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Abstract. Quantification of greenhouse gas emissions is receiving a lot of attention, because of its relevance for 7 

climate mitigation. Complementary to official reported bottom-up emission inventories, quantification can be 8 

done with an inverse modelling framework, combining atmospheric transport models, prior gridded emission 9 

inventories and a network of atmospheric observations to optimize the emission inventories. An important aspect 10 

of such method is a correct quantification of the uncertainties in all aspects of the modelling framework. The 11 

uncertainties in gridded emission inventories are, however, not systematically analysed. In this work, a statistically 12 

coherent method is used to quantify the uncertainties in a high-resolution gridded emission inventory of CO2 and 13 

CO for Europe. We perform a range of Monte Carlo simulations to determine the effect of uncertainties in different 14 

inventory components, including the spatial and temporal distribution, on the uncertainty in total emissions and 15 

the resulting atmospheric mixing ratios. We find that the uncertainty in the total emissions for the selected domain 16 

are 1 % for CO2 and 6 % for CO. Introducing spatial disaggregation causes a significant increase in the uncertainty 17 

of up to 40 % for CO2 and 70 % for CO for specific grid cells. Using gridded uncertainties specific regions can 18 

be defined that have the largest uncertainty in emissions and are thus an interesting target for inverse modelers. 19 

However, the largest sectors are usually the best-constrained ones (low relative uncertainty), so the absolute 20 

uncertainty is the best indicator for this. With this knowledge areas can be identified that are most sensitive to the 21 

largest emission uncertainties, which supports network design.  22 
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1 Introduction 23 

Carbon dioxide (CO2) is the most abundant greenhouse gas and is emitted in large quantities from human 24 

activities, especially from the burning of fossil fuels (Berner, 2003). A reliable inventory of fossil fuel CO2 25 

(FFCO2) emissions is important to increase our understanding of the carbon cycle and how the global climate will 26 

develop in the future. The impact of CO2 emissions is visible on a global scale and international efforts are required 27 

to mitigate climate change, but cities are the largest contributors to FFCO2 emissions (about 70% (IEA, 2008)). 28 

Therefore, emissions should be studied at different spatial and temporal scales to get a full understanding of their 29 

variability and mitigation potential.  30 

One way of describing emissions is an emission inventory, which is a structured set of emission data, 31 

distinguishing different pollutants and source categories. Often, emission inventories are based on reported 32 

emission data (for example from the National Inventory Reports (NIR’s) (UNFCCC, 2019)), which are national, 33 

yearly emissions based on energy statistics. These country-level emissions can be spatially and temporally 34 

disaggregated (scaled-down) to a certain level using proxies (e.g. the inventories of the Netherlands Organisation 35 

for Applied Scientific Research (TNO) (Denier van der Gon et al., 2017; Kuenen et al., 2014)). Other emission 36 

inventories are based on local energy consumption data and reported emissions, which are (dis)aggregated to the 37 

required spatial scale (e.g. Hestia (Gurney et al., 2011, 2019)) or rely on (global) statistical data and a consistent 38 

set of (non-country specific) emission factors representing different technology levels (e.g. EDGAR 39 

(http://edgar.jrc.ec.europa.eu)). Most inventories, including the one used in this study, rely on a combination of 40 

methods, using large-scale data supplemented with local data. Gridded emission inventories are essential as input 41 

for atmospheric transport models to facilitate comparison with observations of CO2 concentrations, as well as in 42 

inverse modelling as a prior estimate of the emission locations and magnitude. 43 

During the compilation of an emission inventory uncertainties are introduced at different levels (e.g. magnitude, 44 

timing or locations) and increasingly more attention is given to this topic. Parties to the United Nations Framework 45 

Convention on Climate Change (UNFCCC) report their annual emissions (disaggregated over source sectors and 46 

fuel types) in a NIR (UNFCCC, 2019), which includes an assessment of the uncertainties in the underlying data 47 

and an analysis of the uncertainties in the total emissions following IPCC (Intergovernmental Panel on Climate 48 

Change) guidelines. The simplest uncertainty analysis is based on simple equations for combining uncertainties 49 

from different sources (Tier 1 approach). A more advanced approach is a Monte Carlo simulation, which allows 50 

for non-normal uncertainty distributions (Tier 2 approach). The Tier 2 approach has been used by several 51 

countries, for example Finland (Monni et al., 2004) and Denmark (Fauser et al., 2011). 52 

These reports provide a good first step in quantifying emission uncertainties, but the uncertainty introduced by 53 

using proxies for spatial and temporal disaggregation are not considered. These are, however, an important source 54 

of uncertainty in the gridded emission inventories (Andres et al., 2016). Inverse modelling studies are increasingly 55 

focusing on urban areas, the main source areas of FFCO2 emissions, for which emission inventories with a high 56 

spatiotemporal resolution are used to better represent the variability in local emissions affecting local 57 

concentration measurements. Understanding the uncertainty at higher resolution than the country-level is thus 58 

necessary, which means that the uncertainty caused by spatiotemporal disaggregation becomes important as well. 59 

The uncertainties in emission inventories are important to understand for several reasons. First, knowledge of 60 

uncertainties helps pinpointing emission sources or areas that require more scrutiny (Monni et al., 2004; Palmer 61 

et al., 2018). Second, knowledge of uncertainties in prior emission estimates is an important part of inverse 62 
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modelling frameworks, which can be used for emission verification and in support of decision-making (Andres et 63 

al., 2014). For example, if uncertainties are not properly considered, there is a risk that the uncertainty range does 64 

not contain the actual emission value. In contrast, if uncertainties are overestimated the initial emission inventory 65 

gives little information about the actual emissions and more independent observations are needed. Third, local 66 

inverse modelling studies often rely on daytime (12-16h LT) observations, which are easier to simulate. Given 67 

the small size of the urban domain these observations only contain information on recent emissions, which have 68 

to be extrapolated using temporal profiles to calculate annual emissions. Therefore, knowledge of uncertainties in 69 

temporal profiles helps to better quantify the uncertainty in these annual emissions. Finally, emission uncertainties 70 

can support atmospheric observation system design, for example for inverse modelling studies. An ensemble of 71 

model runs can represent the spread in atmospheric concentration fields due to the uncertainty in emissions. 72 

Locations with a large spread in atmospheric concentrations are most sensitive to uncertainties in the emission 73 

inventory and are preferential locations for additional atmospheric measurements. To conclude, emission 74 

uncertainties are a critical part of emission verification systems and require more attention. To better understand 75 

how uncertainties in underlying data affect the overall uncertainty in gridded emissions, a family of ten emission 76 

inventories is compiled within the CO2 Human Emissions (CHE) project, which is funded by the Horizon 2020 77 

EU Research and Innovation programme (see Data Availability). The methodology used to create this family of 78 

emission inventories also forms the basis for the work described here. 79 

In this paper we illustrate a statistically coherent method to assess the uncertainties in a high-resolution emission 80 

inventory, including uncertainties resulting from spatiotemporal disaggregation. For this purpose, we use a Monte 81 

Carlo simulation to propagate uncertainties in underlying parameters into the total uncertainty in emissions (like 82 

the Tier 2 approach). We illustrate our methodology using a new high-resolution emission inventory for a 83 

European region centred over the Netherlands and Germany (Table 1, Fig. 1). We illustrate the magnitude of the 84 

uncertainties in emissions and how this affects simulated concentrations. The research questions are: 85 

1) How large are uncertainties in total inventory emissions and how does this differ per sector and country? 86 

2) How do uncertainties in spatial proxy maps affect local measurements? 87 

3) How important is the uncertainty in temporal profiles for the calculation of annual emissions from 88 

daytime (12-16h LT) emissions, which result from urban inverse modelling studies using only daytime 89 

observations? 90 

4) What information can we gain from high-resolution gridded uncertainty maps by comparing different 91 

regions? 92 

Inverse modelling studies often focus on a single species like CO2, but co-emitted species are increasingly 93 

included to allow source apportionment (Boschetti et al., 2018; Zheng et al., 2019). In this study, we look into 94 

