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Interactive comment on “Uncertainty analysis of a European high-resolution emission inventory of CO2 and 

CO to support inverse modelling and network design” by Ingrid Super et al. 

We would like to thank the reviewers for their enthusiasm about our study and for the comments on our work. 

The review comments have been helpful in reflecting on our work and pointing out parts that required further 

improvements. Below we address specific issues mentioned by the reviewers point by point. The manuscript has 

been updated accordingly (changes are highlighted, line numbers refer to the final manuscript). 

Anonymous Referee #1 Received and published: 18 October 2019 

Review of "Uncertainty analysis of a European high-resolution emission inventory of CO2 and CO to support 

inverse modelling and network design" by Super et al.  

This manuscript describes an effort to construct an anthropogenic CO2 and CO inventory for a portion of Europe 

with carefully constructed uncertainties. The authors also show some basic analysis of their results, comparing 

uncertainties in different sectors and between countries, and the effect of some uncertainties on concentrations 

on CO2 or CO in the atmosphere. It is well-written, relevant, and extremely thorough, and should be published 

in ACP. The only major comment I have is about the data availability statement. The data availability requirement 

for publication has not been met: data is only available by request to authors, which is not acceptable to this 

journal, I believe. Even if it is, I think the data (i.e. the inventory and uncertainties) should be made available 

publicly and without restriction, especially as I think this product would be of interest to many researchers.  

We thank the reviewer for this suggestion. We agree that the data is useful for many researchers and have made 

the data accessible through Zenodo (see Data Availability description). 

Otherwise, my comments are fairly minor, and detailed below.  

Introduction: Please define TNO the first time to define the acronym for international readers.  

We have replaced TNO by ‘the Netherlands Organisation for Applied Scientific Research (TNO)’ in lines 35-36. 

L33 - How are the national numbers determined for reporting? These are also inventories, presumably of the 

scaled-up variety? perhaps the authors can make this section more specific to inventories that are spatially 

gridded and temporally downscaled, perhaps those commonly used for atmospheric studies?  

The reported country-level emissions are available from UNFCCC (https://unfccc.int/process-and-

meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-

annex-i-parties/national-inventory-submissions-2019) and based on energy statistics and emission factors 

following IPCC guidelines and are calculated as national, yearly total. This has been clarified in lines 32-34. In 

some cases IPCC default values are used, but countries can also decide to use country-specific values (which are 

generally more realistic). There is no scaling involved here, except that the overall energy consumption for one 

sector is divided over several sub-sectors. This introduces some uncertainty, which is taken into account in the 

uncertainty definition for the activity data listed in Appendix A.  

https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2019
https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2019
https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2019
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L51: I am left wondering what a Tier 3 consists of in this regard, which the US EPA follows I believe.  

It should be noted that there are two types of calculations with respect to emission reporting: calculation of the 

emissions and calculation of the emission uncertainties. The IPCC describes only the Tier 1 and Tier 2 approach 

for calculating emission uncertainties. In contrast, there is also a Tier 3 approach for calculation of emissions, 

which uses country-specific data and models. The Tier 3 approach used by the US EPA is therefore related to 

calculation of the emissions, and not of the emission uncertainties. In short, there are 3 Tiers for emission 

calculation and 2 Tiers for uncertainties.  

L72: What is H2020?  

H2020 is short for Horizon 2020, a European Research and Innovation programme. This is clarified in lines 77-

78. 

L72: Should be made public, not on request - Journal editors can decide on this but that is my understanding of 

current publishing policy.  

We agree and have made the data accessible through Zenodo (see Data Availability description). 

L70-76: These sentences are not actually very clear as to what the work is and confuse the reader. Are the 10 

inventories part of this work, or only the new high-resolution inventory for the zoom region? No doubt this will 

be made clear later in the paper but should be outlined here.  

We have clarified that the methodology used to create the family of emission inventories is also used in the work 

described in this manuscript (lines 78-79). 

L81: Should read: ... (12-16h LT) emissions, which could be the only emissions optimized in a study with a small 

domain, such as a city, using only afternoon observations? [if a study is regional or the city is large, then using 

mid-afternoon observations will still allow optimization of early morning emissions for example, depending on 

wind speed and location of emissions relative to the measurement point, for example]. But I absolutely agree that 

looking at the temporal variability and whether that is correct can be crucial in an urban study as well as a 

regional one (as illustrated by Hu et al. Science Advances 2019 for continental work). It may be an issue even if 

the inversion is sensitive to all hours.  

For clarity this topic has been introduced earlier in the introduction (lines 66-70), so that more explanation can be 

given. 

L108. Comma should be a period.  

Done. 

L108: if it’s not described later, an additional sentence on the temporal disaggregation would be nice (does it 

account for weekday/weekend effects for example?).  
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The time profiles are described in more detail in Section 2.2.4 (lines 207-213). Although a weekly cycle is 

included, e.g. with lower traffic emissions during the weekend, the diurnal profile is the same for weekdays and 

weekends. 

L109: What is GNFR vs. NFR?  

NFR sectors are very detailed and aggregated to GNFR sectors, i.e. GNFR is the aggregated version of NFR used 

for delivering gridded inventory data (the “G” stands for Gridding) (line 119). This is now also mentioned in the 

caption of Table 2. 

L138: is the point source data also temporally explicit? I am specifically thinking of energy generation (e.g. gas 

or coal-fired power plants, whose hour-to-hour emissions can vary drastically with no predictable cycle, at least 

in the U.S.).  

The point sources get the same temporal distribution as the area sources, using the fixed time profiles. This has 

been made more clear in lines 148-149. We have previously studied daily activity from some major power plants 

and found that, indeed, the temporal variations in emissions from power plants is difficult to describe with 

environmental variables. Unfortunately, temporally detailed activity data is not broadly available and therefore 

not part of the emission inventory. This is an important point for the future, which is now also mentioned in lines 

594-595. 

Fig. 2: I understand from the text that correlations between sub-sectors are accounted for, but as this (and the 

next) figure shows aggregated sectors and no off-diagonal terms (i.e. no correlations in the uncertainties between 

sectors), why show these in this manner? Is the color axis in units of emissions, or do they range from 0-1 because 

they are covariances? (I would think the former, or they would all be 1 on the diagonal?). Or am I missing 

something here. Please clarify.  

Error correlations exist between several sub-sectors that are part of the same aggregated (GNFR) sector. Therefore, 

no off-diagonal values are visible, i.e. there are no error correlations between GNFR sectors. The reason that the 

uncertainties are displayed in this manner (covariance matrix) is because this is the common way to describe prior 

uncertainties for inversion studies. They are indeed covariances, ranging from 0 to 1. 

L218: should read "it is important to ensure"...  

Done. 

L234 define MC as Monte Carlo earlier  

The abbreviation MC has been replaced with the full name ‘Monte Carlo’ throughout the manuscript. 

Fig 7 & 8: Captions should indicate left and right panels, for example "Contribution of source sectors to the total 

uncertainty in CO2 (left) and CO (right) emissions, summing to 100 %."  

Same for Fig 9, it is easy enough to just say (left) and (right) in the caption here.  



4 

 

These indications have been added consistently to all figure captions. 

To clarify for fig 10&11, these spreads in concentration are from the experiments using different random 

emissions maps, i.e. the model was run 500 times, correct? 

Yes, this is correct. This is now mentioned in line 293-294 and the figure captions. 

Fig 11 - I find this to be a very interesting analysis. It points to whether we expect an inversion to identify the true 

location of these 20 plants among all these scenarios. I.e. can some of the maps be shown to be false by the 

observed CO2? The large spread indicates maybe so, but then again, once all the other sources and their 

uncertainty are included, it would likely be pretty hard!  

Yes, we agree that it will be very challenging. Also given the uncertainty introduced by the model transport, which 

would likely be similar or larger than (depending on the complexity of the area) the spread caused by the different 

maps. Nevertheless, we show here that it is an important source of uncertainty for local inversions. 

Section 3.3: inversion usually does not only include time from 12-16, just because those are the observation times. 

You may be optimizing emissions from earlier in the day, depending on the domain size and wind speeds. This 

should just be noted.  

We have added a sentence that explains that our reasoning only applies to local studies (lines 420-421). 

Fig 12 and text related: this standard time profile (black) seems to have a monthly mean that is then also 

distributed hourly through the day? Is it hourly, or 3-hourly? weekday/weekend (for businesses vs. residences, 

assuming those are contributing to stationary combustion for on-site heating, e.g. burning of gas)? These details 

could be mentioned in the caption, I realize they are not necessary for describing the uncertainty method, but they 

are useful to know for users of the inventory emissions.  

For each sector there are three temporal profiles: a profile describing the seasonal cycle (monthly factors), a profile 

describing day-to-day variations (daily factors) and a profile describing the diurnal cycle (hourly factors). This is 

now described in more detail in lines 207-213. 

Fig 14, the text on the map, especially "Tirol" and "Hotspot", is hard to see here perhaps larger, or placed in a 

different section with an arrow to the appropriate box?  

Both Fig. 14 and Fig. 15 have been improved by increasing the weight of the boxes and the font size. 

L475: Does this statement refer to their methods for calculating emissions or uncertainties?  

Actually both, but in this case we mean the uncertainty calculation. This is clarified in line 503. 

Data Availability: See note at top, this data should be publicly available on a public-facing data portal. 

Data are now publicly available. The Data Availability section has been updated accordingly. 
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Anonymous Referee #2 Received and published: 21 October 2019 

This manuscript presents an assessment of the uncertainties in high-resolution emission inventories of CO2 and 

CO in 14 European countries. The uncertainties present in various underlying parameters of the inventories (e.g., 

absolute uncertainties in reported emissions, emission factors, spatial proxies, temporal profiles) are propagated 

using a well-described Monte Carlo simulation routine. The uncertainties are tracked to assess the importance of 

specific source sectors in introducing large uncertainties on both absolute and relative bases. Several factors are 

found to be playing an important role in contributing to the final emission uncertainties. For instance, spatial 

disaggregation of the emissions at a high spatial resolution results in large uncertainties at the local/city scale, 

which has important implications for inverse modeling studies operating within these smaller spatial domains. 

The authors find that because certain sectors with large overall contribution of CO2 and CO emissions are well-

constrained (e.g., industrial sector in the Paris metro area), the relative uncertainties in these locations are far 

smaller than those in the immediate rural surroundings. Thus, future efforts to reduce absolute emissions of CO2 

and CO may use the absolute uncertainties presented in this study to identify a network of key target areas/sectors.  

Overall, I find this manuscript well-written. The methods are presented in sufficient detail that one could 

reproduce them. The methods section lacks some quality assurance, as I have described in my first major comment. 

