Table S1: Loess mass accumulation rates; encompassing all particle sizes (MAR) or only particles with less than 10 μ m diameter (MAR10). Reconstructed from fieldwork samples dated to the LGM or to a period encompassing the LGM. Proportion of particles smaller than 10 μ m in diameter (Frac10). MAR ranges itemized by their limits. For sites with more than one reconstructed MAR each rate is shown separately. Missing value (0.00); country codes (CC) conform with ISO 3166.

Site	CC	Lat	Lon	MAR	MAR10	Frac10
		°N	°E	$\mathrm{g}~\mathrm{m}^{-2}~\mathrm{yr}^{-1}$	$\mathrm{g}~\mathrm{m}^{-2}~\mathrm{yr}^{-1}$	
Achenheim [1]	FR	48.35	7.38	331.00	82.75	0.25
Achenheim [2]	FR	48.35	7.38	257.00	0.00	0
Albertirsa [3]	HU	47.26	19.64	386.00	96.50	0.25
Albertirsa [2]	HU	47.26	19.64	841.00	0.00	0
Albertirsa [4]	HU	47.26	19.64	587.00	134.00	0.23
Am Bingert Wiesbaden [2]	DE	50.12	8.28	361.00	0.00	0
Arapovychi (Arapovichi) [5]	UA	51.95	33.31	666.00	166.50	0.25
Basaharc [4]	HU	47.80	18.84	348.00	79.00	0.23
Batajnica [4]	RS	44.92	20.32	329.00	75.00	0.23
Böckingen [2]	DE	49.13	9.18	3300.00	0.00	0
Bodrogkeresztúr 1 [4]	HU	48.13	21.40	381.00	87.00	0.23
Bönnigheim A [2]	DE	49.04	9.14	131.00	0.00	0
Bönnigheim B [6]	DE	49.04	9.14	242.00	60.50	0.25
Bönnigheim B [2]	DE	49.04	9.14	283.00	0.00	0
Bönnigheim B [2]	DE	49.04	9.14	1500.00	0.00	0
Bryansk [5]	RU	53.15	34.06	394.00	98.50	0.25
Crvenka [4]	RS	45.66	19.48	197.00	45.00	0.23
Csorgókút 1 [4]	HU	48.13	21.40	284.00	65.00	0.23
Csorgókút 2 [4]	HU	48.13	21.40	453.00	103.00	0.23
Debrecen (Alföldi brickyard) [4]	HU	47.53	21.57	237.00	54.00	0.23
Dolní Vestonice [6]	CZ	48.89	16.66	758.00	189.50	0.25
Dolní Věstonice [2]	CZ	48.89	16.66	754.00	0.00	0
Dolní Věstonice [2]	CZ	48.89	16.66	1100.00	0.00	0
Dunaszekcső[4]	HU	46.07	18.75	707.00	161.00	0.23
Dunaújváros [4]	HU	46.97	18.94	1238.00	282.00	0.23
Dybawka [7]	PL	49.79	22.69	1195.00	0.00	0
Erdut [4]	HR	45.53	19.06	215.00	49.00	0.23
Gololobovo [8]	RU	55.05	38.57	272.00	68.00	0.25
Gorokhov [5]	UA	50.31	24.50	435.00	108.75	0.25
Grubgraben Kammern	AT	48.50	15.80	2100.00	0.00	0
Niederösterreich [2]						
Gunderding Oberösterreich [2]	AT	48.26	13.23	10340.00	0.00	0
Halytsch (Halyc) [9]	UA	49.10	24.80	226.00	56.50	0.25
Harmignies [10]	BE	50.41	4.02	412.00	103.00	0.25
Harmignies [2]	BE	50.41	4.02	1467.00	0.00	0
Harmignies [2]	BE	50.41	4.02	3135.00	0.00	0
Irig [4]	RS	45.08	19.87	192.00	44.00	0.23
Katymár [7]	HU	46.02	19.20	1005	0.00	0
Katymár [4]	HU	46.02	19.20	632.00	144.00	0.23
Kesselt [11]	BE	50.84	5.60	446.00	111.50	0.25
Table continues						

