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Abstract 1 
 2 

Horizontal grid resolution has a profound effect on model performances on meteorology 3 
and air quality simulations. In contribution to MICS-Asia Phase III, one of whose goals was to 4 
identify and reduce model uncertainty in air quality prediction, this study examined the impact of 5 
grid resolution on meteorology and air quality over East Asia, focusing on the North China Plain 6 
(NCP) region. NASA Unified Weather Research and Forecasting (NU-WRF) model has been 7 
applied with the horizontal resolutions at 45-, 15-, and 5-km. The results revealed that, in 8 
comparison with ground observations, no single resolution can yield the best model performance 9 
for all variables across all stations. From a regional average perspective (i.e., across all monitoring 10 
sites), air temperature modeling was not sensitive to the grid resolution but wind and precipitation 11 
simulation showed the opposite. NU-WRF with the 5-km grid simulated the wind speed best, while 12 
the 45-km grid yielded the most realistic precipitation as compared to the site observations. For air 13 
quality simulations, finer resolution generally led to better comparisons with observations for O3, 14 
CO, NOx, and PM2.5.  However, the improvement of model performance on air quality was not 15 
linear with the resolution increase. The accuracy of modeled surface O3 out of the 15-km grid was 16 
greatly improved over the one from the 45-km grid. Further increase of grid resolution to 5-km, 17 
however, showed diminished impact on model performance improvement on O3 prediction. In 18 
addition, 5-km resolution grid showed large advantage to better capture the frequency of high 19 
pollution occurrences. This was important for assessment of noncompliance of ambient air quality 20 
standards, which was key to air quality planning and management. Balancing the modeling 21 
accuracy and resource limitation, a 15-km grid resolution was suggested for future MICS-Asia air 22 
quality modeling activity if the research region remained unchanged. This investigation also found 23 
out large overestimate of ground-level O3 and underestimate of surface NOx and CO, likely due 24 
to missing emissions of NOx and CO.  25 

 26 
  27 
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1. Introduction 28 
 Air pollution is a threat to human health/climate and detrimental to ecosystem (Anenberg 29 
et al., 2010; https://www.who.int/airpollution/ambient/en/). Lelieveld et al. (2015) estimated that 30 
over 3 million premature mortality could be attributable to outdoor air pollution worldwide in 2010 31 
based on their analysis of data and the results from a high-resolution global air quality model. 32 
Since the turn of the 21st century, East Asia has undergone remarkable changes in air quality as 33 
observed by satellite and ground stations (Jin et al., 2016; Krotkov et al., 2016). In the past decade, 34 
haze (fine particle) pollution has become a household name in China and many severe haze events 35 
have been reported and their formation mechanisms and associations with global- and meso-scale 36 
meteorology have been analyzed (Zhao et al., 2013; Huang et al., 2014; Gao et al., 2016; Cai et 37 
al., 2017; Zou et al., 2017). Meanwhile, ground level ozone has been a major air quality concern 38 
in China (Wang et al., 2017; Lu et al., 2018), Japan (Akimoto et al., 2015), and South Korea (Seo 39 
et al., 2014). In combination with observations from various platforms, chemical transport model 40 
(CTM) remains an important tool to understand mechanisms, to investigate spatial-temporal 41 
distributions, and to design feasible control strategies of air pollution. However, CTM model 42 
uncertainties persist (e.g., Carmichael et al., 2008) and the interpretation of any model results needs 43 
caution and exertion of careful analysis. 44 
 Inter-model comparison study provides a valuable way to understand model uncertainties 45 
and sheds light on model improvements. With this as one of its major goals, the Model Inter-46 
Comparison Study for Asia (MICS-Asia) was initiated in 1998. Since then MICS-Asia has gone 47 
through three phases with emphasis on various aspects of air pollution. Phase I focused on long-48 
range transport and deposition of sulfur over East Asia (Carmichael et al., 2002). Phase II expanded 49 
the analysis on more pollutants including nitrogen compounds, particulate matter, and ozone, in 50 
addition to sulfur (Carmichael et al., 2008). Fast moving to Phase III, MICS-Asia concentrated on 51 
three topics with number one aiming at identifying strengths and weaknesses of current air quality 52 
models to provide insights on reducing uncertainties (Gao et al., 2018). There are totally 14 CTMs 53 
– 13 regional and 1 global – participating in the coordinated model experiment, which simulated 54 
air quality over Asia throughout the year 2010. Due to the constrain of computing resources among 55 
participating modeling groups, a 45-km horizontal resolution has been commanded for every team 56 
to run the year-long experiment.  57 

This relatively coarse spatial resolution raises the question of how representative the model 58 
can resolve key issues relevant to air quality and its planning/regulation, e.g., heterogeneous 59 
emissions, inhomogeneous land cover and meteorology. For example, Valari and Menut (2008) 60 
explored the issue using the CHIMERE chemistry-transport model at various horizontal 61 
resolutions over Paris. They found out that the ozone simulation was especially sensitive to the 62 
resolution of emissions. However, the benefit of increasing emissions resolutions to improve ozone 63 
forecast skills was not monotonic and at certain point the forecast accuracy decreased upon further 64 
resolution increase. Using the Weather Research and Forecasting Chemistry model (WRF-Chem) 65 
with various horizontal resolution (3 ~ 24 km) over the Mexico City, Tie et al. (2010) concluded 66 
that a 1 to 6 ratio of grid resolution to city size appeared to be a threshold to improve ozone 67 
forecasting skill over mega-city areas: the forecast would be improved significantly when model 68 
resolution was below this threshold value. On contrary to Valari and Menut (2008), Tie et al. (2010) 69 
suggested that the meteorology changes associated with the grid size choice played a more 70 
prominent role in contributing to the improvement of ozone forecast skills. More recently, Neal et 71 
al. (2017) employed a high-resolution (12 km) air quality model with high-resolution emissions 72 
within the Met Office’s Unified Model (AQUM) for air quality forecast over the Great Britain. 73 
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They found out that AQUM significantly improved the forecast accuracy of primary pollutants 74 
(e.g., NO2 and SO2) but less obviously for secondary pollutants like ozone, as compared with a 75 
regional composition-climate model (RCCM, 50 km horizontal resolution). But there was a 76 
drawback from their conclusion in that the chemical mechanisms and photolysis rates utilized in 77 
AQUM and RCCM were different, complicating the underlying reasons for changes in forecast 78 
skills. Lee et al. (2018) examined the importance of aerosol-cloud-radiation interactions to 79 
precipitation and the model resolution impact of key meteorological processes that affected 80 
precipitation using the Advanced Research WRF model. They found that the coarse model 81 
resolution would lower updraft, alter cloud properties (e.g, mass, condensation, evaporation, and 82 
deposition), and reduce cloud sensitivity to ambient aerosol changes. They further concluded that 83 
the uncertainty associated with resolution was much more than that related to cloud microphysics 84 
parameterization. The resultant meteorological condition change would trigger air quality response 85 
as well. 86 