The results are presented in an organized fashion, and the interpretations and conclusions are generally well-

reasoned. My second major comment has to do with the framing of these interpretations with respect to 

observation-based literature, especially since the authors mention a motivation for this study is to facilitate inter-

comparison of modeled and observed greenhouse gas concentrations. Once the authors have addressed these 

comments adequately, the manuscript should be ready for publication in ACP. In addition to my two major 

comments, I list several minor comments that are mostly typographical errors and/or suggestions to improve 

presentation of figures and tables.  

Major comments: 

1. A rationale for number of Monte Carlo (MC) simulations should be provided. For e.g., a plot with some metric 

of quality of results (total residual, total error, fullwidth half maximums of the distributions showed in Fig. 7, etc.) 

versus number of MC runs. I’d expect such a plot to have an exponential decay with respect to increasing MC 

runs, which would then help justify the choice of N = 500.  

Because the Monte Carlo simulations performed in this study are relatively cheap the sample size can be taken 

large enough to ensure a robust result. However, to support our choice for N=500 we used two methods described 

in literature: sampling statistics and bootstrapping. Both methods give similar curves, such as shown below. The 

curve indicates the spread in the standard deviations if we would repeat the Monte Carlo simulation multiple times 

for a specific sample size, i.e. it indicates how robust the uncertainty estimate is. From this figure we conclude 

that a sample size larger than 500 would not increase the robustness a lot. 
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We have added a statement that a sample size of N=500 is large enough to get robust results, based on the analysis 

shown here (lines 249-250). For completeness, we have added this figure to Appendix B. 

Reference:  

Janssen, H.: Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. Reliability 

Engineering & System Safety, 109, 123-132, https://doi.org/10.1016/j.ress.2012.08.003, 2013. 

2. I think the presentation of the results could be better framed with respect to other literature. For instance, the 

authors show that the spread in their modeled CO2 and CO concentrations reduces over distances of 5–40 km 

from the source categories (Figures 10 and 11). How does this length-scale compare with other studies? Are there 

any monitoring studies that have shown similar fall-off length-scales? To say that road transport affects CO 

concentration as far as 40 km downwind seems excessive, if one were to compare it to, say, Figure 4A from 

Canagaratna et al.’s mobile monitoring study. 

We agree with the reviewer that we have not discussed this topic in our paper. Instead, we have focused our 

discussion on the estimated uncertainties in the (gridded) emissions, which is the main topic of our paper and 

covers most of our results. However, we have put some effort in improving the comparison of the model results 

with other literature, mainly to explain how these model results can be used for network design and inverse 

modelling (lines 499-501 and lines 570-585). 

Minor comments: 

1. L24: I suggest using “abundant”, instead of “important”. In terms of warming potential, there are other gases 

more important than CO2 (e.g., CH4).  

We have replaced this word. 

2. L36: “report”, not “reported”.  
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The sentence has been rephrased for clarification (line 37). 

3. L69: “atmospheric”, not “atmospherics”.  

Done. 

4. L64-65: “in contrast, if ... are needed.” This sentence is unclear. What is “prior” referring to? Please reword.  

In inverse modelling the word ‘prior’ refers to the initial emission inventory, containing information on the order 

of magnitude and location of emissions which is then updated using atmospheric observations. This has been 

clarified in line 65. 

5. L76-77: not sure what “European zoom region” means. Please clarify.  

We have clarified which region is meant in line 84. 

6. L81: suggest replacing “time profiles” with “temporal profiles”, or “diurnal profiles”.  

We have replaced ‘time profiles’ with ‘temporal profiles’ throughout the manuscript. 

7. L81-83: question 3 is somewhat unclear. It could be reworded for clarity, but also the motivation for this 

question was not set up in the introduction. This makes this question feel abruptly added.  

This topic has now been introduced in lines 66-70 for clarification. 

8. L86: is “partitioning” the right word? I suggest using “apportionment”, instead.  

This word has been replaced in line 94. 

9. Table 1: for consistency with first usage in L26, please continue with the “FFCO”, “FFCO2” naming 

conventions. The acronyms FF and BF should be declared in the Table caption. Also, is there a specific reason 

to use three-letter country codes, instead of simply country names?  

The names of the species have been updated and FF and BF are explained in the caption of Table 1. Also, the 

names of the countries have been given. 

10. L103: “gap-filled” (should be hyphenated).  

Done. 

11. L103: suggest replacing “data was gap filled” with something more informative of which attributes of the 

dataset were missing, and how they were filled (i.e., with NaNs, or geospatial interpolated, etc.).  

The gap-filling refers to the reported emissions, which are sometimes missing for specific sectors. Also, in some 

cases the reported data is considered to be unreliable. In those cases, other sources of information are used to 

update and complete the emission inventory. This is now explained in more detail in lines 112-113. 
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12. L105: acronym “AIS” not defined.  

The acronym has been defined in line 115. 

13. L108: comma is used instead of period.  

The comma has been replaced. 

14. L109: acronym “GNFR” not defined, and is also used in Table 2 without definition.  

GNFR is the aggregated version of NFR. This is now mentioned in the caption of Table 2. 

15. Figure 1: could the authors add a few landmarks or identify a few of the visible hotspots in these maps e.g., 

Paris? It’d be helpful for a reader not familiar with the placement of major urban areas of Europe.  

Figure 1 has been updated and indicates the location of some major urban areas (Paris, Ruhr area and Rotterdam). 

16. L148: which “differences” are being referred to in this sentence? Differences in uncertainties, I assume? 

Should be clarified.  

Indeed, this has been made explicit in line 159-160. 

17. Figures 2 and 3: the gridlines need to match the category labels. The current version of this figure is difficult 

to read easily.  

We choose to match the gridlines with the category labels, such that the intersection of two lines clearly indicates 

the value belonging to those categories. But if we understand correctly the reviewer would like to see the gridlines 

surrounding each entry in the matrix, instead of being in the middle of each row/column. This has been updated. 

18. L294-296: This sentence is confusing. Here is how I would calculate the “uncertainty in the total emissions”: 

a) take the standard deviations of emissions from each sector (i.e., standard deviation of each box in Figure 7-

left), b) calculate the average of the standard deviations from (a), and c) report this average from (b) as 

“uncertainty in total emissions”. However, it seems the authors have used a different approach: a) take the 

standard deviations of emissions from each sector (i.e., standard deviation of each box in Figure 7-left), b) 

calculate the STANDARD DEVIATION of the standard deviations from (a), and c) report this STANDARD 

DEVIATION from (b) as “uncertainty in total emissions”. Is this correct? If yes, this would not be the “uncertainty 

in total emissions”, but rather would be an “uncertainty of the uncertainty in total emissions”. Please 

justify/clarify/correct in the manuscript accordingly.  

The uncertainty in the total emissions is calculated from the Monte Carlo, similarly as the uncertainty for each 

sector. The Monte Carlo provides 500 solutions for each of the defined sub-sectors (NFR – fuel combination). 

These are summed to get 500 solutions for GNFR sector emissions. If we then sum the GNFR sector emissions 

we get 500 solutions for the total emission. What is reported here is the standard deviation of these 500 solutions. 

We have clarified this in lines 309-311. 
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19. Figures 8, 9, and 16: As I indicated in my initial review prior to posting on ACPD, the legend needs to be 

reversed to be consistent with the order of stacking.  

The order of the legends has been reversed. 

20. L322-323: “Overall, the differences between countries are relatively small(Figure 9, right panel).” Instead 

of using a qualitative term like “relatively small”, why not report the total uncertainty as done for Figure 7?  

We have presented the range of standard deviations, which is between 1.2 and 2.3% (lines 339-341). 

21. L339: “For CO2 (left panel) we see a concentration of about ...” should be changed to “For CO2 (left panel), 

we see a spread in concentration of about ...” There is no information in Figure 10 about the absolute CO2 

concentrations, so seeing a concentration of 3 ppm anywhere in ambient air would be impossible. A related 

suggestion is to plot the absolute numbers on the right axis, to get a better sense of the absolute concentrations 

(especially for CO).  

We agree that these concentrations are not what you would measure in the atmosphere. Rather, they are the result 

only of the emissions of stationary combustion (CO2) and road transport (CO). This has been clarified in the text 

(lines 357-358). 

22. L343: what does “atmospheric signal” mean? Why not just say “modeled spread in concentration”?  

What we refer to is the concentration enhancement caused by the specified sector. We have replaced ‘signal’ by 

‘concentration enhancement’ throughout the text. 

23. Figures 10 and 11: the x-axis labels are unevenly spaced. It is definitely not linear, but it doesn’t seem log-

spaced either. Please correct/clarify in Figure caption.  

The labels are unevenly spaced, because we only added labels for the distances that we have included in the model 

simulations. Nevertheless, the axis is linear. 

24. Figure 12: Please describe what the grey lines represent in the caption.  

The grey lines represent the spread in the temporal profile, resulting from the Monte Carlo simulation. This is 

clarified in the caption. 

25. L397: “in inverse modeling, often ... transport”. It’d be good to include a couple of references to support this 

statement.  

See lines 419-420 for the references. 

26. Figure 13: I know that time profiles used for modeling CO2 and CO emissions are the same, but it’d be good 

to rename the y-axis label to “normalized spread in CO2 and CO emissions”, and remind the reader of this very 

briefly in the caption.  
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We have added this comment to the figure caption. 

27. L447: “big cities like Paris, Berlin, and Brussels”. I assume this is about the CO, and not the CO2 map? It’d 

help to point to these cities in Figure 15.  

Indeed, this part describes relative uncertainties in CO (as is also mentioned in the caption of Figure 17). We have 

added this to line 472. For clarity, we have replaced the current list with those urbanized areas now shown in Fig. 

1, including a reference to this figure (line 471-472). 

28. L528: no need to define the acronym LTO, if it is only used once. 

The term LTO has been removed. 