Table S1: *continued*

Site	CC	Lat	Lon	MAR	MAR10	Frac10
		°N	°E	$\mathrm{g}~\mathrm{m}^{-2}~\mathrm{yr}^{-1}$	$\mathrm{g}~\mathrm{m}^{-2}~\mathrm{yr}^{-1}$	
Kesselt [2]	BE	50.84	5.60	825.00	0.00	0
Kesselt [2]	BE	50.84	5.60	330.00	0.00	0
Korostelevo (Korostylievo) [12]	RU	51.84	42.42	181.00	45.25	0.25
Lakitelek 1 [4]	HU	46.88	20.02	254.00	58.00	0.23
Látókép [4]	HU	47.56	21.49	212.00	48.00	0.23
Likhvin (Chekalin) [8]	RU	54.10	36.27	272.00	68.00	0.25
Madaras [4]	HU	46.04	19.29	375.00	86.00	0.23
Mende [13]	HU	47.42	19.45	456.00	114.00	0.25
Mende [2]	HU	47.42	19.45	519.00	0.00	0
Mende [4]	HU	47.42	19.45	761.00	173.00	0.23
Mezyn (Mezin) [5]	UA	52.20	33.30	788.00	197.00	0.25
Molodova V [14]	UA	48.50	26.89	369.00	92.25	0.25
Mosorin [7]	RS	45.26	20.28	545.00	0.00	0
Mošorin [4]	RS	45.26	20.28	395.00	90.00	0.23
Nussloch [15]	DE	49.35	8.72	2114.00	528.50	0.25
Nussloch [2]	DE	49.35	8.72	1213.00	0.00	0
Nussloch [2]	DE	49.35	8.72	6129.00	0.00	0
Otkaznoe (Otkaznoye) [16]	RU	44.32	43.85	336.00	117.60	0.35
Paks [13]	HU	46.64	18.88	1325.00	331.25	0.25
Paks [2]	HU	46.64	18.88	2662.00	0.00	0
Paks [4]	HU	46.64	18.88	1422.00	324.00	0.23
Patkóbánya Kopasz Hill Tokaj [17]	HU	48.22	20.45	395.00	98.75	0.25
Petrovaradin [4]	RS	45.27	19.87	174.00	40.00	0.23
Prymors'ke (Primorskoje) [18]	UA	45.94	30.20	654.00	163.50	0.25
Pyrogove [7]	UA	50.36	30.53	1659.00	0.00	0
Radymno [7]	PL	49.96	22.81	538.00	0.00	0
Remicourt [2]	BE	50.67	5.40	560.00	140.00	0.25
Remicourt [2]	BE	50.67	5.40	453.00	0.00	0
Rocourt [19]	BE	50.68	5.54	257.00	64.25	0.25
Rocourt [2]	BE	50.68	5.54	93.00	0.00	0
Ruma [4]	RS	45.01	19.85	192.00	44.00	0.23
Sables d'Or les Pins [2]	FR	48.65	-2.39	354.00	0.00	0
Ságvár [4]	HU	46.83	18.09	176.00	40.00	0.23
Sanzhijka [7]	UA	46.23	30.61	808.00	0.00	0
Schwalbenberg [2]	DE	50.57	7.24	560.00	140.00	0.25
StPierre-les-Elbeuf [20]	FR	49.60	1.23	242.00	60.50	0.25
StRomain-de-Colbosc [19]	FR	49.54	0.36	687.00	171.75	0.25
Stari Bezradychy [7]	UA	50.18	30.55	440.00	0.00	0
Stari Slankamen [4]	RS	45.13	20.27	168.00	38.00	0.23
Stillfried Gänserndorf	AT	48.42	16.84	229.00	0.00	0
Niederösterreich [2]						
Strelitsa [21]	RU	51.60	38.90	290.00	72.50	0.25
Surduk [4]	RS	45.07	20.33	434.00	99.00	0.23
Susek [4]	RS	45.22	19.53	150.00	34.00	0.23
Süttő[22]	HU	47.74	18.45	1009.00	0.00	0
Table continues						

