peak that occurs just into the soaking period, 549 

evident if viewed in time space, at 200 °C with a rapid drop afterwards.  550 

The total mass concentration of a given cluster (Mc,N) is the sum across all cluster members, 551 

calculated by integrating the summed mass concentration across the entire desorption period. 552 

The percentage mass contribution of each cluster, and of the unclustered and the noise-filtered 553 

ions, as well as the number of members for each cluster are shown in Figure 5b and Error! 554 

Reference source not found.. Clst#2 and Clst#3 contain the majority of the mass (20.1% and 555 

44.3%, respectively) and consist of nearly half of the clustered ions (11 and 42, respectively). 556 

Clst#4 and Clst#9 also contain a notable percentage of the total mass (8.2% and 9.8%, 557 

respectively) and include a notable number of ions (13 and 17, respectively). Other clusters 558 

contribute relatively little to the total mass and contain a small fraction of ions. 559 

The mass-weighted average molecular formulas (CxHyOzNm) differ between clusters, as do 560 

the O:C and H:C atomic ratios (Error! Reference source not found.). There is no clear relationship 561 

between Tm50 (or cluster number) and the number of carbon atoms, MW, or O:C. There is, 562 

however, a reasonable, inverse correlation between Tm50 and H:C (r2 = 0.78). The number of 563 

carbon atoms is notably larger for Cluster 6 (x = 11.1) and Cluster 7 (x = 15.3); if those two clusters 564 

are excluded there is an inverse relationship between Tm50 and the number of carbon atoms (r2 565 

= 0.79) and with MW (r2 = 0.59). While the reason for these two clusters having comparably large 566 

numbers of carbon atoms is unknown, this nonetheless suggests that the contribution of 567 

oligomer decomposition might increase for clusters having higher Tm50 values.  568 

Interpretation of previous FIGAERO-CIMS studies have largely focused on the behavior of 569 

the bulk thermogram or of several major ions or sums of ions based on common factors such as 570 

the number of carbon atoms (Lopez-Hilfiker et al., 2016; D'Ambro et al., 2017; D'Ambro et al., 571 

2018; Stolzenburg et al., 2018; Wang and Ruiz, 2018; Joo et al., 2019). The normalized 572 

thermograms of the top five ions contributing most to the total mass for the experiments here 573 

are shown in Figure 5c, along with the bulk thermogram. Together these five ions make up nearly 574 

30% of the total mass, and exhibit very similar thermogram shapes to each other and to the bulk 575 
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thermogram and belong solely to either Clst#2 or Clst#3. Thus, examining these ions only would 576 

capture only a fraction of the overall diversity in thermal behaviors. The clustering method 577 

developed here provides a means to investigate more comprehensively the variability in volatility 578 

between aerosol components. 579 

4.2. D-3-carene + OH SOA 580 

 A total of 298 ions were characterized by FIGAERO-CIMS for SOA generated from the 581 

reaction of D-3-carene + OH (Table 1). Five were identified as having anomalous thermograms 582 

and excluded from further analysis. The mass spectrum and bulk thermograms of D-3-carene + 583 

OH SOA are shown in Figure 6. Compared to the a-pinene +OH SOA described above, the mass 584 

spectrum of D-3-carene SOA is quite different, with one ion (C8H12O5) dominant. The bulk 585 

thermograms of the two SOA systems both look bell-like, but with the D-3-carene SOA 586 

thermogram having a peak temperature ca. 9 °C higher. After noise-filtering, 110 ions remained 587 

for clustering, contributing 90.7% to the total mass. The optimal e = 2.1, established again by 588 

considering the system-specific dependence of Nc, Nc,one, fm,unclustered and RinterClst on e (Error! 589 

Reference source not found.), with the parameters and thresholds summarized in Table 3. 590 

Ten clusters are identified, including one one-member cluster, with thermograms shown in 591 

Figure 7a and the mass contribution and number of ions in a cluster in Figure 7b. Chemical 592 

properties of each cluster are summarized in Error! Reference source not found.. The general 593 

characteristics of thermograms identified in the D-3-carene + OH SOA are similar to those of low-594 

NOx a-pinene + OH SOA described above, but with different mass contributions. For example, 595 

Clst#4 has nearly identical shape of the thermogram as Clst#3 in the a-pinene SOA but 596 

contributes less to the total mass, 28.0% compared to 44.3%. Clst#6 in the D-3-carene SOA 597 

contributes 14.8% to the total mass and resembles Clst#5 in the a-pinene SOA, which contributes 598 

only 4.0% to the total mass.  599 

In general, Clst#1 – 6 in the D-3-carene SOA all exhibit a peak below 120 °C, with clear peaks 600 

of varying width and downslopes of varying steepness, but nominally in order of narrow to wide 601 

and steep to shallow, respectively. These clusters carry the majority of the desorbed mass. Clst#7 602 

and Clst#8 both exhibit relatively flat thermograms in the ramping period after their initial rise, 603 
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and contribute 9% to the total mass. Clst#9 has a peak temperature above 150 °C and Clst#10 604 

reaches a maximum during the soaking period. These last two clusters contribute little to the 605 

total mass (0.6% and 0.3%, respectively).  606 

The thermograms of the five largest ions are shown in Figure 7c. These five ions together 607 

carry ~35% of the SOA mass. A wider variety of thermogram shapes are captured by the top five 608 

ions compared to the a-pinene SOA system. However, thermograms characteristic of Clst#7–10 609 

are not represented by these top five ions; this remains true even if the top 10 ions are 610 

considered (not shown).  611 

There are ultimately three major differences between the two SOA systems. For one, there 612 

is a different relationship between fractional contribution and cluster number (and thus Tm,50) 613 

between the two. Secondly, the a-pinene SOA contains ions with especially narrow peaks at ca. 614 

100 °C (i.e., Clst#7 & 8), that are not observed with D-3-carene SOA (compare Figure 5 with Figure 615 

7). Lastly, the thermograms of the top five ions for D-3-carene SOA differ to a greater extent than 616 

for a-pinene SOA. Although we are unable to determine the reasons for these differences here, 617 

this illustrates the potential for clustering to help identify and understand differences between 618 

different SOA systems.  619 

4.3. a-pinene + OH + NO SOA 620 

Thermograms from SOA generated from the reaction of a-pinene + OH at varying NO 621 

concentrations (5 ppb, 10 ppb and 25 ppb; Table 1) are considered as a set of experiments. 622 

Together, differences between them illustrate the impact of changes to the fate of RO2 peroxy 623 

radical intermediates on the SOA composition and thermal properties (Praske et al., 2018; Zhao 624 

et al., 2018). Clustering proceeds here using two complementary approaches. In the single 625 

clustering method, clustering is performed for one reference experiment (i.e., at one NO 626 

concentration, 5 ppb, Expt#3a). Then, average thermograms are calculated for the other 627 

experiments in the set using the same cluster members as identified in the reference experiment. 628 

In the multiple clustering method, clusters are independently determined for each experiment in 629 

the set, and the shapes, relative abundances, and contributing ions are compared between 630 
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experiments. For all three experiments, the same initial set of 298 ions were characterized by 631 

FIGAERO-CIMS.  632 

4.3.1. Single Clustering 633 

The ions identified as anomalous in each experiment differed. This most likely results from 634 

shifts in the background signal levels between experiments. To maintain consistency between 635 

the three experiments, ions identified as anomalous in any of the experiments were excluded 636 

from all the experiments, with four ions excluded in total. A total of 88 ions were kept for 637 

clustering after noise-filtering using the 5 ppb NO reference experiment, contributing 84.5% to 638 

the total mass. The optimal e = 2.2 (Error! Reference source not found. and Table 3), resulting in 639 

ten clusters with one one-member cluster. The same sets of ions were then used to calculate the 640 

cluster-average thermograms for the 10 ppb and 25 ppb NO experiments. Chemical 641 

characteristics of the clusters are summarized in Error! Reference source not found.. 642 