Reference(s): Canagaratna, M. R.; Onasch, T. B.; Wood, E. C.; Herndon, S. C.; Jayne, J. T.; Cross, E. S.; Miake-

Lye, R. C.; Kolb, C. E.; Worsnop, D. R. Evolution of vehicle exhaust particles in the atmosphere. J. Air Waste 

Manag. Assoc. 2010, 60 (10), 1192–1203. 
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Abstract. Quantification of greenhouse gas emissions is receiving a lot of attention, because of its relevance for 7 

climate mitigation. Complementary to official reported bottom-up emission inventories, Qquantification is 8 

oftencan be done with an inverse modelling framework, combining atmospheric transport models, prior gridded 9 

emission inventories and a network of atmospheric observations to optimize the emission inventories. An 10 

important aspect of such method is a correct quantification of the uncertainties in all aspects of the modelling 11 

framework. The uncertainties in gridded emission inventories are, however, not systematically analysed. In this 12 

work, a statistically coherent method is used to quantify the uncertainties in a high-resolution gridded emission 13 

inventory of CO2 and CO for Europe. We perform a range of Monte Carlo simulations to determine the effect of 14 

uncertainties in different inventory components, including the spatial and temporal distribution, on the uncertainty 15 

in total emissions and the resulting atmospheric mixing ratios. We find that the uncertainty in the total emissions 16 

for the selected domain are 1 % for CO2 and 6 % for CO. Introducing spatial disaggregation causes a significant 17 

increase in the uncertainty of up to 40 % for CO2 and 70 % for CO for specific grid cells. Using gridded 18 

uncertainties specific regions can be defined that have the largest uncertainty in emissions and are thus an 19 

interesting target for inverse modelers. However, the largest sectors are usually the best-constrained ones (low 20 

relative uncertainty), so the absolute uncertainty is the best indicator for this. With this knowledge areas can be 21 

identified that are most sensitive to the largest emission uncertainties, which supports network design.  22 
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1 Introduction 23 

Carbon dioxide (CO2) is the most important abundant greenhouse gas and is emitted in large quantities from 24 

human activities, especially from the burning of fossil fuels (Berner, 2003). A reliable inventory of fossil fuel CO2 25 

(FFCO2) emissions is important to increase our understanding of the carbon cycle and how the global climate will 26 

develop in the future. The impact of CO2 emissions is visible on a global scale and international efforts are required 27 

to mitigate climate change, but cities are the largest contributors to FFCO2 emissions (about 70% (IEA, 2008)). 28 

Therefore, emissions should be studied at different spatial and temporal scales to get a full understanding of their 29 

variability and mitigation potential.  30 

One way of describing emissions is an emission inventory, which is a structured set of emission data, 31 

distinguishing different pollutants and source categories. Often, emission inventories are based on reported 32 

country-level emission data (for example from the National Inventory Reports (NIR’s) (UNFCCC, 2019)), which 33 

are national, yearly emissions based on energy statistics. which These country-level emissions are can be spatially 34 

and temporally disaggregated (scaled-down) to a certain level using proxies (e.g. the TNO inventories of the 35 

Netherlands Organisation for Applied Scientific Research (TNO) (Denier van der Gon et al., 2017; Kuenen et al., 36 

2014)). Other emission inventories are based on local energy consumption data and reported emissions, which are 37 

(dis)aggregated to the required spatial scale (scaled-up) (e.g. Hestia (Gurney et al., 2011, 2019)) or rely on (global) 38 

statistical data and a consistent set of (non-country specific) emission factors representing different technology 39 

levels (e.g. EDGAR (http://edgar.jrc.ec.europa.eu)). Most inventories, including the one used in this study, rely 40 

on a combination of methods, using large-scale data supplemented with local data. Gridded emission inventories 41 

are essential as input for atmospheric transport models to facilitate comparison with observations of CO2 42 

concentrations, as well as in inverse modelling as a prior estimate of the emission locations and magnitude. 43 

During the compilation of an emission inventory uncertainties are introduced at different levels (e.g. magnitude, 44 

timing or locations) and increasingly more attention is given to this topic. Parties to the United Nations Framework 45 

Convention on Climate Change (UNFCCC) report their annual emissions (disaggregated over source sectors and 46 

fuel types) in a NIR (UNFCCC, 2019), which includes an assessment of the uncertainties in the underlying data 47 

and an analysis of the uncertainties in the total emissions following IPCC (Intergovernmental Panel on Climate 48 

Change) guidelines. The simplest uncertainty analysis is based on simple equations for combining uncertainties 49 

from different sources (Tier 1 approach). A more advanced approach is a Monte Carlo simulation, which allows 50 

for non-normal uncertainty distributions (Tier 2 approach). The Tier 2 approach has been used by several 51 

countries, for example Finland (Monni et al., 2004) and Denmark (Fauser et al., 2011). 52 

These reports provide a good first step in quantifying emission uncertainties, but the uncertainty introduced by 53 

using proxies for spatial and temporal disaggregation are not considered. These are, however, an important source 54 

of uncertainty in the gridded emission inventories (Andres et al., 2016). Inverse modelling studies are increasingly 55 

focusing on urban areas, the main source areas of FFCO2 emissions, for which emission inventories with a high 56 

spatiotemporal resolution are used to better represent the variability in local emissions affecting local 57 

concentration measurements. Understanding the uncertainty at higher resolution than the country-level is thus 58 

necessary, which means that the uncertainty caused by spatiotemporal disaggregation becomes important as well. 59 

The uncertainties in emission inventories are important to understand for several reasons. First, knowledge of 60 

uncertainties helps pinpointing emission sources or areas that require more scrutiny (Monni et al., 2004; Palmer 61 

et al., 2018). Second, knowledge of uncertainties in prior emission estimates is an important part of inverse 62 
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modelling frameworks, which can be used for emission verification and in support of decision-making (Andres et 63 

al., 2014). For example, if uncertainties are not properly considered, there is a risk that the uncertainty range does 64 

not contain the actual emission value. In contrast, if uncertainties are large overestimated the prior initial emission 65 

inventory gives little information about the actual emissions and more independent observations are needed. Third, 66 

local inverse modelling studies often rely on daytime (12-16h LT) observations, which are easier to simulate. 67 

Given the small size of the urban domain these observations only contain information on recent emissions, which 68 

have to be extrapolated using temporal profiles to calculate annual emissions. Therefore, knowledge of 69 

uncertainties in temporal profiles helps to better quantify the uncertainty in these annual emissions. Finally, 70 

emission uncertainties can support atmospheric observation system design, for example for inverse modelling 71 

studies. An ensemble of model runs can represent the spread in atmospheric concentration fields due to the 72 

uncertainty in emissions. Locations with a large spread in atmospheric concentrations are most sensitive to 73 

uncertainties in the emission inventory and are preferential locations for additional atmospherics measurements. 74 

To conclude, emission uncertainties are a critical part of emission verification systems and require more attention. 75 

To better understand how uncertainties in underlying data affect the overall uncertainty in gridded emissions, a 76 

family of ten emission inventories is compiled within the H2020 project CO2 Human Emissions (CHE) project, 77 

which is funded by the Horizon 2020 EU Research and Innovation programme (see Data Availability). These can 78 

be made available upon request.The methodology used to create this family of emission inventories also forms 79 

the basis for the work described here. 80 

In this paper we illustrate a statistically coherent method to assess the uncertainties in a high-resolution emission 81 

inventory, including uncertainties resulting from spatiotemporal disaggregation. For this purpose, we use a Monte 82 

Carlo simulation to propagate uncertainties in underlying parameters into the total uncertainty in emissions (like 83 

the Tier 2 approach). We illustrate our methodology using a new high-resolution emission inventory for a 84 

European zoom region centred over the Netherlands and Germany (Table 1). We illustrate the magnitude of the 85 

uncertainties in emissions and how this affects simulated concentrations. The research questions are: 86 

1) How large are uncertainties in total inventory emissions and how does this differ per sector and country? 87 

2) How do uncertainties in spatial proxy maps affect local measurements? 88 

3) How important is the uncertainty in time temporal profiles for the calculation of annual emissions from 89 

daytime (12-16h LT) emissions, which result from urban inverse modelling studies using only daytime 90 

observations? 91 

4) What information can we gain from high-resolution gridded uncertainty maps by comparing different 92 

regions? 93 

Inverse modelling studies often focus on a single species like CO2, but co-emitted species are increasingly 94 

included to allow source partitioning apportionment (Boschetti et al., 2018; Zheng et al., 2019). In this study, we 95 

look into CO2 and CO to illustrate our methodology, but the methodology can be applied to other (co-emitted) 96 

species. 97 
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2 Methodology 98 

2.1 The high-resolution emission inventory 99 

Table 1: Characteristics of the high-resolution emission inventory TNO GHGco v1.01 containing fossil fuel (FF) and 100 
biofuel (BF) emissions. 101 

Air pollutants FFCO_ff, BFCO_bf, NOx 

Greenhouse gases FFCO2_ff, BFCO2_bf, CH4 

Resolution 1/60° longitude x 1/120° latitude (~ 1x1 km over central Europe) 

Period covered 2015 (annual emissions) 

Domain -2° W–19° E, 47° N–56°N 

Sector aggregation GNFR (A to L), with GNFR F (Road Transport) split in F1 to F4 (total 16 sectors) 

Countries Complete: Germany, Netherlands, Belgium, Luxembourg, Czech RepublicDEU, 

NLD, BEL, LUX, CZE 

Partially: United Kingdom, France, Denmark, Austria, Poland, Switzerland, Italy, 

Slovakia and HungaryGBR, FRA, DNK, AUT, POL, CHE, ITA, SVK and HUN 

 102 

The basis of this study is a high-resolution emission inventory for the greenhouse gases CO2 and CH4 and the co-103 

emitted tracers CO and NOx for the year 2015 (TNO GHGco v1.0, see details in Table 1). In this paper we only 104 

use CO2 and CO, which are divided over fossil fuel (FFff) and biofuel (BFbf) emissions (no land use and land use 105 

change emissions are included). The emission inventory covers a domain over Europe, including Germany, 106 

Netherlands, Belgium, Luxembourg and the Czech Republic, and parts of Great Britain, France, Denmark, Austria 107 

and Poland (see also Figure 1). 108 

The emission inventory is based on the reported emissions by European countries to the UNFCCC (only 109 

greenhouse gases) and to EMEP/CEIP (European Monitoring and Evaluation Programme/Centre on Emission 110 

Inventories and Projections, only air pollutants). UNFCCC CO2 emissions have been aggregated to ~250 different 111 

combinations of NFR sectors (Nomenclature For Reporting) and fuel types. EMEP/CEIP CO emissions have been 112 

split over the same NFR sector-fuel type combinations by TNO using the GAINS model (Amann et al., 2011) 113 

and/or TNO data. In some cases, the reported data was gap- filled, or replaced or (dis)aggregatedwith emissions 114 

from the GAINS model, EDGAR inventory or internal TNO estimates to obtain a consistent dataset. Next, each 115 

NFR sector is linked to a high-resolution proxy map (e.g. population density for residential combustion of fossil 116 

fuels or AIS (Automatic Identification System) data for shipping re-gridded to 1/60° x 1/120°), which is used to 117 

spatially disaggregate the reported country-level emissions. Where possible, the exact location and reported 118 

emission of large point sources is used (e.g. from the E-PRTR (European Pollutant Release and Transfer 119 