Despite the progress, the exploration of impacts of model resolution on local air quality 87 
over Asia is rare. Taking advantage of the MICS-Asia platform, we examined the issue over the 88 
MICS-Asia domain using the NASA Unified WRF (NU-WRF, Tao et al., 2013, 2016, 2018; 89 
Peters-Lidard et al., 2015), focusing on the North China Plain (NCP) that was plagued by frequent 90 
heavy air pollution episodes. The investigation would not only assist in gaining insights on how 91 
model horizontal resolution affects simulated meteorology and air quality, but also contribute to 92 
formulation of uncertainties resulted from model resolutions to the MICS-Asia community. The 93 
latter would especially be valuable since most MICS-Asia Phase III model simulations were 94 
conducted at a specific horizontal resolution (i.e., 45-km for most participants). 95 
 96 
2. NU-WRF model and experiment design 97 
 NU-WRF is an integrated regional Earth-system modeling system developed from the 98 
advanced research version of WRF-Chem (Grell et al., 2005), which represents atmospheric 99 
chemistry, aerosol, cloud, precipitation, and land processes at convection-permitting spatial scales 100 
(typically 1-6 km). NU-WRF couples the community WRF-Chem with NASA’s Land Information 101 
System (LIS), a software framework including a suite of land surface models (LSMs) that are 102 
driven by satellite/ground observations and reanalysis data (Kumar et al., 2006; Peters-Lidard et 103 
al., 2007). It also couples the Goddard Chemistry Aerosol Radiation and Transport (GOCART) 104 
bulk aerosol scheme (Chin et al., 2002, 2007) with the Goddard radiation (Chou and Suares, 1999) 105 
and microphysics schemes (Tao et al., 2011; Shi et al., 2014) that allows for fully coupled aerosol-106 
cloud-radiation interaction simulations. In addition, NU-WRF links to the Goddard Satellite Data 107 
Simulator Unit (G-SDSU), which converts simulated atmospheric profiles, e.g, clouds, 108 
precipitation, and aerosols, into radiance or backscatter signals that can directly be compared with 109 
satellite level-1 measurements at a relevant spatial and temporal scale (Matsui et al., 2009, 2013, 110 
2014). In this study, NU-WRF has been employed to carry out the model simulations at various 111 
horizontal resolutions using the same set of physical and chemical configurations. 112 
 A nested domain setup was configured to this investigation as shown Figure 1. The 45-km 113 
resolution mother domain (d01) covered the MICS-Asia Phase III study region. The nested 15-km 114 
(d02) and 5-km (d03) domains covered the East Asia and NCP, respectively. A one-way nesting 115 
approach was applied so that the values of the mother domains were independent on those of the 116 
respective nested domains. This analysis focused on NCP and its adjacent areas with over 1.1 117 
million square kilometers. The key NU-WRF configurations included the updated Goddard 118 
cumulus ensemble microphysics scheme (Tao et al., 2011), new Goddard long/shortwave radiation 119 
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scheme (Chou and Suares, 1999), Monin-Obukhov surface layer scheme, unified Noah land 120 
surface model (Ek et al., 2003) with LIS initialization (Peters-Lidard et al., 2015), Yonsei 121 
University planetary boundary layer scheme (YSU, Hong et al., 2006), new Grell cumulus scheme 122 
developed from the ensemble cumulus scheme (Grell and Devenyi, 2002) that allowed subsidence 123 
spreading (Lin et al., 2010), 2nd generation regional acid deposition model (RADM2, Stockwell et 124 
al., 1990; Gross and Stockwell, 2003) for trace gases and GOCART for aerosols. In this 125 
investigation, the option of fully coupled GOCART-Goddard microphysics and radiation schemes 126 
(Shi et al., 2014) was implemented to account for the aerosol-cloud-radiation interactions. 127 
 Anthropogenic emissions were from the mosaic Asian anthropogenic emissions inventory 128 
(MIX, Li et al., 2017) that was developed for the MICS-Asia Phase III. The MIX inventory was at 129 
the 0.25º by 0.25º resolution and projected to the study domain under the 45-, 15-, and 5-km 130 
horizonal resolutions. Fire emissions were from the 0.5º by 0.5º Global Fire Emissions Database 131 
version 3 (GFEDv3, van der Werf et al., 2010; Mu et al., 2011) and also projected to the targeted 132 
region. Biogenic emissions were computed online using the Model of Emissions of Gases and 133 
Aerosols from Nature version 2 (MEGAN2, Guenther et al., 2006). Dust and sea salt emissions 134 
were also calculated online using the dynamic GOCART dust emissions scheme (Kim et al, 2017) 135 
and sea salt scheme (Gong, 2003), respectively.  136 
 The meteorological Lateral Boundary Conditions (LBCs) were derived from the Modern 137 
Era Retrospective-Analysis for Research and Applications (MERRA, Rienecker et al., 2011). The 138 
trace gas LBCs were based on the 6-hour results from the Model for OZone And Related chemical 139 
Tracers (MOZART, Emmons et al., 2010). The aerosol LBCs were from the global GOCART 140 
simulation with a resolution of 1.25 (longitude) by 1 (latitude) degree (Chin et al., 2007). Three 141 
horizontal resolutions varied from 45-km to 5-km with 15-km in between. Terrain-following sixty 142 
vertical levels stretched from surface to 20 hPa with the 1st layer height of approximately 40 meters 143 
from surface. The simulation started on December 20, 2009, and ended on December 31, 2010, 144 
with the first 11 days as the spin-up. 145 
 146 
3. Results 147 
3.1. Comparisons with observations 148 
 The NU-WRF results out of different horizontal resolutions have compared with ground 149 
observations using the following statistic measures: 150 
 Correlation coefficient:   𝑟 = ∑ (%&'%)()&'))
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Where, 𝑚5  and 𝑜5  denote for the modeled and observed values at time-space pair 𝑖 ; 𝑚  and 𝑜 156 
represent the average modeled and observed values, respectively. 𝑟 describes the strength and 157 
direction of a linear relationship between two variables – a perfect correlation has a value of 1. 158 
𝑁𝑀𝐵 and MB depict the mean deviation of modeled results from the respective observations. A 159 
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perfect model simulation yields an NMB and a MB of 0. 𝑅𝑀𝑆𝐸 measures the absolute accuracy of 160 
a model prediction. The smaller the RMSE, the better the model performance is. Similar to NMB 161 
and MB, a RMSE of 0 indicates a perfect model prediction.  𝑁𝑆𝐷 is a measure to check how well 162 
the model can reproduce the variations of observations – a value of 1 represents a perfect 163 
reproduction of observed variations. 164 
 165 
3.1.1. Meteorology 166 
 The 2010 meteorological observations were collected at the standard stations operated by 167 
China Meteorological Administration (CMA, http://data.cma.cn/en). The locations of each site 168 
within our study domain were represented with the black dots in Figure 1. In total there were 77 169 
sites reporting daily average values of wind speed (Wind), air temperature (Temp), and relative 170 
humidity (RH), as well as daily total precipitation (Precip). Figure 2 (top row) shows the Taylor 171 
diagram summarizing 𝑟 , 𝑁𝑀𝐵 , and 𝑁𝑆𝐷  of the comparison of regional mean (average of 172 
observations from 77 sites) daily meteorological variables. Along the azimuthal angle is 𝑟. 𝑁𝑆𝐷 173 
is proportional to the radial distance from the origin. 𝑁𝑀𝐵 (sign and range) are represented by the 174 
geometric shapes. The statistical measures under 45-, 15-, and 5-km resolutions are represented by 175 
color blue, green, and red, respectively. The closer to the point “Obs” on the Taylor diagram and 176 
smaller of 𝑁𝑀𝐵, the better the model performance is.  177 

It can be seen that the model horizontal resolution has little impact on surface air 178 
temperature simulation. Regardless of resolution selections, the modeled temperature correlated 179 
very well with the corresponding observations with 𝑟 values all approaching 0.99. NU-WRF also 180 
reproduced the observed temperature variations well with 𝑁𝑆𝐷 ranging between 1.05 and 1.10. 181 
Meanwhile, 𝑁𝑀𝐵 was within ±1% for all experimented resolutions. RMSEs were 1.13 K, 2.26 K, 182 
and 2.02 K for the 45-km, 15-km, and 5-km grids, respectively. The insensitivity of surface air 183 
temperature to the choice of model resolutions was also reported by Gao et al. (2017), who used 184 
WRF to explore the issue for summer seasons at the 36-, 12-, and 4-km resolutions. 185 

On the other hand, the horizontal resolution has a remarkable effect on surface wind speed 186 
as shown in Figure 2 (top row). At the 5-km resolution, NU-WRF yielded a 𝑟 value of 0.75, NMB 187 
of approximately 54%, and NSD of 1.78. NU-WRF simulated a large variation in wind than the 188 
observed ones. As comparisons, the values of 𝑟, NMB, and NSD for 15-km and 45-km were 0.54, 189 
95%, 2.14, and 0.71, 103%, 2.01, respectively. The respective RMSEs out of the 45-km, 15-km, 190 
and 5-km grids were 2.87, 2.82, and 1.67 m s-1. It was apparent that 5-km resolution gave the 191 
overall best wind speed simulation compared to the observations, though NU-WRF overestimated 192 
the surface wind speed in all cases. The wind speed overestimate, especially under low wind 193 
conditions, was a common problem in all MICS-Asia participating models and other weather 194 
forecast models (Gao et al., 2018). This overestimate stemmed from many factors, including but 195 
not limited to terrain data uncertainty, poor representation of urban surface effect, horizontal and 196 
vertical grid resolutions, etc. Dr. Yu (2014) in her doctoral dissertation pointed out that surface 197 
wind simulation would be improved upon using more accurate land-use data. This is expected 198 
since surface wind is largely dependent on the land surface characteristics, such as albedo and 199 
roughness. High-resolution grid tends to have more accurate land-use representation seeing the 200 
inhomogeneous nature of land type.  201 

NU-WRF simulations at all three resolutions yielded the similar reproductions of the 202 
observed variations in relative humidity (RH) with the NSD ranging between 0.87 and 0.88. The 203 
modeled RH was less variable than the observed one. While the modeled RH at the 45-km 204 
resolution (𝑟 = 0.84) better correlated with the observations than those at the finer resolutions did 205 
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(approximately 0.67 for both 15-km and 5-km resolutions), the NMB at this resolution was the 206 
largest (-17%) among the three cases. The NMBs for 15-km and 5-km cases were -10% and -12%, 207 
respectively. Overall, NU-WRF underestimated the surface RH. The respective RMSEs for 45-km, 208 
15-km, and 5-km resolutions were 13.2%, 12.6%, and 13.3%. The simulation with the 15-km grid 209 
appeared to yield the overall best RH in three cases. 210 

It was interesting to find that NU-WRF simulated the precipitation best, as directly 211 
compared to the rain gauge data, when using the 45-km grid. At this resolution, NU-WRF gave 𝑟 212 
of 0.81, NMB of 1.7%, RMSE of 3.2 mm day-1, and NSD of 1.41. As comparisons, the values of 𝑟, 213 
NMB, RMSE, and NSD for 15-km and 5-km were 0.53, 76%, 5.7 mm day-1, 1.71, and 0.52, 80%, 214 
5.8 mm day-1,1.72, respectively. Finer resolutions indeed yielded worse results in precipitation 215 
modeling as compared to the site data. This may be because precipitation was a very heterogeneous 216 
phenomenon – finer model grid had larger chances to miss a precipitation event or hit an event 217 
that was not existent, leading to a greater overall bias and a poorer correlation. On the contrary, 218 
Gao et al. (2017) compared their WRF modeled results to the gridded precipitation based on the 219 
daily rain gauge data that were gridded to the 0.125° resolution using the synergraphic mapping 220 
algorithm with topographic adjustment to the monthly precipitation climatology (Maurer et al., 221 
2004). They reported that the modeled precipitation out of the 4-km resolution was much improved 222 
over that out of the coarser 36- or 12-km resolutions.  223 

The time series of daily mean wind speed, air temperature, and RH, as well as daily total 224 
precipitation averaged over the monitoring sites is illustrated in Figure 1s in the supplement 225 
material. It echoed the above findings based on the Taylor diagram. It appeared that NU-WRF 226 
constantly overestimated surface wind speed throughout the year with large overestimate occurring 227 
in fall and winter, while it severely underestimated RH in summer. Uncertainty in representation 228 
of land surface characteristics at least partially explained these biases (Yu, 2014; Gao et al., 2018). 229 
High-resolution grid tended to reduce the uncertainty in land surface representation, which would 230 
be helpful to improving model performance in meteorology simulation. A more detailed 231 
exploration of model-observation mismatch was insightful but beyond the scope of this research. 232 
 233 
3.1.2. Air quality 234 
 The difference seen in the aforementioned meteorology would cause varied performances 235 
on air quality simulations at various model horizontal resolutions. In this study, the NU-WRF 236 
simulated surface air quality was compared to the corresponding observations. The 2010 ground-237 
level air quality data were obtained from the Chinese Ecosystem Research Network (CERN, 238 
http://www.cern.ac.cn) operated by the Institute of Atmospheric Physics of Chinese Academy of 239 
Sciences. There were 25 monitoring sites distributed within a 500 km by 500 km area centering 240 
around Beijing, China (open diamond in Figure 1). The site locations and characteristics were 241 
listed in Table 1. 22 out of 25 sites were either in an urban or a suburban setting, with the balance 242 
being in a rural setting. Each site reported hourly concentrations of at least one of the following 243 
six pollutants – ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), 244 
and particulate matters with aerodynamic diameters less than 2.5 and 10 µm (PM2.5 and PM10).  245 
 246 
a. Regional average 247 

First, the regional mean (averaged across 25 sites) daily surface concentrations from both 248 
observations and simulations, paired in space and time, were calculated. The 𝑟, NMB, and NSD 249 
were then computed and illustrated in a Taylor diagram (Figure 2 (bottom row)).  250 