Table S1:continued

Site	CC	Lat	Lon	MAR	MAR10	Frac10
		°N	°E	$\mathrm{g}~\mathrm{m}^{-2}~\mathrm{yr}^{-1}$	$\mathrm{g}~\mathrm{m}^{-2}~\mathrm{yr}^{-1}$	
Süttő[4]	HU	47.74	18.45	584.00	133.00	0.23
Szeged-Öthalom I [4]	HU	46.28	20.10	332.00	76.00	0.23
Tápiósüly [4]	HU	47.45	19.52	504.00	115.00	0.23
Titel [7]	RS	45.23	20.30	591.00	0.00	0
Titel [4]	RS	45.23	20.30	510.00	116.00	0.23
Tokaj (Kereszt Hill II) [4]	HU	48.13	21.40	222.00	51.00	0.23
Tokaj (Patkó-quarry) [4]	HU	48.12	21.40	332.00	76.00	0.23
Tokaj Kopasz Hill Patkó-bánya [17]	HU	48.22	20.45	395.00	98.75	0.25
Tönchesberg Tönches-Berg Kruft [23]	DE	50.35	7.35	779.00	194.75	0.25
Tönchesberg Tönches-Berg Kruft [2]	DE	50.35	7.35	1249.00	0.00	0
Trindorf Oftering [2]	AT	48.24	14.14	2970.00	0.00	0
Üveghuta-2 borehole [4]	HU	46.20	18.61	338.00	77.00	0.23
Volgodonsk [24]	RU	47.56	41.99	245.00	98.00	0.4
Vyazivok [25]	UA	49.33	32.98	202.00	50.50	0.25
Willendorf II Niederösterreich [2]	AT	47.79	16.05	372.00	0.00	0
Willendorf II Niederösterreich [2]	AT	47.79	16.05	886.00	0.00	0
Zmajevac [4]	HR	45.81	18.82	437.00	100.00	0.23

 Table S2: Palaeoclimate Modelling Intercomparison Project Phase 3 (PMIP3) setup for global LGM simulations (first column) and its adapted implementation that upgrades the WRF-Chem to the WRF-Chem-LGM. Default values listed for comparison to the right of the slash (second column).

 DMIP3 L CM [ac]