Register)). The third step is temporal disaggregation, for which standard time temporal profiles are used (Denier 120 

van der Gon et al., 2011)., Finally, the gridded emissions are aggregated per to GNFR (gridded NFR) sectors (see 121 

Table 2) for the emission inventory. The final emission maps of CO2 and CO are shown in Figure 1, together with 122 

two examples of a source sector map. Note that these maps do not clearly show the large point source emissions, 123 

while these make up almost 45 % of all CO2 emissions and 26 % of all CO emissions. 124 



16 

 

 125 

Figure 1: Total emissions of CO2 and CO, road traffic (gasoline) emissions of CO2, and other stationary combustion 126 
emissions of CO for 2015 in kt yr-1 (defined per grid cell). 127 

2.2 Uncertainties in parameters 128 

The emission inventory is used as basis for an uncertainty analysis by assigning an uncertainty to each parameter 129 

underlying the UNFCCC-EMEP/CEIP emission inventories and further disaggregation thereof. Although the 130 

aggregation to GNFR sectors makes the emission inventory more comprehensible, we use the more detailed 131 

underlying data for the uncertainty analysis. The reason is that the uncertainties can vary enormously between 132 

sub-sectors and fuel types. Generally, the emission at a certain time and place is determined by four types of 133 

parameters: activity data, emission factor, spatial distribution and time temporal profile. The activity data and 134 

emission factors are used by countries to calculate their emissions. The spatial proxy maps and time temporal 135 

profiles are used for spatiotemporal disaggregation. All uncertainties need to be specified per NFR sector-fuel 136 

type combination that is part of the Monte Carlo simulation. In the following sections the steps taken to arrive at 137 

a covariance matrix for the Monte Carlo simulation are described. Tables with uncertainty data can be found in 138 

the Appendix A. 139 

Table 2: Overview of aggregated NFR (GNFR) sectors distinguished in the emission inventory 140 

GNFR category GNFR category name 

A A_PublicPower 

B B_Industry 

C C_OtherStationaryComb 

D D_Fugitives 

E E_Solvents 
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F F_RoadTransport 

F1 F_RoadTransport_exhaust_gasoline 

F2 F_RoadTransport_exhaust_diesel 

F3 F_RoadTransport_exhaust_LPG_gas 

F4 F_RoadTransport_non-exhaust 

G G_Shipping 

H H_Aviation 

I I_OffRoad 

J J_Waste 

K K_AgriLivestock 

L L_AgriOther 

2.2.1 Parameter selection  141 

The first step is to identify which parameters should be included in the Monte Carlo simulation. As mentioned 142 

before there are about 250 different combinations of NFR sectors and fuel types and including all of them would 143 

be a huge computational challenge. However, a selection of 112 combinations makes up most of the fossil fuel 144 

emissions (96 % for CO2 and 92 % for CO) and therefore a pre-selection was made. This results in a covariance 145 

matrix of 224x224 parameters (112 sector-fuel combinations for two species). To further reduce the size of the 146 

problem, the emissions are partly aggregated before starting the Monte Carlo for the spatial proxies (mostly fuels 147 

are combined per sector, because they have the same spatial distribution). This results in a total of 59 NFR sector-148 

spatial proxy combinations, which are put in a separate covariance matrix. The time temporal profiles are applied 149 

to the aggregated GNFR sectors, which make up the last covariance matrix. Note that the spatial proxies and time 150 

temporal profiles are the same for CO2 and CO., Only except for  the spatially explicit E-PRTR point source data 151 

can have a different spatial distribution for CO2 and CO, but they also use the same temporal profiles. 152 

2.2.2 Uncertainties in reported emissions 153 

Country-level emissions are estimated from the multiplication of activity data and emission factors. Activity data 154 

consist for the most part of fossil fuel consumption data available from national energy balances. Some fuel 155 

consumptions are better known than others and uncertainties vary across sectors. An emission factor is the amount 156 

of emission that is produced per unit of activity (e.g. amount of fuel consumed). For CO2 this depends mainly on 157 

the carbon content of the fuel. In contrast, CO emissions are extremely dependent on combustion conditions, 158 

certain choice of industrial processes and in-place technologies.  159 

The NIR’s for greenhouse gases (GHGs) provide a table with uncertainties in activity data and CO2 emission 160 

factors on the level of NFR sector - fuel combinations. The uncertainties reported by each country are averaged 161 

to get one uncertainty per NRFR sector-fuel combination for the entire domain. Overall, the differences in reported 162 

uncertainties between countries are small. The uncertainties in activity data and CO2 emission factors are relatively 163 

low and normally distributed.  164 

The CO emission factors are mostly based on basic uncertainty ranges provided in the EMEP/EEA Guidebook 165 

(European Environment Agency, 2016) and supplemented by BAT reference documents from which reported 166 

emission factor ranges are taken as uncertainty range (http://eippcb.jrc.ec.europa.eu/reference/). The CO emission 167 
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factor uncertainties are generally expressed by a factor, which means that the highest and lowest limit values are 168 

either the specified factor above or below the most common value. Therefore, these uncertainties have a lognormal 169 

distribution and are relatively large. 170 

 171 

Figure 2: Covariance matrices for total emissions of CO2 (left) and CO (right) per aggregated source sector. A white 172 
space on the diagonal indicates this sector is not included in the Monte Carlo simulation. 173 

To estimate the overall uncertainty in the emissions per NFR sector-fuel combination, the uncertainties in the 174 

activity data and emission factors need to be combined (shown in Figure 2 for the aggregated GNFR sectors). 175 

When both uncertainties are of the same order and relatively small, as well as both having a normal distribution, 176 

the overall emission uncertainty is calculated with the standard formula for error propagation for non-correlated 177 

normally distributed variables (see Sect. 2.4). For most CO emission factors, uncertainties are much higher and 178 

have a lognormal distribution instead of normal. In that case the uncertainty of the variable with the highest 179 

uncertainty is assumed to be indicative for the overall uncertainty of the emission, which in general means the 180 

uncertainty of the CO emission factor determines the overall uncertainty of the CO emission, with the distribution 181 

remaining lognormal. The error introduced by fuel type disaggregation for CO is not considered. 182 

Finally, for power plants and road traffic we assumed error correlations to exist between different sub-sectors per 183 

fuel type, and between different fuel types per sub-sector for other NFR sectors. In some cases, correlations also 184 

exist between different NFR sectors belonging to the same GNFR sector. The definition of correlations is 185 

important, because they affect the total uncertainties. For example, if emission factors of sub-sectors are 186 

correlated, deviations can amplify each other, leading to higher overall uncertainties. In contrast, the division of 187 

the well-known total fuel consumption of a sector over its sub-sectors includes an uncertainty which is anti-188 

correlated (i.e. if too much fuel consumption is assigned to one sub-sector, too little is assigned to another). This 189 

has little impact on the total emissions, because uncertainties only exist at lower levels. 190 

2.2.3 Uncertainties in spatial proxies 191 

The proxy maps used for spatial disaggregation can introduce a large uncertainty coming from the following 192 

sources: 193 
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1) The proxy is not correctly representing real-world locations of what it is supposed to represent, either 194 

because there are cells included in which none of the intended activity takes place or cells are missing in 195 

which the intended activity does take place (proxy quality). 196 

2) The proxy is not fully representative for the activity it is assumed to represent, for example if there is a non-197 

linear relationship between the proxy value and the emission (proxy representativeness): a grid cell with 198 

twice the population density does not necessarily have double the amount of residential heating emissions, 199 

because heating can be more efficient in densely populated areas and/or apartment blocks. 200 

3) The cell values themselves are uncertain, e.g. the population density or traffic intensity (proxy value). 201 

We attempt to capture the second and third source of uncertainty in a single numerical indicator representing the 202 

uncertainty at cell level (see Figure 3 for the uncertainty per aggregated GNFR sector). The overall uncertainties 203 

are based on expert judgement and inevitably include a considerable amount of subjectivity. This type of 204 

uncertainty is often large and has a lognormal distribution, except for proxies related to road traffic and some 205 

proxies related to commercial/residential emissions sources. We assume no error correlations exist. The first 206 

source of uncertainty is also considered in one of the experiments (see Sect. 2.4 for a description of this 207 

experiment). 208 

2.2.4 Uncertainties in time temporal profiles 209 

The For each GNFR sector the emission timing is described using three time temporal profiles: one profile that 210 

describes the seasonal cycle (monthly fractions), one profile that describes the day-to-day variations within a week 211 

(daily fractions), and one profile that describes the diurnal cycle (hourly fractions). currently consist of fixed 212 

monthly, daily and hourly fractionsThese profiles that are based on long-term average activity data and/or socio-213 

economic characteristics and. These profiles  are applied for each year and for the entire domain, considering only 214 

time zone differences. In reality, the time temporal profiles can differ between countries, and from year to year 215 

and the diurnal cycle can vary between weekdays and weekends. For example, residential emissions are strongly 216 

correlated with the outside temperature, which follows a different pattern each year. and therefore show a strong 217 

seasonal cycle. However, one winter can be very cold, whereas the next can have above-average temperatures. 218 

 219 
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Figure 3: Covariance matrices for spatial proxies (left) and time profiles (right) per aggregated source sector. These 220 
are the same for CO2 and CO. A white space on the diagonal indicates this sector is not included in the Monte Carlo 221 
simulation. 222 

To quantify the uncertainty in time temporal profiles, a range of time temporal profiles (for a full year, hourly 223 

resolution) was created for each source sector based on activity data (such as traffic counts). These profiles can 224 

be from different years and countries, so that the full range of possibilities is included. These are compared to the 225 

fixed time temporal profiles to estimate the uncertainties, which are normally distributed (see Figure 3 for the 226 

uncertainty per aggregated GNFR sector). We assume no error correlations exist. 227 

Table 3: Percentage (%) of emissions of CO2 and CO (fossil + biofuelFF + BF) that are attributed to large point sources 228 
(accounted for in databases) for source sectors public power and industry. 229 

 CO2  CO  

Country Public power Industry Public power Industry 

Netherlands 84.3 % 80.4 % 80.7 % 86.0 % 

Belgium 65.4 % 77.5 % 99.5 % 93.5 % 

Luxembourg 67.1 % 67.2 % 61.8 % 94.2 % 

Germany 85.9 % 74.1 % 96.7 % 87.9 % 

Czech Republic 89.2 % 90.4 % 79.3 % 94.3 % 

2.3 The Monte Carlo simulation 230 

Within a Monte Carlo simulation we create an ensemble (size N) of emissions, spatial proxies and time temporal 231 

profiles by drawing random samples from the covariance matrices described in Sect. 2.2. This creates a set of 232 

possible solutions in the emission space, reflecting the uncertainties in the underlying parameters. The entire 233 

process is shown in Figure 4. As mentioned before, not all sub-sectors are included in the Monte Carlo simulation 234 

and the non-included emissions are added to each ensemble member at the final stage. It is important is to ensure 235 

that the time temporal profiles and the spatial proxies do not affect the total emissions, so proxies should sum up 236 

to 1 for each country and time temporal profiles should be on average 1 over a full year. Before doing this, negative 237 

values are removed.  238 

The source sectors that include point source emissions (mainly public power and industry) are treated separately. 239 

