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Abstract. As has been the case in North America and Western Europe, the SO2 emissions substantially 

reduced in North China Plain (NCP) in recent years. A dichotomy of reductions in SO2 and NOx 40 

concentrations result in the frequent occurrences of nitrate (pNO3
-)-dominated particulate matter 

pollution over NCP. In this study, we observed a polluted episode with the particulate nitrate mass 

fraction in non-refractory PM1 (NR-PM1) up to 44% during wintertime in Beijing. Based on this typical 

pNO3
--dominated haze event, the linkage between aerosol water uptake and pNO3

- enhancement, further 

impacting on visibility degradation, have been investigated based on field observations and theoretical 45 

calculations. During haze development, as ambient relative humidity (RH) increased from ~10% up to 

70%, the aerosol particle liquid water increased from ~1 µg/m3 at the beginning to ~75 µg/m3 at the 

fully-developed haze period. The aerosol liquid water further increased the aerosol surface area and 

volume, enhancing the condensational loss of N2O5 over particles. From the beginning to the fully-

developed haze, the condensational loss of N2O5 increased by a factor of 20 when only considering 50 

aerosol surface area and volume of dry particles, while increasing by a factor of 25 considering extra 

surface area and volume due to water uptake. Furthermore, aerosol liquid water favored the 

thermodynamic equilibrium of HNO3 into the particle phase under the supersaturated HNO3 and NH3 in 

the atmosphere. All above results demonstrated that the pNO3
- is enhanced by aerosol water uptake with 

elevated ambient RH during haze development, in turn, facilitating the aerosol taking up water due to 55 

the hygroscopicity of particulate nitrate salt. Such mutual promotion between aerosol particle liquid 

water and particulate nitrate enhancement can rapidly degrade air quality and halve visibility within one 

day. Reduction of nitrogen-containing gaseous precursors, e.g., by control of traffic emissions, is 

essential in mitigating severe haze events in NCP. 
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1 Introduction 60 

Aerosol particle hygroscopicity plays an important role in air quality deterioration and cloud formation 

(Yu, 2009;Fitzgerald, 1973;Kreidenweis and Asa-Awuku, 2014;Wang and Chen, 2019;McFiggans et 

al., 2006) and can also directly influence aerosol measurements (Chen et al., 2018a). In atmospheric 

environments influenced by anthropogenic activities, particulate secondary inorganic compounds are 

often dominated by particulate sulfate and nitrate (Heintzenberg, 1989), which originate from the 65 

oxidation of sulfur dioxide (SO2) and nitrogen oxides (NOx) via multiple chemical pathways (Calvert et 

al., 1985;Cheng et al., 2016;Wang et al., 2016;Gen et al., 2019a, b). The abundance of secondary 

inorganic components is one of the most important factors determining particle hygroscopicity 

(Swietlicki et al., 2008), thereby governing the aerosol liquid water content under ambient moist 

conditions. Increased aerosol particle liquid water could accelerate secondary inorganic and organic 70 

aerosol formation by decreasing the kinetic limitation of mass transfer of gaseous precursors and 

providing more medium for multiphase reactions (Mozurkewich and Calvert, 1988;Cheng et al., 

2016;Wang et al., 2016;Ervens et al., 2011;Kolb et al., 2010). 

Sulfuric acid (H2SO4) is formed from the oxidation of SO2 via gaseous and multiphase reactions. H2SO4 

is subsequently fully or partly neutralized by gaseous NH3 taken up on particles, resulting in the 75 

formation of (NH4)2SO4 and / or NH4HSO4. Any remaining NH3 is available to neutralize HNO3 to 

form particulate NH4NO3 (Seinfeld. and Pandis., 2006) (and further excess NH3 can neutralize any 

available HCl to form particulate NH4Cl). Over the past several decades, substantial efforts have 

reduced emissions of both SO2 and NOx improving the local and regional air quality all over the world. 
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For example, SO2 and NOx emissions were reduced by 82% and 54% in the majority of European 80 

Environment Agency member countries between 1990 and 2016 (https://www.eea.europa.eu/data-and-

maps/indicators/main-anthropogenic-air-pollutant-emission s/assessment-4). In consequence, an 

increasing trend of NO3
-/SO4

2- molar ratio was observed in long-term measurements at Leipzig, 

Germany (Spindler et al., 2004) and at some other European sites from the European Monitoring and 