Mass spectra for the three experiments are compared in Figure 8a and the bulk 643 

thermograms shown in Figure 8b and c. The 5 ppb NO and 10 ppb NO SOA mass spectra are 644 

nearly identical. The mass spectrum for the 25 ppb NO experiment, however, exhibits a notable 645 

shift of the most abundant ions towards lower m/z. The bulk thermograms for the 5 ppb and 10 646 

ppb NO experiments are nearly identical, peaking near 80 °C. The 25 ppb NO bulk thermogram 647 

similarly peaks near 80 °C, but exhibits a much slower decay as temperature increases further. 648 

Additionally, the change in slope at the transition from the ramping to soaking period is more 649 

pronounced in the 25 ppb NO experiment. Overall, a greater fraction of the mass desorbs above 650 

100 °C and during the soaking period for the 25 ppb NO experiment compared to lower-NO 651 

experiments.  652 

Despite the differences in the bulk thermograms, the shapes of the weighted-average 653 

thermograms of clusters for all the NO experiments are generally similar, with the exception of 654 

Clst#6 (Figure 9a). In particular, the 25 ppb thermogram shape of Clst#6 differs substantially from 655 

those of low-NO conditions, with a much reduced initial peak (around 80 °C) and an more 656 

pronounced second peak at high temperature (around 200 °C). However, this cluster contributes 657 

negligibly to the overall mass. There is some suggestion of similar behavior for Clst#10, although 658 
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to a lesser extent. For the three most abundant clusters, Clst#1, 2 and 4, there is a slightly 659 

increased relative contribution of the 100-200 °C tail for 25 ppb NO, consistent with differences 660 

in the bulk thermograms.  661 

The most notable NO-dependent change is in the relative abundances of the clusters 662 

between the 5 and 10 ppb NO experiments and the 25 ppb NO experiment (Figure 9b). The 663 

cluster mass fractions are nearly identical between the 5 and 10 ppb NO experiments. The 664 

relative contributions of higher-number clusters (which have been ordered according to 665 

increasing Tm,50) increase for the 25 ppb NO experiment. This is consistent with the increased 666 

persistence of the 25 ppb NO bulk thermogram to higher temperatures and the nearly identical 667 

nature of the 5 ppb and 10 ppb NO bulk thermograms (Figure 8b). The clustering analysis suggests 668 

that differences in the bulk thermogram arise from shifts in the relative contributions of the 669 

various SOA components that result from the altered photochemical environment.  These 670 

observations generally suggest an increasing fraction of oligomeric content, or less-volatile 671 

compounds, formed in the particle phase—or potentially the gas phase—when the SOA was 672 

generated under higher chamber NO conditions (Schobesberger et al., 2018). 673 

4.3.2. Multiple Clustering 674 

With multiple clustering, each experiment was processed and clustered independently, 675 

with experiment-specific xref, Nc, and e, among other parameters (Error! Reference source not 676 

found. and Table 3). The clustered thermograms from the three experiments are compared in 677 

Figure 10a-c. The number of clusters identified increases with NO concentration. Comparison 678 

between the shapes of the clusters from the 5 ppb NO (Figure 10a) and 10 ppb NO (Figure 10b) 679 

experiments indicates generally similar types of thermograms, consistent with the single 680 

clustering method. Ten of the 11 total 10 ppb clusters match with a 5 ppb cluster. The one 681 

additional, unique cluster at 10 ppb NO (Clst#9), is a one-member cluster with a sharp, narrow 682 

peak at low temperatures and a broader, shallow second peak at high temperatures. This ion was 683 

filtered out due to high noise level in the 5 ppb NO experiment. 684 

The 25 ppb NO experiment (Figure 10c) results in more clusters compared to the lower NO 685 

experiments; 13 for the 25 ppb NO experiment versus 10 and 11 for the 5 and 10 ppb experiments, 686 

respectively. Some of the 25 ppb NO clusters have shapes similar to the lower NO experiments, 687 
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but many differ substantially. For example, two of the unique 25 ppb NO clusters (Clst#12 and 688 

#13) have thermograms for which the signal increases continuously through the ramping period 689 

and even into the soaking period. These clusters were not found in the single clustering analysis 690 

because the 5 ppb NO experiment was used as the reference. 691 

The new types of thermograms observed in the 25 ppb NO experiment indicates either 692 

formation of new compounds or a change in the relative contributions of different components 693 

to the same ions. Either could result from a change in the fate of the peroxy radical intermediates 694 

as the NO concentration increases, leading to notably different products. There were numerous 695 

nitrogen-containing ions observed for the three experiments. These N-containing ions belong to 696 

Clst#1 – 7 for all the three [NO] conditions (Error! Reference source not found.). The higher-697 

number clusters did not include N-containing ions, also indicating a limited influence of the 698 

N-containing products on these lower-volatility thermograms, although fragmentation 699 

complicates the interpretation. Overall, the formation of new N-containing compounds at the 700 

high NO condition does not seem to explain the unique thermograms in the 25 ppb NO 701 

experiments.  702 

The percent contribution of different clusters to total mass, along with the noise-filtered 703 

and unclustered ions, differ between experiments (Figure 10d). Note that for the multiple 704 

clustering method, clusters having the same index number are not necessarily directly 705 

comparable between experiments because different sets of ions are included. For example, while 706 

Clst#1 in the 5 ppb and 10 ppb NO experiments are comparable, the most similar cluster in the 707 

25 ppb experiment is Clst#2. Nonetheless, there are some common features shared by the same, 708 

or closely indexed, clusters. For example, Clst#1 – 4 in all three experiments exhibit a narrow, 709 

single peak with the peak temperature below 120 °C. The mass contribution of Clst#1 – 4 is similar 710 

between the 5 and 10 ppb NO experiment, but ~15% lower in the 25 ppb NO experiment. Clusters 711 

that reach their maximum signal at or above 150 °C (Clst#9, 10 for 5 ppb, Clst#10, 11 for 10 ppb 712 

and Clst#10 – 13 for 25 ppb) together contribute ~6% in the low NO experiments and ~13% in 713 

the high NO experiments. Thus, there is some evidence that at higher NO there is an increased 714 

contribution of oligomeric compounds, indicated by the increased contribution of clusters that 715 

peak at higher temperatures and exhibit broader overall thermograms. However, overall these 716 
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observations suggest complex shifts in the distribution of products, both monomeric and 717 

oligomeric, with sufficient increases in NO to change the fate of the peroxy radical intermediates.  718 

4.4. a-pinene + O3 SOA 719 

SOA formed from dark ozonolysis of a-pinene was collected and then allowed to 720 

isothermally evaporate for varying amounts of time (0 h, 1 h, 3 h, 6 h and 24 h) before thermal 721 

desorption (Table 1, Expt#4). As above for the SOA formed at varying NO concentrations, these 722 

experiments are considered as a set and interpreted using both the single-clustering and 723 

multiple-clustering approaches. The single-clustering approach uses the 0 h (no-wait) experiment 724 

as the reference for initial clustering. In this set of experiments, 312 ions were characterized by 725 

FIGAERO-CIMS for each experiment. 726 

4.4.1. Single Clustering 727 

Only a few ions, if any, were identified as anomalous in each experiment; a total of ten ions 728 

were removed from all the experiments to maintain consistency between experiments. The mass 729 

spectra and bulk thermograms of the remaining 302 ions for the five experiments are shown in 730 