CO2 and CO to illustrate our methodology, but the methodology can be applied to other (co-emitted) species. 95 

2 Methodology 96 

2.1 The high-resolution emission inventory 97 

The basis of this study is a high-resolution emission inventory for the greenhouse gases CO2 and CH4 and the co-98 

emitted tracers CO and NOx for the year 2015 (TNO GHGco v1.0, see details in Table 1). In this paper we only 99 

use CO2 and CO, which are divided over fossil fuel (FF) and biofuel (BF) emissions (no land use and land use 100 
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change emissions are included). The emission inventory covers a domain over Europe, including Germany, 101 

Netherlands, Belgium, Luxembourg and the Czech Republic, and parts of Great Britain, France, Denmark, Austria 102 

and Poland (see also Figure 1). 103 

Table 1: Characteristics of the high-resolution emission inventory TNO GHGco v1.1 containing fossil fuel (FF) and 104 
biofuel (BF) emissions. 105 

Air pollutants FFCO, BFCO, NOx 

Greenhouse gases FFCO2, BFCO2, CH4 

Resolution 1/60° longitude x 1/120° latitude (~ 1x1 km over central Europe) 

Period covered 2015 (annual emissions) 

Domain -2° W–19° E, 47° N–56°N 

Sector aggregation GNFR (A to L), with GNFR F (Road Transport) split in F1 to F4 (total 16 sectors) 

Countries Complete: Germany, Netherlands, Belgium, Luxembourg, Czech Republic 

Partially: United Kingdom, France, Denmark, Austria, Poland, Switzerland, Italy, 

Slovakia and Hungary 

 106 

The emission inventory is based on the reported emissions by European countries to the UNFCCC (only 107 

greenhouse gases) and to EMEP/CEIP (European Monitoring and Evaluation Programme/Centre on Emission 108 

Inventories and Projections, only air pollutants). UNFCCC CO2 emissions have been aggregated to ~250 different 109 

combinations of NFR sectors (Nomenclature For Reporting) and fuel types. EMEP/CEIP CO emissions have been 110 

split over the same NFR sector-fuel type combinations by TNO using the GAINS model (Amann et al., 2011) 111 

and/or TNO data. In some cases, the reported data was gap-filled or replaced with emissions from the GAINS 112 

model, EDGAR inventory or internal TNO estimates to obtain a consistent dataset. Next, each NFR sector is 113 

linked to a high-resolution proxy map (e.g. population density for residential combustion of fossil fuels or AIS 114 

(Automatic Identification System) data for shipping re-gridded to 1/60° x 1/120°), which is used to spatially 115 

disaggregate the reported country-level emissions. Where possible, the exact location and reported emission of 116 

large point sources is used (e.g. from the E-PRTR (European Pollutant Release and Transfer Register)). The third 117 

step is temporal disaggregation, for which standard temporal profiles are used (Denier van der Gon et al., 2011). 118 

Finally, the emissions are aggregated to GNFR (gridded NFR) sectors (see Table 2) for the emission inventory. 119 

The final emission maps of CO2 and CO are shown in Figure 1, together with two examples of a source sector 120 

map. Note that these maps do not clearly show the large point source emissions, while these make up almost 45 121 

% of all CO2 emissions and 26 % of all CO emissions. 122 
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 123 

Figure 1: Total emissions of CO2 and CO, road traffic (gasoline) emissions of CO2, and other stationary combustion 124 
emissions of CO for 2015 in kt yr-1 (defined per grid cell). 125 

2.2 Uncertainties in parameters 126 

The emission inventory is used as basis for an uncertainty analysis by assigning an uncertainty to each parameter 127 

underlying the UNFCCC-EMEP/CEIP emission inventories and further disaggregation thereof. Although the 128 

aggregation to GNFR sectors makes the emission inventory more comprehensible, we use the more detailed 129 

underlying data for the uncertainty analysis. The reason is that the uncertainties can vary enormously between 130 

sub-sectors and fuel types. Generally, the emission at a certain time and place is determined by four types of 131 

parameters: activity data, emission factor, spatial distribution and temporal profile. The activity data and emission 132 

factors are used by countries to calculate their emissions. The spatial proxy maps and temporal profiles are used 133 

for spatiotemporal disaggregation. All uncertainties need to be specified per NFR sector-fuel type combination 134 

that is part of the Monte Carlo simulation. In the following sections the steps taken to arrive at a covariance matrix 135 

for the Monte Carlo simulation are described. Tables with uncertainty data can be found in Appendix A. 136 

Table 2: Overview of aggregated NFR (GNFR) sectors distinguished in the emission inventory 137 

GNFR category GNFR category name 

A A_PublicPower 

B B_Industry 

C C_OtherStationaryComb 

D D_Fugitives 

E E_Solvents 

F F_RoadTransport 
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F1 F_RoadTransport_exhaust_gasoline 

F2 F_RoadTransport_exhaust_diesel 

F3 F_RoadTransport_exhaust_LPG_gas 

F4 F_RoadTransport_non-exhaust 

G G_Shipping 

H H_Aviation 

I I_OffRoad 

J J_Waste 

K K_AgriLivestock 

L L_AgriOther 

2.2.1 Parameter selection  138 

The first step is to identify which parameters should be included in the Monte Carlo simulation. As mentioned 139 

before there are about 250 different combinations of NFR sectors and fuel types and including all of them would 140 

be a huge computational challenge. However, a selection of 112 combinations makes up most of the fossil fuel 141 

emissions (96 % for CO2 and 92 % for CO) and therefore a pre-selection was made. This results in a covariance 142 

matrix of 224x224 parameters (112 sector-fuel combinations for two species). To further reduce the size of the 143 

problem, the emissions are partly aggregated before starting the Monte Carlo for the spatial proxies (mostly fuels 144 

are combined per sector, because they have the same spatial distribution). This results in a total of 59 NFR sector-145 

spatial proxy combinations, which are put in a separate covariance matrix. The temporal profiles are applied to 146 

the aggregated GNFR sectors, which make up the last covariance matrix. Note that the spatial proxies and temporal 147 

profiles are the same for CO2 and CO. Only the spatially explicit E-PRTR point source data can have a different 148 

spatial distribution for CO2 and CO, but they also use the same temporal profiles. 149 

2.2.2 Uncertainties in reported emissions 150 

Country-level emissions are estimated from the multiplication of activity data and emission factors. Activity data 151 

consist for the most part of fossil fuel consumption data available from national energy balances. Some fuel 152 

consumptions are better known than others and uncertainties vary across sectors. An emission factor is the amount 153 

of emission that is produced per unit of activity (e.g. amount of fuel consumed). For CO2 this depends mainly on 154 

the carbon content of the fuel. In contrast, CO emissions are extremely dependent on combustion conditions, 155 

choice of  industrial processes and in-place technologies.  156 

The NIR’s for greenhouse gases (GHGs) provide a table with uncertainties in activity data and CO2 emission 157 

factors on the level of NFR sector - fuel combinations. The uncertainties reported by each country are averaged 158 

to get one uncertainty per NFR sector-fuel combination for the entire domain. Overall, the differences in reported 159 

uncertainties between countries are small. The uncertainties in activity data and CO2 emission factors are relatively 160 

low and normally distributed.  161 

The CO emission factors are mostly based on uncertainty ranges provided in the EMEP/EEA Guidebook 162 

(European Environment Agency, 2016) and supplemented by BAT reference documents from which reported 163 

emission factor ranges are taken as uncertainty range (http://eippcb.jrc.ec.europa.eu/reference/). The CO emission 164 

factor uncertainties are generally expressed by a factor, which means that the highest and lowest limit values are 165 
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either the specified factor above or below the most common value. Therefore, these uncertainties have a lognormal 166 

distribution and are relatively large. 167 

 168 

Figure 2: Covariance matrices for total emissions of CO2 (left) and CO (right) per aggregated source sector. A white 169 
space on the diagonal indicates this sector is not included in the Monte Carlo simulation. 170 