The large point source emissions and their locations are relatively well-known and available from databases (e.g. 240 

from E-PRTR), and therefore not included in the Monte Carlo. The remaining part of the emissions (non-point 241 

source or small point sources) from these sectors are distributed using generic proxies (e.g. industrial areas) and 242 

are calculated as the difference between the total emissions (activity data x emission factor) and the sum of the 243 

point source emissions. If negative emissions result from this subtraction of reported point source emissions, the 244 

residual is set to zero. Note that the spatial uncertainty of this residual part is often high. The fraction of the public 245 

power and industrial emissions that are attributed to large point sources are shown in Table 3 for several countries. 246 



21 

 

 247 

Figure 4: Flow-diagram showing the input, processing and output of the Monte Carlo simulation. 248 

2.4 Experiments to explore uncertainty propagation 249 

In this paper several experiments are performed to examine the impact of the uncertainties in different parameters 250 

on the overall emissions and simulated concentrations: 251 

1) The first experiment uses a Monte Carlo simulation (N=500) to illustrate the spread in emissions per sector 252 

due to uncertainties in emission factors and activity data (no spatial/temporal variability is considered). This 253 

sample size is based on an analysis of the robustness of the uncertainty estimate (Janssen, 2013), which 254 

shows that a sample size of 500 is sufficient to get robust results (Appendix B). This experiment is used to 255 

show the contribution of specific sectors to the overall uncertainty and to illustrate how uncertainties vary 256 

between sectors and countries. For this experiment country totals are used, also for the countries that are 257 

partially outside the zoom domain shown in Figure 1. The results are presented in Sect. 3.1. 258 

2) The second experiment uses a Monte Carlo simulation (N=500) to illustrate how the uncertainty in spatial 259 

proxy maps is translated into uncertainties in simulated concentrations (emissions are taken constant; no 260 

temporal variability is included). We use emissions of other stationary combustion (CO2) and road traffic 261 

(CO) to illustrate the importance of having a correct spatial distribution for measurements close to the source 262 

area and further away. The results are presented in Sect. 3.2. 263 

3) The third experiment compares two spatial proxy maps for distributing ‘residual’ power plant emissions 264 

(i.e. those not accounted for in point source databases) to illustrate the potential impact of spreading out 265 

small point source emissions when zooming in on small case study areas (emissions are taken constant; no 266 

temporal variability is included). The results are presented in Sect. 3.2. 267 

4) The fourth experiment uses a Monte Carlo simulation (N=500) to illustrate the spread in time temporal 268 

profiles (emissions are taken constant; no spatial variability is considered). We use this information to 269 

determine the error introduced when extrapolating daytime (12–16 h LT) emissions (for example resulting 270 
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from an inversion) to annual emissions using an incorrect time temporal profile. Figure 5 shows two 271 

possible daily cycles, which have 46 % (blue) and 25 % (orange) of their emissions between 12 and 16 h 272 

LT. Therefore, both time temporal profiles will give a different total daily emission when used to extrapolate 273 

derive the daytime emissions. The results are presented in Sect. 3.3. 274 

 275 

Figure 5: Schematic overview of two possible time temporal profiles, which represent a different fraction of the total 276 
daily emissions during the selected period (12–16 h LT, illustrated by the dashed lines). 277 

5) For the final experiment, maps are made of the (absolute and relative) uncertainty in each pixel, including 278 

uncertainties in emission factors, activity data and spatial proxies (no temporal variability). For this we used 279 

a Tier 1 approach, using the following equations: 280 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = √∑ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑠𝑢𝑚⁄    (1) 281 

for the summation of uncorrelation quantities (e.g. sectoral emissions), and: 282 

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = √∑ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠2     (2) 283 

for the multiplication of random variables, such as used to combine activity data and emission factors. Here, 284 

the (total) relative uncertainty is the percentage uncertainty (uncertainty divided by the total) and the 285 

standard deviations are expressed in units of the uncertain quantity (percentage uncertainty multiplied with 286 

the uncertain quantity). These maps are used to explore spatial patterns in uncertainties and examine what 287 

we can learn about different countries or regions. The results are presented in Sect. 3.4. 288 

For experiment 2 and 3 a smaller domain is selected to represent a local case study (Figure 6). We used the 289 

Rotterdam area, which has been studied in detail before (Super et al., 2017b, 2017a). The domain is about 34x26 290 

km and centred over the city, which includes some major industrial activity as well. To translate the emissions 291 

into atmospheric concentrations, a simple plume dispersion model is used, the Operational Priority Substances 292 

(OPS) model. This model was developed to calculate the transport of pollutants, including chemical 293 

transformations (Van Jaarsveld, 2004; Sauter et al., 2016) and was adapted to include CO and CO2 (Super et al., 294 

2017a). The short-term version of the model calculates hourly concentrations at specific receptor points, 295 

considering hourly variations in wind direction and other transport parameters. Although the model is often used 296 

for point source emissions, it can also handle surface area sources. This model was chosen because of its very 297 

short run time, which makes it suitable for a large ensemble. The model is run for each of the alternative emission 298 

maps. 299 
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 300 

Figure 6: Emissions of CO2 (left) and CO (right) for part of the Netherlands, including the sub-domain (black rectangle) 301 
over Rotterdam. Black stars indicate the receptor locations. 302 

The OPS model is run for each ensemble member for 5 January 2014 from the start of the day until 16 h LT. On 303 

this day the wind direction is relatively constant at about 215° and the wind speed is around 6 m s-1. We specify 304 

receptor points downwind from the centre of our domain at increasing distance (5, 10, 15, 20, 30 and 40 km). We 305 

use the last hour of the simulation for our analyses. We assume emissions from other stationary combustion and 306 

road traffic (experiment 2) to take place at the surface. The initial emissions of ‘residual’ power plants, smeared 307 

out over all industrial areas, are also emitted at the surface. However, we raise the height of the emissions to 20m 308 

when these emissions are appointed to specific pixels. This height is representative for stack heights of small 309 

power plants. 310 

3 Results 311 

3.1 Uncertainties in total emissions 312 

Using the uncertainties in emission factors and activity data we can evaluate the uncertainty in the total emissions 313 

of CO2 and CO per sector. Figure 7 shows the normalized spread in emissions per sector based on the Monte Carlo 314 

simulation (N=500). The CO2 emissions have a relatively small uncertainty range and the uncertainty in the total 315 

emissions (all sectors togetherif we sum all emissions for each of the 500 solutions) is only about 1 % (standard 316 

deviation). The largest uncertainties are for fugitives and aviation, which are only small contributors to the total 317 

CO2 emissions (1.3 % and 0.4 %, respectively). Therefore, their contribution to the total emission uncertainty is 318 

very small, as is shown in Figure 8. The largest uncertainty in the total CO2 emissions is caused by the public 319 

power sector. Despite the relatively small uncertainty in the emissions from this sector, it is the largest contributor 320 

to the total CO2 emissions (33 %) and therefore the uncertainty in the public power sector contributes about 45 % 321 

to the uncertainty in the total CO2 emissions. 322 

In contrast, the CO emissions show a larger uncertainty bandwidth with many high outliers caused by the 323 

lognormal distribution of uncertainties in the emission factors. The uncertainty in the total emissions is 6 % for 324 

CO (standard deviation). Here, again the largest uncertainties are related to sectors (public power and road 325 

transport (LPG fuel)) that are relatively small contributors to the total CO emissions. The main contributor to the 326 

uncertainty in total CO emissions is other stationary combustion, which contributes about 31 % to the total 327 

emissions and is responsible for more than 60 % of the total uncertainty. 328 
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 329 

Figure 7: Normalized spread in emissions of CO2 (left) and CO (right). The box represents the interquartile range, the 330 
whiskers the 2.5–97.5 percentile, the lines the median values, and the circles are outliers. For sectors where no box is 331 
drawn there is no data included in the Monte Carlo simulation. Note the different scales of the y-axis. 332 

 333 

Figure 8: Contribution of source sectors to the total uncertainty in CO2 (left) and CO emissions (right), summing to 334 
100 %. 335 

Although the uncertainty in each parameter is assumed to be the same for each country, how a sector is composed 336 

of sub-sectors can vary per country. Therefore, the uncertainty per aggregated sector can also vary per country. 337 

An example is shown in Figure 9 (left panel), which shows the normalized spread in CO2 emissions of other 338 

stationary combustion for all countries within the domain. We find a much larger uncertainty in countries where 339 
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the relative fraction of biomass combustion is larger, because biomass burning has a much larger uncertainty in 340 

both the activity data and the emission factor. For example, the percentage of biomass burning in the residential 341 

sector is 54 % for the Czech Republic and 65 % for Denmark, compared to only 11 % and 9 % for the Netherlands 342 

and Great Britain. Thus, differences in the fuel composition of countries result in differences in the overall 343 

emission uncertainties, even if the uncertainty per parameter is estimated to be the same. OverallFor the total CO2 344 

emissions, the differences between countries are relatively small, with standard deviations between 1.2 and 2.3 % 345 

(Figure 9, right panel). 346 

 347 

Figure 9: Normalized spread in emissions of CO2 for other stationary combustion (left) and all sectors combined (right) 348 
for a range of countries. The box represents the interquartile range, the whiskers the 2.5–97.5 percentile, the lines the 349 
median values, and the circles are outliers. 350 

3.2 Uncertainties in spatial proxies 351 

We examined the impact of uncertainties in spatial proxies on modelled CO2 and CO concentrations for major 352 

source sectors. For CO2 we selected other stationary combustion (only commercial/residential, no 353 

agriculture/forestry/fishing). The largest fraction (>90 %) of CO2 emissions from this sector is distributed using 354 

population density as proxy, which is used here (the remainder of the emissions is not considered). The uncertainty 355 

in this sector-proxy combination is estimated to be 50% (normal distribution), mainly due to the disaggregation 356 

to the 1x1 km resolution. For CO we selected road transport (all fuels, but only passenger cars). The spatial proxy 357 

for distributing passenger car emissions is based on traffic intensities compiled using Open Transport Map and 358 