Evaluation Programme (EMEP) (Putaud et al., 2004).  85 

In the recent years, China has also managed to reduce SO2 emissions by 75% during 2007~2015 (Li et 

al., 2017a) and declined by ~15.1% per year during 2013~2017 (Vu et al., 2019), whereas NOx 

emissions declined only by ~10% between 2011 and 2015 (de Foy et al., 2016) and by ~ 4.3% per year 

during 2013~2017 (Vu et al., 2019). The strict emission control reduced the PM2.5 mass concentration 

and the corresponding chemical components in China significantly (Vu et al., 2019). The annual mean 90 

PM2.5 mass loading decreased by 39.6% during 2013~2017 in Beijing-Tianjin-Hebei region, and the 

SO4
2- and NO3

- mass concentrations in the PM2.5 declined by 40% and 34% respectively during 

2015~2017 in Beijing (Vu et al., 2019). However, NH3 emissions have been observed by satellites to 

increase by ~30% from 2008 to 2016 over the North China Plain (NCP) (Liu et al., 2018). The faster 

reduction rate of SO2 than NOx emissions in conjunction with elevated NH3 level, made it reasonable of 95 

switching dominant inorganic component in fine aerosol particles from sulfate to nitrate in the recent 

years similar like European countries (Sun et al., 2015;Hu et al., 2017;Hu et al., 2016;Wu et al., 

2018;Guo et al., 2014;Huang et al., 2014;Huang et al., 2010;Ge et al., 2017;Xu et al., 2019a;Xie et al., 

2019;Li et al., 2018). Field measurements in Beijing show that annually averaged NO3
-/SO4

2- molar 

ratio of NR-PM1 (non-refractory PM1) in 2012 (1.3~1.8) (Sun et al., 2015) has significantly increased 100 



5 
 

compared to that in 2008 (0.9~1.5) (Zhang et al., 2013). Comparably, the NO3
-/SO4

2- molar ratio of 

PM2.5 in Beijing increased substantially, from 1.5 before 2013 to 3.33 in 2017 (Xu et al., 2019a). 

Over the NCP region, heavy haze events are typically associated with enhanced ambient RH levels. 

This leads to an increased aerosol liquid water content (Wu et al., 2018), which will enhance the 

particulate nitrate formation by increasing the reactive uptake of precursors and the thermodynamic 105 

equilibrium of ammonium nitrate (Cheng et al., 2016;Wang et al., 2016;Wang et al., 2017;Yun et al., 

2018;Yue et al., 2019). To date, few studies reported aerosol liquid water content over NCP region 

(Wang et al., 2018;Bian et al., 2014;Cheng et al., 2016;Wu et al., 2018;Ge et al., 2019). However, the 

observational and theoretical analysis of the relationship between particulate nitrate enhancement and 

associated liquid water during haze events in China has been infrequently reported (Wu et al., 2018). 110 

In this study, a self-amplification effect between particulate nitrate and liquid water is demonstrated by 

examining a nitrate-dominated fine particle Beijing pollution episode. The facilitation of particulate 

nitrate enhancement by abundant aerosol liquid water is subsequently theoretically explored through the 

impacts of liquid water on thermodynamic equilibrium and heterogeneous reactions. Finally, the 

corresponding impacts on light extinction coefficient, and visibility degradation are estimated. These 115 

results improve our quantitative understanding of the development of haze events over the NCP and on 

formulating emission reduction strategies, as well as may also provide insights for other polluted 

regions. 
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2 Measurements and Methods 

2.1 Location and instrumentation 120 

Measurements were conducted within the framework of the BEST-ONE (Beijing winter finE particle 

STudy- Oxidation, Nucleation, and light Extinctions) field campaign from January 1 to March 5, 2016, 

at the Huairou site (40.42°N, 116.69°E), located in a rural environment, north of Beijing, China. 