To estimate the overall uncertainty in the emissions per NFR sector-fuel combination, the uncertainties in the 171 

activity data and emission factors need to be combined (shown in Figure 2 for the aggregated GNFR sectors). 172 

When both uncertainties are of the same order and relatively small, as well as both having a normal distribution, 173 

the overall emission uncertainty is calculated with the standard formula for error propagation for non-correlated 174 

normally distributed variables (see Sect. 2.4). For most CO emission factors, uncertainties are much higher and 175 

have a lognormal distribution instead of normal. In that case the uncertainty of the variable with the highest 176 

uncertainty is assumed to be indicative for the overall uncertainty of the emission, which in general means the 177 

uncertainty of the CO emission factor determines the overall uncertainty of the CO emission, with the distribution 178 

remaining lognormal. The error introduced by fuel type disaggregation for CO is not considered. 179 

Finally, for power plants and road traffic we assumed error correlations to exist between different sub-sectors per 180 

fuel type, and between different fuel types per sub-sector for other NFR sectors. In some cases, correlations also 181 

exist between different NFR sectors belonging to the same GNFR sector. The definition of correlations is 182 

important, because they affect the total uncertainties. For example, if emission factors of sub-sectors are 183 

correlated, deviations can amplify each other, leading to higher overall uncertainties. In contrast, the division of 184 

the well-known total fuel consumption of a sector over its sub-sectors includes an uncertainty which is anti-185 

correlated (i.e. if too much fuel consumption is assigned to one sub-sector, too little is assigned to another). This 186 

has little impact on the total emissions, because uncertainties only exist at lower levels. 187 

2.2.3 Uncertainties in spatial proxies 188 

The proxy maps used for spatial disaggregation can introduce a large uncertainty coming from the following 189 

sources: 190 
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1) The proxy is not correctly representing real-world locations of what it is supposed to represent, either 191 

because there are cells included in which none of the intended activity takes place or cells are missing in 192 

which the intended activity does take place (proxy quality). 193 

2) The proxy is not fully representative for the activity it is assumed to represent, for example if there is a non-194 

linear relationship between the proxy value and the emission (proxy representativeness): a grid cell with 195 

twice the population density does not necessarily have double the amount of residential heating emissions, 196 

because heating can be more efficient in densely populated areas and/or apartment blocks. 197 

3) The cell values themselves are uncertain, e.g. the population density or traffic intensity (proxy value). 198 

We attempt to capture the second and third source of uncertainty in a single numerical indicator representing the 199 

uncertainty at cell level (see Figure 3 for the uncertainty per aggregated GNFR sector). The overall uncertainties 200 

are based on expert judgement and inevitably include a considerable amount of subjectivity. This type of 201 

uncertainty is often large and has a lognormal distribution, except for proxies related to road traffic and some 202 

proxies related to commercial/residential emissions sources. We assume no error correlations exist. The first 203 

source of uncertainty is also considered in one of the experiments (see Sect. 2.4 for a description of this 204 

experiment). 205 

2.2.4 Uncertainties in temporal profiles 206 

For each GNFR sector the emission timing is described using three temporal profiles: one profile that describes 207 

the seasonal cycle (monthly fractions), one profile that describes the day-to-day variations within a week (daily 208 

fractions), and one profile that describes the diurnal cycle (hourly fractions). These profiles are based on long-209 

term average activity data and/or socio-economic characteristics and are applied for each year and for the entire 210 

domain, considering only time zone differences. In reality, the temporal profiles can differ between countries, 211 

from year to year and the diurnal cycle can vary between weekdays and weekends. For example, residential 212 

emissions are strongly correlated with the outside temperature, which follows a different pattern each year. 213 

 214 

Figure 3: Covariance matrices for spatial proxies (left) and time profiles (right) per aggregated source sector. These 215 
are the same for CO2 and CO. A white space on the diagonal indicates this sector is not included in the Monte Carlo 216 
simulation. 217 
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To quantify the uncertainty in temporal profiles, a range of temporal profiles (for a full year, hourly resolution) 218 

was created for each source sector based on activity data (such as traffic counts). These profiles can be from 219 

different years and countries, so that the full range of possibilities is included. These are compared to the fixed 220 

temporal profiles to estimate the uncertainties, which are normally distributed (see Figure 3 for the uncertainty 221 

per aggregated GNFR sector). We assume no error correlations exist. 222 

Table 3: Percentage (%) of emissions of CO2 and CO (FF + BF) that are attributed to large point sources (accounted 223 
for in databases) for source sectors public power and industry. 224 

 CO2  CO  

Country Public power Industry Public power Industry 

Netherlands 84.3 % 80.4 % 80.7 % 86.0 % 

Belgium 65.4 % 77.5 % 99.5 % 93.5 % 

Luxembourg 67.1 % 67.2 % 61.8 % 94.2 % 

Germany 85.9 % 74.1 % 96.7 % 87.9 % 

Czech Republic 89.2 % 90.4 % 79.3 % 94.3 % 

2.3 The Monte Carlo simulation 225 

Within a Monte Carlo simulation we create an ensemble (size N) of emissions, spatial proxies and temporal 226 

profiles by drawing random samples from the covariance matrices described in Sect. 2.2. This creates a set of 227 

possible solutions in the emission space, reflecting the uncertainties in the underlying parameters. The entire 228 

process is shown in Figure 4. As mentioned before, not all sub-sectors are included in the Monte Carlo simulation 229 

and the non-included emissions are added to each ensemble member at the final stage. It is important to ensure 230 

that the temporal profiles and the spatial proxies do not affect the total emissions, so proxies should sum up to 1 231 

for each country and temporal profiles should be on average 1 over a full year. Before doing this, negative values 232 

are removed.  233 

The source sectors that include point source emissions (mainly public power and industry) are treated separately. 234 

The large point source emissions and their locations are relatively well-known and available from databases (e.g. 235 

from E-PRTR), and therefore not included in the Monte Carlo. The remaining part of the emissions (non-point 236 

source or small point sources) from these sectors are distributed using generic proxies (e.g. industrial areas) and 237 

are calculated as the difference between the total emissions (activity data x emission factor) and the sum of the 238 

point source emissions. If negative emissions result from this subtraction of reported point source emissions, the 239 

residual is set to zero. Note that the spatial uncertainty of this residual part is often high. The fraction of the public 240 

power and industrial emissions that are attributed to large point sources are shown in Table 3 for several countries. 241 
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 242 

Figure 4: Flow-diagram showing the input, processing and output of the Monte Carlo simulation. 243 

2.4 Experiments to explore uncertainty propagation 244 

In this paper several experiments are performed to examine the impact of the uncertainties in different parameters 245 

on the overall emissions and simulated concentrations: 246 

1) The first experiment uses a Monte Carlo simulation (N=500) to illustrate the spread in emissions per sector 247 

due to uncertainties in emission factors and activity data (no spatial/temporal variability is considered). This 248 

sample size is based on an analysis of the robustness of the uncertainty estimate (Janssen, 2013), which 249 

shows that a sample size of 500 is sufficient to get robust results (Appendix B). This experiment is used to 250 

show the contribution of specific sectors to the overall uncertainty and to illustrate how uncertainties vary 251 

between sectors and countries. For this experiment country totals are used, also for the countries that are 252 

partially outside the zoom domain shown in Figure 1. The results are presented in Sect. 3.1. 253 

2) The second experiment uses a Monte Carlo simulation (N=500) to illustrate how the uncertainty in spatial 254 

proxy maps is translated into uncertainties in simulated concentrations (emissions are taken constant; no 255 

temporal variability is included). We use emissions of other stationary combustion (CO2) and road traffic 256 

(CO) to illustrate the importance of having a correct spatial distribution for measurements close to the source 257 

area and further away. The results are presented in Sect. 3.2. 258 

3) The third experiment compares two spatial proxy maps for distributing ‘residual’ power plant emissions 259 