Earth's orbit:		PMIP3-LGM [26]	WRF-Chem-LGM / WRF-Chem
Eccentricity0.0189940.018994 / 0.014Obliquity22.949° $22.949° / 23.5°$ Gas concentrations: $22.949° / 23.5°$ $CO_2 (10^{-6})$ 185 $185 / 379$ $CH_4 (10^{-9})$ 350 $350 / 1774$ $N_2O (10^{-9})$ 200 $200 / 319$ CFCs, misc. (10^{-12}) 0 $0 / 169, 251, 538$ Mineral dustComputed or CMIP5-PI [27]Shao et al. [28]Land-sea mask1° PMIP3-LGM [26]1° PMIP3-LGM-basedOrographyOffsets added (1° PMIP3-LGM)Offsets added (1° PMIP3-LGM)Ice sheets1° PMIP3-LGM2° CLIMAP-LGM [29]-based	Earth's orbit:		
Obliquity 22.949° 22.949° / 23.5° Gas concentrations: V $CO_2 (10^{-6})$ 185 $CH_4 (10^{-9})$ 350 $350 / 1774$ $N_2O (10^{-9})$ 200 $200 / 319$ CFCs, misc. (10^{-12}) 0 $0 / 169, 251, 538$ Mineral dustComputed or CMIP5-PI [27]Land-sea mask1° PMIP3-LGM [26] $0'$ PMIP3-LGM-basedOrographyOffsets added (1° PMIP3-LGM)Ice sheets1° PMIP3-LGM	Eccentricity	0.018994	0.018994 / 0.014
Gas concentrations:Image: CO2 (10^{-6})185185 / 379 $CO_2 (10^{-6})$ 185185 / 379 $CH_4 (10^{-9})$ 350350 / 1774 $N_2O (10^{-9})$ 200200 / 319 $CFCs, misc. (10^{-12})$ 00 / 169, 251, 538Mineral dustComputed or CMIP5-PI [27]Shao et al. [28]Land-sea mask1° PMIP3-LGM [26]1° PMIP3-LGM-basedOrographyOffsets added (1° PMIP3-LGM)Offsets added (1° PMIP3-LGM-based)Ice sheets1° PMIP3-LGM2° CLIMAP-LGM [29]-based	Obliquity	22.949°	22.949° / 23.5°
$\begin{array}{ccccccc} {\rm CO}_2 \ (10^{-6}) & 185 & 185 / 379 \\ {\rm CH}_4 \ (10^{-9}) & 350 & 350 / 1774 \\ {\rm N}_2{\rm O} \ (10^{-9}) & 200 & 200 / 319 \\ {\rm CFCs, misc.} \ (10^{-12}) & 0 & 0 / 169, 251, 538 \\ {\rm Mineral \ dust} & {\rm Computed \ or \ CMIP5-PI \ [27]} & {\rm Shao \ et \ al.} \ [28] \\ {\rm Land-sea \ mask} & 1^\circ {\rm PMIP3-LGM \ [26]} & 1^\circ {\rm PMIP3-LGM-based} \\ {\rm Orography} & {\rm Offsets \ added \ (1^\circ {\rm PMIP3-LGM})} & {\rm Offsets \ added \ (1^\circ {\rm PMIP3-LGM-based}) \\ {\rm Ice \ sheets} & 1^\circ {\rm PMIP3-LGM} & 2^\circ {\rm CLIMAP-LGM \ [29]-based} \\ \end{array}$	Gas concentrations:		
CH_4 (10^{-9})350350 / 1774 N_2O (10^{-9})200200 / 319 $CFCs$, misc. (10^{-12})00 / 169, 251, 538Mineral dustComputed or CMIP5-PI [27]Shao et al. [28]Land-sea mask1° PMIP3-LGM [26]1° PMIP3-LGM-basedOrographyOffsets added (1° PMIP3-LGM)Offsets added (1° PMIP3-LGM-based)Ice sheets1° PMIP3-LGM2° CLIMAP-LGM [29]-based	$CO_2 (10^{-6})$	185	185 / 379