Detailed information about the sampling site was described in Tan et al. (2018). A weather station (Met 

one Instrument Inc., USA) was performed to measure meteorological parameters (ambient RH, 125 

temperature, wind speed, wind direction) and detailed aerosol particle physical and chemical properties 

were recorded using a suite of state-of-the-science instrumentation. Hygroscopic growth factor (HGF) 

of sub-micrometer aerosol particles was measured using a Hygroscopicity-Tandem Differential 

Mobility Analyzer (H-TDMA, TROPOS, Germany) (Wu et al., 2011;Massling et al., 2011;Wang et al., 

2018;Wu et al., 2016;Liu et al., 1978) and data retrieval followed the TDMAinv method in Gysel et al. 130 

(2009). The hygroscopicity parameter (κ) was estimated using by the κ-Kӧhler approach (Petters and 

Kreidenweis, 2007;Köhler, 1936). Size-resolved NR-PM1 was recorded by an Aerodyne High-

Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS, Aerodyne Research, Inc., USA) 

(DeCarlo et al., 2006). Regular calibration procedures followed as reported in Jayne et al. (2000) and 

Jimenez et al. (2003) and composition dependent correction followed as in Middlebrook et al. (2012). 135 

Gaseous HNO3 and NH3 were measured using Gas-Aerosol Collector (GAC) coupled with Ion 

Chromatography (IC) (Dong et al., 2012). Mass concentration of equivalent black carbon in aerosol 

particles (Petzold et al., 2013) was recorded by Multi Angle Absorption Photometer (MAAP, Model 
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5012, Thermo Fisher Scientific, USA) with a laser wavelength of 670 nm (Petzold and Schönlinner, 

2004). Furthermore, particle number size distribution (PNSD) in the size range of 3 nm~10 μm was 140 

measured using a Mobility Particle Size Spectrometer (MPSS, Model 3776+3085 3775+3081, TSI, 

USA), following the recommendations described in Wiedensohler et al. (2012) and an Aerodynamic 

Particle Size Spectrometer (APS, Model 3021, TSI, USA) (Wu et al., 2008;Pfeifer et al., 2016). 

Detailed description on H-TDMA, HR-ToF-AMS and GAC-IC can be found in the supporting 

information. 145 

2.2 Estimation of aerosol particle liquid water 

Given the absence of direct liquid water measurement, size-resolved liquid water was calculated using 

the corresponding HGFs measured at RH=90% (50, 100, 150, 250, 350 nm in stokes diameter), PNSD 

data (3 nm~10 μm) and meteorological parameters (RH, T), following the method proposed in Bian et 

al. (2014), referred to below as H-TDMA-derived liquid water. Briefly, the measured PNSD with 57 150 

size bins were fitted using a four-mode lognormal distribution. The classification of four modes and the 

fitting results are shown in Table S1 and Figure S4. Good agreement between measured values and 

fitted PNSD was achieved, which indicates the reliability of the four-mode lognormal fitting method. 

Based on four-mode lognormal fitting results, the particle number size distribution and number fractions 

of each mode can be obtained. It has been assumed that particles from the same mode have constant 155 

particle hygroscopicity (κ). Under the assumption of constant particle hygroscopicity in each mode 

(shown in Table S1), the κ values for each mode (κ1, κ2, κ3) can be calculated by Eq. [1] from the known 
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number fraction of fitted four modes and the κ values of measured particle size from H-TDMA 

measurement.  

� = ∑ ����
�
���    [1] 160 

Here, κi and fi represent the κ value and the particle number fraction of the i mode. Then, the calculated 

κ values for each mode and the derived number fraction of each size bin were used to obtain the κ 

distribution for each size bin. Figure S5 shows the comparison of calculated sized-resolved κ 

distribution and the κ measured by H-TDMA, the good agreement showed the reliability of the method. 

Then, based on κ-Kӧlher theory (Petters and Kreidenweis, 2007;Köhler, 1936), the size-resolved HGFs 165 

at ambient RH were calculated. Finally, liquid water of size-resolved particles can be derived by 

calculating the differentials between the dry and wet PNSD of aerosol particles in Eq. [2]: 

Liquid water=
�

�
����,�

� ���� ���,�� �
�
− 1�∗��           [2] 

where j represents the bin number of measured PNSD, Nj and Dp,j represent the number concentration 

and the diameter of dry particles of the jth bin, respectively, while, HGF and ρw, are the hygroscopic 170 

growth factor of aerosol particles and water density (1 g/cm3), respectively. 

2.3 Condensation rate of trace gases 

The condensation rate (k) of trace gases (dinitrogen pentoxide, N2O5, referred as k_N2O5) was 

calculated by the method of Schwartz (1986), shown in Eq. [3]. In order to illustrate the influences of 

the dry and wet PNSD due to water uptake on condensation rate of gases, the PNSD of the dry and wet 175 
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particles (obtained by applying the HGF estimated from H-TDMA-derived liquid water method) were 

used.  