(i.e. those not accounted for in point source databases) to illustrate the potential impact of spreading out 260 

small point source emissions when zooming in on small case study areas (emissions are taken constant; no 261 

temporal variability is included). The results are presented in Sect. 3.2. 262 

4) The fourth experiment uses a Monte Carlo simulation (N=500) to illustrate the spread in temporal profiles 263 

(emissions are taken constant; no spatial variability is considered). We use this information to determine 264 

the error introduced when extrapolating daytime (12–16 h LT) emissions (for example resulting from an 265 
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inversion) to annual emissions using an incorrect temporal profile. Figure 5 shows two possible daily cycles, 266 

which have 46 % (blue) and 25 % (orange) of their emissions between 12 and 16 h LT. Therefore, both 267 

temporal profiles will give a different total daily emission when used to derive the daytime emissions. The 268 

results are presented in Sect. 3.3. 269 

 270 

Figure 5: Schematic overview of two possible temporal profiles, which represent a different fraction of the total daily 271 
emissions during the selected period (12–16 h LT, illustrated by the dashed lines). 272 

5) For the final experiment, maps are made of the (absolute and relative) uncertainty in each pixel, including 273 

uncertainties in emission factors, activity data and spatial proxies (no temporal variability). For this we used 274 

a Tier 1 approach, using the following equations: 275 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = √∑ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑠𝑢𝑚⁄    (1) 276 

for the summation of uncorrelation quantities (e.g. sectoral emissions), and: 277 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = √∑ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠2     (2) 278 

for the multiplication of random variables, such as used to combine activity data and emission factors. Here, 279 

the (total) relative uncertainty is the percentage uncertainty (uncertainty divided by the total) and the 280 

standard deviations are expressed in units of the uncertain quantity (percentage uncertainty multiplied with 281 

the uncertain quantity). These maps are used to explore spatial patterns in uncertainties and examine what 282 

we can learn about different countries or regions. The results are presented in Sect. 3.4. 283 

For experiment 2 and 3 a smaller domain is selected to represent a local case study (Figure 6). We used the 284 

Rotterdam area, which has been studied in detail before (Super et al., 2017b, 2017a). The domain is about 34x26 285 

km and centred over the city, which includes some major industrial activity as well. To translate the emissions 286 

into atmospheric concentrations, a simple plume dispersion model is used, the Operational Priority Substances 287 

(OPS) model. This model was developed to calculate the transport of pollutants, including chemical 288 

transformations (Van Jaarsveld, 2004; Sauter et al., 2016) and was adapted to include CO and CO2 (Super et al., 289 

2017a). The short-term version of the model calculates hourly concentrations at specific receptor points, 290 

considering hourly variations in wind direction and other transport parameters. Although the model is often used 291 

for point source emissions, it can also handle surface area sources. This model was chosen because of its very 292 

short run time, which makes it suitable for a large ensemble. The model is run for each of the alternative emission 293 

maps. 294 
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 295 

Figure 6: Emissions of CO2 (left) and CO (right) for part of the Netherlands, including the sub-domain (black rectangle) 296 
over Rotterdam. Black stars indicate the receptor locations. 297 

The OPS model is run for each ensemble member for 5 January 2014 from the start of the day until 16 h LT. On 298 

this day the wind direction is relatively constant at about 215° and the wind speed is around 6 m s-1. We specify 299 

receptor points downwind from the centre of our domain at increasing distance (5, 10, 15, 20, 30 and 40 km). We 300 

use the last hour of the simulation for our analyses. We assume emissions from other stationary combustion and 301 

road traffic (experiment 2) to take place at the surface. The initial emissions of ‘residual’ power plants, smeared 302 

out over all industrial areas, are also emitted at the surface. However, we raise the height of the emissions to 20m 303 

when these emissions are appointed to specific pixels. This height is representative for stack heights of small 304 

power plants. 305 

3 Results 306 

3.1 Uncertainties in total emissions 307 

Using the uncertainties in emission factors and activity data we can evaluate the uncertainty in the total emissions 308 

of CO2 and CO per sector. Figure 7 shows the normalized spread in emissions per sector based on the Monte Carlo 309 

simulation (N=500). The CO2 emissions have a relatively small uncertainty range and the uncertainty in the total 310 

emissions (if we sum all GNFR sector emissions for each of the 500 solutions) is only about 1 % (standard 311 

deviation). The largest uncertainties are for fugitives and aviation, which are only small contributors to the total 312 

CO2 emissions (1.3 % and 0.4 %, respectively). Therefore, their contribution to the total emission uncertainty is 313 

very small, as is shown in Figure 8. The largest uncertainty in the total CO2 emissions is caused by the public 314 

power sector. Despite the relatively small uncertainty in the emissions from this sector, it is the largest contributor 315 

to the total CO2 emissions (33 %) and therefore the uncertainty in the public power sector contributes about 45 % 316 

to the uncertainty in the total CO2 emissions. 317 

In contrast, the CO emissions show a larger uncertainty bandwidth with many high outliers caused by the 318 

lognormal distribution of uncertainties in the emission factors. The uncertainty in the total emissions is 6 % for 319 

CO (standard deviation). Here, again the largest uncertainties are related to sectors (public power and road 320 

transport (LPG fuel)) that are relatively small contributors to the total CO emissions. The main contributor to the 321 

uncertainty in total CO emissions is other stationary combustion, which contributes about 31 % to the total 322 

emissions and is responsible for more than 60 % of the total uncertainty. 323 
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 324 

Figure 7: Normalized spread in emissions of CO2 (left) and CO (right). The box represents the interquartile range, the 325 
whiskers the 2.5–97.5 percentile, the lines the median values, and the circles are outliers. For sectors where no box is 326 
drawn there is no data included in the Monte Carlo simulation. Note the different scales of the y-axis. 327 

 328 

Figure 8: Contribution of source sectors to the total uncertainty in CO2 (left) and CO emissions (right), summing to 329 
100 %. 330 

Although the uncertainty in each parameter is assumed to be the same for each country, how a sector is composed 331 

of sub-sectors can vary per country. Therefore, the uncertainty per aggregated sector can also vary per country. 332 

An example is shown in Figure 9 (left panel), which shows the normalized spread in CO2 emissions of other 333 

stationary combustion for all countries within the domain. We find a much larger uncertainty in countries where 334 
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the relative fraction of biomass combustion is larger, because biomass burning has a much larger uncertainty in 335 

both the activity data and the emission factor. For example, the percentage of biomass burning in the residential 336 

sector is 54 % for the Czech Republic and 65 % for Denmark, compared to only 11 % and 9 % for the Netherlands 337 

and Great Britain. Thus, differences in the fuel composition of countries result in differences in the overall 338 

emission uncertainties, even if the uncertainty per parameter is estimated to be the same. For the total CO2 339 

emissions the differences between countries are small, with standard deviations between 1.2 and 2.3 % (Figure 9, 340 

right panel). 341 

 342 

Figure 9: Normalized spread in emissions of CO2 for other stationary combustion (left) and all sectors combined (right) 343 
for a range of countries. The box represents the interquartile range, the whiskers the 2.5–97.5 percentile, the lines the 344 
median values, and the circles are outliers. 345 

3.2 Uncertainties in spatial proxies 346 

We examined the impact of uncertainties in spatial proxies on modelled CO2 and CO concentrations for major 347 

source sectors. For CO2 we selected other stationary combustion (only commercial/residential, no 348 

agriculture/forestry/fishing). The largest fraction (>90 %) of CO2 emissions from this sector is distributed using 349 

population density as proxy, which is used here (the remainder of the emissions is not considered). The uncertainty 350 

in this sector-proxy combination is estimated to be 50% (normal distribution), mainly due to the disaggregation 351 

to the 1x1 km resolution. For CO we selected road transport (all fuels, but only passenger cars). The spatial proxy 352 

for distributing passenger car emissions is based on traffic intensities compiled using Open Transport Map and 353 