N_2O (10^{-9}) 200 $200 / 319$ CFCs, misc. (10^{-12}) 0 $0 / 169, 251, 538$ Mineral dust Computed or CMIP5-PI [27] Shao et al. [28] Land-sea mask 1° PMIP3-LGM [26] 1° PMIP3-LGM-based Orography Offsets added (1° PMIP3-LGM) Offsets added (1° PMIP3-LGM-based) Ice sheets 1° PMIP3-LGM 2° CLIMAP-LGM [29]-based	CH_4 (10 ⁻⁹)	350	350 / 1774
CFCs, misc. (10 ⁻¹²)00 / 169, 251, 538Mineral dustComputed or CMIP5-PI [27]Shao et al. [28]Land-sea mask1° PMIP3-LGM [26]1° PMIP3-LGM-basedOrographyOffsets added (1° PMIP3-LGM)Offsets added (1° PMIP3-LGM-based)Ice sheets1° PMIP3-LGM2° CLIMAP-LGM [29]-based	$N_2O~(10^{-9})$	200	200 / 319
Mineral dustComputed or CMIP5-PI [27]Shao et al. [28]Land-sea mask1° PMIP3-LGM [26]1° PMIP3-LGM-basedOrographyOffsets added (1° PMIP3-LGM)Offsets added (1° PMIP3-LGM-based)Ice sheets1° PMIP3-LGM2° CLIMAP-LGM [29]-based	CFCs, misc. (10^{-12})	0	0 / 169, 251, 538
Land-sea mask1° PMIP3-LGM [26]1° PMIP3-LGM-basedOrographyOffsets added (1° PMIP3-LGM)Offsets added (1° PMIP3-LGM-based)Ice sheets1° PMIP3-LGM2° CLIMAP-LGM [29]-based	Mineral dust	Computed or CMIP5-PI [27]	Shao et al. [28]
OrographyOffsets added (1° PMIP3-LGM)Offsets added (1° PMIP3-LGM-based)Ice sheets1° PMIP3-LGM2° CLIMAP-LGM [29]-based	Land-sea mask	1° PMIP3-LGM [26]	1° PMIP3-LGM-based
Ice sheets 1° PMIP3-LGM 2° CLIMAP-LGM [29]-based	Orography	Offsets added (1° PMIP3-LGM)	Offsets added (1° PMIP3-LGM-based)
	Ice sheets	1° PMIP3-LGM	2° CLIMAP-LGM [29]-based
Land useSame as in CMIP5-PI2° CLIMAP-LGM-based	Land use	Same as in CMIP5-PI	2° CLIMAP-LGM-based
Vegetation cover Same as in CMIP5-PI Deduced from 2° CLIMAP-LGM and WRF geo-data [30]	Vegetation cover	Same as in CMIP5-PI	Deduced from 2° CLIMAP-LGM and WRF geo-data [30]
Soil types Not specified Present-day WRF geo-data, EIS adapted	Soil types	Not specified	Present-day WRF geo-data, EIS adapted
Erodibility Not specified Deduced [31] from 1° PMIP3-LGM topography and 2° CLIMAP-LGM bare soil	Erodibility	Not specified	Deduced [31] from 1° PMIP3-LGM topography and 2° CLIMAP-LGM bare soil
Sea surface temperatures Not specified MPI-LGM [32–34]	Sea surface temperatures	Not specified	MPI-LGM [32-34]