� =
��

�
∫ (

��

���
+

��

����
)����

��

�����
�����

�

�
      [3] 

�� = �
���

�
           [4] 

Where, r represents radius of the particles, Dg represents the binary diffusion coefficient evaluated 180 

following Maitland (1981) (1.18*e-5 m2/s). Cg is the kinetic velocity of the gas molecules, calculated in 

Eq. [4]. Here, R and M are the ideal gas constant (8.314 kg.m2/mol/K/s2) and molar mass of the gas, 

respectively while T represents the ambient temperature. dN/dlogr is the number size distribution and γ 

is the uptake coefficient of the gas.  

The uptake coefficient of N2O5 was estimated following the method proposed in Chen et al. (2018b) and 185 

Chang et al. (2016) and references therein. The influences of RH, temperature, multiple inorganic 

particle compositions, secondary organic aerosol (SOA) and primary organic aerosol (POA) are 

considered. The uptake suppression effect of N2O5 due to the presence of SOA was considered 

following the method in Anttila et al. (2006). Based on our source apportionment using Positive matrix 

factorization (SoFi tool, ME2, Francesco Canonaco, PSI), two oxygenated organic aerosol factors 190 

(OOA), usually interpreted as SOA, and three POA factors were determined. The fraction of SOA in the 

total organic aerosol (OA) was 60%~90% during the observed period, which is quite consistent with the 

results of a previous study in Beijing (Huang et al., 2014). Hence, 75% was used as the ratio of 

SOA/OA in our model to estimate the suppression effect of SOA on the uptake of N2O5 following the 
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work of Anttila et al. (2006). The reaction of chloride with N2O5 was not considered in this study due to 195 

its limited mass concentration (on average 5% of the PM1 mass concentration during the marked haze 

period), which could cause minor uncertainty in the k_N2O5 calculation. The detailed information 

regarding the estimation γN2O5 is given in Chen et al. (2018b), and influences of different chemical 

components on γN2O5 is summarized in the Table 1 of Chen et al. (2018b).  

2.4 Equilibrium of NH4NO3 200 

The equilibrium dissociation constant of NH4NO3 (Kp) under dry conditions was calculated as a 

function of ambient temperature (Seinfeld. and Pandis., 2006) in the following Eq. [5].  

���� = 84.6 −
�����

�
− 6.1���

�

���
�       [5]   

Taking into account the associated liquid water, the equilibrium vapor pressure of HNO3 and NH3 was 

calculated by employing the Extended-Aerosol Inorganic Model (E-AIM) Model Ⅱ H+ - NH4
+ - SO4

2- - 205 

NO3
- - H2O (Clegg et al., 1998) using HR-ToF-AMS data, NH3 from GAC-IC, and meteorological 

parameters (RH, T). In this calculation, a simplified ion pairing scheme was performed to ensure the ion 

balance of the input chemical composition following the method in Gysel et al. (2007). 

2.5 Light extinction coefficient and visibility calculation 

Size-resolved chemical composition of the NR-PM1 from HR-ToF-AMS, mass concentration of 210 

equivalent black carbon from MAAP, PNSD data and the H-TDMA-derived liquid water were used to 

calculate light extinction coefficient (including light absorption and scattering) and visibility 

degradation of size-resolved particles by the Mie scattering theory described in Barnard et al. (2010). 
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Here, size-resolved equivalent black carbon mass concentration was inferred by the particle mass size 

distribution measurement from single particle soot photometer in PKUERS. The method of re-215 

distribution of liquid water and HR-ToF-AMS data has been described in the supporting information 

(Text S1, HR-ToF-AMS introduction section). Thus, with the re-distributed datasets as the input of the 

Mie scattering theory, the light extinction coefficient for atmospheric particles in the absence and 

presence of liquid water with a size range of 100~2500 nm in stokes diameter can be derived. Due to 

lack of measurements on aerosol particle morphology and mixing state, we assume particles are 220 

spherical as described in Barnard et al. (2010). To perform Mie calculation, the complex reflective 

index of each component is given in Table 1 of Barnard et al. (2010) and references therein. This 

method shows good agreement with measurements in Mexico City and is consistent as the regional 

atmospheric chemistry model WRF-Chem. Here, Ext_550nm_wet and Ext_550nm_dry represent the 

calculated light extinction coefficient for particles in the presence and absence of liquid water at an 225 

incident light wavelength of 550 nm. The corresponding visibility degradation (VIS) for dry/wet 

particles was calculated from the light extinction coefficient following the Koschmieder Eq. [6].  