Open Street Map, vehicle emission factors per road type/vehicle type/country, and fleet composition. The 354 

uncertainty in this proxy is estimated to be 30 % (normal distribution) due to a higher intrinsic resolution. 355 

Figure 10 shows the resulting spread in atmospheric concentrations as a function of downwind distance from the 356 

source area. Note that the concentrations are enhancements caused by local emissions of the selected source 357 

sectors and do not include ambient concentrations or other sources. For CO2 (left panel) we see a concentration 358 

of about 3.0 ppm at 10 km from the source area centre, but with a large uncertainty bandwidth. This signal is large 359 

enough to measure, but with this large uncertainty such measurements are difficult to use in an inversion. The 360 
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measurement at 5 km from the source area centre is slightly lower than the one at 10 km, because it is upwind of 361 

a part of the emissions. At longer distances, the concentration enhancement decreases drastically, and so does the 362 

absolute spread in concentrations. The enhancement becomes too small compared to the uncertainties occurring 363 

in a regular inversion framework to be useful. The right panel shows a similar picture for the CO concentrations 364 

resulting from passenger car emissions. Again, the spread in concentrations is large close to the source area centre 365 

and decreases with distance, but also the absolute concentration enhancement decreases. However, in this case 366 

the concentration at 5 km from the source area centre is larger, because it is very close to an emission hot spot 367 

(see also Fig. 6). Note that we focus here on a single source sector and the overall enhancements will be larger 368 

and therefore easier to use. Nevertheless, the large spread in concentrations shows that a good representation of 369 

the spatial distribution is important for constraining sectoral emissions. 370 

 371 

Figure 10: Spread in simulated concentrations of CO2 resulting from commercial/residential emissions due to 372 
uncertainties in the total population proxy map (left) and spread in concentrations of CO resulting from road transport 373 
(passenger cars) emissions due to uncertainties in the passenger cars proxy map (right). The box represents the 374 
interquartile range, the whiskers the 2.5–97.5 percentile, and the lines the median values of the full ensemble. 375 

Both proxy maps discussed here are the main proxy maps for the selected sectors. As mentioned before, some 376 

sectors have residual emissions that are distributed using an alternative proxy map. An example is public power. 377 

Large power plants are listed in databases, including the reported emissions (Table 3). The remainder of the 378 

country emissions is spatially distributed over all industrial areas. However, it is more likely that the residual 379 

emissions should be attributed to specific point sources (small power plants not listed in databases). That means 380 

that instead of spreading the emissions over a large area, leading to very small local emissions and a low 381 

concentration gradient, there could be relatively large emissions at a few locations. Therefore, the uncertainty in 382 

these sector-proxy combinations is assumed to have a lognormal distribution, in part because of the absence of a 383 

better estimation. 384 

We illustrate the effect of this assumption by creating a new proxy map for residual (small) power plants. We find 385 

that for the Netherlands a total capacity of 3655 MWe by 676 combustion plants is not included as a point source 386 

(source: S&P Global Platts World Electric Power Plants database (https://www.spglobal.com/platts/en/products-387 

services/electric-power/world-electric-power-plants-database)). At least 70 % of this capacity, attributed to 280 388 

plants, is assumed to be in industrial areas. Given 4052 grid cells designated as industrial area in the Netherlands, 389 

this is just 7 % of the total amount of industrial area grid cells assuming no more than one plant per grid cell. The 390 

remainder is mainly related to cogeneration plants from glasshouses, which are located outside the industrial areas. 391 

Therefore, we create a new proxy map for power plants by equally assigning 70 % of the emissions from the 392 

residual power plants to 20 randomly chosen pixels (7 % of the total amount of industrial area pixels in the case 393 
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study area, i.e. the same density as for the Netherlands as a whole). As mentioned before, we also raise the height 394 

of the emissions from surface level to 20 m, which is a better estimate of the stack height for small power plants. 395 

The effect on local measurements is large (Figure 11). Instead of measuring a small and constant signal from this 396 

sector, the assumed presence of small power plants results in measuring occasional large peak concentrations. 397 

Thus, despite being relatively unimportant at the national level, for local studies the impact of the uncertainty in 398 

these ‘residual’ proxies can be large. 399 

 400 

Figure 11: Spread in simulated concentrations of CO2 resulting from public power emissions due to differences in the 401 
proxy map: emissions are distributed using the new proxy map with only 20 randomly chosen pixels containing 402 
emissions. The box represents the interquartile range, the whiskers the 2.5–97.5 percentile, the lines the median values, 403 
and the black circles are outliers of the full ensemble. The red dots show concentrations of CO2 when the original proxy 404 
map is used (industrial area). 405 

3.3 Uncertainties in temporal profiles 406 

The timing of emissions is important to interpret measurements correctly. During morning rush hour, a peak is 407 

expected in road traffic emissions, but the magnitude of this peak can differ from one day to the next. Also, the 408 

seasonal cycle in emissions due to heating of buildings can vary between years due to varying weather conditions. 409 

Yet, often fixed temporal profiles are used to describe the temporal disaggregation of annual emissions. The range 410 

of possible values for the temporal profile of other stationary combustion is shown in Figure 12. The range can 411 

be very large, especially during the winter. However, note that the average of each temporal profile is 1.0 for a 412 

full year, so that the temporally distributed emissions add up to the annual total. Therefore, changes in the temporal 413 

profile indicate shifts in the timing in the emissions and not changes in the overall emissions due to cold weather, 414 

which are accounted for by the activity data. 415 

 416 
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Figure 12: Spread in temporal profiles for other stationary combustion (N=500), resulting from the Monte Carlo 417 
simulation (grey shading). The black line represents the standard time profile. 418 

In inverse modelling, often well-mixed (non-stable) daytime measurements are selected (Boon et al., 2016; Breón 419 

et al., 2015; Lauvaux et al., 2013), because these are least prone to errors in model transport. For local studies, 420 

where transport times are short, this means that only afternoon emissions are optimized. The total annual emissions 421 

can then be calculated using a temporal profile. However, if the temporal profile is not correct, an incorrect fraction 422 

of the emissions can be attributed to the selected hours. We examined the impact of using an incorrect temporal 423 

profile on the total yearly emissions by calculating yearly emissions for each ensemble member. Figure 13 shows 424 

the normalized spread in sectoral emissions for all ensemble members. The error in the total annual emissions, 425 

resulting from the upscaling of daytime emissions using an incorrect temporal profile, can reach up to about 1–2 426 

%. This is a significant source of error for country-level CO2 emissions, but less important for CO as the other 427 

uncertainties for CO are much larger. 428 

 429 

Figure 13: Normalized spread in emissions of CO2 and CO per sector due to uncertainties in temporal profiles. The 430 
box represents the interquartile range, the whiskers the 2.5–97.5 percentile, the lines the median values, and the circles 431 
are outliers. The spread is the same for CO2 and CO, because they have the same temporal profiles. 432 

3.4 Uncertainty maps and spatial patterns 433 

As mentioned before, the uncertainty of the emission value in a grid cell is determined by the uncertainties in 434 

activity data, emission factors and spatial distribution proxies. The gridded uncertainty maps in Figure 14 and 435 

Figure 15 illustrate that countries or (types of) regions differ significantly in their emission uncertainty, both in 436 

absolute and relative values. Concerning the uncertainty in CO2 and CO emissions, several observations can be 437 

made. 438 

First, for both CO and CO2 the road network is visible due to low relative uncertainties and high absolute 439 

uncertainties compared to the surroundings. This indicates that, despite having large emissions per pixel, the 440 

spread in road traffic emissions among ensemble members is relatively small. This is likely due to the small 441 

(normally distributed) uncertainty in the spatial proxies for road traffic, i.e. the location of the roads is well-known. 442 
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The surrounding rural areas are dominated by other stationary combustion, which has a slightly larger spatial 443 

uncertainty. 444 

 445 

Figure 14: Maps of the relative and absolute uncertainty in CO2 emissions. Areas that are examined in more detail are 446 
outlined by black squares in the top panel. 447 
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 448 