 6 

 The six pollutants can be put into two groups – one most relevant to ozone photochemistry 251 
including O3, NOx, and CO, and the other closely tied to aerosols including SO2, PM2.5, and 252 
PM10. It was readily seen that the 𝑟 values of O3, NOx, and CO were not very sensitive to the 253 
choice of model horizontal resolutions. For O3, the 𝑟 values for 45-km, 15-km, and 5-km grids 254 
were all around 0.85. The respective 𝑟 values were 0.84, 0.81, 0.80 for NOx, and 0.80, 0.75, 0.73 255 
for CO. In general, however, NU-WRF reproduced the observed variations in O3, NOx, and CO 256 
better with a fine resolution than with a coarse one. NSD of 1.23 for O3 at 5-km resolution was the 257 
closest to 1 among three resolutions (1.24 for 15-km and 2.01 for 45-km). NSDs were 0.40, 0.36, 258 
0.46 for NOx, and 0.24, 0.27, 0.31 for CO, under the 45-km, 15-km, and 5-km resolutions, 259 
respectively, suggesting that simulations with the finest resolution tended to reproduce the 260 
observed variations better than the ones with coarse resolutions for these three trace gases. 261 
Meanwhile, NU-WRF yielded the smallest bias when employing the fine resolution grid. NMBs 262 
for O3 decreased from 115% to 92% when grid resolutions increased from 45-km to 5-km. NMBs 263 
were -38%, -30%, -18% for NOx, and -61%, -55%, -51% for CO, under the 45-km, 15-km, and 5-264 
km resolutions, respectively. It was apparent that NU-WRF overestimated surface O3 but 265 
underestimated NOx and CO, consistent with the findings in the companion MICS-Asia III studies 266 
that based their results on ensemble model simulations (Li et al., 2019; Kong et al., 2019). The 267 
majority of the air quality monitoring sites used in this study were in an urban setting, which 268 
typically were in a VOC-limited regime. This meant that the underestimate of NOx would reduce 269 
the titration that consumed surface O3 leading to its overestimate. We further analyzed the model 270 
bias for daytime (8-18 local standard time) vs. nighttime. It was found that the nighttime biases for 271 
surface O3 and NOx were approximately 2~4 times higher than those of daytime, consistent with 272 
the finding that insufficient NOx titration caused overestimate of modeled surface O3.  273 
 NU-WRF simulated less variations in 3 aerosol related pollutants than those of 274 
observations under all applied horizontal resolutions. The NSDs ranged from 0.56 (for SO2 at 15-275 
km resolution) to 0.96 (for PM2.5 at 45-km resolution). Though it reproduced the observed SO2 276 
variations the best (NSD = 0.68) with the 5-km resolution, NU-WRF yielded the best NSD for 277 
PM2.5 (0.96) and PM10 (0.92) when the 45-km resolution was employed. Similar to 3 trace gases 278 
relevant to surface O3 formation, the choice of model resolution had a limited effect on 𝑟 statistics. 279 
The 𝑟 values varied from 0.70 (45-km resolution) to 0.76 (both 15- and 5-km) for surface SO2, and 280 
from 0.68 (45-km resolution) to 0.63 (5-km) for PM2.5. The 𝑟 values for PM10 were all around 281 
0.58 under the selected resolutions. The impact of model resolution on NMBs showed mixed 282 
information – while the smallest NMBs for SO2 (20%) and PM10 (-19%) were achieved using the 283 
45-km resolution, the smallest NMB for PM2.5 (1.5%) was observed at the 15-km resolution. The 284 
model underestimate of PM10 was consistent with the findings of the companion investigation 285 
using the multi-model ensemble analysis (Chen et al., 2019).  286 
 Figure 2s in the supplement material shows the time series of daily mean air quality 287 
averaged over the monitoring sites for the year 2010. The constant underestimate of CO throughout 288 
the year, severe underestimate of NOx in fall and winter, and large underestimate of SO2 in summer 289 
all pointed out that the emissions inventory may be incomplete, agreeing with the reports by Kong 290 
et al. (2019) and Li et al. (2019). In the future, improvement of the emissions inventory accuracy 291 
and more realistic temporal emissions distribution may help improving NU-WRF performance in 292 
simulating O3 photochemistry. 293 
 294 
b. Individual site 295 
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 The daily average concentrations of each pollutants were calculated and paired in space 296 
and time at each air quality monitoring site. Then the statistics at each individual site was computed.  297 
Figure 3 illustrates the comparisons of MB, RMSE, and correlation coefficient (𝑟) of surface O3 298 
from different horizontal resolutions at each site. It can be found that there was no single resolution 299 
that yielded the best correlation across all sites. For example, the simulation with the 45-km 300 
horizontal resolution gave the best correlation over sites BD, CFD, CZ, HJ, SJZ, SQL, TG, TJ, TS, 301 
XH, XL, YF, YJ, and ZJK. On the other end of spectrum, BJT, DT, and LTH achieved the best 302 
correlation when the 5-km grid was applied. QHD saw the best correlation out of the simulation 303 
with the 15-km resolution. In any cases, however, the variations of 𝑟  values from different 304 
horizontal resolutions at each site were small (less than 0.04). On the other hand, NU-WRF yielded 305 
the worst MB and RMSE when employing the 45-km resolution grid, while MB and RMSE were 306 
similar between simulations with 15-km and 5-km resolutions. Typically, at sites with 307 
urban/suburban settings, MB (RMSE) based on the 45-km grid was approximately 15~30% 308 
(20~40%) higher than that out of the 15-km or 5-km grids. It appeared that NU-WRF tended to 309 
have a better performance on ground-level O3 simulation when increasing the horizontal resolution 310 
from 45-km to 15-km, but further finer resolution had diminished impact on improving surface O3 311 
modeling. This was consistent with the finding by Valari and Menut (2008) who concluded that 312 
the benefit of finer horizontal resolution grid to improving surface O3 forecast skill would diminish 313 
at certain point.  314 
 Figure 4 shows the PM2.5 case of comparisons of MB, RMSE, and 𝑟. Only 10 sites reported 315 
PM2.5 measurements over year 2010. In general, the NU-WRF simulation with the 45-km grid 316 
correlated better to the respective observations than the other 2 resolutions. The only exception 317 
was site BD that saw the best correlation for the 5-km resolution. MB and RMSE results were 318 
mixed with no single resolution giving superior results across all sites. Over 2 rural sites (LS and 319 
XL), the simulations with the 15-km or 5-km grids yielded remarkably smaller MB but correlated 320 
less to the corresponding observations than the one with the 45-km grid. Over 8 urban/suburban 321 
sites, BD, SQL, and TG experienced the smallest MB when employing the 5-km resolution grid, 322 
while TG, TJ, and XH saw the least bias at the 45-km resolution. The smallest MB at BJT and 323 
LTH occurred using the 15-km grid. 324 
 At the individual site level, the impact of grid resolution on surface NOx and CO (figures 325 
not shown) modeling was similar to that at the regional average. Finer resolution simulation 326 
generally reduced MB and RMSE. The results out of the 45-km grid always had the largest bias. 327 
The underestimates of NOx at least partially explained the overestimate of surface O3 at each site 328 
due to a less efficient NO-titration of O3. This suggested that a higher resolution modeling with 329 
more accurate spatial representation of NOx emissions would help improving its performance on 330 
surface O3 simulations. 331 
 The signals for SO2 and PM10 (figures not shown) simulations were mixed as well. For 332 
example, the largest bias for SO2 simulation over sites BD, CZ, GA, HS, LS, QA, QHD, XH, XL, 333 
YF, and YJ occurred when applying the 45-km grid, while the maximum bias over BJT, DT, HJ, 334 
LF, LTH, SJZ, SQL, TG, TJ, TS, ZJK, and ZZ happened at the 5-km resolution. Sites CD and 335 
CFD saw the largest bias at the 15-km resolution. Unlike PM10 that was almost always 336 
underestimated at each site regardless of grid resolutions, SO2 was overestimated at 18 out of 25 337 
sites and underestimated at the remaining 7 sites.  338 
 An effort has been put to identify the potential reasons that caused the model-observation 339 
discrepancy. First and as discussed previously, the spatial distribution of emissions was one key 340 
to determining air quality forecast accuracy. Figure 3s (in supplement) shows the typical time 341 
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evolutions of surface O3 and NOx over the rural (XL) and urban (QHD) sites. It can readily be 342 
seen that NOx was underestimated at the urban site but overestimated at the rural site. The coarser 343 
the grid resolution, the severer the underestimates/overestimates were. This indicated that the 45-344 
km resolution tended to smooth out emissions to make urban (or emissions centers) less polluted 345 
but rural more polluted. It in turn led to an overestimate of surface O3 over the urban sites mainly 346 
due to the reduced NOx titration effect, especially at night when there was no photochemical O3 347 
formation. The statistics showed that the bias of the modeled daytime (7 am ~ 7 pm local time) 348 
average surface O3 was 30% ~ 90% smaller than that of the daily average in the urban sites, no 349 
matter which grid resolution was applied. This suggested that in the future the high-resolution 350 
emissions, especially proper representation of emission gradients, would be helpful in improving 351 
air quality prediction. The effect of emissions gradients associated with the grid resolution would 352 
be further discussed in the inter-model comparison section. 353 