Figure 11. As the isothermal evaporation time increases, the mass spectrum changes significantly, 731 

as previously reported by D'Ambro et al. (2018). In the no-wait experiment, the mass spectrum 732 

is dominated by one ion, C10H14O6. Upon isothermal evaporation, the relative abundance of this 733 

ion notably decreases, with the extent of decrease increasing with wait time; over time, a greater 734 

number of ions contribute to the total mass, both at lower and higher m/z. With isothermal 735 

evaporation, the bulk thermograms also exhibit a shift from a more peaked shape, reminiscent 736 

of that from a single compound (Lopez-Hilfiker et al., 2014), to a more flattened peak with a 737 

shallower rise (Figure 11). In other words, with increasing isothermal evaporation the majority 738 

of the mass desorbed during thermal desorption shifts from a lower to higher temperature region. 739 

This behavior largely reflects the loss of comparably more volatile compounds during isothermal 740 

evaporation, leaving behind SOA that is overall less volatile (Error! Reference source not found.a). 741 

It can also in part be due to higher molecular weight, lower volatility compounds being produced 742 

with time via accretion reactions in the condensed phase. 743 
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There are 12 clusters determined from the no-wait experiment, exhibiting a wide variety of 744 

the shapes (Figure 12a), with the parameters used for data pre-processing and clustering 745 

reported in Table 3 and shown in Error! Reference source not found.. Focusing first on the no-746 

wait experiment, the cluster thermogram shapes include those having clear peaks at relatively 747 

low temperatures (~60 °C) and with a sharp rise and fall (e.g., Clst#1-3), those having sharp peaks 748 

at relatively low temperatures but with a shallow downward slope (e.g., Clst#6), those with a 749 

broad peak at somewhat higher temperatures (~100 °C) and long tails (e.g., Clst#7), and those 750 

having a wide peak at even higher temperatures ~120 °C with a very broad rise and fall (e.g., 751 

Clst#10).  752 

Changes to the shapes of the thermograms that occur upon isothermal evaporation differ 753 

between the clusters. Some of the clusters exhibit almost step changes from the no-wait to the 754 

longer time experiments (e.g., Clst#2 and 6), while others exhibit more continuous changes (e.g., 755 

Clst#3 and 5). However, in all cases the clusters shift to have peaks that occur at higher 756 

temperatures with generally broader thermograms. In other words, the Tm50 of all the clusters 757 

increase as a function of evaporation time, but with larger increases observed for the clusters 758 

having initially lower Tm,50 (Figure 12b). For some of the clusters with a clear peak below 100 °C, 759 

such as Clst#1–6, the peaks broaden to become less obvious and shift to higher temperatures 760 

with longer isothermal evaporation. For clusters that originally have very wide peaks, such as 761 

Clst#8–10 and 12, isothermal evaporation engenders a general shift in the thermograms towards 762 

higher temperatures. Different from the clusters described above, thermograms for two clusters, 763 

Clst#7 and Clst#11, exhibit only minor shift of peak temperature and shapes. Thermograms of 764 

these two clusters share the common features of a moderate-width peak that reaches a 765 

maximum between 100 – 120 °C. The Tm50 of these two clusters correspondingly exhibit small 766 

changes compared to other clusters. 767 

Isothermal evaporation generally leads to a reduction of the monomeric character of 768 

clusters, leaving behind components that exhibit increased oligomeric content. Differences in 769 

how the individual cluster thermograms evolve with isothermal evaporation are therefore likely 770 

indicative of differing relative contributions of monomeric versus oligomeric components. For 771 

example, Clst#1 and Clst#10 have distinctly different shapes in the 0-h wait experiment, but very 772 
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similar shapes in the 24-h wait experiment. This indicates that ions in Clst#1 are not contributed 773 

from a single component, as might be inferred from the single-mode peak in the 0-h wait 774 

experiment. Instead, they are contributed by multiple components, though initially dominated 775 

by monomeric compounds, so the shift in peak temperature and broadness is substantial. On the 776 

other hand, ions in Clst#10 must also derive from multiple components, but with only a small 777 

fraction of monomeric compounds that evaporate in the 24 hours. Consequently, the loss of 778 

low-temperature mass is apparent yet small. In contrast, ions in clusters such as Clst#7 and 11 779 

must be composed of only low-volatility components because they exhibit minimal changes in 780 

the thermograms shapes.  781 

The extent of mass loss with isothermal evaporation differs between clusters. In general, 782 

clusters that exhibit larger changes in shape have greater total mass loss, although with variability 783 

(Error! Reference source not found.c). Consequently, the mass contributions of the clusters 784 

evolve with isothermal evaporation (Figure 12b). The contribution of Clst#1 decreases 785 

significantly and most notably as wait time increases. The most prominent ion in the no-wait 786 

experiment, C10H14O6, is grouped in Clst#1. The continuous mass loss of Clst#1 indicates the rapid 787 

evaporation of its members. The mass contributions of the other clusters that exhibited similar 788 

changes in shape as Clst#1 (Clst#3, 5, and 6) remain comparably constant, although with Clst#3 789 

decreasing slightly. The relative abundances of the clusters for which the thermograms shapes 790 

changed negligibly (Clst#7 and 11) increase continually, implying of the slowest evaporation of 791 

the ions in these two clusters in the 24-hr evaporation period.  792 

For comparison, D'Ambro et al. (2018) reported changes in the shapes of the thermograms 793 

for the five most abundant individual ions from the no-wait to 24-hr experiment, together 794 

carrying ~15% of the particle mass. They observed the individual ion thermograms generally all 795 

evolved in a manner similar to our Clst#1, 3 and 5, shifting from narrower, more peaked profiles 796 

towards broader profiles with a shallower rise, less evident peak, and increased evaporation at 797 

higher temperatures. Here, with the clustering of data, we are able to track the change of thermal 798 

behaviors of ions carrying ~87% of the initial mass. We are able to confirm that ~70 % of the mass 799 

exhibit similar thermal behaviors and responses to isothermal evaporation as the top five ions. 800 

However, we are also able to identify another ~17% of the mass having initial thermograms not 801 
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characterized by the top five ions, including 12% of the mass (Clst#7 and 11) that behaves 802 

distinctly different upon evaporation at room temperature.  803 

4.4.2. Multiple Clustering 804 

The number of clusters identified with the multiple-clustering method, using experiment-805 

specific optimal e values (Table 3 and Error! Reference source not found.), decreases with 806 

isothermal evaporation time, from 13 (no-wait) to 12 (1 h) to 11 (3 h) and then to 9 (6 h and 24 807 

h) (Figure 13b-f). The noise levels of the thermograms increase with evaporation time due to 808 

decreasing absolute particle mass. Nonetheless, the typical shapes of the cluster-specific 809 

thermograms clearly evolve with increasing isothermal evaporation. For short isothermal 810 

evaporation times, many cluster-specific thermogram profiles are relatively narrow, peaking at 811 

lower temperatures (70-120 °C) and with rapid rises and evident downslopes. For longer 812 

isothermal evaporation times, the cluster-specific profiles instead have broad peaks with slow 813 

rises and most of the mass desorbing at higher temperatures.  814 

To aid further general interpretation, the cluster-specific thermograms with Tm50 < 120 °C 815 

are grouped together as higher-volatility clusters. The number of higher-volatility clusters 816 

decreases with isothermal evaporation, from ten for the no-wait experiment, to five in the 1-h 817 

experiment, two in the 3-h and 6-h experiment, to none in the 24-h experiment (Figure 14). The 818 

mass contributions of the higher-volatility clusters decrease from 81.9% to 60.4%, 17.2%, 9.4% 819 

and to 0.0%, with increasing isothermal evaporation time. This overall behavior is consistent with 820 

results from the single-clustering method and indicates the compounds with a wide range of 821 

volatilities make up much of the mass in the initial particles, while the SOA after isothermal 822 

evaporation is composed of compounds having lower volatilities. 823 

After isothermal evaporation, some cluster-specific thermograms have signals that increase 824 

continuously during the ramping period, for example Clst#11 and 12 in the 1-h experiment; such 825 

clusters were not observed in the no-wait experiment. The relative abundance of these very low-826 

volatility clusters increases with isothermal evaporation, from 1.7% in the 1-h experiment 827 