Figure 15: Maps of the relative and absolute uncertainty in CO emissions. Areas that are examined in more detail are 449 
outlined by black squares in the top panel. 450 

Second, in Austria (Tirol mainly) a large area of high relative uncertainty in CO2 emissions is visible (average 451 

pixel emission is 220 tonnes CO2 yr-1), which we compare to an area just on the other site of the border in southern 452 

Germany (average pixel emission is 495 tonnes CO2 yr-1). The uncertainty in both areas is dominated by other 453 

stationary combustion. Yet, in Austria a lot of biofuel is used (52 % of the total emissions for this source sector) 454 

with a large uncertainty in the emission factor and spatial distribution, whereas in Germany only 20 % of the 455 

emissions in this sector are caused by biofuel combustion. On the other hand, the absolute uncertainty is very 456 

small in Tirol because of the low population density (and thus small emissions) in this mountainous area. 457 
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Third, some large patches of high relative uncertainty in CO2 emissions are visible in the Czech Republic and the 458 

northeast of France. The location of these patches seems to correspond to natural areas/parks. Therefore, absolute 459 

uncertainties are low in these areas given the low emissions (average pixel emission in the Sumava national park 460 

is 22 tonnes CO2 yr-1). The total uncertainty can be explained for 60 % by the uncertainty in other stationary 461 

combustion, mainly wood burning (Figure 16). Also, agriculture (field burning of residues) plays a significant 462 

role. In addition to these natural areas, there are also some very small dark red areas (relative uncertainty) in 463 

northern France. These areas are military domain and have a lower absolute uncertainty than their surroundings 464 

because very few emissions are distributed to these areas (average pixel emission is 250 tonnes CO2 yr-1). The 465 

public power and industrial emissions are probably too small to be reported, hence the large relatively uncertainty. 466 

 467 

Figure 16: Contribution of source sectors to the total emissions (left) and the total uncertainty (right) in CO2 for the 468 
Sumava national park in the Czech Republic and a hotspot in France, summing to 100 %. See Figure 14 for the exact 469 
location of these areas. 470 

Fourth, strongly urbanized areas like Paris, the Ruhr area in Germany and Rotterdam (also see Fig. 1 for their 471 

locations) are clearly visible as areas where the relative uncertainty in CO emissions is lower than in the 472 

surrounding areas. Compared to its surroundings, the uncertainty in Paris is mainly determined by the industrial 473 

sector (Figure 17). Since industrial emissions are relatively well-known, the relative uncertainty is small. 474 

However, the absolute uncertainty is large for big cities because of the high emissions in these densely populated 475 

areas (average pixel emission is 64 tonnes CO yr-1 for Paris). In the surrounding areas the emissions are again 476 

dominated by other stationary combustion, which has a larger uncertainty. Yet, the absolute uncertainty is smaller 477 

because of the lower emissions (average pixel emission is 12 tonnes CO yr-1). 478 
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 479 

Figure 17: Contribution of source sectors to the total emissions (left) and the total uncertainty (right) in CO for Paris 480 
and its surroundings, summing to 100 %. See Figure 15 for the exact location of these areas. 481 

Finally, the relative uncertainties seem to be consistently higher in some countries than in others. For example, 482 

the relative uncertainty in the total emissions of France and Great Britain (only pixels within the domain) are 39 483 

% and 25 %, respectively. For France, the main sources of uncertainty are industry and other stationary 484 

combustion, whereas the off-road and road transport sectors have a significant contribution to the uncertainty in 485 

Great Britain (Figure 18). The main difference between the countries is again the amount of biomass used in the 486 

other stationary combustion sector (26 % in France and 8 % in Great Britain). This is likely to explain why in 487 

rural areas the relative uncertainty is much higher in France.  488 

 489 

Figure 18: Contribution of source sectors to the total emissions (left) and the total uncertainty (right) in CO for France 490 
and Great Britain, summing to 100 %.  491 
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4. Discussion 492 

Several previous studies have examined the uncertainty in emissions, either globally or nationally. For example, 493 

Andres et al. (2014) studied the uncertainty in the CDIAC emission inventory on a global scale, suggesting that 494 

the largest uncertainties are related to the fuel consumption (i.e. activity data). A similar concern was identified 495 

for China, for which the uncertainty in energy statistics resulted in an uncertainty ratio of 15.6 % in the 2012 CO2 496 

emissions (Hong et al., 2017). In the present study the uncertainties in activity data and emission factors are similar 497 

for CO2, whereas the uncertainty in CO emission factors is much larger than the uncertainty in activity data. A 498 

possible explanation for this is that the energy statistics for the European countries included here are more reliable 499 

than for developing countries. The occurrence of large differences in the reliability of reported emissions between 500 

countries is also illustrated by Andres et al. (2014). In addition to these scientific studies, many countries report 501 

uncertainties in emission estimates in their National Inventory Reports (UNFCCC, 2019). Yet, their methods for 502 

uncertainty calculation differ and can even vary over time. Several scholars have examined the uncertainty in 503 

national greenhouse gas emissions in more detail. For example, Monni et al. (2004) (Finland) and Fauser et al. 504 

(2011) (Denmark) used a Tier 2 approach (Monte Carlo simulation) to determine the uncertainty in the total 505 

greenhouse gas emissions (in CO2 equivalents). They found an uncertainty of about 5–6 % for the year 2001 for 506 

Finland and an uncertainty of 4–5 % for the year 2008 for Denmark, also considering non-normal distributions in 507 

uncertainties. Moreover, Oda et al. (2019) found a 2.2 % difference in total CO2 emissions in Poland between two 508 

emission inventories, which is in agreement with our total CO2 emission uncertainty. 509 

Even fewer studies have focused on uncertainties in the proxy maps used for spatial disaggregation. Some studies 510 

compared emission inventories to get an idea of the spatial uncertainties (Gately and Hutyra, 2017; Hutchins et 511 

al., 2017), but these studies are likely to underestimate uncertainties due to systematic errors that occur when 512 

different emission inventories use similar methods and/or proxies for spatial allocation. Moreover, exact 513 

quantification of uncertainties is often limited, dependent on the spatial scale, and the uncertainties are not 514 

specified per source (i.e. total emissions and spatial disaggregation) (Oda et al., 2019). Sowden et al. (2008) used 515 

a qualitative approach to identify the uncertainty of different components of their emission inventory for reactive 516 

pollutants (activity, emission factors, spatial and temporal allocation and speciation) by giving each component a 517 

quality rating. They suggest that spatial allocation is an important source of uncertainty for residential burning, 518 

but not so much for point sources and road traffic. Indeed, the location of large point sources and roads is relatively 519 

well-known. However, we consider the allocation of emissions to pixels that include roads to have a significant 520 

(pixel value) uncertainty. Therefore, our results show that uncertainties in the spatial proxy used for road traffic 521 

can cause a significant spread in CO concentrations. 522 

Andres et al. (2016) did a more extensive analysis of the spatial distribution in CDIAC, including uncertainties in 523 

pixel values (e.g. due to incorrect accounting methods or changes over time) and due to the representativeness of 524 

the proxy for the spatial distribution of emissions (also see Sect. 2.2.3). We considered these sources of uncertainty 525 

as well. However, Andres et al. (2016) also mention spatial discretization as a source of error, because they assign 526 

each pixel (1x1° resolution) to one country. The proxy maps used in this study include country fractions in each 527 

pixel, reducing this uncertainty. In contrast, we suggest another source of uncertainty, namely the fact that some 528 

pixels can include emissions while no activity takes place there or vice versa (proxy quality). Based on the listed 529 

uncertainties, Andres et al. (2016) found an average uncertainty (2σ) in individual pixels of 120 % (assuming 530 

normal distributions). Here, we find an average uncertainty (2σ) of 36 %. However, a small number of large 531 
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outliers occurs (less than 0.01 % of the pixels has an uncertainty of >1000 %) due to lognormal error distributions, 532 

although these are related to pixels with small emissions. A large part of the difference can be explained by the 533 

large pixel size of CDIAC and the large error introduced by spatial discretization (e.g. due to pixels that cover 534 

large areas of two different countries). Also, their emissions are spatially distributed based on population density, 535 

while we use a range of proxy maps depending on the source sector and use specific locations for large point 536 

sources. However, the uncertainty estimates are partially based on expert judgement and remain subjective. 537 