Next, the driving meteorology, especially wind, was important to accurately forecast air 354 
quality over coastal areas that bore sharp thermal contrasts. QHD site locates approximately 5 km 355 
from the ocean and is subject to sea breeze effects. The detailed analysis of meteorology and air 356 
quality over QHD was conducted. The results indicated that the choice of grid resolution had large 357 
impacts on model simulations at this coastal site. The selection of the 5-km grid reduced biases of 358 
both surface temperature and wind speed. The biases of temperature reduced from 1.22 K (45-km) 359 
to -0.42 K (15-km), and further down to -0.31 K when the 5-km grid was applied. The biases of 360 
surface wind speed for the 45-km, 15-km, and 5-km grids were 3.72, 4.19, and 1.95 m s-1, 361 
respectively. The improvement of meteorology forecast helped reducing the biases of air quality 362 
modeling. The biases of O3/NOx for the 45-km, 15-km, and 5-km resolution grids were 29.94/-363 
22.46 ppbv, 24.09/-20.29 ppbv, 23.97/-17.95 ppbv, respectively. The improvement using the 15-364 
km grid over the 45-km grid was remarkable but that using the 5-km grid over the 15-km grid was 365 
marginal. The result emphasized the importance of high-resolution modeling to improvements of 366 
air quality forecast skills, especially at coastal and complex terrain areas (e.g., QHD and XL). 367 
 368 
c. Extreme values 369 
 High concentrations of air pollutants are of more concerns because of their adverse health 370 
effects on both human beings and ecosystem. High pollutant concentrations also pose a greater 371 
risk for non-compliance of the ambient air quality standards. Therefore, evaluations of impacts of 372 
grid resolution on extreme concentrations of air pollutants are desirable.  373 
 Figure 5 displays the probability density function distributions of six pollutants based on 374 
hourly surface concentrations across the monitoring sites. This analysis was focused on high 375 
pollutant concentrations with the cutoff values for CO, O3, NOx, SO2, PM2.5, and PM10 being 376 
1.1 ppmv, 60 ppbv, 25 ppbv, 5.5 ppbv, 15 µg m-3, and 30 µg m-3, respectively. It appeared that 377 
NU-WRF, regardless of the grid resolutions, failed to simulate surface CO with concentrations 378 
more than 4 ppmv, likely due to the underestimate of CO emissions (Kong et al., 2019). The grid 379 
resolution appeared to have limited impacts on surface PM10 simulations when its concentrations 380 
were more than 200 µg m-3. On the other hand, the grid resolution showed large impacts on NU-381 
WRF’s capability in simulating high surface concentrations of O3, NOx, SO2, and PM2.5. For 382 
surface O3 with concentrations more than 100 ppbv, the NU-WRF results with the 5-km grid 383 
appeared to better agree with the probability distribution of observations. For surface NOx with 384 
concentrations more than 70 ppbv, the NU-WRF results with the 5-km resolution grid better 385 
mimicked the observed distribution.  Modeling with the 5-km grid also yielded the best results of 386 
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distributions, in comparisons to the respective observations, of SO2 with concentrations more than 387 
45 ppbv, and of PM2.5 with concentrations greater than 120 µg m-3. 388 
 Table 2 lists the occurrences of violations of China’s national ambient air quality standards 389 
(NAAQS) for the six pollutants from both observations and simulations, in which columns “Class 390 
1” and “Class 2” list the standards for rural and urban-suburban sites, respectively, and column 391 
“Frequency” indicates the time integration of each NAAQS.  It was apparent that NU-WRF failed 392 
to report CO violations at any grid resolutions. No CO NAAQS violation was simulated but the 393 
observation showed that surface CO exceeded the national standard by more than 1000 times. NU-394 
WRF underestimated the NAAQS exceedances of NOx and SO2. A higher-resolution grid 395 
appeared to be able to catch more violations although the modeled results at the 5-km resolution 396 
only captured 33% and 10% observed exceedances of NOx and SO2, respectively. NU-WRF 397 
overestimated surface O3 and PM2.5 when their concentrations were more than the corresponding 398 
NAAQS. The fine grid resolution (i.e., 5-km) appeared to largely reduce the overestimation of 399 
surface O3 exceedances as compared to the 45-km grid but only marginally compared with the 15-400 
km grid. Compared to the observed occurrences of surface O3 standard violation (3,684), the 401 
simulated exceedances were 5.7, 1.8, and 1.7 times higher when employing the 45-km, 15-km, and 402 
5-km resolution grid, respectively. The observations showed 1,343 occurrences of surface PM2.5 403 
exceedances, while the modeled exceedances were 377, 267, and 231 more for the 45-km, 15-km, 404 
and 5-km grids, respectively. As for surface PM10, the modeled exceedances were approximately 405 
27%, 43%, and 41% less than the observed one for the 45-km, 15-km, and 5-km grids, respectively.  406 
 407 
3.2. Inter-resolution comparisons 408 
 It is informative to compare the NU-WRF results out of different horizontal resolutions. 409 
This, in addition to the discussion in section 3.1.2.b, can help understand the reasons why model 410 
resolution matters. 411 
 412 
3.2.1. Emissions 413 
 There were two types of emissions applied in this study. One was the prescribed emissions 414 
out of the anthropogenic and wild fire sources, and the other was emissions computed online using 415 
the real-time meteorology (or dynamic emissions) including emissions from biogenic sources, dust 416 
sources, and sea spray. Amounts and temporal variations of dynamic emissions depended on 417 
surrounding environmental conditions. For example, air temperature and solar radiation regulates 418 
biogenic emissions (Guenther et al., 2006). Surface wind speed plays a major role in both dust 419 
(Ginoux et al., 2001; Chin et al., 2002) and sea salt emissions (Gong, 2003).  420 

For the prescribed emissions, the differences of domain total masses out of each grid were 421 
small (less than 5%). However, the emission gradient around sources of a fine resolution grid 422 
appeared to be sharper than that of a coarse resolution grid. This meant that a coarse grid tended 423 
to distribute the prescribed emissions more evenly into the domain, while a fine grid tended to 424 
produce more extreme concentrations of primary pollutants (emitted directly from a source) such 425 
as NOx and SO2, as shown in Table 2.  426 
 Online calculated emissions, on the other hand, displayed large differences in both gradient 427 
and total mass. Similar to the case of prescribed emissions, a fine resolution grid tended to give a 428 
sharper gradient of dynamic emissions than a coarse resolution grid did, as highlighted in Figure 429 
6 (1st row) that illustrated the biogenic isoprene emissions (mol km-2 hr-1) on a typical summer day. 430 
It was apparent that much more details were simulated using a fine resolution grid - the flow of 431 
Yellow River can even be seen on the 5-km resolution map that was otherwise invisible from the 432 
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coarser resolution maps. Meanwhile, the total masses of dynamic emissions showed large 433 
difference out of different resolution grids as listed in Table 3. On an annual basis, the domain 434 
total isoprene emissions were 740,562 tons when estimated using the 45-km grid, approximately 435 
85% and 86% of those with the 15-km and 5-km grids, respectively. The total dust emissions out 436 
of the 45-km grid were 2,431 tons, only 54% and 62% of those based on the respective 15-km and 437 
5-km grids. The percentage contrasts for sea salt emissions were even larger with emissions out of 438 
the 15-km and 5-km grids being 1.3 and 1.6 times more than those of the 45-km grid, respectively. 439 
It should be noted that although they differed greatly between out of the 45-km and 15-km grids, 440 
the dynamic emissions out of the 5-km grid were much closer to those out of the 15-km grid, 441 
partially explaining why the impact of model resolution on surface air quality was less remarkable 442 
by increasing the resolution from 15-km to 5-km than from 45-km to 15-km. 443 
 The spatial (gradient) and mass variations in emissions out of different resolution grids 444 
would result in difference in air quality simulations. 445 
 446 
3.2.2. Meteorology 447 
 It’s been reported that simulated meteorology varies in response to selections of model grid 448 
resolutions (e.g., Tie et al., 2010; Lee et al., 2018). Meteorology plays an important role in 449 
regulating regional air quality – it affects emissions amount originating from biogenic, dust, and 450 
sea sources; it impacts atmospheric chemical and photochemical transformation; and it directs air 451 
flows and the associated transport of trace gases and aerosols. In this investigation, a few 452 
meteorological parameters key to air pollutant generation and accumulation were analyzed, 453 
including surface wind, air temperature, downward shortwave flux at surface (SWDOWN), 454 
planetary boundary layer height (PBLH), and cloud water (liquid + ice) path (CWP). We focused 455 
on months that were prone to deteriorated PM2.5 (January) and O3 (July) air quality as shown in 456 
Figure 6 and Table 3. 457 
 NU-WRF simulated a similar direction of surface wind in July 2010 over the eastern 458 
portion of the domain (2nd row of Figure 6). In general, average wind speed was larger over Bohai 459 
Sea and Yellow Sea than over the surrounding land areas with a dominating wind direction being 460 
south and southeast. Based on the results from the 15-km and 5-km grids, the peak average wind 461 
speeds over 4 m s-1 were found in Bohai Bay blowing to Tianjin and Beijing. However, such a 462 
peak was absent from the 45-km grid simulation. In the west portion of the domain, the wind 463 
direction generally changed from southeast in the south to southwest in the north. Compared to the 464 
more organized wind directions out of the 45-km grid, wind directions out of the 15- and 5-km 465 
grids were more chaotic. Averaged over the domain, the January mean wind speed out of the 45-466 
km grid was 2.92 m s-1, which were 7% and 16% larger than those of the 15-km and 5-km grids, 467 
respectively. The largest July mean wind speed was again simulated with the 45-km grid, 10% and 468 
12% larger than the corresponding wind speed out of the 15-km and 5-km grids, respectively. 469 
 Overall, NU-WRF simulated very similar magnitudes and spatial patterns of surface air 470 
temperature in July (3rd row of Figure 6), regardless of the selections of grid resolutions. Large 471 
portions of the NCP experienced more than 300 K of July average air temperature. The minimum 472 
average temperature of approximately 290 K was found in the central north part of the domain, 473 
which was part of the Mongolian Plateau with the elevation being over 1,500 m above the sea level. 474 
The domain average January and July surface air temperature were around 268 K and 300 K, 475 
respectively, for simulations out of all three grids.  476 
 As expected, the modeling results from all three grids (4th row of Figure 6) showed that 477 
July average PBLH over sea was much smaller than that over land. The large average PBLH (more 478 
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than 1,000 m) was found in the northwestern corner of the domain with a dominant land cover 479 
type of grassland mosaiced with open shrubland that appeared to be drier than the other land cover 480 
types in the domain. The high sensible heating associated with dry soil tended to produce the deep 481 
PBL (Tao et al., 2013). The largest domain-average PBLHs in January and July were found from 482 
the simulations out of the 15-km and 45-km grids, respectively. In January, the differences of the 483 
domain-average PBLHs from different grid resolutions were small and within 2%. In July, 484 
however, such difference can be over 9%. 485 
 Regardless of the grid resolutions, NU-WRF simulated a generally southeast-northwest 486 
gradient of SWDOWN in July with the highest flux (over 300 W m-2) occurring in the northwestern 487 
domain (5th row of Figure 6). The differences between the maximum and minimum domain 488 
average SWDOWN out of 3 grids were 5.6% and 3.3% in January and July, respectively.  489 
 CWP represented the vertical integration of cloud water (including both liquid and ice 490 
phases) contents and can be regarded as a proxy of cloud amount and coverage. Opposite to the 491 
SWDOWN case, NU-WRF modeled a generally northwest-southeast gradient of CWP in July with 492 
the high values found in the southeastern domain (6th row of Figure 6). This is understandable 493 
since cloud reflects and scatters the incoming solar radiation and thus affect SWDOWN. Large 494 
cloud existence tended to reduce the solar flux reaching the underneath Earth surface. The CWP 495 
differences among the model results out of different grid resolutions appeared to be larger than 496 
SWDOWN differences. In July, the domain average CWPs out of the 15-km and 5-km grids were 497 
37% and 33% larger than that of the 45-km grid, respectively. The gaps were even larger in January, 498 
during which the domain average CWPs from the 15-km and 5-km grids were approximately 1.6 499 
times larger than that from the 45-km grid.  500 
 501 
3.2.3. Air Quality 502 
 In response to the aforementioned emissions and meteorological variations resulted from 503 
the selections of model grid resolutions, changes in regional air quality ensued as illustrated in 504 
Figure 7 and Table 3. This figure shows the July average concentrations of ground-level O3 and 505 
its precursors of NOx and CO, as well as the January mean concentrations of surface SO2, PM2.5, 506 
and PM10, during which month the respective pollutants tended to reach high concentrations.   507 