VIS = 
�.���

���_�����
               [6] 

3 Results and Discussion 

3.1 Nitrate-dominated fine particulate matter pollution 230 

Figure 1 illustrates a summary of chemical composition of NR-PM1, ambient RH, size distribution and 

total aerosol particle liquid water, size distribution and total aerosol surface area concentration during 
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the period of February 29 to March 5, 2016 in the BEST-ONE campaign. During this period, polluted 

episodes occurred under stagnant meteorological conditions with low wind speed (Figure S6) and 

elevated ambient RH (Figure 1a). As marked ‘haze period’ in Figure 1, an obvious increase of NR-PM1 235 

was observed. The secondary inorganic components (sulfate, nitrate and ammonium) were dominant 

components of the NR-PM1, accounting for up to 73% during the ‘haze period’. Particularly, nitrate was 

the major contributor of the secondary inorganic components and accounted for up to ~44% of NR-PM1 

mass, while sulfate contributed for ~12% on average.  

In the recent decade, severe haze events with high aerosol mass loading occurred frequently in Beijing 240 

during wintertime (Hu et al., 2016;Hu et al., 2017;Sun et al., 2014;Sun et al., 2015). To mitigate the air 

pollution, the Beijing government implemented strict emission controls. The total mass loading of 

particulate matter has reduced substantially in the recent years (http://sthjj.beijing.gov.cn/). With 

decreasing in PM mass concentration, the mass fraction of particulate nitrate during these haze events in 

Beijing enhanced substantially. In 2014, the highest fraction of nitrate in PM1 was reported as ~20% and 245 

increased to ~35% in 2016 (Xu et al., 2019b), which is comparable to the ratio (44%) in this study. The 

particulate nitrate became more dominant in secondary inorganic compounds other than particulate 

sulfate with the air quality improvement over NCP.  

As one of the main hydrophilic compounds in atmospheric aerosol particles, the ability of water uptake 

is comparable between deliquescent (NH4)2SO4 and NH4NO3 particles with same sizes and ambient RH 250 

(Kreidenweis and Asa-Awuku, 2014;Wu et al., 2016), (http://umansysprop.seaes.manchester.ac.uk/). 

However, compared to (NH4)2SO4, NH4NO3 particles have a lower deliquescence RH (62%, 298 K) 

than (NH4)2SO4 (80%, 298 K) (Kreidenweis and Asa-Awuku, 2014) and easily liquefy (Li et al., 
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2017b). In addition, NH4NO3 particles are semi-volatile, the co-condensation of semi-volatile 

compounds and water (Topping et al., 2013;Hu et al., 2018) could be significant. Therefore, the 255 

switching from sulfate-dominated to nitrate-dominated aerosol chemistry may impact on aerosol water 

uptake. The interaction between aerosol particle liquid water and particulate nitrate formation and 

visibility degradation should be reconsidered. 

3.2 Mutual promotion between liquid water and particulate nitrate enhancement 

Lu et al. (2019) conducted a box model to calculate the potential particulate nitrate formation during the 260 

same investigated period of the BEST-ONE project. They found out that HNO3 from daytime 

photooxidation of NO2 was the major source of the particulate nitrate (>75%), whereas the contribution 

of N2O5 pathway was lower than 25% (Lu et al., 2019). In the following discussion, the enhancement of 

particulate nitrate during the ‘haze period’ is elucidated by theoretical calculations of condensational 

loss rate of N2O5, and the thermodynamic equilibrium of NH4NO3 and HNO3. In particular, the role of 265 

aerosol water uptake in particulate nitrate formation is comprehensively investigated.  

 N2O5 is an important gaseous precursor for particulate nitrate formation via its hydrolysis to form 

HNO3 during nighttime (Brown et al., 2006). Liquid water can enhance aerosol surface areas and 

volumes, thereby increasing the available heterogeneous reacting medium. Across the development of 

‘haze period’, the estimated liquid water increased from ~1 μg/m3 at the beginning (March 2, 270 

14:00~18:00 p.m.) to ~75 μg/m3 when the haze was fully developed (March 4, 4:00~8:00 a.m.). The 

total surface area and volume concentrations of particles were increased by the liquid water by 2~3% at 

the beginning and by up to ~25 and ~40% in the fully-developed haze compared to the ‘dry’ values, 



14 
 

respectively (see Figure S7 and S8). Additionally, from the beginning to the fully-developed haze, the 

uptake coefficient of N2O5 was enhanced by a factor of 9 from 0.002 to 0.018, and the k_N2O5 275 

increased by a factor of 20 (dry particles); while, considering the increased particle surface area and 

volume due to water uptake, the respective value of enhanced k_N2O5 was by a factor of 25 (Figure 2a). 