Open Street Map, vehicle emission factors per road type/vehicle type/country, and fleet composition. The 359 

uncertainty in this proxy is estimated to be 30 % (normal distribution) due to a higher intrinsic resolution. 360 

Figure 10 shows the resulting spread in atmospheric concentrations as a function of downwind distance from the 361 

source area. Note that the concentrations are enhancements caused by local emissions of the selected source 362 

sectors and do not include ambient concentrations or other sources. For CO2 (left panel) we see a concentration 363 

of about 3.0 ppm at 10 km from the source area centre, but with a large uncertainty bandwidth. This signal is large 364 

enough to measure, but with this large uncertainty such measurements are difficult to use in an inversion. The 365 
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measurement at 5 km from the source area centre is slightly lower than the one at 10 km, because it is updownwind 366 

of a part of the emissions. At longer distances, the magnitude of the atmospheric signalconcentration enhancement 367 

decreases drastically, and so does the absolute spread in concentrations. The signal enhancement becomes too 368 

small compared to the uncertainties occurring in a regular inversion framework to be useful. The right panel shows 369 

a similar picture for the CO concentrations resulting from passenger car emissions. Again, the spread in 370 

concentrations is large close to the source area centre and decreases with distance, but also the magnitude of the 371 

signalabsolute concentration enhancement decreases. However, in this case the concentration at 5 km from the 372 

source area centre is larger, because it is very close to an emission hot spot (see also Fig. 6). Note that we focus 373 

here on a single source sector and the overall signals enhancements will be larger and therefore easier to use. 374 

Nevertheless, the large spread in concentrations shows that a good representation of the spatial distribution is 375 

important for constraining sectoral emissions. 376 

 377 

Figure 10: Spread in simulated concentrations of CO2 resulting from commercial/residential emissions due to 378 
uncertainties in the total population proxy map (left) and spread in concentrations of CO resulting from road transport 379 
(passenger cars) emissions due to uncertainties in the passenger cars proxy map (right). The box represents the 380 
interquartile range, the whiskers the 2.5–97.5 percentile, and the lines the median values of the full ensemble. 381 

Both proxy maps discussed here are the main proxy maps for the selected sectors. As mentioned before, some 382 

sectors have residual emissions that are distributed using an alternative proxy map. An example is public power. 383 

Large power plants are listed in databases, including the reported emissions (Table 3). The remainder of the 384 

country emissions is spatially distributed over all industrial areas. However, it is more likely that the residual 385 

emissions should be attributed to specific point sources (small power plants not listed in databases). That means 386 

that instead of spreading the emissions over a large area, leading to very small local emissions and a low 387 

concentration gradient, there could be relatively large emissions at a few locations. Therefore, the uncertainty in 388 

these sector-proxy combinations is assumed to have a lognormal distribution, in part because of the absence of a 389 

better estimation. 390 

We illustrate the effect of this assumption by creating a new proxy map for residual (small) power plants. We find 391 

that for the Netherlands a total capacity of 3655 MWe by 676 combustion plants is not included as a point source 392 

(source: S&P Global Platts World Electric Power Plants database (https://www.spglobal.com/platts/en/products-393 

services/electric-power/world-electric-power-plants-database)). At least 70 % of this capacity, attributed to 280 394 

plants, is assumed to be in industrial areas. Given 4052 grid cells designated as industrial area in the Netherlands, 395 

this is just 7 % of the total amount of industrial area grid cells assuming no more than one plant per grid cell. The 396 

remainder is mainly related to cogeneration plants from glasshouses, which are located outside the industrial areas. 397 

Therefore, we create a new proxy map for power plants by equally assigning 70 % of the emissions from the 398 
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residual power plants to 20 randomly chosen pixels (7 % of the total amount of industrial area pixels in the case 399 

study area, i.e. the same density as for the Netherlands as a whole). As mentioned before, we also raise the height 400 

of the emissions from surface level to 20 m, which is a better estimate of the stack height for small power plants. 401 

The effect on local measurements is large (Figure 11). Instead of measuring a small and constant signal from this 402 

sector, the assumed presence of small power plants results in measuring occasional large peak concentrations. 403 

Thus, despite being relatively unimportant at the national level, for local studies the impact of the uncertainty in 404 

these ‘residual’ proxies can be large. 405 

 406 

Figure 11: Spread in simulated concentrations of CO2 resulting from public power emissions due to differences in the 407 
proxy map: emissions are distributed using the new proxy map with only 20 randomly chosen pixels containing 408 
emissions. The box represents the interquartile range, the whiskers the 2.5–97.5 percentile, the lines the median values, 409 
and the black circles are outliers of the full ensemble. The red dots show concentrations of CO2 when the original proxy 410 
map is used (industrial area). 411 

3.3 Uncertainties in time temporal profiles 412 

The timing of emissions is important to interpret measurements correctly. During morning rush hour, a peak is 413 

expected in road traffic emissions, but the magnitude of this peak can differ from one day to the next. Also, the 414 

seasonal cycle in emissions due to heating of buildings can vary between years due to varying weather conditions. 415 

Yet, often fixed time temporal profiles are used to describe the temporal disaggregation of annual emissions. The 416 

range of possible values for the time temporal profile of other stationary combustion is shown in Figure 12. The 417 

range can be very large, especially during the winter. However, note that the average of each time temporal profile 418 

is 1.0 for a full year, so that the temporally distributed emissions add up to the annual total. Therefore, changes in 419 

the time temporal profile indicate shifts in the timing in the emissions and not changes in the overall emissions 420 

due to cold weather, which are accounted for by the activity data. 421 
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 422 

Figure 12: Spread in time temporal profiles for other stationary combustion (N=500), resulting from the Monte Carlo 423 
simulation (grey shading). The black line represents the standard time profile. 424 

In inverse modelling, often well-mixed (non-stable) daytime measurements are selected (Boon et al., 2016; Breón 425 

et al., 2015; Lauvaux et al., 2013), because these are least prone to errors in model transport. For local studies, 426 

where transport times are short, this means that only afternoon emissions are optimized. The total annual emissions 427 

can then be calculated using a time temporal profile. However, if the time temporal profile is not correct, an 428 

incorrect fraction of the emissions can be attributed to the selected hours. We examined the impact of using an 429 

incorrect time temporal profile on the total yearly emissions by calculating yearly emissions for each ensemble 430 

member. Figure 13 shows the normalized spread in sectoral emissions for all ensemble members. The error in the 431 

total annual emissions, resulting from the upscaling of daytime emissions using an incorrect time temporal profile, 432 

can reach up to about 1–2 %. This is a significant source of error for country-level CO2 emissions, but less 433 

important for CO as the other uncertainties for CO are much larger. 434 

 435 

Figure 13: Normalized spread in emissions of CO2 and CO per sector due to uncertainties in time temporal profiles. 436 
The box represents the interquartile range, the whiskers the 2.5–97.5 percentile, the lines the median values, and the 437 
circles are outliers. The spread is the same for CO2 and CO, because they have the same temporal profiles. 438 
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3.4 Uncertainty maps and spatial patterns 439 

As mentioned before, the uncertainty of the emission value in a grid cell is determined by the uncertainties in 440 

activity data, emission factors and spatial distribution proxies. The gridded uncertainty maps in Figure 14 and 441 

Figure 15 illustrate that countries or (types of) regions differ significantly in their emission uncertainty, both in 442 

absolute and relative values. Concerning the uncertainty in CO2 and CO emissions, several observations can be 443 

made. 444 

First, for both CO and CO2 the road network is visible due to low relative uncertainties and high absolute 445 

uncertainties compared to the surroundings. This indicates that, despite having large emissions per pixel, the 446 

spread in road traffic emissions among ensemble members is relatively small. This is likely due to the small 447 

(normally distributed) uncertainty in the spatial proxies for road traffic, i.e. the location of the roads is well-known. 448 

The surrounding rural areas are dominated by other stationary combustion, which has a slightly larger spatial 449 

uncertainty. 450 
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 451 

Figure 14: Maps of the relative and absolute uncertainty in CO2 emissions. Areas that are examined in more detail are 452 
outlined by black squares in the top panel. 453 
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 454 

Figure 15: Maps of the relative and absolute uncertainty in CO emissions. Areas that are examined in more detail are 455 
outlined by black squares in the top panel. 456 

Second, in Austria (Tirol mainly) a large area of high relative uncertainty in CO2 emissions is visible (average 457 

pixel emission is 220 tonnes CO2 yr-1), which we compare to an area just on the other site of the border in southern 458 

Germany (average pixel emission is 495 tonnes CO2 yr-1). The uncertainty in both areas is dominated by other 459 

stationary combustion. Yet, in Austria a lot of biofuels are is used (52 % of the total emissions for this source 460 

sector) with a large uncertainty in the emission factor and spatial distribution, whereas in Germany only 20 % of 461 

the emissions in this sector are caused by biofuels combustion. On the other hand, the absolute uncertainty is very 462 

small in Tirol because of the low population density (and thus small emissions) in this mountainous area. 463 
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Third, some large patches of high relative uncertainty in CO2 emissions are visible in the Czech Republic and the 464 

northeast of France. The location of these patches seems to correspond to natural areas/parks. Therefore, absolute 465 

uncertainties are low in these areas given the low emissions (average pixel emission in the Sumava national park 466 

is 22 tonnes CO2 yr-1). The total uncertainty can be explained for 60 % by the uncertainty in other stationary 467 

combustion, mainly wood burning (Figure 16). Also, agriculture (field burning of residues) plays a significant 468 

role. In addition to these natural areas, there are also some very small dark red areas (relative uncertainty) in 469 

northern France. These areas are military domain and have a lower absolute uncertainty than their surroundings 470 

because very few emissions are distributed to these areas (average pixel emission is 250 tonnes CO2 yr-1). The 471 

public power and industrial emissions are probably too small to be reported, hence the large relatively uncertainty. 472 

 473 

 474 

Figure 16: Contribution of source sectors to the total emissions (left) and the total uncertainty (right) in CO2 for the 475 
Sumava national park in the Czech Republic and a hotspot in France, summing to 100 %. See Figure 14 for the exact 476 
location of these areas. 477 

Fourth, big citiesstrongly urbanized areas like Paris, Berlin the Ruhr area in Germany and Brussels Rotterdam 478 

(also see Fig. 1 for their locations) are clearly visible as areas where the relative uncertainty in CO emissions is 479 

lower than in the surrounding areas. Compared to its surroundings, the uncertainty in Paris is mainly determined 480 

by the industrial sector (Figure 17). Since industrial emissions are relatively well-known, the relative uncertainty 481 

is small. However, the absolute uncertainty is large for big cities because of the high emissions in these densely 482 

populated areas (average pixel emission is 64 tonnes CO yr-1 for Paris). In the surrounding areas the emissions are 483 

again dominated by other stationary combustion, which has a larger uncertainty. Yet, the absolute uncertainty is 484 

smaller because of the lower emissions (average pixel emission is 12 tonnes CO yr-1). 485 
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 486 