Moreover, the uncertainty related to the location of actual activities is not included in our uncertainty estimate, 538 

even though we have shown this can have a large impact locally. 539 

The country-level CO2 emissions used for our emission inventory are based on NIR’s, which are assumed to be 540 

relatively accurate because of the use of detailed fuel consumption statistics and country-specific emission factors 541 

(Andres et al., 2014; Francey et al., 2013). The uncertainties reported in the NIRs were determined following 542 

specified procedures and are deemed the most complete and reliable estimates available. Yet, because of the use 543 

of prescribed methods and in some cases general emission factors, systematic errors can occur both in the estimate 544 

of parameters and in the estimate of uncertainties. We choose to average the uncertainties reported by several 545 

countries, because the uncertainty estimates are relatively consistent across countries. However, this would not 546 

eliminate such systematic errors. The effect of systematic errors could be analysed by comparing different sources 547 

of information. Additionally, we assume point source emissions are relatively certain, yet a recent study showed 548 

that significant uncertainties exist in reported emissions of US power plants (Quick and Marland, 2019). A similar 549 

study for Europe is recommended, not only to improve the knowledge for the European situation, but also to 550 

understand continental differences. 551 

One source of uncertainty that is not considered in this study is the incompleteness of the emission inventory (i.e. 552 

if sources are missing) or double-counting errors. For example, during the compilation of the base inventory we 553 

found that in several cases the CO2 emissions from airports were very low. The reason was that emissions from 554 

international flights are not reported in the NIR’s and are therefore not part of the emission data used to create the 555 

inventory. Once discovered, this was corrected and aircraft landing and take-off emissions from international 556 

flights were added in a later stage. Such discrepancies caused by reporting guidelines could be present for other 557 

source types as well. Although overall this error is likely to be small, locally the errors might be significant.  558 

Finally, Sowden et al. (2008) mention (dis)aggregation as another source of error, i.e. the calculation of emissions 559 

on a different scale (spatially, temporally or sector level) than the input data. In principle, fuel consumption data 560 

is available on aggregated levels and then separated over different subsectors. This increases the uncertainty at 561 

the lower level, but on the aggregated level the uncertainties remain the same. A similar note was made by Andres 562 

et al. (2016) about the use of higher resolution proxy maps, which might increase the uncertainty due to lack of 563 

local data. However, when local data is available this might also decrease the uncertainties. For example, the 564 

EDGAR emission database uses non-country specific emission factors based on technology levels and sector 565 

aggregated energy statistics (Muntean et al., 2018). The reason is that the level of detail we used in this paper is 566 

not available globally. However, using generic emission factors can introduce large uncertainties when sub-567 

sectoral chances occur. Therefore, regional/local studies could benefit from using a dedicated emission inventory 568 

for their region of interest instead of a global inventory. 569 

Our results can be used to support network design and inverse modelling. The uncertainty maps are helpful to 570 

identify regions with large emission uncertainties, which can be the focus point of an inversion with the aim to 571 
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optimize emissions in those regions. However, inverse modelling requires an observational network that is 572 

sensitive to the emissions from the regions of interest. A site is sensitive to specific emissions when it is often 573 

affected by them, taking into account the dominant wind direction and the magnitude of concentration 574 

enhancements, which should be larger than the uncertainties that affect model-observation comparison (e.g. 575 

measurement uncertainty and model errors). Plumes from emission hot spots can travel a long distance and sites 576 

up to 30 km downwind have shown to be able to detect urban signals (Super et al., 2017a; Turnbull et al., 2015). 577 

The concentration enhancement in these plumes is large and therefore easy to detect. In contrast, the concentration 578 

enhancements of a single source (sector) are much smaller, as shown in Fig. 10 and Fig. 11, and therefore they 579 

become undetectable at much shorter distances. For example, vehicle exhaust emissions were shown to decrease 580 

by a factor 2 at 200 m from a highway (Canagaratna et al., 2010), while power plants plumes have been detected 581 

several kilometres downwind (Lindenmaier et al., 2014). Dilution is strongly dependent on the atmospheric 582 

conditions and also the height of the measurement site plays an important role. To conclude, the optimal network 583 

design is strongly dependent on which question needs to be answered and the focus area and resolution needed to 584 

reach this goal. 585 

5. Conclusions 586 

In this work we studied the uncertainties in a high-resolution gridded emission inventory for CO2 and CO, 587 

considering uncertainties in the underlying parameters (activity data, emission factors, spatial proxy maps and 588 

temporal profiles). We find that all factors play a significant role in determining the emission uncertainties, but 589 

that the contribution of each factor differs per sector. Disaggregation of emissions introduces additional sources 590 

of uncertainty, which makes uncertainties at higher resolution larger than at the scale of a country/year and can 591 

have a large impact on (the interpretation of) local measurements. This is an important consideration for inverse 592 

modelers and our methodology can be used to better define local uncertainties for e.g. urban inversions. Inverse 593 

modelers should be aware that the use of erroneous temporal profiles to extrapolate emission data could result in 594 

errors of a few percent, which for CO2 is significant. In the future, the temporal profiles could be improved by 595 

using detailed activity data, e.g. from power plants. Moreover, we found that large regional differences exist in 596 

absolute and relative uncertainties. By looking in more detail at specific regions (or countries) more insight can 597 

be gained about the emission landscape and the main causes of uncertainty. Interestingly, areas with larger 598 

absolute uncertainties often have smaller relative uncertainties. A likely explanation is that large sources of CO2 599 

and CO emissions received more attention and are therefore relatively well-constrained, for example in the case 600 

of large point sources. Nevertheless, since we are most interested in absolute emission reductions the map with 601 

absolute uncertainties can be used to define an observational network that is able to reduce the largest absolute 602 

uncertainties. Finally, we believe that an uncertainty product based on a well-defined, well-documented and 603 

systematic methodology could be beneficial for the entire modelling community and support decision-making as 604 

well. However, specific needs can differ significantly between studies, for example the scale/resolution, source 605 

sector aggregation level, and which species are included. Therefore, the creation of a generic uncertainty product 606 

is challenging and needs further research. 607 
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Data availability 608 

The family of ten emission inventories is available for non-commercial applications and research 609 

(https://doi.org/10.5281/zenodo.3584549).610 



27 

 

Appendix A 

Table A1: Relative uncertainties (fraction) in activity data and CO2 emission factors as taken from the NIRs (country-

average) and in CO emission factors as derived from literature (assumed equal for all countries in the domain). The 

quoted uncertainty ranges are assumed to be representative for one standard deviation. Uncertainties in activity data 

and CO2 emission factors are often relatively low and symmetrically distributed and normal distributions (Norm) are 

assumed for these activities. Compared to CO2 emission factors, the uncertainty in CO emission factors is much higher, 

up to an order of magnitude. Uncertainties in CO emission factors are often lognormally distributed (Logn) and are 

assumed equal for all countries in the HR domain. The uncertainty in the activity of open burning of waste (not covered 

by the NIRs) is also assumed to have a lognormal distribution. 
Sector (NFR) Fuel type Activity data CO2 emission factors CO emission factors 

Average Distribution Average Distribution Average Distribution 

Public electricity and heat 

production (1.A.1.a) 

Solid (fossil) 0.018 Norm 0.030 Norm 0.149 Logn 

Liquid (fossil) 0.022 Norm 0.031 Norm 0.399 Norm 

Gaseous (fossil) 0.021 Norm 0.015 Norm 0.513 Norm 

Biomass 0.060 Norm 0.05 Norm 0.231 Logn 

Oil and gas refining (1.A.1.b 

& 1.B.2.d) 