Apart from providing extra reacting medium, the abundant liquid water can liquefy the aerosol particles 

and may reduce any kinetic limitation of mass transfer for reactive gases (Koop et al., 2011;Shiraiwa et 

al., 2011) and impact thermodynamic equilibrium of semi-volatile compounds (Kulmala et al., 280 

1993;Topping et al., 2013) to contribute to secondary aerosol formation. Our previous study provided 

the observational evidence that particles may have transitioned from the solid phase to the liquid phase 

as RH increased from 20% to 60% during wintertime in Beijing (Liu et al., 2017). In this study, the 

ambient RH increased from ~10% up to 70% during the haze period, suggesting a likely transition of 

particles from the solid to liquid phase. Such phase transition may facilitate particulate nitrate formation 285 

by increasing diffusion coefficients of dissolved precursors.  

To illustrate the facilitation of particulate nitrate enhancement from HNO3 in the presence of liquid 

water, we performed the theoretical calculation of equilibrium between particulate NH4NO3 and 

gaseous NH3 and HNO3 under dry and ambient conditions, respectively. The dissociation constant of 

NH4NO3 (Kp) in dry condition was calculated using Eq. [5] without considering the influence of the 290 

liquid water. As shown in Figure 3, the equilibrium Kp in the dry condition ranged from 0.06 (275.3 K) 

to 4.61 (291.5 K) ppb2 during the ‘haze period’. Taking account of the aerosol liquid water, the 

equilibrium vapor pressure of HNO3 and NH3 over particles was calculated by E-AIM Model Ⅱ 

(www.aim.env.uea.ac.uk). Note that this calculation assumes negligible interaction between dissolved 
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organic components and the activity of NO3
-. In the presence of aerosol associated water, the product of 295 

equilibrium vapor pressure of NH3 and HNO3 calculated from E-AIM was 10~60% lower than the 

equilibrium Kp in the dry condition during the marked ‘haze period’. This means, the presence of 

aerosol liquid water changed the equilibrium and would favor the particulate nitrate enhancement. 

However, the aerosol particles didn’t reach the equilibrium between particulate NH4NO3 and the gases 

(NH3 + HNO3) during the investigated period, as the measured product of the NH3 and HNO3 partial 300 

pressure (2.55~9.63 ppb2) was supersaturated compared to the equilibrium values in both dry and 

deliquescent particles. In this case, the partitioning of gaseous NH3 and HNO3 in the atmosphere into 

the particle phase could be accelerated and leaded particulate nitrate enhancement as increasing of 

ambient RH. Owing to the nature of highly hydrophilic, the increased ammonium nitrate mass fraction 

leads to further water uptake. Such a mutual promotion of particulate nitrate and aerosol liquid water 305 

enhancement becomes more pronounced with the increasing pollution throughout the haze event owing 

to the simultaneously increasing ambient RH. Consistently, a significant co-increase of particulate 

nitrate and aerosol liquid water was observed during haze development as shown in Figure 4. At first, a 

steep increase of particulate nitrate in total nitrate mass ratio (from ~12% to ~98%) was observed as the 

aerosol liquid water enhanced up to ~20 µg/m3. And then, the particulate nitrate mass kept increasing 310 

with further increase of aerosol liquid water. We observed that, ~98% of nitrate was present as particle 

phase when aerosol liquid water was higher than ~20 µg/m3. The function between the particulate 

nitrate fraction in the total nitrate is given in Figure 4. It is worth noting that N2O5 hydrolysis during 

nighttime can contribute extra HNO3 in the wet denuding method within GAC-IC system. This effect 

explains the slightly underestimation of the particulate fraction during nighttime when aerosol liquid 315 
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water is less than 10 µg/m3 (Figure 4). However, the general consistency of this function between 

daytime and the nighttime (Figure 4) suggests a negligible influence of N2O5 interference on our 

analysis during the investigated period. 