(Clst#11 and 12) to 13.4% in the 24-hr experiment (Clst#7 and 9). The absence of these clusters 828 

for the no-wait experiment suggests that they are formed over time through condensed-phase 829 
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reactions. Their increasing contribution over time may reflect both evaporation of higher 830 

volatility components and continued formation. Clusters having thermograms with very broad 831 

peaks, such as Clst#11 and 13 in the 0-h experiment are also observed in all the other experiments, 832 

with increasing contribution to the total mass.  833 

The multiple-clustering method reveals the disappearance of certain types of thermograms, 834 

(e.g., the no-wait Clst#3) and the emergence of other types of thermograms (e.g., the 1-h Clst#11) 835 

as evaporation time increases. This complements the single-clustering method, which illustrates 836 

gradual changes in the shapes of cluster-specific thermograms, by allowing for identification of 837 

completely new thermogram shapes and divergent behavior between ions within initial clusters. 838 

The multiple-clustering method also confirms the decrease of the diversity of the desorption 839 

profiles, as suggested by the single-clustering method. The two methods complement each other 840 

and together provide a detailed look into (i) how the desorption profiles of sets of ions evolve 841 

with isothermal evaporation and (ii) how the fraction of different types of thermograms change 842 

with evaporation time.  843 

5. Conclusions 844 

We developed a new clustering algorithm, the noise-sorted scanning clustering (NSSC) 845 

algorithm, for application to FIGAERO-CIMS data sets. The NSSC algorithm provides a robust 846 

method for clustering of FIGAERO-CIMS thermograms having distinct thermal desorption profiles 847 

and of determining the mass contribution of each cluster. Each of the ions contributing to a 848 

cluster results from one or more molecules sharing similar thermochemical properties. These 849 

molecules either evaporate directly or decompose and then evaporate. Compared to other 850 

existing clustering algorithms, NSSC is strictly similarity-based, reproducible, and takes into 851 

consideration differences in noise levels between individual ions. The application of NSSC has the 852 

potential to make FIGAERO data more accessible to the atmospheric chemistry community. 853 

For the four different SOA systems we examined, more than 80% of the total mass is 854 

clustered, with the number of clusters ranging from 9 to 13. The shapes of the cluster-specific 855 

average thermograms exhibit substantial variation for a given system. Some have relatively sharp 856 

peaks, others broad peaks with slowly decreasing signal as heating continues, and others still 857 
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having signals that continually increase up to very high temperatures or long desorption times. 858 

The mass contribution of a cluster varies from 0.2% to 44.3%. A few (2-3) clusters usually contain 859 

more than 50% of the total mass in all the chemical systems examined. Comparison of the cluster-860 

specific thermogram shapes between different SOA systems allows for qualitative assessment of 861 

the similarity or uniqueness.  862 

We also demonstrated the potential of the NSSC for guiding interpretation of sets of 863 

experiments where one experimental condition varies (e.g., NO concentration and evaporation 864 

time). For such experiments, two complementary methods are suggested: (i) the single clustering 865 

method, where one experiment is used to determine the ions belonging to individual clusters 866 

and then clusters comprising the same ions are calculated for the other experiments, and (ii) the 867 

multiple clustering method, where each experiment is clustered independently and then 868 

compared. The first approach helps establish how the properties of individual clusters evolve as 869 

a set, while the second approach helps identify changes in the diversity of cluster-specific 870 

thermogram shapes, properties, and mass contributions. The two approaches complement each 871 

other and provide guidance for future efforts to cluster ambient observations having long time-872 

series. 873 

This paper focuses only on the description of the clustering algorithm and its potential as a 874 

tool to characterize the thermal properties of organic aerosol in further detail. The application of 875 

NSSC can be potentially expanded to any other composition-resolved data sets, such as diurnal 876 

changes of different compounds measured in ambient air, temporal changes of different 877 

generations of species in a smog chamber, and composition-dependent size distributions. All of 878 

the above data sets share a common property that the noise of the curve/spectrum is related to 879 

the composition. Therefore, NSSC would facilitate the analysis by taking noise into consideration. 880 

Interpretation of the cluster-specific thermograms using frameworks such as that of 881 

Schobesberger et al. (2018) will allow for more comprehensive understanding of the 882 

thermochemical properties of the organic aerosol, the subject of future work. This will provide 883 

insights into the thermal behavior of organic aerosol and the relative contributions of thermally 884 

stable (e.g., monomer) versus thermally unstable (e.g., dimers or oligomers) compounds, the 885 
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volatility distribution of the thermally stable compounds, and the T-dependent rate coefficients 886 

for oligomer dissociation and formation.  887 

6. Data Availability 888 

All data and the NSSC algorithm used in this publication are archived in the UC DASH data 889 

repository (Cappa et al., 2019). The NSSC algorithm is also available at GitHub 890 

(https://github.com/chriscappa/NSSC), with the version used for this publication available as Li 891 

and Cappa (2019). 892 

7. Author Contributions 893 

ZL developed the NSSC algorithm. ELD, SS, CJG, FDL-H, JL, JES, and ZL performed 894 

measurements. ELD and SS performed detailed data processing. ZL and CDC analyzed data and 895 

wrote the manuscript, with contributions from all co-authors. 896 

8. Acknowledgements 897 

This work was supported by the National Science Foundation under Grant No. ATM-898 

1151062. The experimental work described here was supported by the U.S. Department of 899 

Energy ASR grants DE-SC0011791 and DE-SC0018221. E.L.D. was supported by the National 900 

Science Foundation Graduate Research Fellowship (grant no. DGE-1256082) and S.S. was 901 

supported by the Academy of Finland (grant nos. 272041 and 310682). The SOAFFEE campaign 902 

was done at Pacific Northwest National Laboratory, supported by the U.S. Department of Energy 903 

(DOE) Office of Science, Office of Biological and Environmental Research, as part of the 904 

Atmospheric Systems Research (ASR) program. PNNL is operated for DOE by Battelle Memorial 905 

Institute under contract DE-AC05-76RL01830. 906 

9. References 907 

Abdalmogith, S. S., and Harrison, R. M.: The use of trajectory cluster analysis to examine the long-908 
range transport of secondary inorganic aerosol in the UK, Atmos Environ, 39, 6686-6695, 909 
https://doi.org/10.1016/j.atmosenv.2005.07.059, 2005. 910 



 