Figure 17: Contribution of source sectors to the total emissions (left) and the total uncertainty (right) in CO for Paris 487 
and its surroundings, summing to 100 %. See Figure 15 for the exact location of these areas. 488 

Finally, the relative uncertainties seem to be consistently higher in some countries than in others. For example, 489 

the relative uncertainty in the total emissions of France and Great Britain (only pixels within the domain) are 39 490 

% and 25 %, respectively. For France, the main sources of uncertainty are industry and other stationary 491 

combustion, whereas the off-road and road transport sectors have a significant contribution to the uncertainty in 492 

Great Britain (Figure 18). The main difference between the countries is again the amount of biomass used in the 493 

other stationary combustion sector (26 % in France and 8 % in Great Britain). This is likely to explain why in 494 

rural areas the relative uncertainty is much higher in France.  495 

 496 

Figure 18: Contribution of source sectors to the total emissions (left) and the total uncertainty (right) in CO for France 497 
and Great Britain, summing to 100 %.  498 
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4. Discussion and conclusions 499 

Several previous studies have examined the uncertainty in emissions, either globally or nationally. For example, 500 

Andres et al. (2014) studied the uncertainty in the CDIAC emission inventory on a global scale, suggesting that 501 

the largest uncertainties are related to the fuel consumption (i.e. activity data). A similar concern was identified 502 

for China, for which the uncertainty in energy statistics resulted in an uncertainty ratio of 15.6 % in the 2012 CO2 503 

emissions (Hong et al., 2017). In the present study the uncertainties in activity data and emission factors are similar 504 

for CO2, whereas the uncertainty in CO emission factors is much larger than the uncertainty in activity data. A 505 

possible explanation for this is that the energy statistics for the European countries included here are more reliable 506 

than for developing countries. The occurrence of large differences in the reliability of reported emissions between 507 

countries is also illustrated by Andres et al. (2014). In addition to these scientific studies, many countries report 508 

uncertainties in emission estimates in their National Inventory Reports (UNFCCC, 2019). Yet, their methods for 509 

uncertainty calculation differ and can even vary over time. Several scholars have examined the uncertainty in 510 

national CO2 greenhouse gas emissions in more detail. For example, Monni et al. (2004) (Finland) and Fauster et 511 

al. (2011) (Denmark) used a Tier 2 approach (Monte Carlo simulation) to determine the uncertainty in the total 512 

greenhouse gas emissions (in CO2 equivalents). They found an uncertainty of about 5–6 % for the year 2001 for 513 

Finland and an uncertainty of 4–5 % for the year 2008 for Denmark, also considering non-normal distributions in 514 

uncertainties. Moreover, Oda et al. (2019) found a 2.2 % difference in total CO2 emissions in Poland between two 515 

emission inventories, which is in agreement. These values agree with our total CO2 emission uncertaintyies. 516 

Even fewer studies have focused on uncertainties in the proxy maps used for spatial disaggregation. Some studies 517 

compared emission inventories to get an idea of the spatial uncertainties (Gately and Hutyra, 2017; Hutchins et 518 

al., 2017), but these studies are likely to underestimate uncertainties due to systematic errors caused that occur 519 

when different emission inventories use similar methods and/or proxies for spatial allocation. Moreover, exact 520 

quantification of uncertainties is often limited, dependent on the spatial scale, and the uncertainties are not 521 

specified per source (i.e. total emissions and spatial disaggregation) (Oda et al., 2019). Sowden et al. (2008) used 522 

a qualitative approach to identify the uncertainty of different components of their emission inventory for reactive 523 

pollutants (activity, emission factors, spatial and temporal allocation and speciation) by giving each component a 524 

quality rating. They suggest that spatial allocation is an important source of uncertainty for residential burning, 525 

but not so much for point sources and road traffic. Indeed, the location of large point sources and roads is relatively 526 

well-known. However, we consider the allocation of emissions to pixels that include roads to have a significant 527 

(pixel value) uncertainty. Therefore, our results show that uncertainties in the spatial proxy used for road traffic 528 

can cause a significant spread in CO concentrations. 529 

Andres et al. (2016) did a more extensive analysis of the spatial distribution in CDIAC, including uncertainties in 530 

pixel values (e.g. due to incorrect accounting methods or changes over time) and due to the representativeness of 531 

the proxy for the spatial distribution of emissions (also see Sect. 2.2.3). We considered these sources of uncertainty 532 

as well. However, Andres et al. (2016) also mention spatial discretization as a source of error, because they assign 533 

each pixel (1x1° resolution) to one country. The proxy maps used in this study include country fractions in each 534 

pixel, reducing this uncertainty. In contrast, we suggest another source of uncertainty, namely the fact that some 535 

pixels can include emissions while no activity takes place there or vice versa (proxy quality). Based on the listed 536 

uncertainties, Andres et al. (2016) found an average uncertainty (2σ) in individual pixels of 120 % (assuming 537 

normal distributions). Here, we find an average uncertainty (2σ) of 36 %. However, a small number of large 538 
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outliers occurs (less than 0.01 % of the pixels has an uncertainty of >1000 %) due to lognormal error distributions, 539 

although these are related to pixels with small emissions. A large part of the difference can be explained by the 540 

large pixel size of CDIAC and the large error introduced by spatial discretization (e.g. due to pixels that cover 541 

large areas of two different countries). Also, their emissions are spatially distributed based on population density, 542 

while we use a range of proxy maps depending on the source sector and use specific locations for large point 543 

sources. However, the uncertainty estimates are partially based on expert judgement and remain subjective. 544 

Moreover, the uncertainty related to the location of actual activities is not included in our uncertainty estimate, 545 

even though we have shown this can have a large impact locally. 546 

The country-level CO2 emissions used for our emission inventory are based on NIR’s, which are assumed to be 547 

relatively accurate because of the use of detailed fuel consumption statistics and country-specific emission factors 548 

(Andres et al., 2014; Francey et al., 2013). The uncertainties reported in the NIRs were determined following 549 

specified procedures and are deemed the most complete and reliable estimates available. Yet, because of the use 550 

of prescribed methods and in some cases general emission factors, systematic errors can occur both in the estimate 551 

of parameters and in the estimate of uncertainties. We choose to average the uncertainties reported by several 552 

countries, because the uncertainty estimates are relatively consistent across countries. However, this would not 553 

eliminate such systematic errors. The effect of systematic errors could be analysed by comparing different sources 554 

of information. Additionally, we assume point source emissions are relatively certain, yet a recent study showed 555 

that significant uncertainties exist in reported emissions of US power plants (Quick and Marland, 2019). A similar 556 

study for Europe is recommended, not only to improve the knowledge for the European situation, but also to 557 

understand continental differences. 558 

One source of uncertainty that is not considered in this study is the incompleteness of the emission inventory (i.e. 559 

if sources are missing) or double-counting errors. For example, during the compilation of the base inventory we 560 

found that in several cases the CO2 emissions from airports were very low. The reason was that emissions from 561 

international flights are not reported in the NIR’s and are therefore not part of the emission data used to create the 562 

inventory. Once discovered, this was corrected and LTO (aircraft landing and take-off) emissions from 563 

international flights were added in a later stage. Such discrepancies caused by reporting guidelines could be 564 

present for other source types as well. Although overall this error is likely to be small, locally the errors might be 565 

significant.  566 

Finally, Sowden et al. (2008) mention (dis)aggregation as another source of error, i.e. the calculation of emissions 567 

on a different scale (spatially, temporally or sector level) than the input data. In principle, fuel consumption data 568 

is available on aggregated levels and then separated over different subsectors. This increases the uncertainty at 569 

the lower level, but on the aggregated level the uncertainties remain the same. A similar note was made by Andres 570 

et al. (2016) about the use of higher resolution proxy maps, which might increase the uncertainty due to lack of 571 

local data. However, when local data is available this might also decrease the uncertainties. For example, the 572 

EDGAR emission database uses non-country specific emission factors based on technology levels and sector 573 

aggregated energy statistics (Muntean et al., 2018). The reason is that the level of detail we used in this paper is 574 

not available globally. However, using generic emission factors can introduce large uncertainties when sub-575 

sectoral chances occur. Therefore, regional/local studies could benefit from using a dedicated emission inventory 576 

for their region of interest instead of a global inventory. 577 
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Our results can be used to support network design and inverse modelling. The uncertainty maps are helpful to 578 

identify regions with large emission uncertainties, which can be the focus point of an inversion with the aim to 579 

optimize emissions in those regions. However, inverse modelling requires an observational network that is 580 

sensitive to the emissions from the regions of interest. A site is sensitive to specific emissions when it is often 581 

affected by them, taking into account the dominant wind direction and the magnitude of concentration 582 

enhancements, which should be larger than the uncertainties that affect model-observation comparison (e.g. 583 

measurement uncertainty and model errors). Plumes from emission hot spots can travel a long distance and sites 584 

up to 30 km downwind have shown to be able to detect urban signals (Super et al., 2017a; Turnbull et al., 2015). 585 

The concentration enhancement in these plumes is large and therefore easy to detect. In contrast, the concentration 586 

enhancements of a single source (sector) are much smaller, as shown in Fig. 10 and Fig. 11, and therefore they 587 

become undetectable at much shorter distances. For example, vehicle exhaust emissions were shown to decrease 588 

by a factor 2 at 200 m from a highway (Canagaratna et al., 2010), while power plants plumes have been detected 589 

several kilometres downwind (Lindenmaier et al., 2014). Dilution is strongly dependent on the atmospheric 590 

conditions and also the height of the measurement site plays an important role. To conclude, the optimal network 591 

design is strongly dependent on which question needs to be answered and the focus area and resolution needed to 592 

reach this goal. 593 

5. Conclusions 594 

In this work we studied the uncertainties in a high-resolution gridded emission inventory for CO2 and CO, 595 

considering uncertainties in the underlying parameters (activity data, emission factors, spatial proxy maps and 596 

time temporal profiles). We find that all factors play a significant role in determining the emission uncertainties, 597 

but that the contribution of each factor differs per sector. Disaggregation of emissions introduces additional 598 

sources of uncertainty, which makes uncertainties at higher resolution larger than at the scale of a country/year 599 

and can have a large impact on (the interpretation of) local measurements. This is an important consideration for 600 

inverse modelers and our methodology can be used to better define local uncertainties for e.g. urban inversions. 601 