Except for aerosol liquid water, aerosol pH is also an important factor on the particulate nitrate 

formation, higher pH is favorable for the equilibrium of HNO3 into the particle phase (Nah et al., 2018). 320 

pH of the fine aerosol particles was calculated by ISORROPIA Ⅱ (Fountoukis and Nenes, 2007) during 

the investigated period. The model was running in ‘forward mode’ with chemical composition of NR-

PM1 (NO3
-, SO4

2-, Cl-, NH4
+) and gas precursors (HNO3, HCl, NH3) by GAC-IC as inputs. And the 

model was running in ‘metastable mode’, assuming no solid existed in the system. Generally, the fine 

aerosol particles became more acidic with pH dropping from ~8 down to ~4 when NR-PM1 mass 325 

concentration increased from ~12 µg/m3 up to >300 µg/m3 as shown in Figure 5 and Figure 6. This 

declining trend of pH is not favorable for the HNO3 partitioning into the particle phase (Nah et al., 

2018). However, a clear enhanced trend of molar ratio of particulate nitrate in the total nitrate as a 

function of NR-PM1 mass concentration was observed correspondingly (as shown in Figure 5 and 

Figure 6). Therefore, in this case the increase of aerosol liquid water is more likely to be the driving 330 

factor of particulate nitrate formation compared to the influence of pH. 

It is worth noting that a similar co-condensation effect between water vapor and semi-volatile organic 

components (Topping and McFiggans, 2012;Topping et al., 2013;Hu et al., 2018) could promote the 

haze formation as well, for which there may be some evidence in the current case. Such a co-

condensation effect will lead to the enhancement of semi-volatile organic and inorganic (e.g., nitrate) 335 

material with the increasing RH in a developing haze. The associated water will favor partitioning of 
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both HNO3 and semi-volatile organic materials to the particle phase depending on the organic solubility, 

providing a linkage between the development of increasing organic and inorganic particle mass. 

3.3 The key role of liquid water on visibility degradation 

Aerosol particles grow up in size as ambient RH increases, further enhances their extinction coefficient 340 

and impacts visibility (Zhao et al., 2019;Kuang et al., 2016). In this section, size-resolved extinction 

coefficient of aerosol particles was estimated, and the influences of liquid water on the extinction 

coefficient and visibility were quantitatively evaluated. As shown in Figure 7a, the total light extinction 

coefficient of dry and wet aerosol particles enhanced by a factor of 4.3 and 5.4, respectively, from the 

beginning to a fully-developed haze. Correspondingly, the calculated visibility without considering 345 

liquid water degraded significantly from ~10 km to less than 2 km within 48 hours during the marked 

‘haze period’. The contribution of aerosol associated water to visibility impairment was negligible in the 

beginning (2%), while it was significant (up to 24%) in the fully-developed haze (Figure 7b). This 

indicates that liquid water facilitated visibility degradation during haze development.  

The influences of liquid water on visibility degradation varied with aerosol particle size. The size-350 

resolved chemical composition data showed that the inorganic species, mainly particulate nitrate, were 

dominant components in the aerosol particles within the size range of 300~700 nm (Figure S3). 

Correspondingly, the particles in this size range contained most of the liquid water (50~80% of the total 

aerosol liquid water content of PM1). According to discussion in Sec. 3.2, the mutual promotion effect 

between liquid water and particulate nitrate can promote their mass loading enhancement. Aerosol 355 

particles in this size range experienced the most significant enhancement of light extinction due to water 
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uptake (Figure 8a and 8b) and contributed 70~88% of the total extinction coefficient of the total NR-

PM1 (Figure S9). In conclude, the rapid particulate nitrate enhancement enhanced the aerosol extinction 

coefficient during haze developing, while the aerosol water uptake further enhanced the visibility 

degradation by increasing extinction coefficient and promoting particulate nitrate enhancement. 360 

It is worth noting that the enhanced dimming effect will further shallower the planetary boundary layer 

(PBL), which, in turn, depresses the dilution of water vapor and particulate matter in the atmosphere, 

hence leads to a higher RH and aerosol particle mass loading (Tie et al., 2017). Such effect is beyond 

the scope of this study. 

4 Conclusions and implication 365 

In this study, we observed a particulate nitrate-dominated (up to 44% of non-refractory PM1 mass 

concentration) particulate matter pollution episode, which is typical during winter haze in Beijing, 

China. A clear co-increase of aerosol particle liquid water and particulate nitrate was observed, 

demonstrating the mutual promotion between them via observation-based theoretical calculations.  