O3 is a secondary pollutant that is formed in the atmosphere through complex 508 
photochemical processes upon existences of its precursors such as NOx and volatile organic 509 
compounds (VOC). Figure 7 (row 1) shows that the spatial distributions of surface O3 are similar 510 
to each other but the concentrations out of the 15-km and 5-km grids are smaller than those from 511 
the 45-km grid. The domain average surface O3 concentration in July was approximately 87 ppbv 512 
based on the results from the 45-km grid, 26% and 25% higher than those out of the 15-km and 5-513 
km grid, respectively. In January, however, the highest domain average concentration occurred 514 
when the 5-km grid was used, which was 5.3% higher than that out of the 45-km grid. 515 

For the primary pollutants, i.e., NOx, CO, and SO2 (rows 2-4 of Figure 7, respectively), 516 
which were emitted directly by their sources, the spatial distributions of their concentrations 517 
mimicked closely with their emission distributions. High concentrations centered around emission 518 
sources with a reducing gradient outward. The domain average concentrations of these 3 pollutants 519 
out of the 45-km grid results were always the largest in both January and July. The average surface 520 
NOx concentrations from the simulations out of the 15-km and 5-km grids were around 24% lower 521 
than their counterparts out of the 45-km grid in January. In July, the differences were reduced to 522 
7.9% and 11.8% for the 15-km and 5-km grids, respectively. On the other hand, the larger 523 
percentage differences, as compared to the results out of the 45-km grid, occurred in July than in 524 
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January for both CO and SO2. For example, the surface CO concentrations out of the 5-km grid 525 
were 12.3% and 30.6% lower than those based on the 45-km grid in January and July, respectively. 526 
The respective ground-level SO2 concentrations from the 5-km grid were 20.5% and 38.9% lower 527 
than those from the 45-km grid in January and July.   528 

It was interesting to note that among the 3 cases, the domain average July surface O3 and 529 
NOx concentrations were both the highest out of the 45-km grid, contrary to the results discussed 530 
in section 3.1.2a where the highest O3 concentration occurred out of the simulation using the 45-531 
km grid while the highest NOx concentration happened with the 5-km grid. This seemingly 532 
contradicting result was internally consistent. Section 3.1.2a actually depicted the average surface 533 
concentrations in an urban environment (23 of 25 monitoring sites were in an urban/suburban 534 
setting), where surface O3 formation was typically VOC controlled such that NO tended to 535 
consume O3 through titrations. As discussed in section 3.2.1, a 5-km grid gave a much sharper 536 
emissions gradient with anthropogenic emissions concentrating in urban/suburban areas. This led 537 
to higher NOx concentrations around urban/suburban areas out of the simulation with the 5-km 538 
grid, which effectively resulted in lower O3 concentrations there through the NO titration effect. 539 
The domain average discussed in this section, however, was the average covering the vast rural 540 
area that generally was NOx-limited such that surface O3 formation was controlled by the 541 
availability of NOx – more NOx resulting in more O3 through photochemical processes. In this 542 
case, the 45-km grid tended to distribute NOx emissions more evenly in the region, effectively 543 
decreasing the surface NOx concentration in urban areas but increasing it over rural areas. The 544 
larger average July wind speed simulated by the 45-km grid (Figure 6 and Table 3) further 545 
smoothed out the NOx distribution in NCP. This in turn increased the domain average surface O3 546 
concentration via photochemistry based on the 45-km resolution results. In addition, vertical lifting 547 
played an important role in explaining the maximum regional O3 in July simulated by the 45-km 548 
grid as compared to the results by the other two grid resolutions. As displayed in Figure 4s in the 549 
supplement material, a fine resolution modeling (e.g., 5-km) tended to produce a stronger updraft 550 
than a coarse resolution modeling (e.g., 45-km), consistent with the findings by Lee et al. (2018). 551 
The strong uplift would bring more surface pollutants such as NOx into the upper atmosphere, thus 552 
further reducing the NOx availability at ground limiting the surface ozone production but 553 
increasing its formation in the upper atmosphere.  554 

Vertical distributions of O3 also tend to have a sizable impact on next day’s surface O3 555 
levels (e.g., Kuang et al., 2011; Caputi et al., 2019). Figure 8 illustrates the domain average profiles 556 
of vertical wind, NOx, O3 (panels a~c), and the average diurnal distribution of surface O3 (panel 557 
d) over July. Here we limited our discussion on the results from the 15- and 5-km grids since the 558 
45-km grid artificially allowed more NOx emissions spreading to rural areas to produce much 559 
more O3 as shown in the previous paragraph. Lee et al. (2018) claimed that a coarse resolution 560 
model appeared to lower updraft as compared with a fine resolution modeling. This study agreed 561 
with their finding as illustrated in Figure 8 (panel a). The domain average July vertical wind out 562 
of the simulation with the 5-km grid ranged from 0.25 to 0.45 cm s-1 (upward) between 800 hPa 563 
and 400 hPa, stronger than the corresponding one out of the 15-km grid. The reason was complex 564 
and the aerosol-cloud interaction induced freezing/evaporation-related invigoration mechanism 565 
played a role (Lee et al., 2018). The stronger upward wind tended to lift more gaseous pollutants 566 
up to the free troposphere as shown in Figure 8 (panel b (NOx) and c (O3)). The pollutants there 567 
would have visible impacts on the following-day surface air quality, especially on O3 levels at 568 
night and in the morning when sun breaks out the nocturnal planetary boundary layer, as evidenced 569 
in Figure 8 (panel d). At night with no photochemical formation, surface O3 concentration was 570 
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largely controlled by upper-level O3 mixing down, NO titration and O3 dry deposition. With the 571 
virtually same average surface NO concentrations out of the 15- and 5-km grids, the upper-level 572 
O3 mixing down appeared to control the relative magnitudes of surface O3 concentrations 573 
simulated using the 15- and 5-km grids. This partially explained why, at night and early morning, 574 
the ground level O3 concentrations were higher out of the 5-km grid than from the 15-km grid. 575 
During daytime when the photochemical formation of O3 takes control, the regional average 576 
surface O3 concentrations is largely determined by the availability of O3 precursors (i.e., NOx and 577 
VOC) and ambient environmental conditions. In this case, more spreading NOx emissions out of 578 
the 15-km grid appeared to generate more surface O3 than the 5-km grid did. 579 

PM2.5 and PM10 were mixed pollutants that not only were emitted by various sources but 580 
also were generated in the atmosphere through physical and chemical processes. Figure 7 shows 581 
that high surface concentrations of PM2.5 (more than 120 µg m-3, row 5) and of PM10 (more than 582 
170 µg m-3, row 6) were still found around the source areas based on the modeling results out of 583 
the 15-km and 5-km grids. However, high PM2.5 and PM10 concentrations spread out to larger 584 
areas based on the results from the 45-km grid as compared to the ones from the finer grid 585 
resolutions. Similar to the primary pollutants, the largest domain average surface concentrations 586 
occurred when a 45-km grid was used for the NU-WRF simulation. The domain average PM2.5 587 
concentrations out of the 15-km and 5-km grids in January were 15.7% and 14% lower than those 588 
from the 45-km grid, respectively. The surface PM2.5 concentration differences among results out 589 
of different grid resolutions grew larger in July, reaching 48% when comparing the result from the 590 
5-km grid to that from the 45-km grid. The domain average surface PM10 concentrations showed 591 
similar pattern to that of PM2.5 with the results out of the 5-km grid being 12.2% (January) and 592 
44.2% (July) smaller than that from the 45-km grid.  593 

It is worth noting that the magnitudes and spatial distributions of ground-level pollutants 594 
were close to each other between the results out of the 15-km and 5-km grids. This again indicates 595 
that the improvement of fine grid resolution modeling reduces at a certain point. In future MICS-596 
Asia efforts, a 15-km grid appears to offer the optimized results balanced with performance and 597 
resources. 598 
 599 
4. Summary 600 
 Contributing to MICS-Asia Phase III whose goals included identifying and reducing air 601 
quality modeling uncertainty over the region, this investigation examined the impact of model grid 602 
resolutions on the performances of meteorology and air quality simulation. To achieve this, NU-603 
WRF was employed to simulate 2010 air quality over the NCP region with three grid resolutions 604 
of 45-km, 15-km, and 5-km. The modeling results were compared to the observations of surface 605 
meteorology archived by CMA, and of ground-level air quality collected in CERN. The inter-606 
model comparison among the simulation results out of three grids were also conducted to 607 
understand the reasons why model resolution mattered.  608 

The analysis showed that there was no single resolution which would yield the best 609 
reproduction of meteorology and air quality across all monitoring sites. From a regional average 610 
prospective (i.e., across all monitoring sites in this study), the choice of grid resolution appeared 611 
to have a minimum influence on air temperature modeling but affected wind, RH, and precipitation 612 
simulation profoundly. A 5-km grid appeared to give the best wind simulation as compared to the 613 
observations quantified by bias, RMSE, standard deviation, and correlation. Compared to the one 614 
using the 45-km grid, the simulated wind speed from the 5-km grid reduced the positive bias by 615 
46.8%. While a 15-km grid yielded the best overall performance on RH modeling, the result out 616 
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of the 45-km grid gave the most realistic reproduction of precipitation. The statement on 617 
precipitation should be taken with caution since it was based on the comparison with the site 618 
observations. Seeing the very heterogeneous nature of precipitation, the penalty of model hitting 619 
or missing a rain event was severe. Thus, the coarse grid covering more areas within a grid cell 620 
would reduce chances of mistaken precipitation hitting or missing simulations. However, a 621 
comparison of modeled precipitations to gridded “observation” that was re-constructed using the 622 
synergraphic mapping algorithm with topographic adjustment to the monthly precipitation 623 
climatology showed opposite result, where the fine resolution modeling showed superior 624 
reproduction of precipitation than the coarse resolution simulation (Gao et al., 2017). 625 