All 0.038 Norm 0.048 Norm 0.402 Norm 

Oil production & Gas 

exploration (1.B.2 mainly 

flaring, 1.B.2.c) 

All 0.118 Norm 0.141 Norm 0.240 Logn 

Iron and steel industry 

(1.A.2.a & 2.C.1)  

All 0.044 Norm 0.056 Norm 0.240 Logn 

Non-ferrous metals (1.A.2.b 

& 2.C.2_3) 

All 0.031 Norm 0.029 Norm 0.208 Norm 

Chemical industry (1.A.2.c & 

2.B) 

All 0.042 Norm 0.041 Norm 0.138 Logn 

Pulp and paper industry 

(1.A.2.d) 

All 0.027 Norm 0.016 Norm 0.138 Logn 

Food processing, beverages 

and tobacco (1.A.2.e) 

All 0.029 Norm 0.017 Norm 0.138 Logn 

Non-metallic minerals 

(1.A.2.f & 2.A) 

All 0.032 Norm 0.041 Norm 0.384 Logn 

Other manufacturing industry 

(1.A.2.g) 

All 0.029 Norm 0.014 Norm 0.138 Logn 

Civil aviation - LTO (1.A.3.a) All 0.089 Norm 0.040 Norm 0.231 Logn 

Road transport (all vehicle 

types) (1.A.3.b) 

Gasoline (fossil) 0.031 Norm 0.025 Norm 0.284 Logn 

Diesel (fossil) 0.032 Norm 0.026 Norm 0.319 Norm 

Gaseous (fossil) 0.039 Norm 0.027 Norm 0.320 Logn 

LPG 0.039 Norm 0.027 Norm 0.462 Norm 

Other transport (1.A.3.e & 

1.A.4 mobile) 

All 0.067 Norm 0.023 Norm 0.384 Logn 

Other mobile (1.A.5.b) All 0.098 Norm 0.026 Norm 0.384 Logn 

Residential (1.A.4.b) Gaseous (fossil) 0.040 Norm 0.022 Norm 0.141 Logn 

Liquid (fossil) 0.048 Norm 0.024 Norm 0.404 Norm 

Solid (fossil) 0.085 Norm 0.041 Norm 0.141 Logn 

Biomass 0.163 Norm 0.055 Norm 0.384 Logn 

Commercial institutional 

(1.A.4.a) 

Gaseous (fossil) 0.043 Norm 0.022 Norm 0.138 Logn 

Liquid (fossil) 0.055 Norm 0.023 Norm 1.065 Norm 

Solid (fossil) 0.087 Norm 0.040 Norm 0.994 Norm 

Biomass 0.103 Norm 0.055 Norm 0.730 Logn 
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Agriculture/Forestry/Fishing 

(1.A.4.c) 

Gaseous (fossil) 0.050 Norm 0.028 Norm 0.138 Logn 

Liquid (fossil) 0.051 Norm 0.029 Norm 1.065 Norm 

Solid (fossil) 0.095 Norm 0.048 Norm 0.994 Norm 

Biomass 0.096 Norm 0.09 Norm 0.730 Logn 

Other stationary (1.A.5.a) Gaseous (fossil) 0.097 Norm 0.023 Norm 0.138 Logn 

Liquid (fossil) 0.084 Norm 0.021 Norm 1.065 Norm 

Solid (fossil) 0.103 Norm 0.033 Norm 0.994 Norm 

Biomass 0.180 Norm 0.04 Norm 0.730 Logn 

Agricultural waste burning 

(3.F) 

- 1.609 Logn 0.2 Norm 0.429 Norm 

Uncontrolled waste burning 

(5.C.2) 

- 1.609 Logn 0.5 Norm 0.366 Logn 

Table A2: Relative uncertainties (fractions) at cell level resulting from the spatial distribution. The values listed 

represent the (one standard deviation) uncertainty of the emission per cell due to uncertainty sources 2 and 3 as listed 

in Sect. 2.2.3. All values in the table below are based on expert quantification and inevitably include a considerable 

amount of subjectivity. The data should therefore be considered as a first order indication only. Note that the natural 

logarithm (Ln) of the uncertainty fraction is given in case uncertainty has a lognormal distribution. 
Sector name Proxy name Distribution Uncertainty  

Public electricity and heat production; Chemical industry; 

Food processing, beverages and tobacco (comb); Food 

and beverages industry; Other non-metallic mineral 

production; Small combustion - Commercial/institutional 

– Mobile 

CORINE_2012_Industrial_area Logn 2.2 

Solid fuel transformation; Iron and steel industry (comb); 

Iron and steel production; Pulp and paper industry (comb); 

Pulp and paper industry; Non-metallic minerals (comb); 

Cement production 

CORINE_2012_Industrial_area Logn 3.7 

Other manufacturing industry (comb); Other industrial 

processes; Manufacturing industry - Off-road vehicles and 

other machinery 

CORINE_2012_Industrial_area Logn 1.4 

Oil and gas refining (comb); Oil and gas refining CORINE_2012_Industrial_area Logn 3.7 

TNO_PS for Refineries Logn 1.7 

Coal mining (comb) CORINE_2012_Industrial_area Logn 4.6 

TNO_PS for Coal mining Logn 1.7 

Oil production (comb) CORINE_2012_Industrial_area Logn 1.7 

TNO_PS for Oil production Logn 1.7 

Gas exploration (comb) CORINE_2012_Industrial_area Logn 1.7 

TNO_PS for Gas production Logn 1.7 

Coke ovens (comb) CORINE_2012_Industrial_area Logn 1.7 

TNO_PS for Iron and steel - Coke ovens Logn 1.7 

Non-ferrous metals (comb); Other non-ferrous metal 

production 

CORINE_2012_Industrial_area Logn 3.7 

TNO_PS for Non-ferrous metals - Other Logn 1.7 

Aluminium production CORINE_2012_Industrial_area Logn 3.7 

TNO_PS for Non-ferrous metals - 

Aluminium 

Logn 1.7 

Chemical industry (comb) CORINE_2012_Industrial_area Logn 2.2 

TNO_PS for Chemical industry Logn 1.7 

Passenger cars RoadTransport_PassengerCars Norm 0.3 

Light duty vehicles RoadTransport_LightCommercialVehicles Norm 0.3 

Trucks (>3.5t) RoadTransport_HeavyDutyTrucks Norm 0.3 
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Buses RoadTransport_Buses Norm 0.3 

Motorcycles RoadTransport_Motorcycles Norm 0.3 

Mopeds RoadTransport_Mopeds Norm 0.5 

Civil aviation – LTO Airport distribution for year 2015 Logn 1.4 

Mobile sources in agriculture/forestry/fishing CORINE_2012_Arable_land Logn 1.4 

Other transportation, including pipeline compressors Population_total_2015 Logn 3.7 

Small combustion - Residential - Household and 

gardening; Other mobile combustion 

Population_total_2015 Logn 1.3 

Commercial/institutional Population_total_2015 Norm 0.5 

Population_rural_2015 Logn 1.3 

Population_urban_2015 Logn 1.3 

Wood_use_2014 Logn 2.2 

Residential Population_total_2015 Norm 0.5 

Population_rural_2015 Logn 1.3 

Population_urban_2015 Logn 1.3 

Wood_use_2014 Logn 1.4 

Agriculture/Forestry/Fishing CORINE_2012_Arable_land Logn 1.4 

Wood_use_2014 Logn 2.2 

Other stationary combustion Population_total_2015 Logn 1.3 

Population_rural_2015 Logn 1.3 

Wood_use_2014 Logn 1.4 

Field burning of agricultural residues CORINE_2012_Arable_land Logn 2.2 

Population_total_2015 Logn 2.2 

Open burning of waste CORINE_2012_Industrial_area Logn 3.7 

Population_rural_2015 Logn 3.7 

Appendix B 

 

Figure B1: Spread in the standard deviations if the Monte Carlo simulation were to be repeated multiple 

times for a specific sample size, based on a bootstrapping method. 
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