Table S3: Modules and domain parameters applied to run the WRF-Chem-LGM simulations. University of Cologne (UC)

WRF-Chem version	3.5.1
Time step	3 min
Horizontal resolution	50 km
Vertical levels	35
MPI-LGM boundary data input interval	6 h
Microphysics	Lin Scheme [35]
Longwave, Shortwave Radiation	RRTMG [36]
Surface Layer	MM5 Similarity Scheme [37]
Land Surface Model	Unified Noah [38–40]
Planetary Boundary layer	Yonsei Univ. Scheme [41]
Cumulus convection parameter	Tiedtke Scheme [42]
Non hydrostatic	Yes
Chemistry modules active	Dust-only
Dry deposition	Yes [43]
Vertical turbulent mixing	Yes
Dust option	GOCART [44]
Dust emissions	UC Simplified Scheme [28]
Wet deposition	Enabled [45]

1 References

- Rousseau DD, Zöller L, Valet JP (1998) Late Pleistocene Climatic Variations at Achenheim, France, Based on a Magnetic Susceptibility and TL Chronology of Loess. *Quaternary Research* 49(3):255–263.
- [2] Frechen M (2003) Loess in Europe–mass accumulation rates during the Last Glacial Period. *Quaternary Science Reviews* 22(18-19):1835–1857.
- [3] Novothny A, Horváth E, Frechen M (2002) The loess profile at Albertirsa, Hungaryimprovements in loess stratigraphy by luminescence dating. *Quaternary International* 95-96:155-163.
- [4] Újvári G, Kovács J, Varga G, Raucsik B, Marković SB (2010) Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review. *Quaternary Science Reviews* 29(23-24):3157–3166.
- [5] Mahowald NM, et al. (2006) Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. *J. of Geo-physical Research: Atmospheres* 111(D10).
- [6] Frechen M, Zander A, Cílek V, Ložek V (1999) Loess chronology of the Last Interglacial/Glacial cycle in Bohemia and Moravia, Czech Republic. *Quaternary Science Reviews* 18(13):1467–1493.
- [7] Bokhorst M, et al. (2011) Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records. *Quaternary International* 234(1-2):62–74.
- [8] Little EC, et al. (2002) Quaternary stratigraphy and optical dating of loess from the east European Plain (Russia). *Quaternary Science Reviews* 21(14-15):1745–1762.
- [9] Łanczont M, Madeyska T (2005) Environment of the East Carpathian Foreland during periods of Palaeolithic man's activity. *CATENA* 59(3):319–340.
- [10] Frechen M, van Vliet-Lanoë B, van den Haute P (2001) The Upper Pleistocene loess record at Harmignies/Belgium – high resolution terrestrial archive of climate forcing. *Palaeogeography, Palaeoclimatology, Palaeoecology* 173(3-4):175–195.
- [11] van den Haute P, Vancraeynest L, De Corte F (1998) The Late Pleistocene loess deposits and palaeosols of eastern Belgium: new TL age determinations. *J. of Quaternary Science* 13(5):487– 497.
- [12] Rutter NW, et al. (2003) Correlation and interpretation of paleosols and loess across European Russia and Asia over the last interglacial–glacial cycle. *Quaternary Research* 60(1):101–109.
- [13] Frechen M, Horváth E, Gábris G (1997) Geochronology of Middle and Upper Pleistocene Loess Sections in Hungary. *Quaternary Research* 48(3):291–312.
- [14] Haesaerts P, et al. (2003) The east Carpathian loess record: a reference for the middle and late pleniglacial stratigraphy in central Europe [La séquence loessique du domaine est-carpatique: une référence pour le Pléniglaciaire moyen et supérieur d'Europe centrale.]. Quaternaire 14(3):163–188.
- [15] Rousseau D, et al. (2002) Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation. *Quaternary Science Reviews* 21(14-15):1577–1582.