The simulated meteorology differences due to the selection of grid resolution would 626 
consequently lead to differences in air quality simulation. Air pollutant concentrations were 627 
basically determined by their emissions and underlying meteorology that directed their formation 628 
(e.g., O3 and aerosols), transport, and removal processes. For the prescribed emissions originated 629 
from anthropogenic and wild fire sources, the grid resolution had limited influence on emission 630 
amount – less than 5% difference with each other under the different resolution grids – but large 631 
impact on emission spatial distribution with sharper emission gradient around sources out of a fine 632 
resolution grid than from a coarse resolution one. For the dynamic emissions driven by 633 
meteorology, not only was an emission gradient around a source larger out of a higher resolution 634 
grid, but also the total emission amount varied greatly. For example, the domain total annual 635 
biogenic isoprene emissions from a 5-km grid was about 16% larger than those out of a 45-km 636 
grid due to the underlying differences in land cover and meteorology. 637 

Though the impact of grid resolution on air quality varied from location to location, finer 638 
grid yielded better results for daily mean surface O3, NOx, CO, and PM2.5 simulations from a 639 
regional average perspective. For example, after reducing the grid resolution from 45-km to 15-640 
km, the positive bias of daily mean surface O3 and PM2.5 decreased by 15% and 75%, respectively. 641 
Fine resolution modeling was especially beneficial to high pollutant concentration forecast. This 642 
was important to air quality management. Taking China’s NAAQS as cutoff values for each 643 
pollutant, the frequencies of noncompliance occurrences of O3, NOx, SO2, and PM2.5 out of the 644 
5-km grid simulation were much closer to the observations than those out of the 45-km modeling 645 
were. For example, the simulation with the 5-km grid produced 168% and 17% more exceedances 646 
in NAAQS of O3 and PM2.5, respectively, whereas the respective exceedances were 573% and 647 
28% more with modeling using the 45-km grid, as compared to the observed exceedances. It also 648 
was worth noting that the benefit of increasing grid resolution to better surface O3 and PM2.5 649 
simulations started to diminish when the horizontal resolution reached 15-km, agreeing with the 650 
finding by Valari and Menut (2008). There was a caveat, though. The anthropogenic MIX and fire 651 
GFEDv3 emissions inventories bore the 0.25º by 0.25º and 0.5º by 0.5º resolution, respectively. 652 
These resolutions cannot resolve the 5-km grid. Should a 5-km resolution emissions inventory be 653 
available and used, the benefit of high-resolution modeling would likely be more prominent. 654 

It should be pointed out that NU-WRF significantly overestimated surface O3 concentration 655 
but underestimated ground-level CO and NOx concentrations regardless of grid resolutions. This 656 
was true not only on the regional averages but also at majority of the monitoring sites. The missing 657 
emissions was believed to be largely responsible for this result (Kong et al., 2019). Underestimate 658 
of surface NOx tended to increase ground-level O3 due to the reduced titration effect, especially at 659 
night over urban areas that were typically NOx abundant.  660 

In conclusion, grid resolution had a profound effect on NU-WRF performance on 661 
meteorology and air quality over the East Asia. Fine resolution grid did not always generate the 662 
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best modeling results and the proper selection of horizontal resolution hinged on investigation 663 
topics for a given set of physics and chemistry choices in a model. With regard to MICS-Asia 664 
Phase III whose major goal was to examine regional air quality, in general, the finer the grid 665 
resolution was, the better the simulation results would be. This was especially true over the coastal 666 
areas and complex terrains where a sharp local energy gradient existed. Fine resolution grid was 667 
also extremely helpful to reproducing pollutants at higher concentrations that were most relevant 668 
to air quality planning and management. However, the benefit of high resolution was not linear 669 
with the decrease of grid size. At certain point, the improved modeling accuracy due to an increase 670 
in grid resolution was so marginal that it cannot justify the computational cost associated with the 671 
fine grid simulation. Based on the balance of modeling accuracy and efficiency, a 15-km horizontal 672 
grid appeared to be an appropriate choice to optimize model performance and resource usage if 673 
the study domain remained unchanged for future MICS-Asia activities. The study suggested that 674 
the high-resolution emissions, especially the proper representation of emission gradients, would 675 
be helpful in improving air quality prediction. Moreover, the profile measurements of both 676 
meteorology and air quality, in supplement with the ground monitoring networks, would be greatly 677 
helpful to identifying model deficiencies and thus improving model forecast skills. 678 
 679 
Competing interests 680 
 The authors declare that they have no conflict of interest. 681 
 682 
Author contribution 683 
 ZT and MC designed the experiments. ZT, MG, TK, DK, and HB carried out the 684 
experiments working on various modeling components. YW and ZL collected, organized, and 685 
archived the ground air quality measurement data. All authors contributed to model result analysis 686 
and interpretation. ZT prepared the manuscript with contributions from all co-authors. 687 
 688 
Acknowledgement 689 
 This work was supported by the NASA’s Atmospheric Composition: Modeling and 690 
Analysis Program (ACMAP) and Modeling, Analysis, and Prediction (MAP) program. The 691 
authors thank MICS-Asia for its organized platform of discussion and data sharing. This work is 692 
not possible without the supercomputing and mass storage support by NASA Center for Climate 693 
Simulation (NCCS). All data collected and generated for this research are archived and stored on 694 
NCCS servers. Due to the sheer size of data, it is impractical to upload data to a public domain 695 
repository. However, the authors will be happy to share data on an individual request basis.  696 
 697 
  698 



 16 

References 699 
Akimoto, H., Mori, Y., Sasaki, K., Nakanishi, H., Ohizumi, T., and Itano, Y.: Analysis of 700 

monitoring data of ground-level ozone in Japan for long-term trend during 1990-2010: 701 
Causes of temporal and spatial variation, Atmos. Environ., 102, 302-310, 2015. 702 

Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West J. J.: An estimate of the global burden 703 
of anthropogenic ozone and fine particulate matter on premature human mortality using 704 
atmospheric modeling, Environ. Health Perspect., 118(9), 1189-1195, 705 
doi:10.1289/ehp.0901220, 2010. 706 

Cai, W., Li, K., Liao, H., Wang, H., and Wu, L.: Weather conditions conductive to Beijing severe 707 
haze more frequent under climate change, Nature Climate Change, 7, 257-263, 708 
doi:10.1038/NCLIMAE3249, 2017.  709 

Caputi, D. J., Faloona, I., Trousdell, J., Smoot, J., Falk, N., and Conley, S.: Residual layer ozone, 710 
mixing, and the nocturnal jet in California’s San Joaquin Valley, Atmos. Chem. Phys., 19, 711 
4721-4740, doi:10.5194/acp-19-4721-2019, 2019. 712 

Carmichael, G., Calori, G., Hayami, H., Uno, I., Cho, S. Y., Engardt, M., Kim, S. B., Ichikawa, 713 
Y., Ikeda, Y., Woo, J. H., Ueda, H., and Amann, M.: The MICS-Asia study: model 714 
intercomparison of long-range transport and sulfur deposition in East Asia, Atmos. Environ., 715 
36, 175-199, 10.1016/s1352-2310(01)00448-4, 2002. 716 

Carmichael, G., Sakurai, T., Streets, D., Hozumi, Y., Ueda, H., Park, S., Fung, C., Han, Z., Kajino, 717 
M., and Engardt, M.: MICS-Asia II: The model intercomparison study for Asia Phase II: 718 
methodology and overview of findings, Atmos. Environ., 42, 3468-3490, 719 
10.1016/j.atmosenv.2007.04.007, 2008. 720 

Chen, L., Gao, Y., Zhang, M., Fu, J. S., Zhu, J., Liao, H., Li, J., Huang, K., Ge, B., Wang, X., 721 
LAM, Y. F., Lin, C.-Y., Itahashi, S., Nagashima, T., Kajino, M., Yamaji, K., Wang, Z., and 722 
Kurokawa, J.-I.: MICS-Asia III: Multi-model comparison and evaluation of aerosol over East 723 
Asia, Atmos. Chem. Phys. Discuss., http://doi.org/10.5194/acp-2018-1346, in review, 2019. 724 

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, 725 
J. A., Higurashi, A., and Nakajima, T.: Tropospheric aerosol optical thickness from the 726 
GOCART model and comparisons with satellite and Sun photometer measurements, J. 727 
Atmos. Sci., 59, 461–483, 2002. 728 

Chin, M., Diehl, T., Ginoux, P., and Malm, W.: Intercontinental transport of pollution and dust 729 
aerosols: implications for regional air quality, Atmos. Chem. Phys., 7, 5501-5517, 730 
doi:10.5194/acp-7-5501-2007, 2007. 731 

Chou, M.-D. and Suarez, M. J.: A solar radiation parameterization (CLIRAD-SW) for atmospheric 732 
studies, NASA Tech. Rep. NASA/TM-1999-10460, vol. 15, 38 pp, 1999. 733 

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, 734 
J. D.: Implementation of Noah land surface model advances in the National Centers for 735 
Environmental Prediction operational mesoscale Eta Model, J. Geophys. Res., 108, 8851, 736 
doi:10.1029/2002JD003296, 2003. 737 

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., 738 
Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., 739 
Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and 740 
Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43-67, 2010. 741 

Gao, M., Carmichael, G. R., Wang, Y., Saide, P. E., Yu, M., Xin, J., Liu, Z., and Wang, Z.: 742 
Modeling study of the 2010 regional haze event in the North China Plain, Atmos. Chem. 743 
Phys., 16, 1673-1691, doi:10.5194/acp-16-1673-2016, 2016. 744 



 17 

Gao, M., Han, Z., Liu, Z., Li, M., Xin, J., Tao, Z., et al.: Air quality and climate change, Topic 3 745 
of the Model Inter-Comparison study for Asia Phase III (MICS-Asia III) – Part 1: Overview 746 
and model evaluation, Atmos. Chem. Phys., 18 (7), 4859-4884, doi:10.5194/acp-18-4859-747 
2018, 2018. 748 