33 
 

Beddows, D. C. S., Dall'Osto, M., and Harrison, R. M.: Cluster Analysis of Rural, Urban, and 911 
Curbside Atmospheric Particle Size Data, Environ Sci Technol, 43, 4694-4700, 912 
https://doi.org/10.1021/es803121t, 2009. 913 
Cape, J. N., Methven, J., and Hudson, L. E.: The use of trajectory cluster analysis to interpret trace 914 
gas measurements at Mace Head, Ireland, Atmos Environ, 34, 3651-3663, 915 
https://doi.org/10.1016/S1352-2310(00)00098-4, 2000. 916 
Cappa, C. D., Li, Z., D’Ambro, E. L., Schobesberger, S., Shilling, J. E., Lopez-Hilfiker, F., Liu, J., Gaston, 917 
C. J., and Thornton, J. A.: Initial application of the noise-sorted scanning clustering algorithm to 918 
the analysis of composition-dependent organic aerosol thermal desorption measurements, UC 919 
Davis Dash, Dataset, https://doi.org/10.25338/B87S43, 2019  920 
D'Ambro, E. L., Lee, B. H., Liu, J. M., Shilling, J. E., Gaston, C. J., Lopez-Hilfiker, F. D., Schobesberger, 921 
S., Zaveri, R. A., Mohr, C., Lutz, A., Zhang, Z. F., Gold, A., Surratt, J. D., Rivera-Rios, J. C., Keutsch, 922 
F. N., and Thornton, J. A.: Molecular composition and volatility of isoprene photochemical 923 
oxidation secondary organic aerosol under low- and high-NOx conditions, Atmospheric Chemistry 924 
and Physics, 17, 159-174, https://doi.org/10.5194/acp-17-159-2017, 2017. 925 
D'Ambro, E. L., Schobesberger, S., Zaveri, R. A., Shilling, J. E., Lee, B. H., Lopez-Hilfiker, F. D., Mohr, 926 
C., and Thornton, J. A.: Isothermal Evaporation of alpha-Pinene Ozonolysis SOA: Volatility, Phase 927 
State, and Oligomeric Composition, Acs Earth Space Chem, 2, 1058-1067, 928 
https://doi.org/10.1021/acsearthspacechem.8b00084, 2018. 929 
D'Ambro, E. L., Schobesberger, S., Gaston, C. J., Lopez-Hilfiker, F. D., Lee, B. H., Liu, J., Zelenyuk, 930 
A., Bell, D., Cappa, C. D., Helgestad, T., Li, Z., Guenther, A., Wang, J., Wise, M., Caylor, R., Surratt, 931 
J. D., Riedel, T., Hyttinen, N., Salo, V. T., Hasan, G., Kurtén, T., Shilling, J. E., and Thornton, J. A.: 932 
Chamber-based insights into the factors controlling IEPOX SOA yield, composition, and volatility, 933 
Atmos. Chem. Phys. Discuss., 2019, 1-20, https://doi.org/10.5194/acp-2019-271, 2019. 934 
Faxon, C., Hammes, J., Le Breton, M., Pathak, R. K., and Hallquist, M.: Characterization of organic 935 
nitrate constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation 936 
of limonene using high-resolution chemical ionization mass spectrometry, Atmospheric 937 
Chemistry and Physics, 18, 5467-5481, https://doi.org/10.5194/acp-18-5467-2018, 2018. 938 
Gaston, C. J., Quinn, P. K., Bates, T. S., Gilman, J. B., Bon, D. M., Kuster, W. C., and Prather, K. A.: 939 
The impact of shipping, agricultural, and urban emissions on single particle chemistry observed 940 
aboard the R/V Atlantis during CalNex, J Geophys Res-Atmos, 118, 5003-5017, 941 
https://doi.org/10.1002/jgrd.50427, 2013. 942 
Gaston, C. J., Lopez-Hilfiker, F. D., Whybrew, L. E., Hadley, O., McNair, F., Gao, H. L., Jaffe, D. A., 943 
and Thornton, J. A.: Online molecular characterization of fine particulate matter in Port Angeles, 944 
WA: Evidence for a major impact from residential wood smoke, Atmos Environ, 138, 99-107, 945 
https://doi.org/10.1016/j.atmosenv.2016.05.013, 2016. 946 
Giorio, C., Tapparo, A., Dall'Osto, M., Harrison, R. M., Beddows, D. C. S., Di Marco, C., and Nemitz, 947 
E.: Comparison of three techniques for analysis of data from an Aerosol Time-of-Flight Mass 948 
Spectrometer, Atmos Environ, 61, 316-326, https://doi.org/10.1016/j.atmosenv.2012.07.054, 949 
2012. 950 
Goldstein, A. H., and Galbally, I. E.: Known and unexplored organic constituents in the earth's 951 
atmosphere, Environ Sci Technol, 41, 1514-1521, https://doi.org/10.1021/es072476p, 2007. 952 
Gonzalez, T. F.: Clustering to Minimize the Maximum Intercluster Distance, Theor Comput Sci, 38, 953 
293-306, https://doi.org/10.1016/0304-3975(85)90224-5, 1985. 954 



 

34 
 

Hamilton, J. F., Webb, P. J., Lewis, A. C., Hopkins, J. R., Smith, S., and Davy, P.: Partially oxidised 955 
organic components in urban aerosol using GCXGC-TOF/MS, Atmospheric Chemistry and Physics, 956 
4, 1279-1290, https://doi.org/10.5194/acp-4-1279-2004, 2004. 957 
Huang, W., Saathoff, H., Pajunoja, A., Shen, X. L., Naumann, K. H., Wagner, R., Virtanen, A., Leisner, 958 
T., and Mohr, C.: alpha-Pinene secondary organic aerosol at low temperature: chemical 959 
composition and implications for particle viscosity, Atmospheric Chemistry and Physics, 18, 2883-960 
2898, https://doi.org/10.5194/acp-18-2883-2018, 2018. 961 
Isaacman-VanWertz, G., Massoli, P., O'Brien, R. E., Nowak, J. B., Canagaratna, M. R., Jayne, J. T., 962 
Worsnop, D. R., Su, L., Knopf, D. A., Misztal, P. K., Arata, C., Goldstein, A. H., and Kroll, J. H.: Using 963 
advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: 964 
current capabilities and remaining gaps, Faraday Discussions, 200, 579-598, 965 
https://doi.org/10.1039/c7fd00021a, 2017. 966 
Joo, T., Rivera-Rios, J. C., Takeuchi, M., Alvarado, M. J., and Ng, N. L.: Secondary Organic Aerosol 967 
Formation from Reaction of 3-Methylfuran with Nitrate Radicals, Acs Earth Space Chem, 968 
https://doi.org/10.1021/acsearthspacechem.9b00068, 2019. 969 
Kirchner, U., Vogt, R., Natzeck, C., and Goschnick, J.: Single particle MS, SNMS, SIMS, XPS, and 970 
FTIR spectroscopic analysis of soot particles during the AIDA campaign, Journal of Aerosol Science, 971 
34, 1323-1346, https://doi.org/10.1016/S0021-8502(03)00362-8, 2003. 972 
Le Breton, M., Psichoudaki, M., Hallquist, M., Watne, A. K., Lutz, A., and Hallquist, A. M.: 973 
Application of a FIGAERO ToF CIMS for on-line characterization of real-world fresh and aged 974 
particle emissions from buses, Aerosol Science and Technology, 53, 244-259, 975 
https://doi.org/10.1080/02786826.2019.1566592, 2019. 976 
Lee, A. K. Y., Willis, M. D., Healy, R. M., Onasch, T. B., and Abbatt, J. P. D.: Mixing state of 977 
carbonaceous aerosol in an urban environment: single particle characterization using the soot 978 
particle aerosol mass spectrometer (SP-AMS), Atmospheric Chemistry and Physics, 15, 1823-979 
1841, https://doi.org/10.5194/acp-15-1823-2015, 2015. 980 
Lee, B., Lopez-Hilfiker, F. D., D'Ambro, E. L., Zhou, P. T., Boy, M., Petaja, T., Hao, L. Q., Virtanen, 981 
A., and Thornton, J. A.: Semi-volatile and highly oxygenated gaseous and particulate organic 982 
compounds observed above a boreal forest canopy, Atmospheric Chemistry and Physics, 18, 983 
11547-11562, https://doi.org/10.5194/acp-18-11547-2018, 2018. 984 
Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurten, T., Worsnop, D. R., and Thornton, J. A.: An Iodide-985 
Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to 986 
Atmospheric Inorganic and Organic Compounds, Environ Sci Technol, 48, 6309-6317, 987 
https://doi.org/10.1021/es500362a, 2014. 988 
Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L., Romer, P., Cohen, R. C., 989 
Iyer, S., Kurten, T., Hu, W. W., Day, D. A., Campuzano-Jost, P., Jimenez, J. L., Xu, L., Ng, N. L., Guo, 990 
H. Y., Weber, R. J., Wild, R. J., Brown, S. S., Koss, A., de Gouw, J., Olson, K., Goldstein, A. H., Seco, 991 
R., Kim, S., McAvey, K., Shepson, P. B., Starn, T., Baumann, K., Edgerton, E. S., Liu, J. M., Shilling, 992 
J. E., Miller, D. O., Brune, W., Schobesberger, S., D'Ambro, E. L., and Thornton, J. A.: Highly 993 
functionalized organic nitrates in the southeast United States: Contribution to secondary organic 994 
aerosol and reactive nitrogen budgets, P Natl Acad Sci USA, 113, 1516-1521, 995 
https://doi.org/10.1073/pnas.1508108113, 2016. 996 
Li, Z., and Cappa, C. D.: Noise Sorted Scanning Clustering Algorithm (Version v1.0.3), Zenodo, 997 
https://doi.org/10.5281/zenodo.3361797, 2019 998 