- [16] Molodkov AN, Bolikhovskaya NS (2002) Eustatic sea-level and climate changes over the last 600 ka as derived from mollusc-based ESR-chronostratigraphy and pollen evidence in Northern Eurasia. *Sedimentary Geology* 150(1-2):185–201.
- [17] Sümegi P, Rudner ZE (2001) In situ charcoal fragments as remains of natural wild fires in the upper Würm of the Carpathian Basin. *Quaternary International* 76-77:165–176.
- [18] Nawrocki J, Bakhmutov V, Bogucki A, Dolecki L (1999) The paleo- and petromagnetic record in the Polish and Ukrainian loess-paleosol sequences. *Physics and Chemistry of the Earth, Part* A: Solid Earth and Geodesy 24(9):773–777.
- [19] Wintle AG (1987) Thermoluminescence dating of loess at Rocourt, Belgium. Geologie en Mijnbouw 66(1):35–42.
- [20] Antoine P, Rousseau DD, Lautridou JP, Hatté C (1999) Last interglacial-glacial climatic cycle in loess-palaeosol successions of north-western France. *Boreas* 28(4):551–563.
- [21] Virina EI, et al. (2000) Palaeoclimatic record in the loess-palaeosol sequence of the Strelitsa type section (Don glaciation area, Russia) deduced from rock magnetic and palynological data. *J. of Quaternary Science* 15(5):487–499.
- [22] Novothny A, Frechen M, Horváth E, Wacha L, Rolf C (2011) Investigating the penultimate and last glacial cycles of the Süttő loess section (Hungary) using luminescence dating, highresolution grain size, and magnetic susceptibility data. *Quaternary International* 234(1-2):75– 85.
- [23] Frechen M (1992) Systematic thermoluminescence dating of two loess profiles from the Middle Rhine Area (F.R.G.). Quaternary Science Reviews 11(1-2):93–101.
- [24] Trofimov VT, ed. (2001) Loess mantle of the Earth, and its properties. (Moscow University Press).
- [25] Rousseau DD, Gerasimenko N, Matviischina Z, Kukla G (2001) Late Pleistocene Environments of the Central Ukraine. *Quaternary Research* 56(3):349–356.
- [26] Braconnot P, et al. (2012) Evaluation of climate models using palaeoclimatic data. *Nature Climate Change* 2(6):417–424.
- [27] Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the Experiment Design. Bull. of the American Meteorological Society 93(4):485–498.
- [28] Shao Y (2004) Simplification of a dust emission scheme and comparison with data. *J. of Geophysical Research* 109(D10).
- [29] Climate, Long-Range Investigation, Mapping and Prediction (CLIMAP) Project Members, Ruddiman WF (1984) The Last Interglacial Ocean. *Quaternary Research* 21(2):123–224.
- [30] Grell GA, et al. (2005) Fully coupled "online" chemistry within the WRF model. *Atmospheric Environment* 39(37):6957–6975.
- [31] Ginoux P, et al. (2001) Sources and distributions of dust aerosols simulated with the GOCART model. *J. of Geophysical Research: Atmospheres* 106(D17):20255–20273.
- [32] Stevens B, et al. (2013) Atmospheric component of the MPI-M Earth System Model: ECHAM6.J. of Advances in Modeling Earth Systems 5:146–172.

- [33] Jungclaus JH, et al. (2013) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. of Advances in Modeling Earth Systems 5(2):422–446.
- [34] Jungclaus J, et al. (2012) CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-P model: The lgm experiment, served by ESGF (WDCC at DKRZ).
- [35] Lin Y, Farley R, Orville H (1983) Bulk Parameterization of the Snow Field in a Cloud Model. *J. of Applied Meteorology and Climatology* 22:1065–1092.
- [36] Iacono MJ, et al. (2008) Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. *J. of Geophysical Research* 113(D13).
- [37] Webb EK (1970) Profile relationships: The log-linear range, and extension to strong stability. *Quarterly J. of the Royal Meteorological Society* 96:67–90.
- [38] Rosero E, Yang ZL, Gulden LE, Niu GY, Gochis DJ (2009) Evaluating Enhanced Hydrological Representations in Noah LSM over Transition Zones: Implications for Model Development. *J. of Hydrometeorology* 10(3):600–622.
- [39] Case JL, Crosson WL, Kumar SV, Lapenta WM, Peters-Lidard CD (2008) Impacts of High-Resolution Land Surface Initialization on Regional Sensible Weather Forecasts from the WRF Model. J. of Hydrometeorology 9(6):1249–1266.
- [40] Tewari M, et al. (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. *20th conference on weather analysis and forecasting/16th conference on numerical weather prediction* 1115:11–15.
- [41] Hong SY, Noh Y, Dudhia J (2006) A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. *Monthly Weather Review* 134(9):2318–2341.
- [42] Zhang C, Wang Y, Hamilton K (2011) Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. *Monthly Weather Review* 139(11):3489–3513.
- [43] Wesely M (1989) Parameterization of surface resistances to gaseous dry deposition in regionalscale numerical models. Atmospheric Environment (1967) 23(6):1293–1304.
- [44] Chin M, Rood RB, Lin SJ, Müller JF, Thompson AM (2000) Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. *J. of Geophysical Research: Atmospheres* 105(D20):24671–24687.
- [45] Jung E, Shao Y, Sakai T (2005) A study on the effects of convective transport on regional-scale Asian dust storms in 2002. *J. of Geophysical Research: Atmospheres* 110(D20). D20201.