Gao, Y., Leung, L. R., Zhao, C., and Hagos, S.: Sensitivity of U.S. summer precipitation to model 749 
resolution and convective parameterizations across gray zone resolution, J. Geophys. Res. 750 
Atmos., 122, 2,714-2,733, doi:10.1002/2016JD025896, 2017. 751 

Ginoux, P., Chin, M., Tegen, I., Prospero, J., Holben, B., Dubovik, O., and Lin, S.-J.: Sources and 752 
global distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 753 
106, 20,255-20,273, 2001. 754 

Gong, S. L.: A parameterization of sea-salt aerosol source function for sub- and super-micron 755 
particles, Glob. Biogeochemical Cycles, 17, No. 4, 1097, doi: 10.1029/2003GB002079, 2003. 756 

Grell, G. A. and Devenyi, D.: A generalized approach to parameterizing convection combining 757 
ensemble and data assimilation techniques, Geophys. Res. Lett., 29, 1693, 758 
doi:10.1029/2002GL015311, 2002. 759 

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock W. C., and Eder, 760 
B.: Fully coupled ‘‘online’’ chemistry within the WRF model, Atmos. Environ., 39, 6957– 761 
6975, 2005. 762 

Gross, A. and Stockwell, W. R.: Comparison of the EMEP, RADM2 and RACM Mechanisms, J. 763 
Atmos. Chem., 44, 151-170, 2003. 764 

Guenther, A, Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global 765 
terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from 766 
Nature), Atmos. Chem. Phys., 6, 3181-3210, 2006. 767 

Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment 768 
of entrainment processes, Mon. Wea. Rev., 134, 2318-2341, 2006. 769 

Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, 770 
J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., 771 
Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., 772 
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and Prevot, A. S. H.: 773 
High secondary aerosol contribution to particulate pollution during haze events in China, 774 
Nature, 514, 218-222, doi:10.1038/nature13774, 2014. 775 

Jin, Y., Andersson, H., and Zhang, S.: Air pollution control policies in China: A retrospective and 776 
prospects, Int. J. Environ. Res. Public Health, 13(12), 1219, doi:10.3390/ijerph13121219, 777 
2016. 778 

Kim, D., Chin, M., Kemp, E. M., Tao, Z., Peters-Lidard, C. D., and Ginoux, P.: Development of 779 
high-resolution dynamic dust source function – A case study with a stong dust storm n a 780 
regional model, Atmos. Environ., 159, 11-25, doi:10.1016/j.atmosenv.2017.03.045, 2017. 781 

Kong, L., Tang, X., Zhu, J., Wang, Z., Fu, J. S., Wang, X., Itahashi, S., Yamaji, K., Nagashima, 782 
T., Lee, H.-J., Kim, C.-H., Lin, C.-Y., Chen, L., Zhang, M., Tao, Z., Li, J., Kajino, M., Liao, 783 
H., Sudo, K., Wang, Y., Pan, Y., Tang, G., Li, M., Wu, Q., Ge, B., and Carmichael, G. R.: 784 
Evaluation and uncertainty investigation of the NO2, C and NH3 modeling over China under 785 
the framework of MICS-Asia III, Atmos. Chem. Phys. Discuss., http://doi.org/10.5194/acp-786 
2018-1158, accepted, 2019. 787 

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, 788 
W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. 789 
F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI 790 



 18 

observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. 791 
Phys., 16(7), 4605–4629, doi:10.5194/acp-16-4605-2016, 2016. 792 

Kumar, S. V., Peters-Lidard, C. D., Tian, Y., Houser, P. R., Geiger, J. Olden, S., Lighty, L., 793 
Eastman, J. L., Doty, B., Dirmeyer P., Adams, J., Mitchell K., Wood, E. F., and Sheffield, J.: 794 
Land Information System – An Interoperable Framework for High Resolution Land Surface 795 
Modeling, Environ. Modelling & Software, 21, 1,402-1,415, 2006. 796 

Kuang, S., Newchurch, M. J., Burris, J., Wang, L., Buckley, P. I., Johnson, S., Knupp, K., Huang, 797 
G., Phillips, D., and Canrell, W.: Nocturnal ozone enhancement in the lower troposphere 798 
observed by lidar, Atmos. Environ., 45, 6078-6084, 2011. 799 

Lee, S. S. Li, Z., Zhang, Y. Yoo, H., Kim, S., Kim, B.-G., Choi, Y.-S., Mok, J., Um, J., Choi, K. 800 
O., and Dong, D.: Effects of model resolution and parameterizations on the simulations of 801 
clouds, precipitation, and their interactions with aerosols, Atmos. Chem. Phys., 18, 13–29, 802 
doi:10.5194/acp-18-13-2018, 2018. 803 

Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki D., and Pozzer, A.: The contribution of outdoor 804 
air pollution sources to premature mortality on a global scale, Nature, 525, 367-371, 2015. 805 

Li, J., Nagashima, T., Kong, L., Ge., B., Yamaji, K., Fu, J. S., Wang, X., Fan, Q., Itahashi, S., Lee, 806 
H.-J., Kim, C.-H., Lin, C.-Y., Zhang, M., Tao, Z., Kajino, M., Liao, H., Li, M., Woo, J.-H., 807 
Kurokawa, J., Wang, Z., Wu, Q., Akimoto, H., Carmichael, G. R., and Wang, Z.: Model 808 
evaluation and intercomparison of surface-level ozone and relevant species in East Asia in the 809 
context of MICS-Asia phase III, Part I: overview, Atmos. Chem. Phys., 19, 12993-13015, 810 
http://doi.org/10.5194/acp-19-12993-2019, 2019. 811 

Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., 812 
Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and 813 
Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international 814 
collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935-963, 815 
doi:10.5194/acp-17-935-2017, 2017. 816 

Lin, M., Holloway, T., Carmichael, G. R., and Fiore, A. M.: Quantifying pollution inflow and 817 
outflow over East Asia in spring with regional and global models, Atmos. Chem. Phys., 10, 818 
4221-4239, doi: 10.5194/acp-10-4221-2010, 2010. 819 

Lu, X., Hong, J., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X., Wang, T., Gao, M., Zhao, Y., 820 
and Zhang, Y.: Severe surface ozone pollution in China: A global perspective, Environ. Sci. 821 
Technol. Lett., 5, 487-494, 2018. 822 

Matsui, T., Tao, W.-K., Masunaga, H., Kummerow, C. D., Olson, W. S., Teruyuki, N., Sekiguchi, 823 
M., Chou, M., Nakajima, T. Y., Li, X., Chern, J., Shi, J. J., Zeng, X., Posselt, D. J., and 824 
Suzuki, K.: Goddard Satellite Data Simulation Unit: Multi-Sensor Satellite Simulators to 825 
Support Aerosol- Cloud-Precipitation Satellite Missions, Eos Trans., 90(52), Fall Meet. 826 
Suppl., Abstract A21D-0268, 2009. 827 

Matsui, T., Iguchi, T., Li, X., Han, M., Tao, W.-K., Petersen, W., L’Ecuyer, T., Meneghini, R., 828 
Olson, W., Kummerow, C. D., Hou, A. Y., Schwaller, M. R., Stocker, E. F., and Kwiatkowski, 829 
J.: GPM satellite simulator over ground validation sites, Bull. Am. Meteor. Soc., 94, 1653-830 
1660, doi:10.1175/BAMS-D-12-00160.1, 2013. 831 

Matui, T., Santanello, J., Shi, J. J., Tao, W.-K., Wu, D., Peters-Lidard, C., Kemp, E., Chin, M., 832 
Starr, D., Sekiguchi, M., and Aires, F.: Introducing multi-sensor satellite radiance-based 833 
evaluation for regional earth system modeling, J. Geophys. Res., 119, 8450-8475, 834 
doi:10.1002/2013JD021424, 2014. 835 

Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.: A long-term 836 



 19 

hydrologically based dataset of land surface fluxes and states for the continuous United State, 837 
J. Clim., 15(22), 3,237-3,251, 2002. 838 

Mu, M., Randerson, J. T., van der Werf, G. R., Giglio, L., Kasibhatla, P., Morton, D., Collatz, G. 839 
J., DeFries, R. S., Hyer, E. J., Prins, E. M., Griffith, D. W. T., Wunch, D., Toon, G. C., 840 
Sherlock, V., and Wennberg, P. O.: Daily and 3-hourly variability in global fire emissions 841 
and consequences for atmospheric model prediction of carbon monoxide, J. Geophys. Res., 842 
116, D24303, doi:10.1029/2011JD016245, 2011. 843 

Neal, L. S., Dalvi, M., Folberth, G., McInnes, R. N., Agnew, P., O’Connor, F. M., Savage, N. H., 844 
and Tilbee, M.: A description and evaluation of an air quality model nested within global 845 
and regional composition-climate models using MetUM, Geosci. Model Dev., 10, 3941-3962, 846 
doi:10.5194/gmd-10-3941-2017, 2017. 847 

Peters-Lidard, C. D., Houser, P. R., Tian, Y., Kumar, S. V., Geiger, J., Olden, S., Lighty, L., Doty, 848 
B., Dirmeyer, P., Adams, J., Mitchell, K., Wood, E. F., and Sheffield, J.: High-performance 849 
Earth system modeling with NASA/GSFC’s Land Information System, Innovations in 850 
Systems and Software Engineering, 3, 157–165, 2007. 851 

Peters-Lidard, C. D., Kemp, E. M., Matsui, T., Santanello, J. A., Kumar, S. V., Jacob, J. P., Clune, 852 
T., Tao, W.-K., Chin, M., Hou, A., Case, J. L., Kim, D., Kim, K.-M., Lau, W., Liu, Y., Shi, 853 
J., Starr, D., Tan, Q., Tao, Z., Zaitchik, B. F., Zavodsky, B., Zhang, S. Q., and Zupanski, 854 
M.: Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-855 
resolved scales. Environmental Modeling & Software 67, 149-159, 2015. 856 

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. 857 
G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da 858 
Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., 859 
Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., 860 
and Woollen, J.: MERRA - NASA's Modern-Era Retrospective Analysis for Research and 861 
Applications, J. Climate, 24, 3624–3648, 2011. 862 