 

35 
 

Liu, J. M., D'Ambro, E. L., Lee, B. H., Lopez-Hilfiker, F. D., Zaveri, R. A., Rivera-Rios, J. C., Keutsch, 999 
F. N., Iyer, S., Kurten, T., Zhang, Z. F., Gold, A., Surratt, J. D., Shilling, J. E., and Thornton, J. A.: 1000 
Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPDX Pathway, Environ Sci 1001 
Technol, 50, 9872-9880, https://doi.org/10.1021/acs.est.6b01872, 2016. 1002 
Liu, S., Shilling, J. E., Song, C., Hiranuma, N., Zaveri, R. A., and Russell, L. M.: Hydrolysis of 1003 
Organonitrate Functional Groups in Aerosol Particles, Aerosol Science and Technology, 46, 1359-1004 
1369, https://doi.org/10.1080/02786826.2012.716175, 2012. 1005 
Liu, S., Russell, L. M., Sueper, D. T., and Onasch, T. B.: Organic particle types by single-particle 1006 
measurements using a time-of-flight aerosol mass spectrometer coupled with a light scattering 1007 
module, Atmospheric Measurement Techniques, 6, 187-197, https://doi.org/10.5194/amt-6-1008 
187-2013, 2013. 1009 
Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Lutz, A., 1010 
Hallquist, M., Worsnop, D., and Thornton, J. A.: A novel method for online analysis of gas and 1011 
particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols 1012 
(FIGAERO), Atmospheric Measurement Techniques, 7, 983-1001, https://doi.org/10.5194/amt-1013 
7-983-2014, 2014. 1014 
Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Carrasquillo, 1015 
A. J., Daumit, K. E., Hunter, J. F., Kroll, J. H., Worsnop, D. R., and Thornton, J. A.: Phase partitioning 1016 
and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH 1017 
oxidation: the importance of accretion products and other low volatility compounds, 1018 
Atmospheric Chemistry and Physics, 15, 7765-7776, https://doi.org/10.5194/acp-15-7765-2015, 1019 
2015. 1020 
Lopez-Hilfiker, F. D., Mohr, C., D’Ambro, E. L., Lutz, A., Riedel, T. P., Gaston, C. J., Iyer, S., Zhang, 1021 
Z., Gold, A., Surratt, J. D., Lee, B. H., Kurten, T., Hu, W. W., Jimenez, J., Hallquist, M., and Thornton, 1022 
J. A.: Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: 1023 
Implications for IEPOX Derived SOA, Environ Sci Technol, 50, 2200-2209, 1024 
https://doi.org/10.1021/acs.est.5b04769, 2016. 1025 
Mohr, C., Lopez-Hilfiker, F. D., Yli-Juuti, T., Heitto, A., Lutz, A., Hallquist, M., D'Ambro, E. L., 1026 
Rissanen, M. P., Hao, L. Q., Schobesberger, S., Kulmala, M., Mauldin, R. L., Makkonen, U., Sipila, 1027 
M., Petaja, T., and Thornton, J. A.: Ambient observations of dimers from terpene oxidation in the 1028 
gas phase: Implications for new particle formation and growth, Geophysical Research Letters, 44, 1029 
2958-2966, https://doi.org/10.1002/2017gl072718, 2017. 1030 
Murphy, D. M., Middlebrook, A. M., and Warshawsky, M.: Cluster analysis of data from the 1031 
Particle Analysis by Laser Mass Spectrometry (PALMS) instrument, Aerosol Science and 1032 
Technology, 37, 382-391, https://doi.org/10.1080/02786820300971, 2003. 1033 
Pinero-Garcia, F., Ferro-Garcia, M. A., Chham, E., Cobos-Diaz, M., and Gonzalez-Rodelas, P.: A 1034 
cluster analysis of back trajectories to study the behaviour of radioactive aerosols in the south-1035 
east of Spain, J Environ Radioactiv, 147, 142-152, https://doi.org/10.1016/j.jenvrad.2015.05.029, 1036 
2015. 1037 
Praske, E., Otkjaer, R. V., Crounse, J. D., Hethcox, J. C., Stoltz, B. M., Kjaergaard, H. G., and 1038 
Wennberg, P. O.: Atmospheric autoxidation is increasingly important in urban and suburban 1039 
North America, P Natl Acad Sci USA, 115, 64-69, https://doi.org/10.1073/pnas.1715540115, 2018. 1040 



 