As shown in Figure 9, the water uptake by hygroscopic aerosols increased the aerosol surface area and 370 

volume, enhancing the condensational loss of N2O5 over particles and favoring the thermodynamic 

equilibrium of HNO3 into the particle phase under the supersaturated ambient HNO3 and NH3. The 

enhanced particulate nitrate from the above pathways increased the mass fraction of particulate nitrate, 

which had a lower deliquescence RH than sulfate and resulted in more water uptake at lower ambient 

RH (Kreidenweis and Asa-Awuku, 2014). Hence, the increased aerosol particle surface area and 375 
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volume concentrations due to water uptake, in turn facilitates particulate nitrate enhancement. Hence, a 

feedback loop between liquid water and particulate nitrate enhancement is built up. Therefore the 

enhanced particulate nitrate components can accelerate the feedback compared with sulfate-rich 

pollution over the NCP region in the past (Hu et al., 2016). This self-amplification can rapidly degrade 

air quality and halve visibility within one day. Our results highlight the importance of reducing the 380 

particulate nitrate and its precursors (e.g. NOx) for mitigation of haze episodes in NCP region.  
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 640 

Figure 1: The time series of (a) NR-PM1 chemical composition measured by the HR-ToF-AMS 

and ambient RH (red solid line), (b) size-segregated aerosol particle liquid water and the total 

mass concentration of liquid water with smaller than 1 µm in aerodynamic diameter (red solid 

line), (c) size-segregated aerosol particle surface area and total aerosol particle surface area 

without considering particle hygroscopic growth during February 29 to March 5, 2016.  645 
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Figure 2: The time series of condensational loss rate of N2O5 (k_N2O5) with the calculation of dry 

particle number size distribution (PNSD) and wet PNSD during February 29 to March 5, 2016. 
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 650 

 

Figure 3: The comparison of the calculated temperature-dependent dissociation constant of 

NH4NO3 (Kp) (Seinfeld. and Pandis., 2006) in the absence of liquid water, the product of 

equilibrium vapor pressure of gaseous NH3 and HNO3 from E-AIM (AIM_pNH3pHNO3), and the 

product of mixing ratios of gaseous NH3 and HNO3 measured by GAC-IC (M_pNH3pHNO3). 655 

Here, Kp is colored by the ambient temperature ranging 265~293K during February 29 to March 

5, 2016. 
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Figure 4: The relationship between aerosol particle liquid water and the molar ratio of particulate 660 

nitrate in the total nitrate, �������/(����� + �������)  (left axis) during the nighttime 

18:00~07:00+1 (green solid triangle) and the daytime at 07:00 ~ 18:00 (red solid triangle), and 

mass concentration of particulate nitrate as a function of aerosol liquid water (right axis) during 

the period of  during February 29 to March 5, 2016. Here, particulate nitrate was measured by 

HR-ToF-AMS and the HNO3 in the gas phase was measured by GAC-IC. Aerosol liquid water 665 

was calculated by H-TDMA-derived method.  
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Figure 5. The time series of chemical composition measured by HR-ToF-AMS (left axis), 

calculated aerosol pH by ISORROPIA Ⅱ (inner right axis) and molar ratio of particulate nitrate 

in the total nitrate (gas+particle phase) shown on outer right axis during February 29 to March 5, 670 

2016. 
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Figure 6. The pH of the fine aerosol particles (left axis) and the molar ratio of particulate nitrate 

in the total nitrate (gas+particle phase) (right axis) as a function of NR-PM1 mass concentrations. 
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 675 

Figure 7: The time series of (a) calculated total extinction coefficient at wavelength of 550 nm with 

the consideration of dry and wet PNSD, referred as Extinction coefficient_dry and Extinction 

coefficient_wet, (b) calculated visibility with the consideration of dry and wet PNSD, referred as 

Visibility_dry and Visibility_wet, respectively during February 29 to March 5, 2016. Visibility 

degradation percentage is (Visibility_wet-Visibility_dry)/Visibility_dry, representing the visibility 680 

degradation in the presence of liquid water. 
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Figure 8: (a) Size-segregated light extinction coefficient at wavelength of 550 nm for wet particles 

(Extinction coefficient_wet), (b) size-segregated difference between Extinction coefficient_wet and 685 

Extinction coefficient_dry, representing light extinction coefficient difference with and without 

considering liquid water during February 29 to March 5, 2016. 
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Figure 9: The scheme of the mutual promotion effect between aerosol liquid water and particulate 

nitrate 690 
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