Inverse modelers should be aware that the use of erroneous time temporal profiles to extrapolate emission data 602 

could result in errors of a few percent, which for CO2 is significant. In the future, the temporal profiles could be 603 

improved by using detailed activity data, e.g. from power plants. Moreover, we found that large regional 604 

differences exist in absolute and relative uncertainties. By looking in more detail at specific regions (or countries) 605 

more insight can be gained about the emission landscape and what are the main causes of uncertainty. 606 

Interestingly, areas with larger absolute uncertainties often have smaller relative uncertainties. A likely 607 

explanation is that large sources of CO2 and CO emissions received more attention and are therefore relatively 608 

well-constrained, for example in the case of large point sources. Nevertheless, since we are most interested in 609 

absolute emission reductions the map with absolute uncertainties can be used to define an observational network 610 

that is able to reduce the largest absolute uncertainties. Finally, we believe that an uncertainty product based on a 611 

well-defined, well-documented and systematic methodology could be beneficial for the entire modelling 612 

community and support decision-making as well. However, specific needs can differ significantly between 613 

studies, for example the scale/resolution, source sector aggregation level, and which species are included. 614 

Therefore, the creation of a generic uncertainty product is challenging and needs further research. 615 
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Data availability 616 

The family of ten emission inventories are is available for non-commercial applications and research 617 

(https://doi.org/10.5281/zenodo.3584549). Please contact Hugo Denier van der Gon (). 618 
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Appendix A 

Table A1: Relative uncertainties (fraction) in activity data and CO2 emission factors as taken from the NIRs (country-

average) and in CO emission factors as derived from literature (assumed equal for all countries in the domain). The 

quoted uncertainty ranges are assumed to be representative for one standard deviation. Uncertainties in activity data 

and CO2 emission factors are often relatively low and symmetrically distributed and normal distributions (Norm) are 

assumed for these activities. Compared to CO2 emission factors, the uncertainty in CO emission factors is much higher, 

up to an order of magnitude. Uncertainties in CO emission factors are often lognormally distributed (Logn) and are 

assumed equal for all countries in the HR domain. The uncertainty in the activity of open burning of waste (not covered 

by the NIRs) is also assumed to have a lognormal distribution. 
Sector (NFR) Fuel type Activity data CO2 emission factors CO emission factors 

Average Distribution Average Distribution Average Distribution 

Public electricity and heat 

production (1.A.1.a) 

Solid (fossil) 0.018 Norm 0.030 Norm 0.149 Logn 

Liquid (fossil) 0.022 Norm 0.031 Norm 0.399 Norm 

Gaseous (fossil) 0.021 Norm 0.015 Norm 0.513 Norm 

Biomass 0.060 Norm 0.05 Norm 0.231 Logn 

Oil and gas refining (1.A.1.b 

& 1.B.2.d) 

All 0.038 Norm 0.048 Norm 0.402 Norm 

Oil production & Gas 

exploration (1.B.2 mainly 

flaring, 1.B.2.c) 

All 0.118 Norm 0.141 Norm 0.240 Logn 

Iron and steel industry 

(1.A.2.a & 2.C.1)  

All 0.044 Norm 0.056 Norm 0.240 Logn 

Non-ferrous metals (1.A.2.b 

& 2.C.2_3) 

All 0.031 Norm 0.029 Norm 0.208 Norm 

Chemical industry (1.A.2.c & 

2.B) 

All 0.042 Norm 0.041 Norm 0.138 Logn 

Pulp and paper industry 

(1.A.2.d) 

All 0.027 Norm 0.016 Norm 0.138 Logn 

Food processing, beverages 

and tobacco (1.A.2.e) 

All 0.029 Norm 0.017 Norm 0.138 Logn 

Non-metallic minerals 

(1.A.2.f & 2.A) 

All 0.032 Norm 0.041 Norm 0.384 Logn 

Other manufacturing industry 

(1.A.2.g) 

All 0.029 Norm 0.014 Norm 0.138 Logn 

Civil aviation - LTO (1.A.3.a) All 0.089 Norm 0.040 Norm 0.231 Logn 

Road transport (all vehicle 

types) (1.A.3.b) 

Gasoline (fossil) 0.031 Norm 0.025 Norm 0.284 Logn 

Diesel (fossil) 0.032 Norm 0.026 Norm 0.319 Norm 

Gaseous (fossil) 0.039 Norm 0.027 Norm 0.320 Logn 

LPG 0.039 Norm 0.027 Norm 0.462 Norm 

Other transport (1.A.3.e & 

1.A.4 mobile) 

All 0.067 Norm 0.023 Norm 0.384 Logn 

Other mobile (1.A.5.b) All 0.098 Norm 0.026 Norm 0.384 Logn 

Residential (1.A.4.b) Gaseous (fossil) 0.040 Norm 0.022 Norm 0.141 Logn 

Liquid (fossil) 0.048 Norm 0.024 Norm 0.404 Norm 

Solid (fossil) 0.085 Norm 0.041 Norm 0.141 Logn 

Biomass 0.163 Norm 0.055 Norm 0.384 Logn 

Commercial institutional 

(1.A.4.a) 

Gaseous (fossil) 0.043 Norm 0.022 Norm 0.138 Logn 

Liquid (fossil) 0.055 Norm 0.023 Norm 1.065 Norm 

Solid (fossil) 0.087 Norm 0.040 Norm 0.994 Norm 

Biomass 0.103 Norm 0.055 Norm 0.730 Logn 
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Agriculture/Forestry/Fishing 

(1.A.4.c) 

Gaseous (fossil) 0.050 Norm 0.028 Norm 0.138 Logn 

Liquid (fossil) 0.051 Norm 0.029 Norm 1.065 Norm 

Solid (fossil) 0.095 Norm 0.048 Norm 0.994 Norm 

Biomass 0.096 Norm 0.09 Norm 0.730 Logn 

Other stationary (1.A.5.a) Gaseous (fossil) 0.097 Norm 0.023 Norm 0.138 Logn 

Liquid (fossil) 0.084 Norm 0.021 Norm 1.065 Norm 

Solid (fossil) 0.103 Norm 0.033 Norm 0.994 Norm 

Biomass 0.180 Norm 0.04 Norm 0.730 Logn 

Agricultural waste burning 

(3.F) 

- 1.609 Logn 0.2 Norm 0.429 Norm 

Uncontrolled waste burning 

(5.C.2) 

- 1.609 Logn 0.5 Norm 0.366 Logn 

Table A2: Relative uncertainties (fractions) at cell level resulting from the spatial distribution. The values listed 

represent the (one standard deviation) uncertainty of the emission per cell due to uncertainty sources 2 and 3 as listed 

in Sect. 2.2.3. All values in the table below are based on expert quantification and inevitably include a considerable 

amount of subjectivity. The data should therefore be considered as a first order indication only. Note that the natural 

logarithm (Ln) of the uncertainty fraction is given in case uncertainty has a lognormal distribution. 
Sector name Proxy name Distribution Uncertainty  

Public electricity and heat production; Chemical industry; 

Food processing, beverages and tobacco (comb); Food 

and beverages industry; Other non-metallic mineral 

production; Small combustion - Commercial/institutional 

– Mobile 

CORINE_2012_Industrial_area Logn 2.2 

Solid fuel transformation; Iron and steel industry (comb); 

Iron and steel production; Pulp and paper industry (comb); 

Pulp and paper industry; Non-metallic minerals (comb); 

Cement production 

CORINE_2012_Industrial_area Logn 3.7 

Other manufacturing industry (comb); Other industrial 

processes; Manufacturing industry - Off-road vehicles and 

other machinery 

CORINE_2012_Industrial_area Logn 1.4 

Oil and gas refining (comb); Oil and gas refining CORINE_2012_Industrial_area Logn 3.7 

TNO_PS for Refineries Logn 1.7 

Coal mining (comb) CORINE_2012_Industrial_area Logn 4.6 

TNO_PS for Coal mining Logn 1.7 

Oil production (comb) CORINE_2012_Industrial_area Logn 1.7 

TNO_PS for Oil production Logn 1.7 

Gas exploration (comb) CORINE_2012_Industrial_area Logn 1.7 

TNO_PS for Gas production Logn 1.7 

Coke ovens (comb) CORINE_2012_Industrial_area Logn 1.7 

TNO_PS for Iron and steel - Coke ovens Logn 1.7 

Non-ferrous metals (comb); Other non-ferrous metal 

production 

CORINE_2012_Industrial_area Logn 3.7 

TNO_PS for Non-ferrous metals - Other Logn 1.7 

Aluminium production CORINE_2012_Industrial_area Logn 3.7 

TNO_PS for Non-ferrous metals - 

Aluminium 

Logn 1.7 

Chemical industry (comb) CORINE_2012_Industrial_area Logn 2.2 

TNO_PS for Chemical industry Logn 1.7 

Passenger cars RoadTransport_PassengerCars Norm 0.3 

Light duty vehicles RoadTransport_LightCommercialVehicles Norm 0.3 

Trucks (>3.5t) RoadTransport_HeavyDutyTrucks Norm 0.3 
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Buses RoadTransport_Buses Norm 0.3 

Motorcycles RoadTransport_Motorcycles Norm 0.3 

Mopeds RoadTransport_Mopeds Norm 0.5 

Civil aviation – LTO Airport distribution for year 2015 Logn 1.4 

Mobile sources in agriculture/forestry/fishing CORINE_2012_Arable_land Logn 1.4 

Other transportation, including pipeline compressors Population_total_2015 Logn 3.7 

Small combustion - Residential - Household and 

gardening; Other mobile combustion 

Population_total_2015 Logn 1.3 

Commercial/institutional Population_total_2015 Norm 0.5 

Population_rural_2015 Logn 1.3 

Population_urban_2015 Logn 1.3 

Wood_use_2014 Logn 2.2 

Residential Population_total_2015 Norm 0.5 

Population_rural_2015 Logn 1.3 

Population_urban_2015 Logn 1.3 

Wood_use_2014 Logn 1.4 

Agriculture/Forestry/Fishing CORINE_2012_Arable_land Logn 1.4 

Wood_use_2014 Logn 2.2 

Other stationary combustion Population_total_2015 Logn 1.3 

Population_rural_2015 Logn 1.3 

Wood_use_2014 Logn 1.4 

Field burning of agricultural residues CORINE_2012_Arable_land Logn 2.2 

Population_total_2015 Logn 2.2 

Open burning of waste CORINE_2012_Industrial_area Logn 3.7 

Population_rural_2015 Logn 3.7 

Appendix B 

 

Figure B1: Spread in the standard deviations if the Monte Carlo simulation were to be repeated multiple 

times for a specific sample size, based on a bootstrapping method. 
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