36 
 

Rebotier, T. P., and Prather, K. A.: Aerosol time-of-flight mass spectrometry data analysis: A 1041 
benchmark of clustering algorithms, Anal Chim Acta, 585, 38-54, 1042 
https://doi.org/10.1016/j.aca.2006.12.009, 2007. 1043 
Reitz, P., Zorn, S. R., Trimborn, S. H., and Trimborn, A. M.: A new, powerful technique to analyze 1044 
single particle aerosol mass spectra using a combination of OPTICS and the fuzzy c-means 1045 
algorithm, Journal of Aerosol Science, 98, 1-14, https://doi.org/10.1016/j.jaerosci.2016.04.003, 1046 
2016. 1047 
Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren, D., Herrmann, H., and Borrmann, S.: 1048 
Aerosol properties, source identification, and cloud processing in orographic clouds measured by 1049 
single particle mass spectrometry on a central European mountain site during HCCT-2010, 1050 
Atmospheric Chemistry and Physics, 16, 505-524, https://doi.org/10.5194/acp-16-505-2016, 1051 
2016. 1052 
Schobesberger, S., D'Ambro, E. L., Lopez-Hilfiker, F. D., Mohr, C., and Thornton, J. A.: A model 1053 
framework to retrieve thermodynamic and kinetic properties of organic aerosol from 1054 
composition-resolved thermal desorption measurements, Atmospheric Chemistry and Physics, 1055 
18, 14757-14785, https://doi.org/10.5194/acp-18-14757-2018, 2018. 1056 
Song, X. H., Hopke, P. K., Fergenson, D. P., and Prather, K. A.: Classification of single particles 1057 
analyzed by ATOFMS using an artificial neural network, ART-2A, Anal Chem, 71, 860-865, 1058 
https://doi.org/10.1021/ac9809682, 1999. 1059 
Stolzenburg, D., Fischer, L., Vogel, A. L., Heinritzi, M., Schervish, M., Simon, M., Wagner, A. C., 1060 
Dada, L., Ahonen, L. R., Amorim, A., Baccarini, A., Bauer, P. S., Baumgartner, B., Bergen, A., Bianchi, 1061 
F., Breitenlechner, M., Brilke, S., Mazon, S. B., Chen, D. X., Dias, A., Draper, D. C., Duplissy, J., 1062 
Haddad, I., Finkenzeller, H., Frege, C., Fuchs, C., Garmash, O., Gordon, H., He, X., Helm, J., 1063 
Hofbauer, V., Hoyle, C. R., Kim, C., Kirkby, J., Kontkanen, J., Kuerten, A., Lampilahti, J., Lawler, M., 1064 
Lehtipalo, K., Leiminger, M., Mai, H., Mathot, S., Mentler, B., Molteni, U., Nie, W., Nieminen, T., 1065 
Nowak, J. B., Ojdanic, A., Onnela, A., Passananti, M., Petaja, T., Quelever, L. L. J., Rissanen, M. P., 1066 
Sarnela, N., Schallhart, S., Tauber, C., Tome, A., Wagner, R., Wang, M., Weitz, L., Wimmer, D., 1067 
Xiao, M., Yan, C., Ye, P., Zha, Q., Baltensperger, U., Curtius, J., Dommen, J., Flagan, R. C., Kulmala, 1068 
M., Smith, J. N., Worsnop, D. R., Hansel, A., Donahue, N. M., and Winkler, P. M.: Rapid growth of 1069 
organic aerosol nanoparticles over a wide tropospheric temperature range, P Natl Acad Sci USA, 1070 
115, 9122-9127, https://doi.org/10.1073/pnas.1807604115, 2018. 1071 
Takahama, S., Gilardoni, S., Russell, L. M., and Kilcoyne, A. L. D.: Classification of multiple types 1072 
of organic carbon composition in atmospheric particles by scanning transmission X-ray 1073 
microscopy analysis, Atmos Environ, 41, 9435-9451, 1074 
https://doi.org/10.1016/j.atmosenv.2007.08.051, 2007. 1075 
Wang, D. S., and Ruiz, L. H.: Chlorine-initiated oxidation of n-alkanes under high-NOx conditions: 1076 
insights into secondary organic aerosol composition and volatility using a FIGAERO-CIMS, 1077 
Atmospheric Chemistry and Physics, 18, 15535-15553, https://doi.org/10.5194/acp-18-15535-1078 
2018, 2018. 1079 
Wegner, T., Hussein, T., Hameri, K., Vesala, T., Kulmala, M., and Weber, S.: Properties of aerosol 1080 
signature size distributions in the urban environment as derived by cluster analysis, Atmos 1081 
Environ, 61, 350-360, https://doi.org/10.1016/j.atmosenv.2012.07.048, 2012. 1082 



 

37 
 

Zhao, W. X., Hopke, P. K., and Prather, K. A.: Comparison of two cluster analysis methods using 1083 
single particle mass spectra, Atmos Environ, 42, 881-892, 1084 
https://doi.org/10.1016/j.atmosenv.2007.10.024, 2008. 1085 
Zhao, Y., Thornton, J. A., and Pye, H. O. T.: Quantitative constraints on autoxidation and dimer 1086 
formation from direct probing of monoterpene-derived peroxy radical chemistry, P Natl Acad Sci 1087 
USA, 115, 12142-12147, https://doi.org/10.1073/pnas.1812147115, 2018. 1088 
Zhou, L. M., Hopke, P. K., and Venkatachari, P.: Cluster analysis of single particle mass spectra 1089 
measured at Flushing, NY, Anal Chim Acta, 555, 47-56, https://doi.org/10.1016/j.aca.2005.08.061, 1090 
2006. 1091 

 1092 



 

1 
 

 

10. Tables 
Table 1. Details of SOA formation and chamber conditions for all the example SOA systems.  

Exp 
# 

Precursor Oxidant Seeds 
UV T 

(°C) 
RH 
( %) 

NO#$ 
(ppb) 

Mp
#& 

(µg/m3) 

FIGAERO 
Operation

$ 
Type 

 
Conc.# 
(ppb) Type Conc.## 

(ppm) Type Dp
#* 

(nm) 

1* a-pinene 10 OH 
(H2O2) 1.0 AS& 50 On 25 50 - 5.1 Normal 

2 D-3-carene 10 OH 
(H2O2) 0.25 AS 50 On 25 50 - 5.2 Normal 

3a   
OH 

(H2O2) 

      5 8.3  
3b a-pinene 10 1.0 AS 50 On 25 50 10 9.2 Normal 
3c         25 9.1  
4a            Normal 
4b            1 h wait 
4c a-pinene 10 O3 0.1 PS&& 50 Off 25 80 - 4.0 3 h wait 
4d            6 h wait 
4e            24 h wait 

* Experiment #1 is a case study used to test the performances of different clustering algorithms 
# Conc. of precursors are the concentrations expected in the chamber with the absence of any chemistry 
## For OH, conc. refers to concentration of H2O2 injected into the chamber; for O3, conc. refers to steady-state 
concentration of O3 in the chamber during SOA formation 
#* Seed particles are size-selected in all the experiments 
#$ NO concentration refers to the targeted NO concentration when NO is injected into the chamber. The actual 
steady-state concentration of NO is lower than targeted. “-” indicates that no external NO is added to the chamber 
#& Mp is the estimated mass concentration of particles including SOA and seeds measured by SMPS when the chamber 
is at steady-state, except for experiment 4 where Mp is the mass concentration of SOA only 
$ Normal operation mode means the desorption process starts immediately after collection period. X h wait means that 
particles are isothermally diluted for X hours before the desorption process is initiated  
& AS = ammonium sulfate 
&& PS = potassium sulfate 
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Table 2. Comparison of different clustering algorithms 

 
  

Clustering Algorithms k-means k-medoids Mean-shift DBSCAN FPClustering NSSC 
Assign all the 
members? Yes Yes No No Yes No 

Identify single-member 
clusters? No No Yes No No Yes 

Robust solution? No No No Yes No Yes 
Controlled distance 
from the center of 
clusters? 

No No Yes No No Yes 

Influence of noise? large large small small large Small 
Key preset parameters Nc Nc e, Nmin e Initial seed e, Nmin 
Software used in this 
study Igor R Python Igor Igor Igor 
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Table 3. Parameters and thresholds used for the data processing and noise-sorted scanning clustering for 
all the example experiments.  

Expt
# SOA type  

Pre-processing  Clustering 

Ntotal Nanomalous Nfiltered fm,filtered xref fm,ref  e Nc Nc,one fm,unclustered RinterClst 

1 a-pinene + 
OH  298 4 188 7.5 0.021 0.67  2.6 11 0 0.00 2.01 

2 D-3-carene 
+ OH  298 5 183 9.3 0.019 0.57  2.1 9 1 0.27 2.36 

3a 

a-pinene + 
OH + NO 

Single 
 6 204 15.3 0.025 0.55  2.2 9 1 1.52 2.06 

3b 298 6 204 17.5 - -  - 9 1 1.72 - 
3c  6 204 21.0 - -  - 9 1 2.27 - 
3a 

Multi 
 2 208 15.5 0.025 0.55  2.2 9 1 1.52 2.06 

3b 298 3 195 12.6 0.027 0.54  2.3 10 1 1.29 2.10 
3c  6 200 12.8 0.028 0.43  2.5 12 1 1.21 1.96 
4a 

a-pinene + 
O3 

Single 

 10 185 11.5 0.025 0.42  2.2 10 2 0.67 2.28 
4b  10 185 14.0 - -  - 10 2 0.79 - 
4c 312 10 185 14.0 - -  - 10 2 0.84 - 
4d  10 185 13.8 - -  - 10 2 0.83 - 
4e  10 185 17.6 - -  - 10 2 0.82 - 
4a 