Seo, J., Youn, D., Kim, J. Y., and Lee, H.: Extensive spatiotemporal analyses of surface ozone and 863 
related meteorological variables in South Korea for the period 1999-2010, Atmos. Chem. 864 
Phys., 14, 6395-6415, doi:10.5194/acp-14-6395-2014, 2014. 865 

Shi, J. J., Matsui, T., Tao, W.-K., Tan, Q., Peters-Lidard, C. D., Chin, M., Pickering, K., Guy, N., 866 
Lang, S., and Kemp, E. M.: Implementation of an aerosol-cloud microphysics-radiation 867 
coupling into the NASA Unified WRF: Simulation results for the 6-7 August 2006 AMMA 868 
Special Observing Period, Q. J. R. Meteorol. Soc., doi:10.1002/qj.2286, 2014. 869 

Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The Second Generation Regional 870 
Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling, J. 871 
Geophys. Res., 95, 16343-16367, 1990. 872 

Tao, W.-K., Shi, J. J., Chen, S. S., Lang, S., Lin, P.-L., Hong, S.-Y., Peters-Lidard, C., and Hou, 873 
A.: The impact of microphysical schemes on hurricane intensity and track, Asia-Pacific J. 874 
Atmos. Sci., 47, 1–16, 2011. 875 

Tao, Z., Santanello, J. A., Chin, M., Zhou, S., Tan, Q., Kemp, E. M., and Peters-Lidard, C. D.: 876 
Effect of land cover on atmospheric processes and air quality over the continental United 877 
States – A NASA Unified WRF (NU-WRF) model study, Atmos. Chem. Phys., 13, 6207-878 
6226, doi: 10.5194/acp-13-6207-2013, 2013. 879 

Tao, Z., Yu, H., and Chin, M.: Impact of transpacific aerosol on air quality over the United States: 880 
A perspective from aerosol-cloud-radiation interactions, Atmos. Environ., 125, 48-60, 881 
doi:10.1016/j.atmosenv.2015.10.083, 2016. 882 



 20 

Tao, Z., Braun, S. A., Shi, J. J., Chin, M., Kim, D., Matsui, T., and Peters-Lidard, C. D.: 883 
Microphysics and radation effect of dust on Saharan air layer: An HS3 case study, Mon. Wea. 884 
Rev., 146, 1813-1835, doi:10.1175/MWR-D-17-0279.1, 2018. 885 

Tie, X., Brasseur, G., and Ying, Z.: Impact of model resolution on chemical ozone formation in 886 
Mexico City: application of the WRF-Chem model, Atmos. Chem. Phys., 10, 8983-8995, 887 
doi:10.5194/acp-10-8983-2010, 2010. 888 

Valari, M. and Menut, L.: Does an increase in air qulaity model’s resolution bring surface ozone 889 
concentrations closer to reality?, J. Atmos. Oceanic Tech., 25, 1955-1968, 890 
doi:10.1175/2008JTECHA1123.1, 2008. 891 

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., 892 
Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the 893 
contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), 894 
Atmos. Chem. Phys., 10, 11707-11735, doi:10.5194/acp-10-11707-2010, 2010.  895 

Wang, W.-N., Cheng, T.-H., Gu, X.-F., Chen, H., Guo, H., Wang, Y., Bao, F.-W., Shi, S.-Y., Xu, 896 
B.-R., Zuo, X., Meng, C., and Zhang, X.-C.: Assessing spatial and temporal patterns of 897 
observed ground-level ozone in China, Sci. Rep., 7, 3651, doi:10.1038/s41598-017-03929-898 
w, 2017. 899 

Yu, Man: An assessment of urbanization impact on China by using WRF-Chem and configuration 900 
optimization, PhD (Doctor of Philosophy) thesis, University of Iowa, 901 
https://doi.org/10.17077/etd.lzfu2tj8, 2014.  902 

Zhao, X. J., Zhao, P. S., Xu, J., Meng, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.: Analysis 903 
of a winter regional haze event and its formation mechanism in the North China Plain, Atmos. 904 
Chem. Phys., 13, 5685-5696, doi:10.5194/acp-13-5685-2013, 2013. 905 

Zou, Y., Wang, Y., Zhang, Y., and Koo, J.-H.: Arctic sea ice, Eurasia snow, and extreme winter 906 
haze in China, Sci. Adv., 3, e1602751, 2017. 907 

 908 
 909 
 910 
 911 
  912 



 21 

Table 1. Information of Air Quality Observation Sites 913 
 914 

Site Name Symbol Longitude Latitude Altitude (m) Setting 
Baoding BD 115.441 38.824 4 Urban 

Beijing Tower BJT 116.372 39.974 44 Urban 
Chengde CD 117.925 40.973 395 Urban 

Caofeidian CFD 118.442 39.270 11 Urban 
Cangzhou CZ 116.779 38.286 12 Urban 

Datong DT 113.389 40.089 1058 Urban 
Gu An GA 115.734 39.149 21 Rural 
Hejian HJ 116.079 38.423 66 Urban 

Hengshui HS 115.656 37.742 77 Urban 
Langfang LF 116.689 39.549 19 Urban 
Lingshan LS 115.431 39.968 116 Rural 

Longtan Lake LTH 116.430 39.870 31 Urban 
Qian An QA 118.800 40.100 54 Urban 

Qinhuangdao QHD 119.570 39.950 2.4 Urban 
Shijiazhuang SJZ 114.529 38.028 70 Urban 

Shuangqing Road SQL 116.338 40.007 58 Urban 
Tanggu TG 117.717 39.044 13 Urban 
Tianjin TJ 117.206 39.075 2 Urban 

Tangshan TS 118.156 39.624 14 Urban 
Xianghe XH 116.962 39.754 9 Suburban 
Xinglong XL 117.576 40.394 879 Rural 
Yangfang YF 116.126 40.147 78 Suburban 
Yanjiao YJ 116.824 39.961 26 Suburban 

Zhangjiakou ZJK 114.918 40.771 777 Urban 
Zhuozhou ZZ 115.988 39.460 48 Suburban 

 915 
 916 
 917 
Table 2. Comparisons of occurrences of exceedances of China’s National Ambient Air Quality 918 
Standards between observations and simulations* 919 
 920 

 Frequency Class 1 Class 2 Obs. 45-km 15-km 5-km 
CO Hourly 10 10 1,150 0 0 0 
O3 Hourly 160 200 3,684 24,807 10,283 9,880 

NOx Hourly 250 250 9,009 14 520 3,003 
SO2 Hourly 150 500 393 0 2 39 

PM2.5 24-hours 35 75 1,343 1,720 1,610 1,574 
PM10 24-hours 50 150 2,834 2,067 1,617 1,676 

* Class 1/2 standards are for rural/suburban-urban, respectively. Units are ppbm for CO, ppbv for O3, NOx, 921 
and SO2, and µg m-3 for PM2.5 and PM10. 922 
 923 
 924 
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 925 
Table 3. Domain total emissions and average meteorology and air quality at various resolutions 926 
 927 

Variables Period 45-km 15-km 5-km 
Biogenic Isoprene (tons) Annual 740,562 869,317 862,199 

Dust (tons) Annual 2,431 4,485 3,910 
Sea salt (tons) Annual 548 1,287 1,417 

Surface air temperature 
(K) 

January 268 267 268 
July 300 299 299 

Surface wind speed 
(m s-1) 

January 2.92 2.73 2.51 
July 1.70 1.54 1.52 

SWDOWN 
(W m-2) 

January 124 117 117 
July 249 242 250 

PBLH 
(m) 

January 333 338 331 
July 627 595 574 

CWP 
(g m-2) 

January 4.34 11.3 11.1 
July 41.4 56.8 55.2 

Surface O3 
(ppbv) 

January 37.5 39.4 39.5 
July 86.8 68.8 69.2 

Surface NOx 
(ppbv) 

January 19.8 14.9 15.0 
July 9.03 8.32 7.96 

Surface CO 
(ppmv) 

January 0.600 0.521 0.526 
July 0.444 0.336 0.308 

Surface SO2 
(ppbv) 

January 16.6 12.9 13.2 
July 10.2 6.55 6.23 

Surface PM2.5 
(µg m-3) 

January 70.9 59.8 61.0 
July 89.3 58.0 46.2 

Surface PM10 
(µg m-3) 

January 102 88.1 89.6 
July 108 74.9 60.3 

 928 
  929 
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 930 

  931 
 932 
Figure 1. NU-WRF domain set-up. Left panel is the nested MICS-Asia domains; right panel is the 933 
enlarged NCP domain (d03) with diamonds representing the air quality monitoring sites and black 934 
dots denoting for the meteorological stations. Locations of four cities are marked for position 935 
reference. 936 
 937 
 938 
  939 
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 940 

 941 

 942 
 943 
Figure 2. Taylor diagram for evaluations of NU-WRF performances on meteorology (top row) and 944 
air quality (bottom row) simulations at three resolutions 945 
 946 
  947 
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 948 

 949 
 950 
Figure 3. Comparisons of MB, RMSE, and correlation coefficient (𝑟) of surface O3 from different 951 
horizontal resolutions at each air quality monitoring site 952 
  953 
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 954 

 955 
 956 
Figure 4. Comparisons of MB, RMSE, and correlation coefficient (𝑟) of surface PM2.5 from 957 
different horizontal resolutions at each air quality monitoring site (blank space indicates no data 958 
are available) 959 
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 960 

 961 
 962 
Figure 5. Probability density function (PDF) plots for hourly concentrations of surface air quality 963 
  964 
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 965 
Figure 6. Simulated emissions and July average meteorology from 3 grids: 1st row = isoprene 966 
emissions (mol km-2 hr-1) from biogenic sources on a typical summer day; 2nd row = surface wind 967 
vector with the shade representing wind speed (m s-1); 3rd row = surface air temperature (K); 4th 968 
row = PBLH (m); 5th row = SWDOWN (W m-2); 6th row = CWP (g m-2). 969 
 970 
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 971 
 972 
Figure 7. Simulated January (SO2, PM2.5, and PM10) and July (O3, NOx, and CO) surface average 973 
air quality from 3 grids: 1st row = O3 (ppbv); 2nd row = NOx (ppbv) 3rd row = CO (ppmv); 4th row 974 
= SO2 (ppbv); 5th row = PM2.5 (µg m-3); 6th row = PM10 ((µg m-3). 975 
 976 
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 977 
 978 
Figure 8. Domain average profiles of vertical wind, NOx, and O3 concentrations (Panels a~c) and 979 
domain average diurnal variations of surface O3 over July 980 