Multi 

 1 191 11.4 0.025 0.41  2.2 11 2 1.04 2.22 
4b  0 210 16.5 0.044 0.41  3.3 8 4 0.00 2.02 
4c 312 5 205 14.3 0.048 0.42  3.1 9 2 1.06 1.66 
4d  3 203 12.8 0.055 0.39  3.3 8 1 2.50 1.80 
4e  3 213 16.1 0.053 0.41  3.4 7 2 0.98 1.97 

Ntotal – Total number of ions characterized by CIMS 
Nanomalous – Number of anomalous ions 
Nfiltered – Number of ions filtered out from the following clustering due to high levels of noises 
fm,filtered – Mass fraction of the ions filtered out due to high levels of noises, expressed in % 
xref – Noise threshold. Ions with noise levels above this threshold are excluded from clustering  
fm,ref – The threshold of mass contribution (%) to identify an ion as significant 
e – distance criterion 
Nc – Number of clusters determined with two or more members 
Nc,one – Number of clusters determined with only one member 
fm,unclustered – Mass fraction of unclustered ions, expressed in % 
RinterClst – The ratio of the average inter-cluster distance over the distance criterion e 
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11. Figures 

 
Figure 1: The relationship between thermogram noise levels and the fractional contributions of the 
corresponding ions to total mass, for a-pinene + OH SOA. The noise threshold, xref = 0.021 and is used to 
distinguish high-noise thermograms (cyan markers) from thermograms having acceptable noise levels 
(pink markers). 
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Figure 2: Flow of the noise-sorted scanning clustering. There are two rounds of clustering. (a) Round 1: 
The ED between all thermogram pairs are calculated and two parameters, e and Nmin, are set. Each 
thermogram is initialized with state SEED = 0 and CLUSTER = 0. Only thermograms with SEED = 0 and 
CLUSTER = 0 can serve as seeds, while thermograms with CLUSTER = 0 can be added to new clusters. The 
procedure terminates when all the thermograms are marked either SEED = 1 or CLUSTER = 1. (b) Round 
2: Seeds are specified as the weighted-average thermogram for each cluster, and any remaining 
unclustered thermograms from Round 1 are potentially added to these clusters. With the indexing, j refers 
to the total number of thermograms, i to the number of clusters, and k to the number of unclustered 
thermograms after Round 1.  
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Figure 3. (a) Mass spectrum of a-pinene + OH SOA measured by FIGAERO-CIMS. The mass excludes iodine. 
(b) Normalized thermogram of the bulk SOA versus temperature. (c) Normalized thermogram of the bulk 
SOA versus time (black line) and the variation in desorption temperature with time (dark red dashed line). 
The long tail during the soaking period is evident when the thermogram is considered in time space. The 
light blue shaded area denotes the ramping period and the pink shaded area the soaking period. 

  



 

7 
 

 

 
Figure 4. The variation of four parameters, Nc, Nc,total, fm,unclustered and RinterClst as a function of the distance 
criterion e. The black horizontal dashed line guides the judgement for RinterClst ³ 2. The values highlighted 
by a rectangle are the values corresponding to the optimal e used for the clustering analysis. 
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Figure 5. Clustering results for a-pinene + OH SOA. (a) Unweighted average thermograms (bold grey lines), 
mass-weighted average thermograms (bold black lines) and individual members (colored lines) of the 11 
clusters identified. (b) Percentage contribution of each cluster to the total mass, as well as the filtered out 
and unclustered mass percentage (left bar), and the number of ions in each cluster and the unclustered 
number of ions (right bar). (c) Thermograms of the top 5 ions in terms of mass contribution. The cluster 
colors are consistent between (a) and (b). 
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Figure 6. Same as Figure 3, but for D-3-carene + OH SOA. (a) SOA mass spectrum measured by 
FIGAERO-CIMS. The mass excludes iodine. The normalized thermogram of the bulk SOA versus (b) 
temperature and (c) time. In (c) the light blue shaded area denotes the ramping period and the pink 
shaded area the soaking period.  
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Figure 7. Same as Figure 5, but for D-3-carene + OH SOA. (a) Unweighted average thermograms (bold grey 
lines), mass-weighted average thermograms (bold black lines) and individual members (colored lines) of 
the ten clusters identified. (b) Percentage contribution of each cluster to the total mass, as well as the 
filtered out and unclustered mass percentage (left bar) and number of ions in each cluster and the 
unclustered number of ions (right bar). (c) Thermograms of the top 5 ions in terms of mass contribution. 
The cluster colors are consistent between (a) and (b). 
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Figure 8. (a) Mass spectra of a-pinene + OH SOA formed with different NO concentrations, normalized to 
the most abundant ions mass concentration. The mass excludes iodine. Normalized thermograms of the 
bulk SOA versus (b) temperature and (c) desorption time, with the desorption temperature shown in dark 
red dashed line. The vertical purple dashed line delineates between ramping and soaking. In all the panels, 
colors correspond to the NO concentration (see legend). 
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Figure 9. Single clustering results for a-pinene + OH SOA as a function of NO concentration. (a) 
Comparison of the normalized, weighted average thermograms of the ten clusters for the 5 ppb NO (navy), 
10 ppb NO (green) and 25 ppb NO (orange) experiments. (b) Contribution of each cluster to the total mass, 
including the contribution from filtered out ions (black) and unclustered ions (gray). The total mass is 
calculated independently for each experiment. 
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Figure 10. Multiple clustering results for a-pinene + OH SOA as a function of NO concentration.  Clustering 
results are separately shown for the (a) 5 ppb NO, (b) 10 ppb NO, and (c) 25 ppb NO experiments. Each 
panel includes unweighted average thermograms (grey lines), mass-weighted average thermograms 
(black lines) and individual cluster members (colored lines). (d) Contribution of each cluster to the total 
mass for each experiment. The mass contribution of filtered-out ions (black bar) and unclustered ions 
(gray bar) are also shown.  
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Figure 11. (a) Normalized mass spectra of a-pinene + O3 SOA measured after different extents of 
isothermal evaporation at room temperature. The mass excludes iodine. The normalized thermograms of 
bulk SOA versus (b) temperature and (c) time, with the desorption temperature shown as a red dashed 
line. The vertical black dashed line in (c) delineates between ramping and soaking. The mass spectrum or 
thermogram colors indicate the isothermal evaporation time (see legend), with darker colors indicating 
shorter times. 
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Figure 12. Single clustering results for a-pinene + O3 SOA for different isothermal evaporation times. (a) 
Comparison of the normalized, weighted-average thermograms of the 12 clusters of 0-h wait (navy), 1-h 
wait (blue), 3-h wait (green), 6-h wait (yellow) and 24-h wait (orange) experiments. Note that the 
absolute signals of all of the clusters decrease with evaporation, but to varying extents (Error! Reference 
source not found.).  
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Figure 13. Multiple clustering results for a-pinene + O3 SOA as a function of isothermal evaporation time. 
(a) Contribution of each cluster to the total mass for each experiment, along with the contributions of 
filtered-out ions (black bar) and unclustered ions (gray bar). The number of clusters obtained generally 
decreases with isothermal evaporation time. (b-f) The unweighted average (gray) and mass-weighted 
average (black) thermograms, along with the thermograms of individual members of clusters for the (b) 
0-h, (c) 1-h, (d) 3-h, (e) 6-h, and (f) 24-h wait experiments. The cluster colors are consistent between panels.  
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Figure 14. The Tm50 values of the cluster-specific thermograms from multiple clustering for the five 
isothermal evaporation experiments.  


